ORACLE"

Oracle® Database
SQL Tuning Guide
12c Release 2 (12.2)
E49643-08

April 2017

Oracle Database SQL Tuning Guide, 12¢ Release 2 (12.2)

E49643-08

Copyright © 2013, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Lance Ashdown

Contributing Authors: Nigel Bayliss, Maria Colgan, Tom Kyte

Contributors: Hermann Baer, Ali Cakmak, Sunil Chakkappen, Immanuel Chan, Deba Chatterjee, Chris
Chiappa, Dinesh Das, Leonidas Galanis, William Endress, Marcus Fallen, Bruce Golbus, Katsumi Inoue,
Shantanu Joshi, Adam Kociubes, Keith Laker, Allison Lee, Sue Lee, David McDermid, Colin McGregor, Ajit
Mylavarapu, Ted Persky, Lei Sheng, Ekrem Soylemez, Hong Su, Murali Thiyagarajah, Randy Urbano, Sahil
Vazirani, Bharath Venkatakrishnan, Hailing Yu, John Zimmerman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ...t Xvii
ATUAIEIICE ...ttt h bbbt b b s b et e b et et et et et e st e st eateae e bt e bt bt bt besbe st entan XVil
Documentation AcCeSSIDILILYcccvvviimiiiiiiiiiiiiii s Xvii
Related DOCUMENES......co.eoiriiiriiieienieieteterte ettt ettt b e sttt st st e st e et e e sbe st benene XVii
COMNVEINTIONS ..ottt ettt et et ettt e e st e b e s bt e be e bt et e es e e beeat e st eneesseentesaeensesatebesatesesatenbeensenseensenseansenne Xviii

Changes in This Release for Oracle Database SQL Tuning Guide..........c..ccccoooevnrinnnnne. Xix
Changes in Oracle Database 12c Release 2 (12.2.0.1) c.c.couvuriririeiririrerieieierecieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeenas XiX

INEW FEALUTES ...ttt ettt st st sttt sttt b et b et b et be e es XiX
Desupported FEatures ... XXii
Other Changes ..ot XXii
Changes in Oracle Database 12c Release 1 (12.1.0.2) c...ccccocvuviiiiiiiiiiiiiininiiiiiiiiccciseeceeces XXil
INEW FEATUTES ...ttt ettt sttt sttt ettt et et b et be st ebestesestenessenens XXii
Changes in Oracle Database 12c Release 1 (12.1.0.1) c.c.ceuvuririiiiiniriiiiiiiiiiriciiiciceirecciciceeeeeieieeees XXiii
INEW FEALUTES ...ttt ettt ettt ettt e s bt et esaeebe s bt ebeeatenbeas XXiii
Deprecated Features............ccuoviiiiiiiicici s XXVi
Desupported FEatUres ... XXVi
Other CRANGESc.ccuiiiiiiicee ettt XXVi
Part | SQL Performance Fundamentals

1 Introduction to SQL Tuning

1.1
1.2
1.3
14

About SQL TUNINGcvoviiiiiiiiiiiic e 1-1
Purpose of SQL TUNING.....c.coiuiiiiiiiiiiiccccceee e 11
Prerequisites for SQL TUNING.......cccccoiiiiiiiiiiiiiic s 1-2
Tasks and Tools for SQL TUNINGccceieiiiieieiicie e 1-2
1.4.1 SQL Tuning TasKSccceueiiuriiiiiiiiciecie e 1-2
1.4.2 SQL TUNING TOOIS......coiuimiiiiiiiiiiieiciieciccee e e 1-4
1.4.3 User Interfaces to SQL Tuning ToOIS..........cccccocuiuiiiiiiiiiiiiiiiciiccccccceeceeeeeenenes 1-9

2 SQL Performance Methodology

2.1 Guidelines for Designing Your Applicationccccouoiriiieiiiiiciiiiiicccecce 2-1
2.1.1 Guideline for Data MOdelng..........ccccoeuviuriiiiiriiiciicic s 2-1
2.1.2 Guideline for Writing Efficient Applications............ccccccciiiiiiiiniinciiiccceceeeene 2-1

2.2 Guidelines for Deploying Your Application ... 2-3
2.2.1 Guideline for Deploying in a Test Environmentcccoooiiiiiiiiiiiinn, 2-3
2.2.2 Guidelines for Application ROLOULc.cooeuriiiiiiiii e, 2-4

Part Il Query Optimizer Fundamentals

3 SQL Processing

3.1 About SQL ProCessingccceueieiiucieiiicieie ittt 3-1
311 SQL PAISINGcviiiiiiieiiictcie ittt 3-2
3.1.2 SQL OptimizZation........cccociiiiiiiiiiiiiiiiiic s 3-6
3.1.3 SQL ROW SOUICE GENETAtIONveeevieiieiiieieeereecieeeteeeteesireeveeseteebeesseeebeessaesseesssesseenseeas 3-6
3.1.4 SQL EXECULION....ciciiiiieeieeieeeteeetee e et e ette et e eteebeessaeesbeessseesseesssesnseasssessseesssassseesssesseesseenn 3-7

3.2 How Oracle Database Processes DMLc.covcvieieiinieniineeie et ee s se s sse e 3-9
3.2.1 How Row Sets Are FEtChedccooieiiiieiecieeceeeeeetete ettt ns 3-9
3.2.2 Read CONSISTENCY ...cocuuuiuimiiiiiiiiiiiiiciciicciciitecee et 39
3.2.3 Data Changes ..o 3-10

3.3 How Oracle Database Processes DDL.........cccoioiiiiiiieiiiiriecieeeeeeeeeste et eve e v sve e a v eveens 3-10

4 Query Optimizer Concepts

4.1 Introduction to the Query OptimiZer ..o 4-1
4.1.1 Purpose of the Query OptimizZer............cooooriiiiiiiiiiiiiicic e 4-1
4.1.2 Cost-Based Optimization ... 4-2
4.1.3 EXECUtiON PIANS.....ccciiiiiiiiiiiiccccccccc e 4-2

4.2 About Optimizer COMPONENLSccoiiiiiiiiiiiiii e 4-4
4.2.1 Query TransfOImMerccooiiiiiiiiiiice e 4-5
4.2.2 BStIMAtOT ..ot s 4-6
4.2.3 Plan GeNeTator ...t s 4-10

4.3 About Automatic TUNING OPHIMIZET ..o 4-11

4.4 About Adaptive Query Optimization.........ccccoiiiiiiiiiiniiiii e 4-12
4.4.1 Adaptive QUery PIans ... 4-12
4.4.2 Adaptive StatisticS.......cooeuiiiiiiieicc 4-21

4.5 About Approximate Query Processing ... 4-25

4.6 About SQL Plan Management ...t 4-27

4.7 About the Expression Statistics Store (ESS) ..o 4-28

5 Query Transformations

5.1 OR EXPANSION ...ocviuiiiiitiiiiicict ettt 5-1
5.2 VIEW MEIZINE ...ttt 5-3

5.2.1 Query Blocks in View Mergingccccoviiiiiiiiiiieiiciccci e 5-4

5.2.2 Simple VIEW MEIZINGccccoiuimiiiiiiiiiiiiicccctecce e 5-4
52.3 Complex VIEW METIGING ...t 5-7
5.3 Predicate PUSHINGccccoiiiiiiiiiiiiiiiiiiiiicc s 5-9
5.4 Subquery UnNNeStiNgcoouiiiiiiiiicicie et 5-10
5.5 Query Rewrite with Materialized VIeWs........ccccoooiiiiiiiiiiiiii e 5-10
5.6 Star TranSfOrMatioNccceueirueirieieieieieteeteiete sttt ettt b ettt ettt b et be e be st eseneene 5-11
5.6.1 ADOUL StAr SCHEMAS .. .veuviiiieiiieicrieeeieeeeet ettt ettt 5-12
5.6.2 Purpose of Star Transformations ... 5-12
5.6.3 How Star Transformation WOTKS........cccccerieieiiiiiniiineseee et 5-12
5.6.4 Controls for Star Transformationc.cceeeeeeeirieirieirieereereeee ettt 5-13
5.6.5 Star Transformation: SCENATIOccecereruerirreriererterertetertee ettt ettt ebe e 5-13
5.6.6 Temporary Table Transformation: SCenario...........ccooceiiiiiiiininininiiiiiccceaes 5-16
5.7 In-Memory Aggregation (VECTOR GROUP BY)cccccooiiiiiiiiiiiicce 5-18
5.8 Cursor-Duration Temporary Tables ..o, 5-18
5.9 Table EXPANSION......cccoceviiiiiieieieiieiecee s 5-19
5.9.1 Purpose of Table EXPansion ...t 5-20
5.9.2 How Table Expansion WOTKS ... 5-20
5.9.3 Table EXpansion: SCENATIOcoouiueieiiiiericieiiccie e 5-20
5.9.4 Table Expansion and Star Transformation: SCenariocccccoeuevevurieciniiceiccnicccinnnne. 5-23
5.10 JOIN FaACEOTIZATION ...c.veeuvieeieiieeieieeiese ettt ettt ettt et e e e s e eseessesseessesssessesssessesssensenssenseens 5-25
5.10.1 Purpose of Join Factorization............cccciiiiiiiiiiiiiiiicccccc e 5-25
5.10.2 How Join Factorization WOTKScccccecierieieiiieieieese et 5-25
5.10.3 Factorization and Join Orders: SCENATIO.........cccertriruereriirierienieiesie ettt 5-26
5.10.4 Factorization of OQuter JOINS: SCENATIOeevevirieeirieirieirieereeee et 5-27
Part Il Query Execution Plans

6 Generating and Displaying Execution Plans

6.1
6.2

6.3

6.4

Introduction to Execution PIANs ... 6-1
About Plan Generation and Display ... 6-1
6.2.1 About the Plan EXplanation.........c.cccocovviiiiinniniiirrccncrcceeeeeeeeseseeeeeee s 6-1
6.2.2 Why Execution Plans Change............cccoovvviiiviininninniiiiincnnnnsssssesssssssees 6-2
6.2.3 Guideline for Minimizing Throw-AWay.........c.cccocoeeiiiiiiiiniiiicecee 6-3
6.2.4 Guidelines for Evaluating Execution Plans...........c.ccooiiiiiiiiicc, 6-3
6.2.5 EXPLAIN PLAN ReStIICHONScvoviiviiiiiiiiciciiccs e 6-4
6.2.6 Guidelines for Creating PLAN_TABLEcccooiiiiiicnrreceeeeeeaes 6-5
Generating Execution PIans ... 6-5
6.3.1 Executing EXPLAIN PLAN for a Single Statement..............cccoooniiiii, 6-5
6.3.2 Executing EXPLAIN PLAN Using a Statement ID..........c.c.ccooooiiiiii, 6-6
6.3.3 Directing EXPLAIN PLAN Output to a Nondefault Table...........cccccoevrvrrnnnnnenene. 6-6
Displaying PLAN_TABLE OUPUL......cccooiuiiiiiiiiiiiiiicccccceecsecee s 6-7
6.4.1 Displaying an Execution Plan: Exampleccccocovvniiiiininninninninn 6-7

6.4.2 Customizing PLAN_TABLE Output........cccooooiiiiiiiiii 6-8

7 Reading Execution Plans

7.1 Reading Execution Plans: Basiccccooiiriiioiiiiiicci 7-1
7.2 Reading Execution Plans: AAvanced ... 7-2
7.2.1 Reading Adaptive QUery Plans..........cccoviiiiiiiniiiniiiiiiccnrrccs 7-2
7.2.2 Viewing Parallel Execution with EXPLAIN PLAN........cccccovviinniininnnin 7-6
7.2.3 Viewing Bitmap Indexes with EXPLAIN PLANccoooiiiiiice, 7-8
7.2.4 Viewing Result Cache with EXPLAIN PLAN.......cccccooiiiiiii, 7-9
7.2.5 Viewing Partitioned Objects with EXPLAIN PLANccccoviiiiinnniirrrceeeene 7-9
7.2.6 PLAN_TABLE COIUMIS.ooviiitieetieetee ettt et et ettt eaee et e eseeeseeeaeseseeeneeenteeeneeennes 7-16
7.3 Execution Plan Reference ... 7-28
7.3.1 Execution Plan VIEWScccccoviiiiiiiiiiiiiiiiiiiiiicccc s 7-28
7.3.2 PLAN_TABLE COIUMIS......cooiiiiiiiiiiiiiiiisrs s 7-29
7.3.3 DBMS_XPLAN Program Units ..o 7-40

Part IV SQL Operators: Access Paths and Joins

8 Optimizer Access Paths

Vi

8.1
8.2

8.3

8.4

8.5

INtroduction t0 ACCESS PathiS.......ceciiiiriirieieieiet ettt ettt ettt esa e sbesaesaesaeseesessessenes 8-1
Table ACCESS PathiS......cviiiieieieieieee ettt sttt et esaesaeseeseesensessenes 8-2
8.2.1 About Heap-Organized Table ACCESScccocoviviviiiiiiiiiniiiiiiiiiiiiinncsss 8-3
8.2.2 FUIl TADIE SCAINSoocvieniieiieiieieieetetee ettt ettt s re b e seesbe s s be e b e be e s e beesseeseensesssensennes 8-5
8.2.3 Table Access by ROWId.......cccoooiiiiiiiiiiii 8-8
8.2.4 Sample Table SCANSccovveevirererireececreee s 8-9
8.2.5 In-Memory Table SCaNSccccoeeiriiiiieriicce e 8-10
B-Tree INdex AcceSs PathiS........cc.vcviivieiiiiieiiceeeee ettt et et e 8-12
8.3.1 About B-Tree INAEX ACCESScoviiuieiiciieiictieieetteteete ettt ste e s e aesreeae s e esaessaessesseans 8-12
8.3.2 Index UNique SCaNS........ccocovviiiiiiiiiiiiiiiiiiiiccccc s 8-16
8.3.3 Index RAnge SCAMS.......ccovuvuiiiiriririciiicrreeee s 8-18
8.3.4 INAEX FUIL SCANSocoviiuiiiieiiicieeeeeteete ettt ettt ettt er e et eeeereesaesreesesssensesreensenseens 8-22
8.3.5 Index Fast FUIl SCANS.......ccccoiririiiirieieieiee ettt sttt ettt ebe e sae 8-24
8.3.6 INdeX SKipP SCANSccvoiiuiiiiicieie et 8-25
8.3.7 INAEX JOIN SCANSuteuiriiitiitiriirieetesterteetet ettt sttt st et b ettt et ettt sbe b saen 8-27
Bitmap Index Access Pathis...........cccciiiiiiiiiiicc s 8-28
8.4.1 About Bitmap INdeX ACCESS.......ccccviriririiiiiiiiiiiiiiicicicc s 8-29
8.4.2 Bitmap Conversion to ROWidccooiiii 8-33
8.4.3 Bitmap Index Single Value............cccooeiiiiiiiiiii 8-34
8.44 Bitmap Index RANGE SCANS........ccouvviiriririririeiiirirreeereeeee e 8-35
8.4.5 Bitmap METIZE......cooiiiiiiiiiiiciiiiicc s 8-36
Table Cluster ACCeSS PathS.......cc.vccviiuieiieieeieeeece ettt ettt et et eaeeereeneas 8-37
8.5.1 CIUSLET SCAISc.vieveerieeieticiieete ettt ettt ettt et e st e b e s te e beeseesseessesseessesseessesseessesseessesseessenseans 8-38
8.5.2 HASKI SCANS.....ccueiiieiieiiciectt ettt ettt et ete et e e se e b e e see s e eseesseesaesseessasseessenseessenseans 8-39

9 Joins

0.1 ADOUL JOINS ..ttt ettt ettt et b s he bt b e s b e st et et et et e e et eneent e st eaeebeebeebesbeebenbeneens 9-1
911 JOIN TIEES .ottt ettt sttt ettt et et sbe et sae e b sbe e besan e besanenneens 9-1
9.1.2 How the Optimizer Executes Join Statementscccociiiiiiiiiiiiiniicccceeeees 9-3
9.1.3 How the Optimizer Chooses Execution Plans for Joinsccccccovvieeiiniccninicnnnnnn, 9-4

9.2 JOIN MENOAS. ...ttt ettt ettt st sttt et e et et e st e st e st eneeseeseesesaesbesbeesens 9-5
9.2.1 Nested LOOPS JOINS......cuoiiiiiieiiii s 9-5
9.2.2 HASH JOINS ..ttt sttt ettt ettt sae s 9-15
9.2.3 S0t MeTrge JOINS.cuouiuiiiiiiiiiiciciiic s 9-18
9.2.4 CarteSIan JOINS ...c.eeverrieiertieieeteete ettt ettt et et st e s te et e bt e te b e ente st entesseeneesseenseeneesesaeensesaean 9-23

9.3 JOIN TYPES. ..ottt s 9-25
9.3.1T INNET JOINS .ttt ettt ettt et et b et b e sb et sbeesaesaeenbesaeen 9-26
9.3.2 OULET JOIMS .. cuteutiteiieiietteieet ettt ettt b e sttt et e st e e et e e bt b e b sbesaebes 9-30
9.3.3 SEMIJOINS ...cuvuiiiiiiiiiciinic s 9-35
9.3:4 ANLOINS ...uiiiiiiiiiieicicc s 9-37

9.4 Join OPtimMiZaAtiONScueviiieeieieicee e 9-41
9.4.1 BloOm FIIEEISvviiiiiiiiii s 9-41
9.4.2 Partition-WIiSe JOINS......ccecveierrieiieieieeteteeteste et ste et seete e s teseessesseessesssensesssessesssessenses 9-44
9.4.3 IN-Memory JOIN GIOUPScoovviiiiiiiiiiiiiiiiiiricicc s 9-48

Part V Optimizer Statistics

10 Optimizer Statistics Concepts

10.1 Introduction to Optimizer StatiStiCs. ... 10-1
10.2 About Optimizer StatiStics TYPES.......cccoiiiiiimiiiiiiiiicccicceeeeee e 10-3
10.2.1 Table StatiStiCs.......coeoivirieuiiiiieiciirricct et 10-3
10.2.2 Column StatistiCS......oiuiuiuiiiiiiiiiiiiiiiicicci e 10-4
10.2.3 Index StatiStiCscviuiuiuiuiiiiiiiiiicicicicccc e 10-5
10.2.4 Session-Specific Statistics for Global Temporary Tables...........cccccocoeiiiiiiincnnns 10-10
10.2.5 System StatiStiCs........cooiiviiiiiiiiiiiiciic e 10-11
10.2.6 User-Defined Optimizer StatiSticsc.cooeeueiiieiiiieiiccc 10-12
10.3 How the Database Gathers Optimizer Statisticscooeueviioiciiiiiiiiic 10-12
10.3.1 DBMS_STATS PaCKAGE......ccevvirimiiiiiiniiiiiiiieiics s 10-12
10.3.2 Supplemental Dynamic StatiStics..........ccooiiiiiiiiiiiiiiciciccceccccceeeeennes 10-13
10.3.3 Online Statistics Gathering for Bulk Loads ... 10-14
10.4 When the Database Gathers Optimizer Statisticsccccooiioiriiiiiiiii 10-17
10.4.1 Sources for Optimizer StatiSticsc.coovurieiricieiiiieice e 10-17
10.4.2 SQL PIan DITECIVEScveeeveereerieriereeteeeteeeeeteeeteeseesseeseesseessenseessesseessesseessesssessesssessesssenses 10-18
10.4.3 When the Database Samples Datacccccceiiiiiiiiiiiiiiicceccccecceennes 10-27
10.4.4 How the Database Samples Data ... 10-29

Vii

11

12

13

viii

Histograms

11.1 Purpose of HiStOZIamsccceuiiiiiiiiicici s 11-1
11.2 When Oracle Database Creates Histograms...........ccocooueviiiiiiiiiicieic 11-2
11.3 How Oracle Database Chooses the Histogram Typecccccccoeeeeiiicccciencccceeeenenas 11-3
11.4 Cardinality Algorithms When Using HiStograms.............cccccccoiiiiiiiiiiiiiciiicicennas 11-4
11.4.1 Endpoint Numbers and Values...........cccccoiiiiiiiiiiiiiiiiiicccccccccecenes 11-4
11.4.2 Popular and Nonpopular Values...........c.coriiiirieiiiicicececc e 11-4
11.4.3 Bucket COMPIESSIONovviviviiiiiiirititiicicicictctct st 11-5
11.5 Frequency HistOZrams ..ot s 11-6
11.5.1 Criteria For Frequency HiStograms............ccccooeiiiniiiiininiiiiiicccccces 11-6
11.5.2 Generating a Frequency Histogramccccoooiiiiiiiiciicc e 11-6
11.6 Top Frequency HiStOGTamS........ccooiiviiiiiiiiiiiiiiitiitii i 11-10
11.6.1 Criteria For Top Frequency Histograms..........cccccooviuiiimniiiiniccccccccncncennes 11-10
11.6.2 Generating a Top Frequency Histogramccccoviiiininiiiniiiiiiiciccce 11-11
11.7 Height-Balanced Histograms (Legacy)..........ccccuiiiiiiiiiiiiiiiiiiiiccicicciccceccccnnes 11-14
11.7.1 Criteria for Height-Balanced Histograms............ccccooiieiiiiiiiiiccce 11-14
11.7.2 Generating a Height-Balanced Histogramccccoooiiiiiice 11-14
11.8 Hybrid HiStOZIams.ccooioiiiiiiiiiiiiiciccrcccciceeee e 11-18
11.8.1 How Endpoint Repeat Counts WOTKccccccciuiiiiiiiiiiiiiiicccccecccenes 11-18
11.8.2 Criteria for Hybrid Histograms............ccccccoiiiiiiiiiiiiiiiiiicccccccccccicnes 11-20
11.8.3 Generating a Hybrid Histogramc.coooiiiiiiiiiiiicc 11-20

Configuring Options for Optimizer Statistics Gathering

12.1 About Optimizer Statistics COLeCIONc.coiriiiiiiici 12-1
12.1.1 Purpose of Optimizer Statistics Collection..........cooocvvviiiiviniiiiiniiiccens 12-1
12.1.2 User Interfaces for Optimizer Statistics Managementcccccccoecueueucccccceccnenns 12-1

12.2 Setting Optimizer Statistics Preferences..............cccooiiiiiiiiiiiiiiiiicccccccccenes 12-2
12.2.1 About Optimizer Statistics Preferences...........cccooeeiiiiiiiiiiiciiiiicccccenes 12-3
12.2.2 Setting Global Optimizer Statistics Preferences Using Cloud Control...................... 12-8
12.2.3 Setting Object-Level Optimizer Statistics Preferences Using Cloud Control........... 12-8
12.2.4 Setting Optimizer Statistics Preferences from the Command Line............c.cccccccc..... 12-9

12.3 Configuring Options for Dynamic Statistics...........cccooiiiiiiiiiiiiiiicccccccccccnes 12-10
12.3.1 About Dynamic Statistics Levels........ccccooriiiiiiiicc 12-11
12.3.2 Setting Dynamic Statistics Levels Manuallyc.c.cccoooeeiiiiiiii 12-12
12.3.3 Disabling Dynamic StatiSticscooeiiimiiiiiiiiccciccccccccnne 12-14

12.4 Managing SQL Plan Directives. ... e 12-15

Gathering Optimizer Statistics

13.1 Configuring Automatic Optimizer Statistics COllection...........cccccoeeiieciiiiccciciccnenas 13-1
13.1.1 About Automatic Optimizer Statistics Collectionccccceeiiiiiiiiicciiicnnns 13-1
13.1.2 Configuring Automatic Optimizer Statistics Collection Using Cloud Control 13-2

13.1.3 Configuring Automatic Optimizer Statistics Collection from the Command Line. 13-4

14

15

13.2 Gathering Optimizer Statistics Manually..........c.ccooiiiiiiiiii 13-5

13.2.1 About Manual Statistics Collection with DBMS_STATS.......oooooiiieeeeeeeeeeeeeeeeeeeeens 13-6
13.2.2 Guidelines for Gathering Optimizer Statistics Manuallycccccoeiiiiiiiinnes 13-7
13.2.3 Determining When Optimizer Statistics Are Stale...........cccccoiiiiiiiiiiiiiiicnnns 13-9
13.2.4 Gathering Schema and Table Statisticsc.cocomrieiiiiniiii 13-10
13.2.5 Gathering Statistics for Fixed Objects.........c.cccocvumuriiiiiiiiiiciicccc 13-11
13.2.6 Gathering Statistics for Volatile Tables Using Dynamic Statistics...........ccccccceueneeee 13-12
13.2.7 Gathering Optimizer Statistics Concurrently.........c.cccooveeviiviiiiiinnceeee 13-13
13.2.8 Gathering Incremental Statistics on Partitioned Objects..........c.cccoeeriiiiiniienne. 13-20
13.3 Gathering System Statistics Manuallycooooiiiiii 13-31
13.3.1 About Gathering System Statistics with DBMS_STATS.........ccccoooviiiiiiiiiiinns 13-31
13.3.2 Guidelines for Gathering System Statisticscocoeeiiiriiiiicieiiiccecccenes 13-33
13.3.3 Gathering Workload StatiStics...........c.ccoiiiiiiiiiiiiiiicccccccccecnes 13-33
13.3.4 Gathering Noworkload Statistics.........ccoeeiiiiiiiiciiiiiec 13-37
13.3.5 Deleting System StatiStics........cooeeuiiiiiieieiiiicieiecce 13-38
13.4 Running Statistics Gathering Functions in Reporting Modeccccooviiiinnnnnnnn. 13-39
Managing Extended Statistics
14.1 Managing Column Group Statistics..........ccviiiiiiiiniiiiiiiiis 14-1
14.1.1 About Statistics on Column GrOUPS.........ccceueuemimimimcmiiiiiiiiiceeeeeeeieeeeeeeeenenenes 14-2
14.1.2 Detecting Useful Column Groups for a Specific Workload...........cccccceiiiiiinnnnes 14-5
14.1.3 Creating Column Groups Detected During Workload Monitoringcccc......... 14-8
14.1.4 Creating and Gathering Statistics on Column Groups Manuallyc.............. 14-10
14.1.5 Displaying Column Group Information ... 14-11
14.1.6 Dropping a Column GIOUPcccceiiuimiimimimiiiiiiiceciieeccieeieesene s 14-12
14.2 Managing Expression Statistics ... 14-12
14.2.1 About Expression StatiStics.........cceevireieiiiiicieieiiccec e 14-13
14.2.2 Creating EXpression StatiStics..........coicieiiicieiiiiicieei e 14-14
14.2.3 Displaying EXpression StatiStiCsccciiiiiiiiiiiiiiiiciciccceececeeeeeenenes 14-15
14.2.4 Dropping Expression StatiStiCs..........cocveeiiieiiiiicccccccccccccccccc 14-16
Controlling the Use of Optimizer Statistics
15.1 Locking and Unlocking Optimizer StatiStics ... 15-1
15.1.1 Locking StatistiCscoeeueiiueieiiicieieiecete e 15-1
15.1.2 Unlocking StatiStiCs.......cccoveueiiiiiieieiiiicie e 15-2
15.2 Publishing Pending Optimizer Statistics..........oocvvviiiiiiiiiiiiiiiiiic 15-3
15.2.1 About Pending Optimizer StatiSticscccocoeiiiiiiiiiiiiicccccccccecceeeennes 15-3
15.2.2 User Interfaces for Publishing Optimizer Statistics ..o 15-4
15.2.3 Managing Published and Pending Statistics..........cccecovioriiieiiiiiiiiiiiccee 15-6
15.3 Creating Artificial Optimizer Statistics for Testingcccocoevvvieieieiiieiiiniec 15-9
15.3.1 About Artificial Optimizer StatiStiCsccceoeueueieeiiiiiccecceeeeeeecee e 15-9
15.3.2 Setting Artificial Optimizer Statistics for a Table ... 15-10
15.3.3 Setting Optimizer Statistics: Example ... 15-11

16 Managing Historical Optimizer Statistics

16.1 Restoring Optimizer StatiStics........cocoeuiiiiirieiiiiice 16-1
16.1.1 About Restore Operations for Optimizer Statistics..........cccccoviivvniiiiiniiiiinnnnn, 16-1
16.1.2 Guidelines for Restoring Optimizer StatiStics.........cccccoeeeiieeicceeccceccceeenenes 16-1
16.1.3 Restrictions for Restoring Optimizer Statisticsccoevererriieieiinicceiccee 16-2
16.1.4 Restoring Optimizer Statistics Using DBMS_STATS.cccccoiiininniiiniicnnns 16-2

16.2 Managing Optimizer Statistics Retentioncooiiiiiiii 16-4
16.2.1 Obtaining Optimizer Statistics HiStOIyc.ccooviiiiiiiiiiiccc 16-4
16.2.2 Changing the Optimizer Statistics Retention Period ..o 16-5
16.2.3 Purging Optimizer StatiStiCs.........cocoovivviiiiiiiiiii e 16-6

16.3 Reporting on Past Statistics Gathering Operationscccoooieeiiocieiiccc 16-6

17 Transporting Optimizer Statistics

17.1 About Transporting Optimizer StatiSticsccoeiiiiiiieiiiciice 17-1
17.2 Transporting Optimizer Statistics to a Test Database: Tutorialcccocoooiiiiini 17-2

18 Analyzing Statistics Using Optimizer Statistics Advisor

18.1 About Optimizer Statistics AdVISOTcccoueiiiiiiiieic 18-1
18.1.1 Purpose of Optimizer StatisticS AdVISOT......c.ccceuiuiimiuiuiiiiieeeeceeeeeeeee e 18-2
18.1.2 Optimizer Statistics AdviSOr CONCEPLSccocuemimimimimiiiiiiiiiiieccccccccecce e 18-4
18.1.3 Command-Line Interface to Optimizer Statistics AdViSOI..........ccccceuiuiiiiiiiinnnes 18-8

18.2 Basic Tasks for Optimizer Statistics AViSOT........ccoovoiiiiiiiiii 18-10
18.2.1 Creating an Optimizer Statistics Advisor Task...........ccocoeeueiiiiiiiiiiiinice 18-13
18.2.2 Listing Optimizer Statistics AdviSOr Tasksccccccoeuiuiiiiiiiiiiicciccecceenenes 18-13
18.2.3 Creating Filters for an Optimizer Advisor Task.........cccccoeiiiiiiiiiiiiiiiicnas 18-14
18.2.4 Executing an Optimizer Statistics Advisor Task ..o 18-23
18.2.5 Generating a Report for an Optimizer Statistics Advisor Task..........c.cccoeerieinne. 18-25
18.2.6 Implementing Optimizer Statistics Advisor Recommendations...........cccccevururuien 18-28

Part VI Optimizer Controls

19 Influencing the Optimizer

19.1 Techniques for Influencing the Optimizer.........c.c.ccoooviiiiiiiiiiiiii 19-1
19.2 Influencing the Optimizer with Initialization Parameters...........cccccccoeeciciiccccnccncenes 19-2
19.2.1 About Optimizer Initialization Parameters............ccccceeeiiiiiiiiiiiiccceccennes 19-3
19.2.2 Enabling Optimizer Features.............cccciiiiiiiiiiiiiiiccccccccceeceeenennes 19-7
19.2.3 Choosing an Optimizer Goal...........ccooeuiiiiiiiiiiiiicc e 19-8
19.2.4 Controlling Adaptive Optimizationccoceoiiriiiiicc 19-10
19.3 Influencing the Optimizer with HINES ..o 19-11
19.3.1 About Optimizer HINts........ccccoiiiiiiiiiiiiiiiccccccceceececceeeeennes 19-11
19.3.2 Guidelines for Join Order Hintscoceoeiiiririniniseseseeeee e 19-14

20 Improving Real-World Performance Through Cursor Sharing

20.1 Overview of CUrSOr SNATINGccooiuiiiiiiiiteiecct e
20.1.1 ADOUL CUISOIS.....cuiuiiiiiniiieiiiiitiir s
20.1.2 About Cursors and Parsing...........ccciiiiiiiniiiiiicceeeeee s
20.1.3 About Literals and Bind Variables............cccccccccuiuiiiiiiiiiiiiiiccccccceccees
20.1.4 About the Life Cycle of Shared CUISOIScccceuvuriiiiiiiiiiiiiiiiiiccees

20.2 CURSOR_SHARING and Bind Variable Substitutionccceeevveiiiiieeeiiieceeee e
20.2.1 CURSOR_SHARING Initialization Parameter..........ccocueeeeueeeieeeeeieeeeeeee e
20.2.2 Parsing Behavior When CURSOR_SHARING = FORCE.........cccccccccciuiinnninnnnnnes

20.3 Adaptive Cursor SHaring..........cccccccueiriiiiiiiiiiiniiiiiic s
20.3.1 Purpose of Adaptive Cursor Sharing ...
20.3.2 How Adaptive Cursor Sharing Works: Exampleccccooooiiiiiiiiiicc
20.3.3 Bind-Sensitive CUTSOTSccccvvviimiiiiiiiniiiiiiiiiic e
20.3.4 Bind-Aware CUISOTScccceueuiuiuiueiiieieieieieieieieieieieieteie et sesea s nenees
20.3.5 CUISOT MEIZINEooveuiiiiriiiiiciciieet s s
20.3.6 Adaptive Cursor Sharing VIEWSccccceueiiriiieiiiicieeiccie s

20.4 Real-World Performance Guidelines for Cursor Sharing............cccooeveeiviniiiniiicininienne,
20.4.1 Develop Applications with Bind Variables for Security and Performance............
20.4.2 Do Not Use CURSOR_SHARING = FORCE as a Permanent FiXcccccoeeuvvvveennnn.
20.4.3 Establish Coding Conventions to Increase Cursor Reusecccccceuvuvivrininninnnnne

20.4.4 Minimize Session-Level Changes to the Optimizer Environment.............ccccc........

Part VIl Monitoring and Tracing SQL

21 Monitoring Database Operations

21.1 About Monitoring Database Operations............cccooviiiiiiiiiiiiiniiiis
21.1.1 Purpose of Monitoring Database Operations...........cccccoovrueieiiiicieiiiiiiicici
21.1.2 Database Operation Monitoring Concepts.........cccooviiviviniiiniinininnen,
21.1.3 User Interfaces for Database Operations MoOnitOringcccccceeeeeeeeiinincncnccninennnc.
21.1.4 Basic Tasks in Database Operations MOnitoring...........c.cooeeviivinininiiiininiciincncnn.

21.2 Enabling and Disabling Monitoring of Database Operations............c.cccooeeieiiicinieiniinnnnnn,
21.2.1 Enabling Monitoring of Database Operations at the System Level...........................
21.2.2 Enabling and Disabling Monitoring of Database Operations at the Statement

21.3 Creating a Database Operation..............cooceuoiiiiiiiiiic e
21.4 Monitoring SQL Executions Using Cloud Control.........c.c.ccooiiiiiiiiiiiicce

22 Gathering Diagnostic Data with SQL Test Case Builder

22.1 Purpose of SQL Test Case Builder ..o
22.2 Concepts for SQL Test Case BUILAErccovueiiiiiiiiiiiiiiiiiiircicccreceeeeeeeeeeeee s
22.2.1 SQL INCIAENES ...cveevieiieiieiietietistietesiesiesieie et et et ettt eseesessessessessessessessensessessenseseeseesessessenses
22.2.2 What SQL Test Case Builder Capturescccooueereiiiiiiciceiicceecce e

Xi

22.2.3 Output of SQL Test Case Builder..........cccoooviueiieiiniiiicc e, 22-3

22.3 User Interfaces for SQL Test Case BUIldercovoviiieieiiieieciceeee et 22-4
22.3.1 Graphical Interface for SQL Test Case Builder ..o, 22-4
22.3.2 Command-Line Interface for SQL Test Case Builder........cccccoeeveeeevieeeeciieeececeeenee. 22-5

22.4 Running SQL Test Case BUilderccoooiiiiiiii 22-6

23 Performing Application Tracing

23.1 Overview of End-to-End Application Tracingcccccoeueuoiieieiiiniicieciiccecce e, 23-1
23.1.1 Purpose of End-to-End Application Tracing..........cccccevievviiiiininiiniicninns 23-1
23.1.2 End-to-End Application Tracing in a Multitenant Environment............ccccccceveueee. 23-2
23.1.3 Tools for End-to-End Application Tracing...........cccceeeiiiiiiiiinininiiiiicccceenee 23-3

23.2 Enabling Statistics Gathering for End-to-End Tracing..........cccoeeeeieieiiiiniciiiccecce, 23-4
23.2.1 Enabling Statistics Gathering for a Client IDccooooeiiiriniiiiiiiicccece, 23-4
23.2.2 Enabling Statistics Gathering for Services, Modules, and Actionsccccevuevnnes 23-5

23.3 Enabling End-to-End Application Tracingcccceceeeurrviniiiiiinnriiccrrecceeeeeeeeees 23-6
23.3.1 Enabling Tracing for a Client Identifier ..., 23-6
23.3.2 Enabling Tracing for a Service, Module, and Actionc.c.coooevieiiiiiiniiiccienne 23-7
23.3.3 Enabling Tracing for @ SESSIONccccccuevrueiiieiiieiceice e 23-8
23.3.4 Enabling Tracing for the Instance or Databasecccccooiiiiiininnninnncceee. 23-9

23.4 Generating Output Files Using SQL Trace and TKPROF..........ccccccccceiiiriiiinnniiceene 23-10
23.4.1 Step 1: Setting Initialization Parameters for Trace File Management...................... 23-10
23.4.2 Step 2: Enabling the SQL Trace Facilityccccooioiiiiiiiiiii 23-12
23.4.3 Step 3: Generating Output Files with TKPROFccccoooiiiiii 23-13
23.4.4 Step 4: Storing SQL Trace Facility Statisticsc.cccoeeueueeeciceiciiccccceccecee 23-14

23.5 Guidelines for Interpreting TKPROF Output......cccccceeuiuiiiiiiiiiiiciiiciciiicccicccceeeeeeees 23-16
23.5.1 Guideline for Interpreting the Resolution of Statisticscccccevviiiiiiviininiinnnne 23-16
23.5.2 Guideline for Recursive SQL Statements...........cccceeeevieeeenieeeeneerieceee e 23-16
23.5.3 Guideline for Deciding Which Statements to Tune...........ccccocoeuveeivieiniiininicininnn, 23-17
23.5.4 Guidelines for Avoiding Traps in TKPROF Interpretation..........ccccccccecuvuvucuincuennnne. 23-17

23.6.1 Application Tracing UtIlIities.........cccceeueviiiriieiniiiicecce s 23-20
23.6.1.1 TRESESS ..ottt 23-20
23.6.1.2 TKPROFcoiiiiiiiiiiicci s 23-22

23.7.1 Views for Application Tracing........ccccccocvviiiiiiiiiiiii s 23-31
23.7.1.1 Views Relevant for Trace StatiStiCsccoevvreiririiiiiiiiiiicecc 23-31
23.7.1.2 Views Related to Enabling Tracing..........ccccccceeueuririiiiiiiieiiiiiiiiccicciccceccceeees 23-32

Part VIII Automatic SQL Tuning

24 Managing SQL Tuning Sets

241 About SQL TUNING SELSc.cvevririiiiiiiiiiiiiiieicicicieieieee e 24-1
24.1.1 Purpose of SQL TUNING Sets ... 24-2
24.1.2 Concepts for SQL Tuning Sets..........cooovruiiiiiiiiiieieiicciccc 24-2
24.1.3 User Interfaces for SQL Tuning Sets..........ccocoveuiueirieininininininiccc e 24-4

Xii

25

26

24.1.4 Basic Tasks for SQL TUNING Setscccceurueiririiieiieiieiee e 24-5

24.2 Creating a SQL TUNINE Set......cccviiiiiiiiiiiiiiiiiiii s 24-6
24.3 Loading a SQL TUNINEG Set......cccceiuiiriririiiiiiiiiriiiiicicirreeeeee s 24-7
24.4 Displaying the Contents of a SQL Tuning Set...........cccccovviiiiiiininiinnicc, 24-8
24.5 Modifying a SQL TUuNINgG Set........cccooruiiiiiiiiiiiiec e 24-10
24.6 Transporting a SQL TUNING Set......ccovuriiiiiiiiiieii e 24-11
24.6.1 About Transporting SQL Tuning Sets.........cccccccoceueeiiiinieieececceeeeeeeenenees 24-11
24.6.2 Transporting SQL Tuning Sets with DBMS_SQLTUNEcccccocoovviiiiinicinennns 24-13
24.7 Dropping a SQL TUuning Set ..o 24-15
Analyzing SQL with SQL Tuning Advisor
25.1 About SQL TUNING AAVISOTc.cviiierieieiiiicieieiecie et 25-1
25.1.1 Purpose of SQL Tuning AdViSOr.........cccceuiueiiiniiieiieieic e 25-1
25.1.2 SQL Tuning Advisor Architecture.........ccooviiiiiiniiiiiiiiiie s 25-2
25.1.3 SQL Tuning Advisor Operation..........cccccceueueuiiieiiieieiciiicieeieieceieeeeeeeeeeeeeeeeeeenenes 25-14
252 Managing the Automatic SQL Tuning Task........c.ccccovviivniniiinnnnniiinccn, 25-16
25.2.1 About the Automatic SQL Tuning Taskcccccoeemieiiiiiinieiiiicceccei 25-17
25.2.2 Enabling and Disabling the Automatic SQL Tuning Task........ccccccooeriiiiinirnnennes 25-19
25.2.3 Configuring the Automatic SQL Tuning Task........ccccccceveereieeeneeeceeceeenenne 25-22
2524 Viewing Automatic SQL Tuning Reports..........cccovviiiiiiniiiiniiinicccne, 25-24
25.3 Running SQL Tuning Advisor On Demand...........c.ccccoviiviiinnnnninnnniccnca, 25-27
25.3.1 About On-Demand SQL TUNINGcccoruiiiiiiieieiiiie i 25-28
25.3.2 Creating a SQL Tuning TasK.........cccccouoiruiiiiiiiiieiiciecci s 25-31
25.3.3 Configuring a SQL Tuning Taskcccccceeueiuiiieiiiiieeeeeeeeeeeeeneeeeeeeeenenenes 25-32
25.3.4 Executing a SQL Tuning Taskcccccceciiiiiiiiiiiiiiccccccceeeees 25-34
25.3.5 Monitoring a SQL Tuning Task...........ccccceceueuiiiiiiiniiiiiiiiiiiiiices 25-35
25.3.6 Displaying the Results of a SQL Tuning Task.........cccccooioirieiiiiiiiiiiiiiiccci 25-37
Optimizing Access Paths with SQL Access Advisor
26.1 About SQL ACCESS AQVISOTccuieuiiiieeiieiieiieteetieeeteeeeste e esteeaestessesseessesseesesseessesseessesssessesses 26-1
26.1.1 Purpose of SQL Access AdVISOT ... 26-1
26.1.2 SQL Access AdViSOr ATrChItECHUTE.......ccuicuieiveeeeiteeeeeteeteete ettt eve e eere e ere e ereennes 26-2
26.1.3 User Interfaces for SQL AcCeSS AAVISOTcocuririrrieirieriinierieniesiesieieteeeeeeeseee e seeeas 26-6
26.2 Using SQL Access Advisor: Basic Tasks..........cccccoeueiniiiiiiniiiiiiiccccce e, 26-8
26.2.1 Creating a SQL Tuning Set as Input for SQL Access AdVisOr..........ccoeeueiiiirieiennnes 26-9
26.2.2 Populating a SQL Tuning Set with a User-Defined Workload...........ccccccevrurunnnnes 26-10
26.2.3 Creating and Configuring a SQL Access Advisor Task..........cccccceeeieivinvccnnnne. 26-12
26.2.4 Executing a SQL Access Advisor TasK........ccccccceueiiiiiiiiiiiiiiiiicciccccccees 26-14
26.2.5 Viewing SQL Access Advisor Task Results..........cccoeuiioiiiiiiiiiiiic 26-15
26.2.6 Generating and Executing a Task Script.......cccooiiiiiiiiii 26-19
26.3 Performing a SQL Access Advisor Quick TUNEcccceueiriiiiiciiiiiceeeeeeeeeeeeens 26-20
26.4 Using SQL Access Advisor: Advanced Tasksccccccoceeriiiiiiiniiiniicccceeeeeees 26-21
26.4.1 Evaluating Existing Access Structures...........ccccceeueiiiiiciiiiiiiiiiiiiicciiieccceees 26-21

Xiii

26.4.2 Updating SQL Access Advisor Task Attributes ..o 26-22

26.4.3 Creating and Using SQL Access Advisor Task Templatesccccccceeucucurcucrenennne. 26-23
26.4.4 Terminating SQL Access Advisor Task Execution..........ccccccccceueueiviiiiciininncicnnne 26-25
26.4.5 Deleting SQL Access Advisor Tasks.........ccccceeiiieiiiiiiiiiiiiiiiiiiiicccccceees 26-27
26.4.6 Marking SQL Access Advisor Recommendations..........ccccceovoimieieiniicieiiiiccicine, 26-28
26.4.7 Modifying SQL Access Advisor Recommendations..........c..ccceeeeveinirininicinininnnnn, 26-29
26.5 SQL Access AdVisOr EXAMPIESc.coccuiiiiiuiiriiiiiiiciricieieiciceeeeeeeeeeeeee e 26-30
26.6 SQL Access AdVISOT REETENCE.......ccueveieieieieieieteeette ettt seeseeseenes 26-30
26.6.1 Action Attributes in the DBA_ADVISOR_ACTIONS Viewccccccocvuviririricunnnnnn. 26-30
26.6.2 Categories for SQL Access Advisor Task Parameters.............ccooeveieiiiiiiinnn, 26-32
26.6.3 SQL Access AdViSOr CONSLANEScccverueerierieierierieeeesieetesteete e e seesseesaesseessesseessessnens 26-33

Part IX SQL Controls: Profiles and Plan Baselines

27

28

Xiv

Managing SQL Profiles

27.1 ADOUL SQL PrOflES......cciiuiitieiiiieitictiieieiett ettt ettt ettt ettt et ss et sa et e b e s essessessessesseseerseseesesens 27-1
27.1.1 Purpose of SQL Profiles.........ccccciiiiiiiiiiiiiiccciiece e 27-1
27.1.2 Concepts for SQL Profiles ... 27-2
27.1.3 User Interfaces for SQL Profilescccoieieiieiiiieieiieeieerecieeeereere et e 27-5
27.1.4 Basic Tasks for SQL ProfileS........c.cciieieviiiieiieieiieeiesieeiese ettt reeveesae e sveeenes 27-6

27.2 Implementing a SQL Profile..........ccccoouiiiiiiiiiiiiiic 27-7
27.2.1 About SQL Profile Implementation...........cccccciiiiiniiiiniiiiiiicec e 27-7
27.2.2 Implementing a SQL Profile ..., 27-8

27.3 Listing SQL PrOfiles........ccccciiiiiiiiiiiiiiiiii s 27-8

27.4 Altering a SQL Profileccooioiiiiiiii 27-9

27.5 Dropping a SQL Profile ... 27-10

27.6 Transporting a SQL Profile.........c.ccccooiiiiiiiiiiiiececececeeeeee s 27-11

Overview of SQL Plan Management

28.1 Purpose of SQL Plan Managementcccceueucueururiririiurirerieieieeieeeeieeeeeeeeeeeeeeeeeeeeeeeseseneseeeees 28-1
28.1.1 Benefits of SQL Plan Managementccccoiiiiiiiiiiiiiiiiiiccccccccceeans 28-2
28.1.2 Differences Between SQL Plan Baselines and SQL Profiles.........ccccoevvevuieeevieeeennnnnen. 28-2

28.2 Plan CaplUreccioiiieciice ettt 28-3
28.2.1 Automatic Initial Plan Capture ... 28-4
28.2.2 Manual Plan Capture.........ccooiiiiiiiiiiiiiccciccc e 28-5

28.3 Plan SEleCION.ouiuiiiiieiciiiiictciteeec et 28-7

28.4 Plan EVOIULIONcoiiiiiiiiii e 28-8
28.4.1 Purpose of Plan EVOIUHIONc.oviiiiiiiiicicc 28-9
28.4.2 PL/SQL Subprograms for Plan EvVOIUtion............cccciiiiiiiiiiniiicccceeenee 28-9

28.5 Storage Architecture for SQL Plan Management...........ccccccceuvuiueuiiviiiiicninniicciceeeeeeees 28-10
28.5.1 SQL Management Base............cccccouiiiiiiiiiiiiiiicccc s 28-10
28.5.2 SQL Statement LOg.........ccovueueiiiiiieieiicict s 28-11
28.5.3 SQL Plan HiStOIYcceuiiiiieieieiiiciee ettt 28-12

29

30

A
Al

Managing SQL Plan Baselines
29.1 About Managing SQL Plan Baselinescccoooeuiiiiiiiiiiiciccc 29-1
29.1.1 User Interfaces for SQL Plan Managementc..ccccovruiininiciiicieicincecece e, 29-1
29.1.2 Basic Tasks in SQL Plan Management ... 29-3
29.2 Configuring SQL Plan Management...........ccccoeeuviireiiiieieinicceeceeccne s 29-4
29.2.1 Configuring the Capture and Use of SQL Plan Baselines............cccccoovinniiiininnnce. 29-4
29.2.2 Managing the SPM Evolve Advisor TasK.........cccccooceiiiiiicicieiniiieccec 29-8
29.3 Displaying Plans in a SQL Plan Baseline............cooooooviiiiiiiiii 29-12
29.4 Loading SQL Plan Baselines.........c.cccceeuiuiiiiiiriiiiiiiiiiiicicceeccceeeeeeeeeeeee s 29-13
29.4.1 About Loading SQL Plan Baselines..........cccccccccuiuiuiiniiiiiiiiiiiiiiiiicicicicciccicceceeees 29-13
29.4.2 Loading Plans from AWRccoiiiiiii s 29-14
29.4.3 Loading Plans from the Shared SQL Areaccoooeiiiiiiieiiiiiiieci 29-17
29.4.4 Loading Plans from a SQL Tuning Setcccccccoviiniiiniiiniiiiieiinnccnes 29-19
29.4.5 Loading Plans from a Staging Table............cccccccceiiiiiiiiiiiiccccecceeees 29-21
29.5 Evolving SQL Plan Baselines Manuallycccccooviviiiiinininnniiccccn, 29-23
29.5.1 About the DBMS_SPM Evolve FUNCHONS.......cccuviiieiiieieee e 29-23
29.5.2 Managing an Evolve TasK........cccooiii 29-25
29.6 Dropping SQL Plan Baselinescccccucueuriririciiiiiniiiiieicceiceieeeieeeeeieeeneeeeene e nenens 29-33
29.7 Managing the SQL Management Base............cccccceeuriiiiiiiiiiiiiiiiicccccceceeeeeees 29-34
29.7.1 About Managing the SMB...........ccccccciiiiiiiiiii s 29-35
29.7.2 Changing the Disk Space Limit for the SMB..........cccccoooiii 29-36
29.7.3 Changing the Plan Retention Policy in the SMB............cccccoo 29-37
Migrating Stored Outlines to SQL Plan Baselines
30.1 About Stored Outline Migrationccccoieieieiiiiiiiicci e 30-1
30.1.1 Purpose of Stored Outline Migration ..o 30-1
30.1.2 How Stored Outline Migration WOrks..........ccccccooiiiiiiiiiiiiiiiiciccccce, 30-2
30.1.3 User Interface for Stored Outline Migrationcccccocvvviviiiiiinnnine, 30-5
30.1.4 Basic Steps in Stored Outline Migrationcccooeeieiiiiiiieiiiieeccc 30-6
30.2 Preparing for Stored Outline Migration.........cccoeeuiueiiiiciiiciiieicc e 30-7
30.3 Migrating Outlines to Utilize SQL Plan Management Features............ccccccoceevvvvninnnnne. 30-8
30.4 Migrating Outlines to Preserve Stored Outline Behavior.........ccccooovriiiiiiiicine 30-9
30.5 Performing Follow-Up Tasks After Stored Outline Migration............cccceevvevvivniininnnnnen. 30-10
Guidelines for Indexes and Table Clusters

Guidelines for Tuning Index Performance..........ccooooiiiiiiiiiicc e A-1
A.1.1 Guidelines for Tuning the Logical Structurec..ccooveiniiiniiininiicccc e A-1
A.1.2 Guidelines for Using SQL AcCess AAVISOTcccceurueuriruririreriricirirrireeeeeeeeeeeeeeeeeeeeeee e A-2
A.1.3 Guidelines for Choosing Columns and Expressions to Indexcccccvvvvirrvvvnnnnnenes A-3
A.1.4 Guidelines for Choosing Composite INdeXes............ccccouviiiiiiiiiiiiiiiies A-4
A.1.5 Guidelines for Writing SQL Statements That Use Indexescccccovviriieiiiiicciciicnnan, A-5
A.1.6 Guidelines for Writing SQL Statements That Avoid Using Indexes..........cccccccoevvrerrrunrnnen. A-5

XV

A.1.7 Guidelines for Re-Creating INAeXes............cccoovueiiieiiiiiiiiciiieci A-5

A.1.8 Guidelines for Compacting INAEXESc.ceuevruririiiririiiiiiireeccr s A-6

A.1.9 Guidelines for Using Nonunique Indexes to Enforce Uniquenesscccccccevuvuvuvuririneene. A-6

A.1.10 Guidelines for Using Enabled Novalidated Constraints...........c.ccccoeeviiiiiiniiniinnnnnn. A-6
A.2 Guidelines for Using Function-Based Indexes for Performance..........cccccooiiiiiiiiiiiiiinnc A-8
A.3 Guidelines for Using Partitioned Indexes for Performance...........ccccocoouruniruninniicniccicccee, A-8
A4 Guidelines for Using Index-Organized Tables for Performanceccccocoeiiiiiiinincccninnnnnc. A-9
A5 Guidelines for Using Bitmap Indexes for Performancecccocoovvvicieiniinieincneiceeenes A-10
A.6 Guidelines for Using Bitmap Join Indexes for Performance ..o, A-10
A.7 Guidelines for Using Domain Indexes for Performance...........cccccouoiiriiiiiiiiiiinccc, A-10
A.8 Guidelines for Using Table CIUSLErscccooouiiiiiiiriiiciiciec s A-11
A9 Guidelines for Using Hash Clusters for Performance.............ccoocoeiiiiiiininncncncnineeccceeenene A-12
Glossary
Index

XVi

Audience

Preface

This manual explains how to tune Oracle SQL.

This document is intended for database administrators and application developers
who perform the following tasks:

* Generating and interpreting SQL execution plans

¢ Managing optimizer statistics

¢ Influencing the optimizer through initialization parameters or SQL hints
¢ Controlling cursor sharing for SQL statements

* Monitoring SQL execution

® Performing application tracing

* Managing SQL tuning sets

* Using SQL Tuning Advisor or SQL Access Advisor

* Managing SQL profiles

* Managing SQL baselines

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http:/ /www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents

This manual assumes that you are familiar with Oracle Database Concepts. The
following books are frequently referenced:

XVii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

® Oracle Database Data Warehousing Guide

® Oracle Database VLDB and Partitioning Guide
® Oracle Database SQL Language Reference

® Oracle Database Reference

Many examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database. See Oracle
Database Sample Schemas for information on how these schemas were created and how
you can use them.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XViii

Changes in This Release for Oracle

Database SQL Tuning Guide

This preface contains:

® Changes in Oracle Database 12c Release 2 (12.2.0.1) (page xix)

® Changes in Oracle Database 12c Release 1 (12.1.0.2) (page xxii)

® Changes in Oracle Database 12c Release 1 (12.1.0.1) (page xxiii)

Changes in Oracle Database 12¢ Release 2 (12.2.0.1)
Oracle Database SQL Tuning Guide for Oracle Database 12c Release 2 (12.2.0.1) has the
following changes.

New Features

The following features are new in this release:

e Advisor enhancements

Optimizer Statistics Advisor

Optimizer Statistics Advisor is built-in diagnostic software that analyzes the
quality of statistics and statistics-related tasks. The advisor task runs
automatically in the maintenance window, but you can also run it on
demand. You can then view the advisor report. If the advisor makes
recommendations, then in some cases you can run system-generated scripts
to implement them.

See "Analyzing Statistics Using Optimizer Statistics Advisor (page 18-1)".

Active Data Guard Support for SQL Tuning Advisor

Using database links, you can tune a standby database workload on a
primary database.

See "Local and Remote SQL Tuning (page 25-15)".

e DBMsS_STATS enhancements

DBMS_STATS preference for automatic column group statistics

If the DBMS_STATS preference AUTO_STAT_EXTENSI ONS is set to ON (by
default it is OFF), then a SQL plan directive can automatically trigger the
creation of column group statistics based on usage of predicates in the
workload.

Xix

XX

See "Purpose of Optimizer Statistics Preferences (page 12-3)".

DBM5_STATS support for external table scan rates and In-Memory column
store (IM column store) statistics

If the database uses an IM column store, then you can set the

i m_i ntu_count parameter to the number of IMCUs in the table or partition,
and i m bl ock_count to the number of blocks. For an external table,

scanr at e specifies the rate at which data is scanned in MB/second.

See "Guideline for External Tables (page 13-8)".

DBMS_STATS statistics preference PREFERENCE_OVERRI DES_PARAMETER

The PREFERENCE_OVERRI DES_PARAMETER statistics preference determines
whether, when gathering optimizer statistics, to override the input value of a
parameter with the statistics preference. In this way, you control when the
database honors a parameter value passed to the statistics gathering
procedures.

See "Statistics Preference Overrides (page 12-5)".

Access to current statistics does not require
FLUSH_DATABASE_MONI TORI NG_I NFO

You no longer need to ensure that view metadata is up-to-date by using
DBMS_STATS. FLUSH_DATABASE_MONI TORI NG_I NFOto save monitoring
information to disk. The statistics shown in DBA_TAB_STATI STl CS and
DBA | ND_STATI STI CS come from the same source as

DBA_TAB_MODI FI CATI ONS, which means these views show statistics
obtained from disk and memory.

See "Determining When Optimizer Statistics Are Stale (page 13-9)".

Separate controls for adaptive plans and adaptive statistics

The OPTI M ZER_ADAPTI VE_PLANS initialization parameter enables (default) or
disables adaptive plans. The OPTI M ZER_ADAPTI VE_STATI STI CSinitialization
parameter enables or disables (default) adaptive statistics.

See "When Adaptive Query Plans Are Enabled (page 4-20)" and "When Adaptive
Statistics Are Enabled (page 4-25)".

Join enhancements

Join groups

A join group is a user-created object that lists two columns that can be
meaningfully joined. In certain queries, join groups enable the database to
eliminate the performance overhead of decompressing and hashing column
values. Join groups require an IM column store.

See "In-Memory Join Groups (page 9-48)".
Band join enhancements

A band join is a special type of nonequijoin in which key values in one data
set must fall within the specified range (“band”) of the second data set. When
the database detects a band join, the database evaluates the costs of band joins
more efficiently, avoiding unnecessary scans of rows that fall outside the
defined bands. In most cases, optimized performance is comparable to an
equijoin.

See "Band Joins (page 9-27)".
Cursor management enhancements

— Cursor-duration temporary tables

To materialize the intermediate results of a query, Oracle Database may
create a cursor-duration temporary table in memory during query
compilation. For complex operations such as W TH clause queries and star
transformations, this internal optimization, which enhances the
materialization of intermediate results from repetitively used subqueries,
improves performance and optimizes I/O.

See "Cursor-Duration Temporary Tables (page 5-18)".

— Fine-grained cursor invalidation

Starting in this release, you can specify deferred invalidation on DDL
statements. When shared SQL areas are marked rolling invalid, the database
assigns each one a randomly generated time period. A hard parse occurs only
if the query executes after the time period has expired. In this way, the
database can diffuse the performance overhead of hard parsing over time.

See "About the Life Cycle of Shared Cursors (page 20-15)".

OR expansion enhancement

In previous releases, the optimizer used the CONCATENATI ON operator to perform
the OR expansion. Now the optimizer uses the UNI ON- ALL operator instead. This
enhancement provides several benefits, including enabling interaction among
various transformations, and avoiding the sharing of query structures.

See "OR Expansion (page 5-1)".
SQL plan management enhancements

- You can now capture plans from AWR. See "Manual Plan Capture
(page 28-5)".

— In previous releases, automatic capture applied to all repeatable queries.
Starting in this release, you can create filters to capture only the plans for
statements that you choose. See "Eligibility for Automatic Initial Plan Capture
(page 28-4)".

Real-Time database operation monitoring enhancements

A session can start or stop a database operation in a different session by
specifying its session ID and serial number.

See "Creating a Database Operation (page 21-11)".

Expression tracking

SQL statements commonly include expressions such as plus (+) or minus (-).
More complicated examples include PL/SQL functions or SQL functions such as
LTRI Mand TO_NUMBER The Expression Statistics Store (ESS) maintains usage
information about expressions identified during compilation and captured during
execution.

See "About the Expression Statistics Store (ESS) (page 4-28)".

Enhancements for application tracing in a multitenant environment

XXi

CDB administrators and PDB administrators can use new V$ views to access trace
data that is relevant for a specific PDB.

See "End-to-End Application Tracing in a Multitenant Environment (page 23-2)".

Desupported Features
The following features are desupported in Oracle Database 12c Release 2 (12.2.0.1):

e The OPTI M ZER_ADAPTI VE_FEATURES initialization parameter

See Also:

Oracle Database Upgrade Guide for a list of desupported features

Other Changes

The following are additional changes in the release:

e New Real-World Performance content

In this release, the book incorporates information provided by the Real-World
Performance group, including the following:

- "Improving Real-World Performance Through Cursor Sharing (page 20-1)"
explains how to use bind variables and new features such as adaptive cursor
sharing

Changes in Oracle Database 12¢ Release 1 (12.1.0.2)

Oracle Database SQL Tuning Guide for Oracle Database 12c Release 1 (12.1.0.2) has the
following changes.

New Features

The following features are new in this release:

* In-Memory aggregation

This optimization minimizes the join and GROUP BY processing required for each
row when joining a single large table to multiple small tables, as in a star schema.
VECTORGROUP BY aggregation uses the infrastructure related to parallel query
(PQ) processing, and blends it with CPU-efficient algorithms to maximize the
performance and effectiveness of the initial aggregation performed before
redistributing fact data.

See "In-Memory Aggregation (VECTOR GROUP BY) (page 5-18)".

* SQL Monitor support for adaptive query plans
SQL Monitor supports adaptive query plans in the following ways:

— Indicates whether a query plan is adaptive, and show its current status:
resolving or resolved.

— Provides a list that enables you to select the current, full, or final query plans

XXii

See "Adaptive Query Plans (page 4-12)" to learn more about adaptive query
plans, and "Monitoring SQL Executions Using Cloud Control (page 21-13)" to
learn more about SQL Monitor.

Changes in Oracle Database 12¢ Release 1 (12.1.0.1)

Oracle Database SQL Tuning Guide for Oracle Database 12c Release 1 (12.1) has the
following changes.

New Features

The following features are new in this release:

Adaptive SQL Plan Management (SPM)

The SPM Evolve Advisor is a task infrastructure that enables you to schedule an
evolve task, rerun an evolve task, and generate persistent reports. The new
automatic evolve task, SYS AUTO SPM EVOLVE TASK, runs in the default
maintenance window. This task ranks all unaccepted plans and runs the evolve
process for them. If the task finds a new plan that performs better than existing
plan, the task automatically accepts the plan. You can also run evolution tasks
manually using the DBM5_SPMpackage.

See "Managing the SPM Evolve Advisor Task (page 29-8)".
Adaptive query optimization

Adaptive query optimization is a set of capabilities that enable the optimizer to
make run-time adjustments to execution plans and discover additional
information that can lead to better statistics. The set of capabilities include:

— Adaptive query plans

An adaptive query plan has built-in options that enable the final plan for a
statement to differ from the default plan. During the first execution, before a
specific subplan becomes active, the optimizer makes a final decision about
which option to use. The optimizer bases its choice on observations made
during the execution up to this point. The ability of the optimizer to adapt
plans can improve query performance.

See "Adaptive Query Plans (page 4-12)".
- Automatic reoptimization

When using automatic reoptimization, the optimizer monitors the initial
execution of a query. If the actual execution statistics vary significantly from
the original plan statistics, then the optimizer records the execution statistics
and uses them to choose a better plan the next time the statement executes.
The database uses information obtained during automatic reoptimization to
generate SQL plan directives automatically.

"

See "Automatic Reoptimization (page 4-21)

- SQL plan directives

In releases earlier than Oracle Database 12¢, the database stored compilation
and execution statistics in the shared SQL area, which is nonpersistent.
Starting in this release, the database can use a SQL plan directive, which is
additional information and instructions that the optimizer can use to generate
a more optimal plan. The database stores SQL plan directives persistently in

XXiii

XXiv

the SYSAUX tablespace. When generating an execution plan, the optimizer can
use SQL plan directives to obtain more information about the objects accessed
in the plan.

See "SQL Plan Directives (page 10-18)".

— Dynamic statistics enhancements

In releases earlier than Oracle Database 12¢, Oracle Database only used
dynamic statistics (previously called dynamic sampling) when one or more of
the tables in a query did not have optimizer statistics. Starting in this release,
the optimizer automatically decides whether dynamic statistics are useful and
which dynamic statistics level to use for all SQL statements. Dynamic
statistics gathers are persistent and usable by other queries.

See "Supplemental Dynamic Statistics (page 10-13)".

New types of histograms

This release introduces top frequency and hybrid histograms. If a column contains
more than 254 distinct values, and if the top 254 most frequent values occupy
more than 99% of the data, then the database creates a top frequency histogram
using the top 254 most frequent values. By ignoring the nonpopular values, which
are statistically insignificant, the database can produce a better quality histogram
for highly popular values. A hybrid histogram is an enhanced height-based
histogram that stores the exact frequency of each endpoint in the sample, and
ensures that a value is never stored in multiple buckets.

Also, regular frequency histograms have been enhanced. The optimizer computes
frequency histograms during NDV computation based on a full scan of the data
rather than a small sample (wWhen AUTO_SAMPLI NGis used). The enhanced
frequency histograms ensure that even highly infrequent values are properly
represented with accurate bucket counts within a histogram.

See "Histograms (page 11-1)".
Monitoring database operations

Real-Time Database Operations Monitoring enables you to monitor long running
database tasks such as batch jobs, scheduler jobs, and Extraction, Transformation,
and Loading (ETL) jobs as a composite business operation. This feature tracks the
progress of SQL and PL/SQL queries associated with the business operation
being monitored. As a DBA or developer, you can define business operations for
monitoring by explicitly specifying the start and end of the operation or implicitly
with tags that identify the operation.

See "Monitoring Database Operations (page 21-1)".

Concurrent statistics gathering

You can concurrently gather optimizer statistics on multiple tables, table
partitions, or table subpartitions. By fully utilizing multiprocessor environments,
the database can reduce the overall time required to gather statistics. Oracle
Scheduler and Advanced Queuing create and manage jobs to gather statistics
concurrently. The scheduler decides how many jobs to execute concurrently, and
how many to queue based on available system resources and the value of the
JOB_QUEUE_PROCESSES initialization parameter.

See "Gathering Optimizer Statistics Concurrently (page 13-13)".

Reporting mode for DBM5_STATS statistics gathering functions

You can run the DBMS_STATS functions in reporting mode. In this mode, the
optimizer does not actually gather statistics, but reports objects that would be
processed if you were to use a specified statistics gathering function.

See "Running Statistics Gathering Functions in Reporting Mode (page 13-39)".

Reports on past statistics gathering operations

You can use DBMS_STATS functions to report on a specific statistics gathering
operation or on operations that occurred during a specified time.

See "Reporting on Past Statistics Gathering Operations (page 16-6)".

Automatic column group creation

With column group statistics, the database gathers optimizer statistics on a group
of columns treated as a unit. Starting in Oracle Database 12c, the database
automatically determines which column groups are required in a specified
workload or SQL tuning set, and then creates the column groups. Thus, for any
specified workload, you no longer need to know which columns from each table
must be grouped.

"

See "Detecting Useful Column Groups for a Specific Workload (page 14-5)

Session-private statistics for global temporary tables

Starting in this release, global temporary tables have a different set of optimizer
statistics for each session. Session-specific statistics improve performance and
manageability of temporary tables because users no longer need to set statistics
for a global temporary table in each session or rely on dynamic statistics. The
possibility of errors in cardinality estimates for global temporary tables is lower,
ensuring that the optimizer has the necessary information to determine an optimal
execution plan.

See "Session-Specific Statistics for Global Temporary Tables (page 10-10)".

SQL Test Case Builder enhancements

SQL Test Case Builder can capture and replay actions and events that enable you
to diagnose incidents that depend on certain dynamic and volatile factors. This
capability is especially useful for parallel query and automatic memory
management.

See Gathering Diagnostic Data with SQL Test Case Builder (page 22-1).

Online statistics gathering for bulk loads

A bulk load is a CREATE TABLE AS SELECT or I NSERT INTO ... SELECT
operation. In releases earlier than Oracle Database 12¢, you needed to manually
gather statistics after a bulk load to avoid the possibility of a suboptimal execution
plan caused by stale statistics. Starting in this release, Oracle Database gathers
optimizer statistics automatically, which improves both performance and
manageability.

See "Online Statistics Gathering for Bulk Loads (page 10-14)".
Reuse of synopses after partition maintenance operations

ALTER TABLE EXCHANGE is a common partition maintenance operation. During
a partition exchange, the statistics of the partition and the table are also
exchanged. A synopsis is a set of auxiliary statistics gathered on a partitioned
table when the | NCREMENTAL value is set to t r ue. In releases earlier than Oracle
Database 12¢, you could not gather table-level synopses on a table. Thus, you

XXV

could not gather table-level synopses on a table, exchange the table with a
partition, and end up with synopses on the partition. You had to explicitly gather
optimizer statistics in incremental mode to create the missing synopses. Starting
in this release, you can gather table-level synopses on a table. When you exchange
this table with a partition in an incremental mode table, the synopses are also
exchanged.

See "Maintaining Incremental Statistics for Partition Maintenance Operations
(page 13-27)".
Automatic updates of global statistics for tables with stale or locked partition

statistics

Incremental statistics can automatically calculate global statistics for a partitioned
table even if the partition or subpartition statistics are stale and locked.

See "Maintaining Incremental Statistics for Tables with Stale or Locked Partition
Statistics (page 13-29)".

Cube query performance enhancements

These enhancements minimize CPU and memory consumption and reduce I/O
for queries against cubes.

See Table 7-7 (page 7-34) to learn about the CUBE JO N operation.

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release:

Stored outlines

See Managing SQL Plan Baselines (page 29-1) for information about alternatives.

The SI M LAR value for the CURSCR_SHARI NGinitialization parameter
This value is deprecated. Use FORCE instead.
See "When to Set CURSOR_SHARING to FORCE (page 20-32)".

Desupported Features

Some features previously described in this document are desupported in Oracle
Database 12c. See Oracle Database Upgrade Guide for a list of desupported features.

Other Changes

The following are additional changes in the release:

XXVi

New tuning books

The Oracle Database 11g Oracle Database Performance Tuning Guide has been
divided into two books for Oracle Database 12c:

— Oracle Database Performance Tuning Guide, which contains only topics that
pertain to tuning the database

- Oracle Database SQL Tuning Guide, which contains only topics that pertain to
tuning SQL

Part |

SQL Performance Fundamentals

This part contains the following chapters:
¢ Introduction to SQL Tuning (page 1-1)

¢ SQL Performance Methodology (page 2-1)

1

Introduction to SQL Tuning

SQL tuning is the attempt to diagnose and repair SQL statements that fail to meet a
performance standard.

This chapter contains the following topics:

¢ About SQL Tuning (page 1-1)

* Purpose of SQL Tuning (page 1-1)

® Prerequisites for SQL Tuning (page 1-2)

* Tasks and Tools for SQL Tuning (page 1-2)

1.1 About SQL Tuning

SQL tuning is the iterative process of improving SQL statement performance to meet
specific, measurable, and achievable goals.

SQL tuning implies fixing problems in deployed applications. In contrast, application
design sets the security and performance goals before deploying an application.

See Also:

* SQL Performance Methodology (page 2-1)

¢ "Guidelines for Designing Your Application (page 2-1)" to learn how to
design for SQL performance

1.2 Purpose of SQL Tuning

A SQL statement becomes a problem when it fails to perform according to a
predetermined and measurable standard.

After you have identified the problem, a typical tuning session has one of the
following goals:

* Reduce user response time, which means decreasing the time between when a
user issues a statement and receives a response

e Improve throughput, which means using the least amount of resources necessary
to process all rows accessed by a statement

For a response time problem, consider an online book seller application that hangs for
three minutes after a customer updates the shopping cart. Contrast with a three-
minute parallel query in a data warehouse that consumes all of the database host CPU,
preventing other queries from running. In each case, the user response time is three
minutes, but the cause of the problem is different, and so is the tuning goal.

Introduction to SQL Tuning 1-1

Prerequisites for SQL Tuning

1.3 Prerequisites for SQL Tuning

SQL tuning requires a foundation of database knowledge.

If you are tuning SQL, then this manual assumes that you have the following
knowledge and skills:

¢ Familiarity with database architecture

Database architecture is not the domain of administrators alone. As a developer,
you want to develop applications in the least amount of time against an Oracle
database, which requires exploiting the database architecture and features. For
example, not understanding Oracle Database concurrency controls and
multiversioning read consistency may make an application corrupt the integrity
of the data, run slowly, and decrease scalability.

Oracle Database Concepts explains the basic relational data structures, transaction
management, storage structures, and instance architecture of Oracle Database.

e Knowledge of SQL and PL/SQL

Because of the existence of GUI-based tools, it is possible to create applications
and administer a database without knowing SQL. However, it is impossible to
tune applications or a database without knowing SQL.

Oracle Database Concepts includes an introduction to Oracle SQL and PL/SQL. You
must also have a working knowledge of Oracle Database SQL Language Reference,
Oracle Database PL/SQL Packages and Types Reference, and Oracle Database PL/SQL
Packages and Types Reference.

¢ Familiarity with database-provided SQL tuning tools

The database generates performance statistics, and provides SQL tuning tools that
interpret these statistics.

Oracle Database 2 Day + Performance Tuning Guide provides an introduction to the
principal SQL tuning tools.

1.4 Tasks and Tools for SQL Tuning

After you have identified the goal for a tuning session, for example, reducing user
response time from three minutes to less than a second, the problem becomes how to
accomplish this goal.

The Oracle-recommended tuning methodology is covered in detail in "SQL
Performance Methodology (page 2-1)".

1.4.1 SQL Tuning Tasks

The specifics of a tuning session depend on many factors, including whether you tune
proactively or reactively.

In proactive SQL tuning, you regularly use SQL Tuning Advisor to determine
whether you can make SQL statements perform better. In reactive SQL tuning, you
correct a SQL-related problem that a user has experienced.

Whether you tune proactively or reactively, a typical SQL tuning session involves all
or most of the following tasks:

1. Identifying high-load SQL statements

1-2 Oracle Database SQL Tuning Guide

Tasks and Tools for SQL Tuning

Review past execution history to find the statements responsible for a large share
of the application workload and system resources.

Gathering performance-related data

The optimizer statistics are crucial to SQL tuning. If these statistics do not exist or
are no longer accurate, then the optimizer cannot generate the best plan. Other
data relevant to SQL performance include the structure of tables and views that
the statement accessed, and definitions of any indexes available to the statement.

Determining the causes of the problem

Typically, causes of SQL performance problems include:

¢ Inefficiently designed SQL statements

If a SQL statement is written so that it performs unnecessary work, then the
optimizer cannot do much to improve its performance. Examples of
inefficient design include

— Neglecting to add a join condition, which leads to a Cartesian join
— Using hints to specify a large table as the driving table in a join

— Specifying UNI ONinstead of UNI ON ALL

— Making a subquery execute for every row in an outer query

* Suboptimal execution plans

The query optimizer (also called the optimizer) is internal software that
determines which execution plan is most efficient. Sometimes the optimizer
chooses a plan with a suboptimal access path, which is the means by which
the database retrieves data from the database. For example, the plan for a
query predicate with low selectivity may use a full table scan on a large table
instead of an index.

You can compare the execution plan of an optimally performing SQL
statement to the plan of the statement when it performs suboptimally. This
comparison, along with information such as changes in data volumes, can
help identify causes of performance degradation.

* Missing SQL access structures

Absence of SQL access structures, such as indexes and materialized views, is
a typical reason for suboptimal SQL performance. The optimal set of access
structures can improve SQL performance by orders of magnitude.

¢ Stale optimizer statistics

Statistics gathered by DBMS_STATS can become stale when the statistics
maintenance operations, either automatic or manual, cannot keep up with the
changes to the table data caused by DML. Because stale statistics on a table do
not accurately reflect the table data, the optimizer can make decisions based
on faulty information and generate suboptimal execution plans.

* Hardware problems

Suboptimal performance might be connected with memory, I/O, and CPU
problems.

Defining the scope of the problem

Introduction to SQL Tuning 1-3

Tasks and Tools for SQL Tuning

The scope of the solution must match the scope of the problem. Consider a
problem at the database level and a problem at the statement level. For example,
the shared pool is too small, which causes cursors to age out quickly, which in
turn causes many hard parses. Using an initialization parameter to increase the
shared pool size fixes the problem at the database level and improves
performance for all sessions. However, if a single SQL statement is not using a
helpful index, then changing the optimizer initialization parameters for the entire
database could harm overall performance. If a single SQL statement has a
problem, then an appropriately scoped solution addresses just this problem with
this statement.

5. Implementing corrective actions for suboptimally performing SQL statements

These actions vary depending on circumstances. For example, you might rewrite a
SQL statement to be more efficient, avoiding unnecessary hard parsing by
rewriting the statement to use bind variables. You might also use equijoins,
remove functions from WHERE clauses, and break a complex SQL statement into
multiple simple statements.

In some cases, you improve SQL performance not by rewriting the statement, but
by restructuring schema objects. For example, you might index a new access path,
or reorder columns in a concatenated index. You might also partition a table,
introduce derived values, or even change the database design.

6. Preventing SQL performance regressions

To ensure optimal SQL performance, verify that execution plans continue to
provide optimal performance, and choose better plans if they come available. You
can achieve these goals using optimizer statistics, SQL profiles, and SQL plan
baselines.

See Also:

"Shared Pool Check (page 3-3)"

1.4.2 SQL Tuning Tools

SQL tuning tools are either automated or manual.

In this context, a tool is automated if the database itself can provide diagnosis, advice,
or corrective actions. A manual tool requires you to perform all of these operations.

All tuning tools depend on the basic tools of the dynamic performance views,
statistics, and metrics that the database instance collects. The database itself contains
the data and metadata required to tune SQL statements.

1.4.2.1 Automated SQL Tuning Tools

Oracle Database provides several advisors relevant for SQL tuning.

Additionally, SQL plan management is a mechanism that can prevent performance
regressions and also help you to improve SQL performance.

All of the automated SQL tuning tools can use SQL tuning sets as input. A SQL tuning
set (STS) is a database object that includes one or more SQL statements along with
their execution statistics and execution context.

1-4 Oracle Database SQL Tuning Guide

Tasks and Tools for SQL Tuning

See Also:

"About SQL Tuning Sets (page 24-1)"

1.4.2.1.1 Automatic Database Diagnostic Monitor (ADDM)
ADDM is self-diagnostic software built into Oracle Database.

ADDM can automatically locate the root causes of performance problems, provide
recommendations for correction, and quantify the expected benefits. ADDM also
identifies areas where no action is necessary.

ADDM and other advisors use Automatic Workload Repository (AWR), which is an
infrastructure that provides services to database components to collect, maintain, and
use statistics. ADDM examines and analyzes statistics in AWR to determine possible
performance problems, including high-load SQL.

For example, you can configure ADDM to run nightly. In the morning, you can
examine the latest ADDM report to see what might have caused a problem and if there
is a recommended fix. The report might show that a particular SELECT statement
consumed a huge amount of CPU, and recommend that you run SQL Tuning Advisor.

See Also:
e Oracle Database 2 Day + Performance Tuning Guide

® Oracle Database Performance Tuning Guide

1.4.2.1.2 SQL Tuning Advisor

SQL Tuning Advisor is internal diagnostic software that identifies problematic SQL
statements and recommends how to improve statement performance.

When run during database maintenance windows as an automated maintenance task,
SQL Tuning Advisor is known as Automatic SQL Tuning Advisor.

SQL Tuning Advisor takes one or more SQL statements as an input and invokes the
Automatic Tuning Optimizer to perform SQL tuning on the statements. The advisor
performs the following types of analysis:

® Checks for missing or stale statistics

e Builds SQL profiles

A SQL profile is a set of auxiliary information specific to a SQL statement. A SQL
profile contains corrections for suboptimal optimizer estimates discovered during
Automatic SQL Tuning. This information can improve optimizer estimates for
cardinality, which is the number of rows that is estimated to be or actually is
returned by an operation in an execution plan, and selectivity. These improved
estimates lead the optimizer to select better plans.

* Explores whether a different access path can significantly improve performance

¢ Identifies SQL statements that lend themselves to suboptimal plans

The output is in the form of advice or recommendations, along with a rationale for
each recommendation and its expected benefit. The recommendation relates to a
collection of statistics on objects, creation of new indexes, restructuring of the SQL

Introduction to SQL Tuning 1-5

Tasks and Tools for SQL Tuning

statement, or creation of a SQL profile. You can choose to accept the recommendations
to complete the tuning of the SQL statements.

See Also:
* "Analyzing SQL with SQL Tuning Advisor (page 25-1)"

® Oracle Database 2 Day + Performance Tuning Guide

1.4.2.1.3 SQL Access Advisor

SQL Access Advisor is internal diagnostic software that recommends which
materialized views, indexes, and materialized view logs to create, drop, or retain.

SQL Access Advisor takes an actual workload as input, or the advisor can derive a
hypothetical workload from the schema. SQL Access Advisor considers the trade-offs
between space usage and query performance, and recommends the most cost-effective
configuration of new and existing materialized views and indexes. The advisor also
makes recommendations about partitioning.

See Also:

e "About SQL Access Advisor (page 26-1)"

® Oracle Database 2 Day + Performance Tuning Guide

1.4.2.1.4 SQL Plan Management

SQL plan management is a preventative mechanism that enables the optimizer to
automatically manage execution plans, ensuring that the database uses only known or
verified plans.

This mechanism can build a SQL plan baseline, which contains one or more accepted
plans for each SQL statement. By using baselines, SQL plan management can prevent
plan regressions from environmental changes, while permitting the optimizer to
discover and use better plans.

See Also:

"Overview of SQL Plan Management (page 28-1)"

1.4.2.1.5 SQL Performance Analyzer

SQL Performance Analyzer determines the effect of a change on a SQL workload by
identifying performance divergence for each SQL statement.

System changes such as upgrading a database or adding an index may cause changes
to execution plans, affecting SQL performance. By using SQL Performance Analyzer,
you can accurately forecast the effect of system changes on SQL performance. Using
this information, you can tune the database when SQL performance regresses, or
validate and measure the gain when SQL performance improves.

1-6 Oracle Database SQL Tuning Guide

Tasks and Tools for SQL Tuning

See Also:

Oracle Database Testing Guide

1.4.2.2 Manual SQL Tuning Tools

In some situations, you may want to run manual tools in addition to the automated
tools. Alternatively, you may not have access to the automated tools.

1.4.2.2.1 Execution Plans

Execution plans are the principal diagnostic tool in manual SQL tuning. For example,
you can view plans to determine whether the optimizer selects the plan you expect, or
identify the effect of creating an index on a table.

You can display execution plans in multiple ways. The following tools are the most
commonly used:

e EXPLAIN PLAN

This SQL statement enables you to view the execution plan that the optimizer
would use to execute a SQL statement without actually executing the statement.
See Oracle Database SQL Language Reference.

e AUTOTRACE

The AUTOTRACE command in SQL*Plus generates the execution plan and statistics
about the performance of a query. This command provides statistics such as disk
reads and memory reads. See SQL*Plus User’s Guide and Reference.

e V$SQ._PLANand related views

These views contain information about executed SQL statements, and their
execution plans, that are still in the shared pool. See Oracle Database Reference.

You can use the DBM5_XPLAN package methods to display the execution plan
generated by the EXPLAI N PLAN command and query of V$SQL_ PLAN.

1.4.2.2.2 Real-Time SQL Monitoring and Real-Time Database Operations

The Real-Time SQL Monitoring feature of Oracle Database enables you to monitor the
performance of SQL statements while they are executing. By default, SQL monitoring
starts automatically when a statement runs in parallel, or when it has consumed at
least 5 seconds of CPU or I/O time in a single execution.

A database operation is a set of database tasks defined by end users or application
code, for example, a batch job or Extraction, Transformation, and Loading (ETL)
processing. You can define, monitor, and report on database operations. Real-Time
Database Operations provides the ability to monitor composite operations
automatically. The database automatically monitors parallel queries, DML, and DDL
statements as soon as execution begins.

Oracle Enterprise Manager Cloud Control (Cloud Control) provides easy-to-use SQL
monitoring pages. Alternatively, you can monitor SQL-related statistics using the V
$SQL_MONI TORand V$SQ._PLAN_MONI TOR views. You can use these views with the
following views to get more information about executions that you are monitoring:

e V$ACTI VE_SESSI ON_HI STORY
e V$SESSI ON

Introduction to SQL Tuning 1-7

Tasks and Tools for SQL Tuning

o V$SESSI ON_LONGOPS
o V$SQL
e V$SQL_PLAN

See Also:
* "About Monitoring Database Operations (page 21-1)"

® Oracle Database Reference to learn about the V$ views

1.4.2.2.3 Application Tracing

A SQL trace file provides performance information on individual SQL statements:
parse counts, physical and logical reads, misses on the library cache, and so on. You
can use this information to diagnose SQL performance problems.

You can enable and disable SQL tracing for a specific session using the
DBMS_MONI TOR or DBMS_SESSI ON packages. Oracle Database implements tracing by
generating a trace file for each server process when you enable the tracing mechanism.

Oracle Database provides the following command-line tools for analyzing trace files:

e TKPROF

This utility accepts as input a trace file produced by the SQL Trace facility, and
then produces a formatted output file.

e trcsess

This utility consolidates trace output from multiple trace files based on criteria
such as session ID, client ID, and service ID. After t r csess merges the trace
information into a single output file, you can format the output file with TKPROF.
t r csess is useful for consolidating the tracing of a particular session for
performance or debugging purposes.

End-to-End Application Tracing simplifies the process of diagnosing performance
problems in multitier environments. In these environments, the middle tier routes a
request from an end client to different database sessions, making it difficult to track a
client across database sessions. End-to-End application tracing uses a client ID to
uniquely trace a specific end-client through all tiers to the database.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBM5_MONI TOR and DBMS_SESSI ON

1.4.2.2.4 Optimizer Hints

A hint is an instruction passed to the optimizer through comments in a SQL
statement. Hints enable you to make decisions normally made automatically by the
optimizer.

In a test or development environment, hints are useful for testing the performance of a
specific access path. For example, you may know that a specific index is more selective

1-8 Oracle Database SQL Tuning Guide

Tasks and Tools for SQL Tuning

for certain queries. In this case, you may use hints to instruct the optimizer to use a
better execution plan, as in the following example:

SELECT /*+ | NDEX (enpl oyees enp_departnent _ix) */
enpl oyee_id, departnent_id

FROM enpl oyees

WHERE departnent _id > 50;

See Also:

"Influencing the Optimizer with Hints (page 19-11)"

1.4.3 User Interfaces to SQL Tuning Tools

Cloud Control is a system management tool that provides centralized management of
a database environment. Cloud Control provides access to most tuning tools.

By combining a graphical console, Oracle Management Servers, Oracle Intelligent
Agents, common services, and administrative tools, Cloud Control provides a
comprehensive system management platform.

You can also access all SQL tuning tools using a command-line interface. For example,
the DBMS_ADVI SCR package is the command-line interface for SQL Tuning Advisor.

Oracle recommends Cloud Control as the best interface for database administration
and tuning. In cases where the command-line interface better illustrates a particular
concept or task, this manual uses command-line examples. However, in these cases the
tuning tasks include a reference to the principal Cloud Control page associated with
the task.

Introduction to SQL Tuning 1-9

Tasks and Tools for SQL Tuning

1-10 SQL Tuning Guide

2

SQL Performance Methodology

This chapter describes the recommended methodology for SQL tuning.

This chapter contains the following topics:
* Guidelines for Designing Your Application (page 2-1)

¢ Guidelines for Deploying Your Application (page 2-3)

2.1 Guidelines for Designing Your Application

The key to obtaining good SQL performance is to design your application with
performance in mind.

This section contains the following topics:
* Guideline for Data Modeling (page 2-1)

* Guideline for Writing Efficient Applications (page 2-1)

2.1.1 Guideline for Data Modeling

Data modeling is important to successful application design.

You must perform data modeling in a way that represents the business practices.
Heated debates may occur about the correct data model. The important thing is to
apply greatest modeling efforts to those entities affected by the most frequent business
transactions.

In the modeling phase, there is a great temptation to spend too much time modeling
the non-core data elements, which results in increased development lead times. Use of
modeling tools can then rapidly generate schema definitions and can be useful when a
fast prototype is required.

2.1.2 Guideline for Writing Efficient Applications

During the design and architecture phase of system development, ensure that the
application developers understand SQL execution efficiency.

To achieve this goal, the development environment must support the following
characteristics:

¢ Good database connection management

Connecting to the database is an expensive operation that is not scalable.
Therefore, a best practice is to minimize the number of concurrent connections to
the database. A simple system, where a user connects at application initialization,
is ideal. However, in a web-based or multitiered application in which application
servers multiplex database connections to users, this approach can be difficult.

SQL Performance Methodology 2-1

Guidelines for Designing Your Application

With these types of applications, design them to pool database connections, and
not reestablish connections for each user request.

* Good cursor usage and management

Maintaining user connections is equally important to minimizing the parsing
activity on the system. Parsing is the process of interpreting a SQL statement and
creating an execution plan for it. This process has many phases, including syntax
checking, security checking, execution plan generation, and loading shared
structures into the shared pool. There are two types of parse operations:

- Hard parsing

A SQL statement is submitted for the first time, and no match is found in the
shared pool. Hard parses are the most resource-intensive and unscalable,
because they perform all the operations involved in a parse.

- Soft parsing

A SQL statement is submitted for the first time, and a match is found in the
shared pool. The match can be the result of previous execution by another
user. The SQL statement is shared, which is optimal for performance.
However, soft parses are not ideal, because they still require syntax and
security checking, which consume system resources.

Because parsing should be minimized as much as possible, application developers
should design their applications to parse SQL statements once and execute them
many times. This is done through cursors. Experienced SQL programmers should
be familiar with the concept of opening and re-executing cursors.

e Effective use of bind variables

Application developers must also ensure that SQL statements are shared within
the shared pool. To achieve this goal, use bind variables to represent the parts of
the query that change from execution to execution. If this is not done, then the
SQL statement is likely to be parsed once and never re-used by other users. To
ensure that SQL is shared, use bind variables and do not use string literals with
SQL statements. For example:

Statement with string literals:

SELECT *
FROM enpl oyees
WHERE | ast_name LIKE 'KING ;

Statement with bind variables:

SELECT *
FROM enpl oyees
VWHERE |ast_nane LIKE : 1,

The following example shows the results of some tests on a simple OLTP

application:

Test #Users Supported
No Parsing all statenents 270

Soft Parsing all statements 150

Hard Parsing all statenents 60

Re- Connecting for each Transaction 30

These tests were performed on a four-CPU computer. The differences increase as
the number of CPUs on the system increase.

2-2 Oracle Database SQL Tuning Guide

Guidelines for Deploying Your Application

2.2 Guidelines for Deploying Your Application

To achieve optimal performance, deploy your application with the same care that you
put into designing it.

This section contains the following topics:

Guideline for Deploying in a Test Environment (page 2-3)

Guidelines for Application Rollout (page 2-4)

2.2.1 Guideline for Deploying in a Test Environment

The testing process mainly consists of functional and stability testing. At some point in
the process, you must perform performance testing.

The following list describes simple rules for performance testing an application. If
correctly documented, then this list provides important information for the production
application and the capacity planning process after the application has gone live.

Use the Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning
Advisor for design validation.

Test with realistic data volumes and distributions.

All testing must be done with fully populated tables. The test database should
contain data representative of the production system in terms of data volume and
cardinality between tables. All the production indexes should be built and the
schema statistics should be populated correctly.

Use the correct optimizer mode.

Perform all testing with the optimizer mode that you plan to use in production.

Test a single user performance.

Test a single user on an idle or lightly-used database for acceptable performance.
If a single user cannot achieve acceptable performance under ideal conditions,
then multiple users cannot achieve acceptable performance under real conditions.

Obtain and document plans for all SQL statements.

Obtain an execution plan for each SQL statement. Use this process to verify that
the optimizer is obtaining an optimal execution plan, and that the relative cost of
the SQL statement is understood in terms of CPU time and physical 1/Os. This
process assists in identifying the heavy use transactions that require the most
tuning and performance work in the future.

Attempt multiuser testing.

This process is difficult to perform accurately, because user workload and profiles
might not be fully quantified. However, transactions performing DML statements
should be tested to ensure that there are no locking conflicts or serialization
problems.

Test with the correct hardware configuration.

Test with a configuration as close to the production system as possible. Using a
realistic system is particularly important for network latencies, I/O subsystem
bandwidth, and processor type and speed. Failing to use this approach may result
in an incorrect analysis of potential performance problems.

SQL Performance Methodology 2-3

Guidelines for Deploying Your Application

* Measure steady state performance.

When benchmarking, it is important to measure the performance under steady
state conditions. Each benchmark run should have a ramp-up phase, where users
are connected to the application and gradually start performing work on the
application. This process allows for frequently cached data to be initialized into
the cache and single execution operations—such as parsing—to be completed
before the steady state condition. Likewise, after a benchmark run, a ramp-down
period is useful so that the system frees resources, and users cease work and
disconnect.

2.2.2 Guidelines for Application Rollout

When new applications are rolled out, two strategies are commonly adopted: the Big
Bang approach, in which all users migrate to the new system at once, and the trickle
approach, in which users slowly migrate from existing systems to the new one.

Both approaches have merits and disadvantages. The Big Bang approach relies on
reliable testing of the application at the required scale, but has the advantage of
minimal data conversion and synchronization with the old system, because it is
simply switched off. The Trickle approach allows debugging of scalability issues as the
workload increases, but might mean that data must be migrated to and from legacy
systems as the transition takes place.

It is difficult to recommend one approach over the other, because each technique has
associated risks that could lead to system outages as the transition takes place.
Certainly, the Trickle approach allows profiling of real users as they are introduced to
the new application, and allows the system to be reconfigured while only affecting the
migrated users. This approach affects the work of the early adopters, but limits the
load on support services. Thus, unscheduled outages only affect a small percentage of
the user population.

The decision on how to roll out a new application is specific to each business. Any
adopted approach has its own unique pressures and stresses. The more testing and
knowledge that you derive from the testing process, the more you realize what is best
for the rollout.

2-4 Oracle Database SQL Tuning Guide

Part Il

Query Optimizer Fundamentals

This part contains the following chapters:
* SQL Processing (page 3-1)
* Query Optimizer Concepts (page 4-1)

* Query Transformations (page 5-1)

3

SQL Processing

This chapter explains how database processes DDL statements to create objects, DML
to modify data, and queries to retrieve data.

This chapter contains the following topics:
e About SQL Processing (page 3-1)
* How Oracle Database Processes DML (page 3-9)

* How Oracle Database Processes DDL (page 3-10)

3.1 About SQL Processing

SQL processing is the parsing, optimization, row source generation, and execution of
a SQL statement. Depending on the statement, the database may omit some of these
stages.

The following figure depicts the general stages of SQL processing.

SQL Processing 3-1

About SQL Processing

Figure 3-1 Stages of SQL Processing

SQL Statement

Syntax
Check

v

| |
| |
| |
| |
| |
| |
| |
| |
| |
| Semantic :
: .
| |
| |
| |
| |
| |
| |
| |

Check

v

Shared Pool
Check

Soft Parse

Hard Parse

Generation of o
multiple Optimization

execution plans

. v

Generation of Row Source
query plan Generation

B v

Execution D ——

3.1.1 SQL Parsing

The first stage of SQL processing is parsing.

The parsing stage involves separating the pieces of a SQL statement into a data
structure that other routines can process. The database parses a statement when
instructed by the application, which means that only the application, and not the
database itself, can reduce the number of parses.

When an application issues a SQL statement, the application makes a parse call to the
database to prepare the statement for execution. The parse call opens or creates a
cursor, which is a handle for the session-specific private SQL area that holds a parsed
SQL statement and other processing information. The cursor and private SQL area are
in the program global area (PGA).

During the parse call, the database performs the following checks:
e Syntax Check (page 3-3)

¢ Semantic Check (page 3-3)

e Shared Pool Check (page 3-3)

3-2 Oracle Database SQL Tuning Guide

About SQL Processing

The preceding checks identify the errors that can be found before statement execution.
Some errors cannot be caught by parsing. For example, the database can encounter
deadlocks or errors in data conversion only during statement execution.

See Also:

Oracle Database Concepts to learn about deadlocks

3.1.1.1 Syntax Check
Oracle Database must check each SQL statement for syntactic validity.

A statement that breaks a rule for well-formed SQL syntax fails the check. For
example, the following statement fails because the keyword FROMis misspelled as
FORM

SQL> SELECT * FORM enpl oyees;
SELECT * FORM enpl oyees
*

ERROR at line 1:
ORA-00923: FROM keyword not found where expect ed

3.1.1.2 Semantic Check

The semantics of a statement are its meaning. A semantic check determines whether a
statement is meaningful, for example, whether the objects and columns in the
statement exist.

A syntactically correct statement can fail a semantic check, as shown in the following
example of a query of a nonexistent table:

SQ.> SELECT * FROM nonexi stent _tabl e;
SELECT * FROM nonexi stent _table

*

ERROR at |ine 1:
ORA-00942: table or view does not exist
3.1.1.3 Shared Pool Check

During the parse, the database performs a shared pool check to determine whether it
can skip resource-intensive steps of statement processing.

To this end, the database uses a hashing algorithm to generate a hash value for every
SQL statement. The statement hash value is the SQL ID shown in V$SQ.. SQ__I D.
This hash value is deterministic within a version of Oracle Database, so the same
statement in a single instance or in different instances has the same SQL ID.

When a user submits a SQL statement, the database searches the shared SQL area to
see if an existing parsed statement has the same hash value. The hash value of a SQL
statement is distinct from the following values:

* Memory address for the statement

Oracle Database uses the SQL ID to perform a keyed read in a lookup table. In this
way, the database obtains possible memory addresses of the statement.

¢ Hash value of an execution plan for the statement

SQL Processing 3-3

About SQL Processing

A SQL statement can have multiple plans in the shared pool. Typically, each plan
has a different hash value. If the same SQL ID has multiple plan hash values, then
the database knows that multiple plans exist for this SQL ID.

Parse operations fall into the following categories, depending on the type of statement
submitted and the result of the hash check:

* Hard parse

If Oracle Database cannot reuse existing code, then it must build a new executable
version of the application code. This operation is known as a hard parse, or a
library cache miss.

Note:

The database always performs a hard parse of DDL.

During the hard parse, the database accesses the library cache and data dictionary
cache numerous times to check the data dictionary. When the database accesses
these areas, it uses a serialization device called a latch on required objects so that
their definition does not change. Latch contention increases statement execution
time and decreases concurrency.

® Soft parse

A soft parse is any parse that is not a hard parse. If the submitted statement is the
same as a reusable SQL statement in the shared pool, then Oracle Database reuses
the existing code. This reuse of code is also called a library cache hit.

Soft parses can vary in how much work they perform. For example, configuring
the session shared SQL area can sometimes reduce the amount of latching in the
soft parses, making them "softer."

In general, a soft parse is preferable to a hard parse because the database skips the
optimization and row source generation steps, proceeding straight to execution.

The following graphic is a simplified representation of a shared pool check of an
UPDATE statement in a dedicated server architecture.

3-4 Oracle Database SQL Tuning Guide

About SQL Processing

Figure 3-2 Shared Pool Check

Update ...

[
— Client Server
il . .
‘ —_— — y
q—U— Process Process Session Memory | |39673I54608

User

System Global Area (SGA)

Shared Pool
Library Cache

Shared SQL Area Private

3667723989 SQL Area
| 3067354608
2190280494

Data Server | |Other Reserved
Dictionary | |Result Pool
Cache Cache

Comparison of hash values

. PGA
s@_ Work Areas

Private SQL Area

If a check determines that a statement in the shared pool has the same hash value, then
the database performs semantic and environment checks to determine whether the
statements have the same meaning. Identical syntax is not sufficient. For example,
suppose two different users log in to the database and issue the following SQL
statements:

CREATE TABLE ny_table (some_col INTEGER);
SELECT * FROM ny_t abl e;

The SELECT statements for the two users are syntactically identical, but two separate
schema objects are named ny_t abl e. This semantic difference means that the second
statement cannot reuse the code for the first statement.

Even if two statements are semantically identical, an environmental difference can
force a hard parse. In this context, the optimizer environment is the totality of session
settings that can affect execution plan generation, such as the work area size or
optimizer settings (for example, the optimizer mode). Consider the following series of
SQL statements executed by a single user:

ALTER SESSI ON SET OPTI M ZER_MODE=ALL_ROWS;
ALTER SYSTEM FLUSH SHARED POQL; # optimzer environnent 1
SELECT * FROM sh. sal es;

ALTER SESSI ON SET OPTI M ZER MODE=FI RST_ROWS; # optimi zer environment 2
SELECT * FROM sh. sal es;

ALTER SESSI ON SET SQ._TRACE=tr ue; # optimzer environment 3
SELECT * FROM sh. sal es;

In the preceding example, the same SELECT statement is executed in three different

optimizer environments. Consequently, the database creates three separate shared
SQL areas for these statements and forces a hard parse of each statement.

SQL Processing 3-5

About SQL Processing

See Also:

® Oracle Database Concepts to learn about private SQL areas and shared SQL
areas

e Oracle Database Performance Tuning Guide to learn how to configure the
shared pool

® Oracle Database Concepts to learn about latches

3.1.2 SQL Optimization

During the optimization stage, Oracle Database must perform a hard parse at least
once for every unique DML statement and performs the optimization during this
parse.

The database never optimizes DDL unless it includes a DML component such as a
subquery that requires optimization. "Query Optimizer Concepts (page 4-1)"
explains the optimization process in more detail.

3.1.3 SQL Row Source Generation

The row source generator is software that receives the optimal execution plan from
the optimizer and produces an iterative execution plan that is usable by the rest of the
database.

The iterative plan is a binary program that, when executed by the SQL engine,
produces the result set. The plan takes the form of a combination of steps. Each step
returns a row set. The next step either uses the rows in this set, or the last step returns
the rows to the application issuing the SQL statement.

A row source is a row set returned by a step in the execution plan along with a control
structure that can iteratively process the rows. The row source can be a table, view, or
result of a join or grouping operation.

The row source generator produces a row source tree, which is a collection of row
sources. The row source tree shows the following information:

¢ An ordering of the tables referenced by the statement

* An access method for each table mentioned in the statement

* A join method for tables affected by join operations in the statement

* Data operations such as filter, sort, or aggregation

Example 3-1 Execution Plan

This example shows the execution plan of a SELECT statement when AUTOTRACE is
enabled. The statement selects the last name, job title, and department name for all
employees whose last names begin with the letter A. The execution plan for this
statement is the output of the row source generator.

SELECT e.last_nane, j.job_title, d.departnent_nane
FROM hr.enployees e, hr.departnents d, hr.jobs j
VWHERE e.department _id = d.departnment _id

AND e.job_id =j.job_id

AND e.last_name LIKE 'A%;

3-6 Oracle Database SQL Tuning Guide

About SQL Processing

Execution Plan

| 1d] Operation | Name | Rows| Byt es| Cost (%CPU) | Tine |
| 0| SELECT STATEMENT | | 3] 189 | 7(15)| 00:00:01 |
[*1] HASH JON | | 3] 189 | 7(15)| 00:00:01 |
[*2 | HASHJON | | 3] 141 | 5(20)| 00:00:01 |
| 3| TABLE ACCESS BY INDEX ROWD| EMPLOYEES | 3| 60| 2 (0)| 00:00:01 |
[*4 | | NDEX RANGE SCAN | EMP_NAMEIX | 3| | 1 (0)] 00:00:01 |
| 5| TABLE ACCESS FULL | JOBS | 19] 513 | 2 (0)| 00:00:01 |
| 6| TABLE ACCESS FULL | DEPARTMENTS | 27 | 432 | 2 (0)| 00:00:01 |

1 - access("E"."DEPARTMENT | D'="D". " DEPARTMENT | D")
2 - access("E"."JOB_ID'="J"."JOB_ID")
4 - access("E"."LAST_NAME" LIKE 'A%)
filter("E"."LAST_NAME' LIKE 'A%)
3.1.4 SQL Execution

During execution, the SQL engine executes each row source in the tree produced by
the row source generator. This step is the only mandatory step in DML processing.

Figure 3-3 (page 3-8) is an execution tree, also called a parse tree, that shows the flow

of row sources from one step to another in the plan in Example 3-1 (page 3-6). In
general, the order of the steps in execution is the reverse of the order in the plan, so you
read the plan from the bottom up.

Each step in an execution plan has an ID number. The numbers in Figure 3-3

(page 3-8) correspond to the | d column in the plan shown in Example 3-1 (page 3-6).
Initial spaces in the Oper at i on column of the plan indicate hierarchical relationships.
For example, if the name of an operation is preceded by two spaces, then this
operation is a child of an operation preceded by one space. Operations preceded by
one space are children of the SELECT statement itself.

SQL Processing 3-7

About SQL Processing

Figure 3-3 Row Source Tree

1

HASH JOIN

2 6

HASH JOIN TABLE ACCESS
FULL
departments

TABLE ACCESS TABLE ACCESS
BY INDEX ROWID FULL
employees jobs

INDEX RANGE
SCAN
emp_name_ix

In Figure 3-3 (page 3-8), each node of the tree acts as a row source, which means that
each step of the execution plan in Example 3-1 (page 3-6) either retrieves rows from
the database or accepts rows from one or more row sources as input. The SQL engine
executes each row source as follows:

® Steps indicated by the black boxes physically retrieve data from an object in the
database. These steps are the access paths, or techniques for retrieving data from
the database.

— Step 6 uses a full table scan to retrieve all rows from the depart ment s table.
— Step 5 uses a full table scan to retrieve all rows from the j obs table.

— Step 4 scans the enp_nane_i x index in order, looking for each key that
begins with the letter A and retrieving the corresponding rowid. For example,
the rowid corresponding to At ki nson is AAAPz RAAFAAAABSAAe.

— Step 3 retrieves from the enpl oyees table the rows whose rowids were
returned by Step 4. For example, the database uses rowid
AAAPz RAAFAAAABSAAEe to retrieve the row for At ki nson.

* Steps indicated by the clear boxes operate on row sources.

3-8 Oracle Database SQL Tuning Guide

How Oracle Database Processes DML

— Step 2 performs a hash join, accepting row sources from Steps 3 and 5, joining
each row from the Step 5 row source to its corresponding row in Step 3, and
returning the resulting rows to Step 1.

For example, the row for employee At ki nson is associated with the job name
Stock Cerk.

- Step 1 performs another hash join, accepting row sources from Steps 2 and 6,
joining each row from the Step 6 source to its corresponding row in Step 2,
and returning the result to the client.

For example, the row for employee At ki nson is associated with the
department named Shi ppi ng.

In some execution plans the steps are iterative and in others sequential. The hash join
shown in Example 3-1 (page 3-6) is sequential. The database completes the steps in
their entirety based on the join order. The database starts with the index range scan of
enp_nane_i X. Using the rowids that it retrieves from the index, the database reads
the matching rows in the enpl oyees table, and then scans the j obs table. After it
retrieves the rows from the j obs table, the database performs the hash join.

During execution, the database reads the data from disk into memory if the data is not
in memory. The database also takes out any locks and latches necessary to ensure data
integrity and logs any changes made during the SQL execution. The final stage of
processing a SQL statement is closing the cursor.

3.2 How Oracle Database Processes DML

Most DML statements have a query component. In a query, execution of a cursor
places the results of the query into a set of rows called the result set.

3.2.1 How Row Sets Are Fetched

Result set rows can be fetched either a row at a time or in groups.

In the fetch stage, the database selects rows and, if requested by the query, orders the
rows. Each successive fetch retrieves another row of the result until the last row has
been fetched.

In general, the database cannot determine for certain the number of rows to be
retrieved by a query until the last row is fetched. Oracle Database retrieves the data in
response to fetch calls, so that the more rows the database reads, the more work it
performs. For some queries the database returns the first row as quickly as possible,
whereas for others it creates the entire result set before returning the first row.

3.2.2 Read Consistency

In general, a query retrieves data by using the Oracle Database read consistency
mechanism, which guarantees that all data blocks read by a query are consistent to a
single point in time.

Read consistency uses undo data to show past versions of data. For an example,
suppose a query must read 100 data blocks in a full table scan. The query processes the
first 10 blocks while DML in a different session modifies block 75. When the first
session reaches block 75, it realizes the change and uses undo data to retrieve the old,
unmodified version of the data and construct a noncurrent version of block 75 in
memory.

SQL Processing 3-9

How Oracle Database Processes DDL

See Also:

Oracle Database Concepts to learn about multiversion read consistency

3.2.3 Data Changes

DML statements that must change data use read consistency to retrieve only the data
that matched the search criteria when the modification began.

Afterward, these statements retrieve the data blocks as they exist in their current state
and make the required modifications. The database must perform other actions related
to the modification of the data such as generating redo and undo data.

3.3 How Oracle Database Processes DDL
Oracle Database processes DDL differently from DML.

For example, when you create a table, the database does not optimize the CREATE
TABLE statement. Instead, Oracle Database parses the DDL statement and carries out
the command.

The database processes DDL differently because it is a means of defining an object in
the data dictionary. Typically, Oracle Database must parse and execute many
recursive SQL statements to execute a DDL statement. Suppose you create a table as
follows:

CREATE TABLE nytabl e (mycol um | NTEGER);

Typically, the database would run dozens of recursive statements to execute the
preceding statement. The recursive SQL would perform actions such as the following;:

e Issue a COMM T before executing the CREATE TABLE statement
* Verify that user privileges are sufficient to create the table

® Determine which tablespace the table should reside in

* Ensure that the tablespace quota has not been exceeded

e Ensure that no object in the schema has the same name

* Insert rows that define the table into the data dictionary

e Issue a COW T if the DDL statement succeeded or a ROLLBACK if it did not

See Also:

Oracle Database Development Guide to learn about processing DDL, transaction
control, and other types of statements

3-10 Oracle Database SQL Tuning Guide

A

Query Optimizer Concepts

This chapter describes the most important concepts relating to the query optimizer,
including its principal components.

This chapter contains the following topics:

¢ Introduction to the Query Optimizer (page 4-1)

* About Optimizer Components (page 4-4)

* About Automatic Tuning Optimizer (page 4-11)

* About Adaptive Query Optimization (page 4-12)
* About Approximate Query Processing (page 4-25)
* About SQL Plan Management (page 4-27)

* About the Expression Statistics Store (ESS) (page 4-28)

4.1 Introduction to the Query Optimizer

The query optimizer (called simply the optimizer) is built-in database software that
determines the most efficient method for a SQL statement to access requested data.

This section contains the following topics:
® Purpose of the Query Optimizer (page 4-1)
¢ Cost-Based Optimization (page 4-2)

e Execution Plans (page 4-2)

4.1.1 Purpose of the Query Optimizer

The optimizer attempts to generate the most optimal execution plan for a SQL
statement.

The optimizer choose the plan with the lowest cost among all considered candidate
plans. The optimizer uses available statistics to calculate cost. For a specific query in a
given environment, the cost computation accounts for factors of query execution such
as I/0, CPU, and communication.

For example, a query might request information about employees who are managers.
If the optimizer statistics indicate that 80% of employees are managers, then the
optimizer may decide that a full table scan is most efficient. However, if statistics
indicate that very few employees are managers, then reading an index followed by a
table access by rowid may be more efficient than a full table scan.

Query Optimizer Concepts 4-1

Introduction to the Query Optimizer

Because the database has many internal statistics and tools at its disposal, the
optimizer is usually in a better position than the user to determine the optimal method
of statement execution. For this reason, all SQL statements use the optimizer.

4.1.2 Cost-Based Optimization

Query optimization is the overall process of choosing the most efficient means of
executing a SQL statement. SQL is a nonprocedural language, so the optimizer is free
to merge, reorganize, and process in any order.

The database optimizes each SQL statement based on statistics collected about the
accessed data. The optimizer determines the optimal plan for a SQL statement by
examining multiple access methods, such as full table scan or index scans, different
join methods such as nested loops and hash joins, different join orders, and possible
transformations.

For a given query and environment, the optimizer assigns a relative numerical cost to
each step of a possible plan, and then factors these values together to generate an
overall cost estimate for the plan. After calculating the costs of alternative plans, the
optimizer chooses the plan with the lowest cost estimate. For this reason, the optimizer
is sometimes called the cost-based optimizer (CBO) to contrast it with the legacy rule-
based optimizer (RBO).

Note:

The optimizer may not make the same decisions from one version of Oracle
Database to the next. In recent versions, the optimizer might make different
decision because better information is available and more optimizer
transformations are possible.

See Also: "Cost (page 4-8)"

4.1.3 Execution Plans

An execution plan describes a recommended method of execution for a SQL
statement.

The plan shows the combination of the steps Oracle Database uses to execute a SQL
statement. Each step either retrieves rows of data physically from the database or
prepares them for the user issuing the statement.

An execution plan displays the cost of the entire plan, indicated on line 0, and each
separate operation. The cost is an internal unit that the execution plan only displays to
allow for plan comparisons. Thus, you cannot tune or change the cost value.

In the following graphic, the optimizer generates two possible execution plans for an
input SQL statement, uses statistics to estimate their costs, compares their costs, and
then chooses the plan with the lowest cost.

4-2 Oracle Database SQL Tuning Guide

Introduction to the Query Optimizer

Figure 4-1 Execution Plans

A A
GB Plan | (GB Plan
A1 A 2
NL HJ
v |
| |
Generates Multiple
Plans and
Compares Them
Parsed Representation Final Plan with
of SQL Statement Lowest Cost
*
l I I . GB PI
D] Input ‘ Optimizer Output Kr > an

UoU U

.

[P Y
S 1

‘101100100 Statistics

4.1.3.1 Query Blocks
The input to the optimizer is a parsed representation of a SQL statement.

Each SELECT block in the original SQL statement is represented internally by a query
block. A query block can be a top-level statement, subquery, or unmerged view.

Example 4-1 Query Blocks

The following SQL statement consists of two query blocks. The subquery in
parentheses is the inner query block. The outer query block, which is the rest of the
SQL statement, retrieves names of employees in the departments whose IDs were
supplied by the subquery. The query form determines how query blocks are
interrelated.

SELECT first_nane, |ast_nane

FROM hr. enpl oyees

VWHERE departnent _id

IN (SELECT department _id
FROM hr.departnents
VWHERE |ocation_id = 1800);

See Also:
* "View Merging (page 5-3)"

® Oracle Database Concepts for an overview of SQL processing

4.1.3.2 Query Subplans
For each query block, the optimizer generates a query subplan.

The database optimizes query blocks separately from the bottom up. Thus, the
database optimizes the innermost query block first and generates a subplan for it, and
then generates the outer query block representing the entire query.

Query Optimizer Concepts 4-3

About Optimizer Components

The number of possible plans for a query block is proportional to the number of
objects in the FROMclause. This number rises exponentially with the number of
objects. For example, the possible plans for a join of five tables are significantly higher
than the possible plans for a join of two tables.

4.1.3.3 Analogy for the Optimizer
One analogy for the optimizer is an online trip advisor.

A cyclist wants to know the most efficient bicycle route from point A to point B. A
query is like the directive "I need the most efficient route from point A to point B" or "I
need the most efficient route from point A to point B by way of point C." The trip
advisor uses an internal algorithm, which relies on factors such as speed and
difficulty, to determine the most efficient route. The cyclist can influence the trip
advisor's decision by using directives such as "l want to arrive as fast as possible" or "I
want the easiest ride possible."

In this analogy, an execution plan is a possible route generated by the trip advisor.
Internally, the advisor may divide the overall route into several subroutes (subplans),
and calculate the efficiency for each subroute separately. For example, the trip advisor
may estimate one subroute at 15 minutes with medium difficulty, an alternative
subroute at 22 minutes with minimal difficulty, and so on.

The advisor picks the most efficient (lowest cost) overall route based on user-specified
goals and the available statistics about roads and traffic conditions. The more accurate
the statistics, the better the advice. For example, if the advisor is not frequently
notified of traffic jams, road closures, and poor road conditions, then the
recommended route may turn out to be inefficient (high cost).

4.2 About Optimizer Components

The optimizer contains three components: the transformer, estimator, and plan
generator.

The following graphic illustrates the components..

Figure 4-2 Optimizer Components

Parsed Query
(from Parser)

Query
Transformer

lTransformed query

. statistics Data
: EmE- Estimator _ Dicﬁonary
I 5332
: @ lOuery + estimates
[|
[|
[|
: Plan

mEmmmm— Generator
Query Plan

(to Row Source Generator)

4-4 Oracle Database SQL Tuning Guide

About Optimizer Components

A set of query blocks represents a parsed query, which is the input to the optimizer.
The optimizer performs the following operations:

1.

Query transformer

The optimizer determines whether it is helpful to change the form of the query so
that the optimizer can generate a better execution plan. See "Query Transformer

(page 4-5)".

2. Estimator

The optimizer estimates the cost of each plan based on statistics in the data
dictionary. See "Estimator (page 4-6)".

3. Plan Generator

The optimizer compares the costs of plans and chooses the lowest-cost plan,
known as the execution plan, to pass to the row source generator. See "Plan
Generator (page 4-10)".

4.2.1 Query Transformer

For some statements, the query transformer determines whether it is advantageous to
rewrite the original SQL statement into a semantically equivalent SQL statement with
a lower cost.

When a viable alternative exists, the database calculates the cost of the alternatives
separately and chooses the lowest-cost alternative. Query Transformations
(page 5-1) describes the different types of optimizer transformations.

The following graphic shows the query transformer rewriting an input query that uses

ORinto an output query that uses UNI ON ALL.

Figure 4-3 Query Transformer

SELECT *

FROM sales

WHERE promo_id=33
OR prod_id=136;

Query Transformer

SELECT *

FROM sales

WHERE prod id=136

UNION ALL

SELECT *

FROM sales

WHERE promo_id=33

AND LNNVL (prod_id=136) ;

See Also:

"Query Transformations (page 5-1)"

Query Optimizer Concepts 4-5

About Optimizer Components

4.2.2 Estimator

The estimator is the component of the optimizer that determines the overall cost of a
given execution plan.

The estimator uses three different measures to determine cost:

* Selectivity (page 4-7)

The percentage of rows in the row set that the query selects, with 0 meaning no
rows and 1 meaning all rows. Selectivity is tied to a query predicate, such as
WHERE | ast _nane LI KE ' A%, or a combination of predicates. A predicate
becomes more selective as the selectivity value approaches 0 and less selective (or
more unselective) as the value approaches 1.

Note:

Selectivity is an internal calculation that is not visible in the execution plans.

e Cardinality (page 4-8)

The cardinality is the number of rows returned by each operation in an execution
plan. This input, which is crucial to obtaining an optimal plan, is common to all
cost functions. The estimator can derive cardinality from the table statistics
collected by DBMS_STATS, or derive it after accounting for effects from predicates
(filter, join, and so on), DI STI NCT or GROUP BY operations, and so on. The Rows
column in an execution plan shows the estimated cardinality.

* Cost (page 4-8)

This measure represents units of work or resource used. The query optimizer uses
disk I/O, CPU usage, and memory usage as units of work.

As shown in the following graphic, if statistics are available, then the estimator uses
them to compute the measures. The statistics improve the degree of accuracy of the
measures.

Figure 4-4 Estimator

Cardinality
Selectivity Cost
*
(GB Plan 3
—»‘ Estimator _—
Total Cost

10100 — Statistics
00011
01101

For the query shown in Example 4-1 (page 4-3), the estimator uses selectivity,
estimated cardinality (a total return of 10 rows), and cost measures to produce its total
cost estimate of 3:

| 1d| Operation | Nane | Rows| Byt es| Cost %CPU| Ti ne|

4-6 Oracle Database SQL Tuning Guide

About Optimizer Components

| 0| SELECT STATEMENT | | 10| 250] 3 (0)| 00:00: 01
| 1| NESTED LOOPS |] | |
| 2| NESTED LOOPS | | 10| 250] 3 (0)| 00:00: 01
|*3 | TABLE ACCESS FULL | DEPARTMENTS | 1] 7] 2 (0)] 00:00:01|
|*4 | | NDEX RANGE SCAN | EMP_DEPARTMENT |X| 10| | 0 (0)| 00:00: 01|
| 5| TABLE ACCESS BY | NDEX ROW D| ENPLOYEES | 10| 180 1 (0)| 00:00: 01

4.2.2.1 Selectivity
The selectivity represents a fraction of rows from a row set.

The row set can be a base table, a view, or the result of a join. The selectivity is tied to a
query predicate, such as| ast _name ="' Smi t h' , or a combination of predicates, such
aslast_nanme = 'Smith' AND job_id = 'SH CLERK .

Note:

Selectivity is an internal calculation that is not visible in execution plans.

A predicate filters a specific number of rows from a row set. Thus, the selectivity of a
predicate indicates how many rows pass the predicate test. Selectivity ranges from 0.0
to 1.0. A selectivity of 0.0 means that no rows are selected from a row set, whereas a
selectivity of 1.0 means that all rows are selected. A predicate becomes more selective
as the value approaches 0.0 and less selective (or more unselective) as the value
approaches 1.0.

The optimizer estimates selectivity depending on whether statistics are available:

e Statistics not available

Depending on the value of the OPTI M ZER_DYNAM C_SAMPLI NGinitialization
parameter, the optimizer either uses dynamic statistics or an internal default
value. The database uses different internal defaults depending on the predicate
type. For example, the internal default for an equality predicate (I ast _nane =

' Smi t h') is lower than for a range predicate (| ast _name > ' Smit h') because
an equality predicate is expected to return a smaller fraction of rows.

e Statistics available

When statistics are available, the estimator uses them to estimate selectivity.
Assume there are 150 distinct employee last names. For an equality predicate

[ast _name = ' Smith', selectivity is the reciprocal of the number n of distinct
values of | ast _nane, which in this example is .006 because the query selects
rows that contain 1 out of 150 distinct values.

If a histogram exists on the | ast _nanme column, then the estimator uses the
histogram instead of the number of distinct values. The histogram captures the
distribution of different values in a column, so it yields better selectivity estimates,
especially for columns that have data skew.

See Also:

"Histograms (page 11-1)"

Query Optimizer Concepts 4-7

About Optimizer Components

4.2.2.2 Cardinality

The cardinality is the number of rows returned by each operation in an execution
plan.

For example, if the optimizer estimate for the number of rows returned by a full table
scan is 100, then the cardinality estimate for this operation is 100. The cardinality
estimate appears in the Rows column of the execution plan.

The optimizer determines the cardinality for each operation based on a complex set of
formulas that use both table and column level statistics, or dynamic statistics, as input.
The optimizer uses one of the simplest formulas when a single equality predicate
appears in a single-table query, with no histogram. In this case, the optimizer assumes
a uniform distribution and calculates the cardinality for the query by dividing the total
number of rows in the table by the number of distinct values in the column used in the
VWHERE clause predicate.

For example, user hr queries the enpl oyees table as follows:

SELECT first_nane, |ast_name
FROM enpl oyees
WHERE sal ary="10200";

The enpl oyees table contains 107 rows. The current database statistics indicate that
the number of distinct values in the sal ar y column is 58. Therefore, the optimizer
estimates the cardinality of the result set as 2, using the formula 107/ 58=1. 84.

Cardinality estimates must be as accurate as possible because they influence all aspects
of the execution plan. Cardinality is important when the optimizer determines the cost
of a join. For example, in a nested loops join of the enpl oyees and depart nent s
tables, the number of rows in enpl oyees determines how often the database must
probe the depar t ment s table. Cardinality is also important for determining the cost
of sorts.

4.2.2.3 Cost

The optimizer cost model accounts for the machine resources that a query is predicted
to use.

The cost is an internal numeric measure that represents the estimated resource usage
for a plan. The cost is specific to a query in an optimizer environment. To estimate cost,
the optimizer considers factors such as the following:

® System resources, which includes estimated I/O, CPU, and memory
e Estimated number of rows returned (cardinality)

e Size of the initial data sets

¢ Distribution of the data

e Access structures

Note:

The cost is an internal measure that the optimizer uses to compare different
plans for the same query. You cannot tune or change cost.

4-8 Oracle Database SQL Tuning Guide

About Optimizer Components

The execution time is a function of the cost, but cost does not equate directly to time.
For example, if the plan for query A has a lower cost than the plan for query B, then
the following outcomes are possible:

e A executes faster than B.
e A executes slower than B.

e A executes in the same amount of time as B.

Therefore, you cannot compare the costs of different queries with one another. Also,
you cannot compare the costs of semantically equivalent queries that use different
optimizer modes.

Example 4-2 Cost in a Sample Execution Plan

The execution plan displays the cost of the entire plan, which is indicated on line 0,
and each individual operation. For example, the following plan shows an overall cost
of 14.

EXPLAI NED SQL STATEMENT:

SELECT prod_category, AVG anount_sold) FROM sales s, products p WHERE
p.prod_id = s.prod_id GROUP BY prod_category

Pl an hash val ue: 4073170114

| 1d | Operation | Nanme | Cost (%CPU)|
| 0| SELECT STATEMENT | | 14 (100)]
| 1| HASH GROUP BY | | 14 (22)]
| 2| HASHJON | | 13 (16)]
| 3] VI EW | index$_j oi n$_002 | 7 (15)]
| 4] HASH JO N | | |
| 5] I NDEX FAST FULL SCAN PRODUCTS_PK | 4 (0)]
| 6| I NDEX FAST FULL SCAN| PRODUCTS PROD CAT IX | 4 (0]
| 7] PARTI TION RANGE ALL | | 5 (0]
| 8| TABLE ACCESS FULL | SALES | 5 (0]

The access path determines the number of units of work required to get data from a
base table. To determine the overall plan cost, the optimizer assigns a cost to each
access path:

e Table scan or fast full index scan

During a table scan or fast full index scan, the database reads multiple blocks from
disk in a single I/O. The cost of the scan depends on the number of blocks to be
scanned and the multiblock read count value.

e Indexscan

The cost of an index scan depends on the levels in the B-tree, the number of index
leaf blocks to be scanned, and the number of rows to be fetched using the rowid in
the index keys. The cost of fetching rows using rowids depends on the index
clustering factor.

The join cost represents the combination of the individual access costs of the two row
sets being joined, plus the cost of the join operation.

Query Optimizer Concepts 4-9

About Optimizer Components

4.2.3 Plan Generator

The plan generator explores various plans for a query block by trying out different
access paths, join methods, and join orders.

Many plans are possible because of the various combinations that the database can use
to produce the same result. The optimizer picks the plan with the lowest cost.

The following graphic shows the optimizer testing different plans for an input query.

Figure 4-5 Plan Generator

SELECT e.last_name, d.department_name
FROM hr.employees e, hr.departments d
WHERE e.department_id = d.department_id;

¢ Optimizer

Transformer

Join Method Join Order

Hash, Nested —> departments 0 employees 1
Loop, Sort Merge employees 0 departments 1

Access Path

Index
Full Table Scan

l Lowest Cost Plan

Hash Join
departments 0, employees 1

The following snippet from an optimizer trace file shows some computations that the
optimizer performs:

GENERAL PLANS

IR RS SRS SRS E SRS EEEEEEEEEEEEEEEEEEEE]
Considering cardinality-based initial join order.
Permutations for Starting Table : 0

Join order[1]: DEPARTMENTS[D]#0 EMPLOYEES] E] #1

khkkkkkkhkkkkkkk*k

Now j oi ni ng: EMPLOYEES] E] #1
kkkkkkkkkkkkkkk
NL Join
Quter table: Card: 27.00 Cost: 2.01 Resp: 2.01 Degree: 1 Bytes: 16
Access path analysis for EMPLOYEES

Best NL cost: 13.17
SM Join
SM cost: 6.08

resc: 6.08 resc_io: 4.00 resc_cpu: 2501688
resp: 6.08 resp_io: 4.00 resp_cpu: 2501688

4-10 Oracle Database SQL Tuning Guide

About Automatic Tuning Optimizer

SM Join (with index on outer)
Access Path: index (FullScan)
HA Join
HA cost: 4.57
resc: 4.57 resc_io: 4.00 resc_cpu: 678154
resp: 4.57 resp_io: 4.00 resp_cpu: 678154

Best:: Joi nMet hod: Hash
Cost: 4.57 Degree: 1 Resp: 4.57 Card: 106.00 Bytes: 27

EE RS EEEEEEEREEEEEEEES]

Join order[2]: EMPLOYEES[E]#1 DEPARTMENTS[D] #0

kkkkkkkkkkkkkkk

Now j oi ni ng: DEPARTMENTS[D] #0

kkkkkkkkkkkkkkk

HA Join
HA cost: 4.58
resc: 4.58 resc_io: 4.00 resc_cpu: 690054
resp: 4.58 resp_io: 4.00 resp_cpu: 690054
Join order aborted: cost > best plan cost

EE RS EEEEEEEREEEEEEEES]

The trace file shows the optimizer first trying the depar t ment s table as the outer
table in the join. The optimizer calculates the cost for three different join methods:
nested loops join (NL), sort merge (SM), and hash join (HA). The optimizer picks the
hash join as the most efficient method:

Best:: Joi nMet hod: Hash
Cost: 4.57 Degree: 1 Resp: 4.57 Card: 106.00 Bytes: 27
The optimizer then tries a different join order, using enpl oyees as the outer table.

This join order costs more than the previous join order, so it is abandoned.

The optimizer uses an internal cutoff to reduce the number of plans it tries when
finding the lowest-cost plan. The cutoff is based on the cost of the current best plan. If
the current best cost is large, then the optimizer explores alternative plans to find a
lower cost plan. If the current best cost is small, then the optimizer ends the search
swiftly because further cost improvement is not significant.

4.3 About Automatic Tuning Optimizer

The optimizer performs different operations depending on how it is invoked.

The database provides the following types of optimization:

¢ Normal optimization

The optimizer compiles the SQL and generates an execution plan. The normal
mode generates a reasonable plan for most SQL statements. Under normal mode,
the optimizer operates with strict time constraints, usually a fraction of a second,
during which it must find an optimal plan.

* SQL Tuning Advisor optimization

When SQL Tuning Advisor invokes the optimizer, the optimizer is known as
Automatic Tuning Optimizer. In this case, the optimizer performs additional

Query Optimizer Concepts 4-11

About Adaptive Query Optimization

analysis to further improve the plan produced in normal mode. The optimizer
output is not an execution plan, but a series of actions, along with their rationale
and expected benefit for producing a significantly better plan.

See Also:

"Analyzing SQL with SQL Tuning Advisor (page 25-1)"

4.4 About Adaptive Query Optimization

In Oracle Database, adaptive query optimization enables the optimizer to make run-
time adjustments to execution plans and discover additional information that can lead
to better statistics.

Adaptive optimization is helpful when existing statistics are not sufficient to generate
an optimal plan. The following graphic shows the feature set for adaptive query
optimization.

Figure 4-6 Adaptive Query Optimization

Adaptive Query
Optimization
Adaptive Adaptive
Plans Statistics
| , } ! !)
Join Parallel Bitmap Dynamic Automatic SQL Plan
Methods D"\ﬁgt'ﬁggg” Index Pruning Statistics Reoptimization Directives

4.4.1 Adaptive Query Plans

An adaptive query plan enables the optimizer to make a plan decision for a statement
during execution. Adaptive query plans, which are enabled by default, enable the
optimizer to fix some classes of problems at run time.

This section contains the following topics:

e About Adaptive Query Plans (page 4-13)

® Purpose of Adaptive Query Plans (page 4-13)
e How Adaptive Query Plans Work (page 4-14)

* When Adaptive Query Plans Are Enabled (page 4-20)

4-12 Oracle Database SQL Tuning Guide

About Adaptive Query Optimization

See Also:
* "Introduction to Optimizer Statistics (page 10-1)"
e "About SQL Tuning Advisor (page 25-1)"

¢ "Overview of SQL Plan Management (page 28-1)"

4.4.1.1 About Adaptive Query Plans

An adaptive query plan contains multiple predetermined subplans, and an optimizer
statistics collector. Based on the statistics collected during execution, the dynamic plan
coordinator chooses the best plan at run time.

Dynamic Plans

To change plans at runtime, adaptive query plans use a dynamic plan, which is
represented as a set of subplan groups. A subplan group is a set of subplans. A
subplan is a portion of a plan that the optimizer can switch to as an alternative at run
time. For example, a nested loops join could switch to a hash join during execution.

The optimizer decides which subplan to use at run time. When notified of a new
statistic value relevant to a subplan group, the coordinator dispatches it to the handler
function for this subgroup.

Figure 4-7 Dynamic Plan Coordinator

Dynamic Plan
Subplan Group Subplan Group
8yna(|’nic Plan A 7\
oordinator
GB GB
KT Subplan KT Subplan
NL NL
H 7 A A
v GB GB
. § Subplan 5 Subplan
HJ HJ
k)\@ k)\@

Optimizer Statistics Collector

An optimizer statistics collector is a row source inserted into a plan at key points to
collect run-time statistics relating to cardinality and histograms. These statistics help
the optimizer make a final decision between multiple subplans. The collector also
supports optional buffering up to an internal threshold.

For parallel buffering statistics collectors, each parallel execution server collects the
statistics, which the parallel query coordinator aggregates and then sends to the
clients. In this context, a client is a consumer of the collected statistics, such as a
dynamic plan. Each client specifies a callback function to be executed on each parallel
server or on the query coordinator.

4.4.1.2 Purpose of Adaptive Query Plans

The ability of the optimizer to adapt a plan, based on statistics obtained during
execution, can greatly improve query performance.

Query Optimizer Concepts 4-13

About Adaptive Query Optimization

Adaptive query plans are useful because the optimizer occasionally picks a
suboptimal default plan because of a cardinality misestimate. The ability of the
optimizer to pick the best plan at run time based on actual execution statistics results
in a more optimal final plan. After choosing the final plan, the optimizer uses it for
subsequent executions, thus ensuring that the suboptimal plan is not reused.

4.4.1.3 How Adaptive Query Plans Work

For the first execution of a statement, the optimizer uses the default plan, and then
stores an adaptive plan. The database uses the adaptive plan for subsequent
executions unless specific conditions are met.

During the first execution of a statement, the database performs the following steps:
1. The database begins executing the statement using the default plan.

2. The statistics collector gathers information about the in-progress execution, and
buffers some rows received by the subplan.

For parallel buffering statistics collectors, each slave process collects the statistics,
which the query coordinator aggregates before sending to the clients.

3. Based on the statistics gathered by the collector, the optimizer chooses a subplan.

The dynamic plan coordinator decides which subplan to use at runtime for all
such subplan groups. When notified of a new statistic value relevant to a subplan
group, the coordinator dispatches it to the handler function for this subgroup.

4. The collector stops collecting statistics and buffering rows, permitting rows to
pass through instead.

5. The database stores the adaptive plan in the child cursor, so that the next
execution of the statement can use it.

On subsequent executions of the child cursor, the optimizer continues to use the same
adaptive plan unless one of the following conditions is true, in which case it picks a
new plan for the current execution:

® The current plan ages out of the shared pool.

e A different optimizer feature (for example, adaptive cursor sharing or statistics
feedback) invalidates the current plan.

See Also:
- "Reading Adaptive Query Plans (page 7-2)"

"Controlling Adaptive Optimization (page 19-10)"

4.4.1.3.1 Adaptive Query Plans: Join Method Example

This example shows how the optimizer can choose a different plan based on
information collected at runtime.

The following query shows a join of the or der _i t ens and pr od_i nf o tables.

SELECT product _name
FROM order_itens o, prod_info p
WHERE o.unit_price = 15

4-14 Oracle Database SQL Tuning Guide

About Adaptive Query Optimization

AND quantity > 1
AND p. product _id = o.product _id

An adaptive query plan for this statement shows two possible plans, one with a nested
loops join and the other with a hash join:

SELECT * FROM TABLE(DBMS_XPLAN. di spl ay_cur sor (FORMAT => ' ADAPTI VE'));

SQ_ID 7hj 8dwwy6gnv’p, child nunber 0

SELECT product _name FROM order_items o, prod_info p WHERE
o.unit_price = 15 AND quantity > 1 AND p.product _id = o.product _id

Pl an hash val ue: 1553478007

1d	Operation	Nane	Rows	Byt es	Cost (%CPU)	Ti ne
0] SELECT STATEMENT				7(100)		
* 1] HASHJON		4] 128	7 (0)]00:00: 01			
- 2	NESTED LOOPS		4] 128	7 (0)]00:00: 01		
[- 3 NESTED LOOPS		4] 128	7 (0)]00:00: 01			
- 4 STATI STI CS COLLECTCR						
* 5	TABLE ACCESS FULL	ORDER ITEMS	4] 48	3 (0)]00:00: 01		
-* 6	NDEX UNI QUE SCAN	PROD_INFO PK	1]	0(0)]		
[- 7] TABLE ACCESS BY INDEX ROWD	PROD INFO	1] 20	1 (0)]00:00:01]			
8 TABLE ACCESS FULL	PRODINFO	1 20	1 (0)	00:00:01]		
Predi cate Information (identified by operation id):

1 - access("P"."PRODUCT_I D'="Q". "PRODUCT_I D")

5 - filter(("O'."UNIT_PRI CE"=15 AND "QUANTI TY">1))

6 - access("P"."PRODUCT_I D'="Q"."PRODUCT_I D")
Not e

- this is an adaptive plan (rows marked '-' are inactive)

A nested loops join is preferable if the database can avoid scanning a significant
portion of pr od_i nf o because its rows are filtered by the join predicate. If few rows
are filtered, however, then scanning the right table in a hash join is preferable.

The following graphic shows the adaptive process. For the query in the preceding
example, the adaptive portion of the default plan contains two subplans, each of
which uses a different join method. The optimizer automatically determines when
each join method is optimal, depending on the cardinality of the left side of the join.

The statistics collector buffers enough rows coming from the or der _i t ens table to
determine which join method to use. If the row count is below the threshold
determined by the optimizer, then the optimizer chooses the nested loops join;
otherwise, the optimizer chooses the hash join. In this case, the row count coming from
the or der _i t ens table is above the threshold, so the optimizer chooses a hash join
for the final plan, and disables buffering.

Query Optimizer Concepts 4-15

About Adaptive Query Optimization

Figure 4-8 Adaptive Join Methods

Default plan is a nested loops join

Mested Hash
Loops Join
Statistics

A

Table scan | Index scan Fable scan

order_items prod_info_pk prod info

The optimizer buffers rows coming from the order_items table
up to a point. If the row count is less than the threshold,

then wse a nested loops join. Otherwise,

switch to a hash join.

Threshold exceeded,
s0 subplan switches

The optimizer disables the statistics collector after making the decision,
and lats the rows pass through.

Final plan is a hash join
Mested Hash
Loops Join
= -«
Statistics
Collector
Table scan Index scan Table scan
order_items prod_info_pk prod_info

The Not e section of the execution plan indicates whether the plan is adaptive, and
which rows in the plan are inactive.

See Also:
¢ "Controlling Adaptive Optimization (page 19-10)"

® "Reading Execution Plans: Advanced (page 7-2)" for an extended
example showing an adaptive query plan

4-16 Oracle Database SQL Tuning Guide

About Adaptive Query Optimization

4.4.1.3.2 Adaptive Query Plans: Parallel Distribution Methods

Typically, parallel execution requires data redistribution to perform operations such as
parallel sorts, aggregations, and joins.

Oracle Database can use many different data distributions methods. The database
chooses the method based on the number of rows to be distributed and the number of
parallel server processes in the operation.

For example, consider the following alternative cases:

® Many parallel server processes distribute few rows.

The database may choose the broadcast distribution method. In this case, each
parallel server process receives each row in the result set.

¢ Few parallel server processes distribute many rows.

If a data skew is encountered during the data redistribution, then it could
adversely affect the performance of the statement. The database is more likely to
pick a hash distribution to ensure that each parallel server process receives an
equal number of rows.

The hybrid hash distribution technique is an adaptive parallel data distribution that
does not decide the final data distribution method until execution time. The optimizer
inserts statistic collectors in front of the parallel server processes on the producer side
of the operation. If the number of rows is less than a threshold, defined as twice the
degree of parallelism (DOP), then the data distribution method switches from hash to
broadcast. Otherwise, the distribution method is a hash.

Broadcast Distribution

The following graphic depicts a hybrid hash join between the depar t ment s and
enpl oyees tables, with a query coordinator directing 8 parallel server processes: P5-
P8 are producers, whereas P1-P4 are consumers. Each producer has its own consumer.

Query Optimizer Concepts 4-17

About Adaptive Query Optimization

Figure 4-9 Adaptive Query with DOP of 4

Query
Coordinator

Statistics collector
threshold is 2X

The number of rows

the DOP
‘ P1 \ P2 ’ P3 \ P4
] | |
> < 1 >
S ~
N
departments P5 N N
~N 2~
~ N
g N
. B
P6 > \\
N 3 ~
~ N
N N
P7 U
N 4 5
< 7
P8

returned is below
threshold, so optimizer
chooses broadcast
method.

employees

The database inserts a statistics collector in front of each producer process scanning
the depar t ment s table. The query coordinator aggregates the collected statistics. The
distribution method is based on the run-time statistics. In Figure 4-9 (page 4-18), the
number of rows is below the threshold (8), which is twice the DOP (4), so the optimizer

chooses a broadcast technique for the depar t ment s table.

Hybrid Hash Distribution

Consider an example that returns a greater number of rows. In the following plan, the
threshold is 8, or twice the specified DOP of 4. However, because the statistics
collector (Step 10) discovers that the number of rows (27) is greater than the threshold
(8), the optimizer chooses a hybrid hash distribution rather than a broadcast
distribution. (The time column should show 00: 00: 01, but shows 0: 01 so the plan

can fit the page.)

EXPLAIN PLAN FOR
SELECT /*+ parallel (4) full(e) full(d) */ departnent_name, sun(salary)
FROM enpl oyees e, departments d
VHERE d. department _i d=e. departnent _id
GROUP BY depart nent _nane;

Pl an hash val ue: 2940813933

0| SELECT STATENENT | DEPARTMENTS| 27| 621 | 6(34) | 0: 01

1| PX COORDI NATOR

|

|

| 2| PX SEND QC (RANDOV)
| 3| HASH GROUP BY

| 4 PX RECEIVE

| 5| PX SEND HASH

| 6 HASH GROUP BY

4-18 Oracle Database SQL Tuning Guide

271621 |6
271621 |6
271621 |6
271621 | 6
271621 | 6

(34)
(34)
(34)
(34)
(34)

0:01
0:01
0:01
0:01
0:01

a
a
a
a
a

I
I I

, 03 P->§| QC (RAND) |

, 03] POWP| |

, 03] POWP| |

, 02| P->P| HASH

, 02| POWP| |

About Adaptive Query Optimization

|*7] HASH JOIN | | 106] 2438| 5(20) | 0: 01] QL, 02| POWP| |
| 8 PX RECEI VE | | 271432 |2 (0)]0:01] QL, 02| POWP| |
| 9 PX SEND HYBRI D HASH | :TQLO000 | 27]432 |2 (0)]0: 01| QL, 00| P->P| HYBRI D HASH
10] STATI STI CS COLLECTCR	I		QL 00/ PO					
11] PX BLOCK	TERATOR		271432	2 (0)]0:01] QL, 00	PO			
12] TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	0: 01	QL, 00	POWP	
13	PX RECEI VE		107] 749	2 (0)] 0: 01] Q1, 02	POWP			
14] PX SEND HYBRI D HASH (SKEW	:TQL0001	107	749	2 (0)]0: 01	QL, 01] P->P	HYBRI D HASH		
15	PX BLOCK	TERATOR		107] 749	2 (0)] 0: 01] Q1, 01	PO		
16] TABLE ACCESS FULL	EMPLOYEES	107	749	2 (0)	0: 01	QL, 01	POWP	

- Degree of Parallelismis 4 because of hint

32 rows sel ected.

See Also:

Oracle Database VLDB and Partitioning Guide to learn more about parallel data
redistribution techniques

4.4.1.3.3 Adaptive Query Plans: Bitmap Index Pruning

Adaptive plans prune indexes that do not significantly reduce the number of matched
rows.

When the optimizer generates a star transformation plan, it must choose the right
combination of bitmap indexes to reduce the relevant set of rowids as efficiently as
possible. If many indexes exist, some indexes might not reduce the rowid set
substantially, but nevertheless introduce significant processing cost during query
execution. Adaptive plans can solve this problem by not using indexes that degrade
performance.

Example 4-3 Bitmap Index Pruning

In this example, you issue the following star query, which joins the car s fact table
with multiple dimension tables (sample output included):

SELECT /*+ star_transformation(r) */ |.color_nane, k.make_nane,
h.filter_col, count(*)

FROM cars r, colors |, makes k, nodels d, hcc_tab h

VWHERE r.make_id = k.nmake_id

AND r.color_id =1.color_id

AND r.model _id = d.nodel _id

AND r.high_card_col = h.high_card_col

AND d. nodel _nane = ' RAV4'

AND k. make_name = ' Toyot a'

AND |.col or_name = ' Burgundy'

AND h.filter_col = 100

GROUP BY |.col or_nane, k.make_nane, h.filter_col;

COLOR NA MAKE_N FILTER COL COUNT(*)

Query Optimizer Concepts 4-19

About Adaptive Query Optimization

Bur gundy Toyot a 100 15000

The following sample execution plan shows that the query generated no rows for the
bitmap node in Step 12 and Step 17. The adaptive optimizer determined that filtering
rows by using the CAR_MODEL _| DX and CAR_MAKE_| DX indexes was inefficient. The
query did not use the steps in the plan that begin with a dash (-).

SELECT STATEMENT
SCRT GROUP BY NOSORT
HASH JO' N
VI EW
NESTED LOOPS
Bl TMAP CONVERSI ON TO RON DS
Bl TMAP AND
BI TMAP MERGE
Bl TMAP KEY | TERATI ON
TABLE ACCESS FULL
Bl TMAP | NDEX RANGE SCAN
STATI STI CS COLLECTOR
BI TMAP MERGE
Bl TMAP KEY | TERATI ON
TABLE ACCESS FULL MODELS

I I
I I
I I
| VW ST _5497B905 |
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
BI TMAP | NDEX RANGE SCAN | CAR_MODEL_IDX |
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

OOLCRS
CAR_COLCR | DX

STATI STI CS COLLECTOR
BI TMAP MERGE
Bl TMAP KEY | TERATI ON

P OOWONOURRWNRPFPOOONODU DR, WNREFPEOOWOMNOOBWNEO

WWRNRNRNONNNONNMNNNNNR R R RRRERRER R

TABLE ACCESS FULL MAKES
Bl TMAP | NDEX RANGE SCAN | CAR_MAKE_I DX
TABLE ACCESS BY USER RON D CARS
MERGE JO N CARTESI AN
MERGE JOI N CARTESI AN
MERGE JO N CARTESI AN
TABLE ACCESS FULL MAKES
BUFFER SORT
TABLE ACCESS FULL MODELS
BUFFER SORT
TABLE ACCESS FULL COLCRS
BUFFER SORT
TABLE ACCESS FULL HCC_TAB

- dynamic statistics used: dynanic sanpling (Ievel=2)
- star transformation used for this statenent
- this is an adaptive plan (rows marked '-' are inactive)

4.4.1.4 When Adaptive Query Plans Are Enabled
Adaptive query plans are enabled by default.

Adaptive plans are enabled when the following initialization parameters are set:
e OPTI M ZER _ADAPTI VE_PLANSis t r ue (default)
e OPTIM ZER FEATURES_ENABLEis 12. 1. 0. 1 or later

e OPTIM ZER_ADAPTI VE_REPORTI NG_ONLY is false (default)

4-20 Oracle Database SQL Tuning Guide

About Adaptive Query Optimization

Adaptive plans control the following optimizations:
¢ Nested loops and hash join selection
e Star transformation bitmap pruning

¢ Adaptive parallel distribution method

See Also:

"Controlling Adaptive Optimization (page 19-10)"

4.4.2 Adaptive Statistics

The optimizer can use adaptive statistics when query predicates are too complex to
rely on base table statistics alone. By default, adaptive statistics are disabled
(OPTI M ZER_ADAPTI VE_STATI STI CSis f al se).

The following topics describe types of adaptive statistics:
¢ Dynamic Statistics (page 4-21)

* Automatic Reoptimization (page 4-21)

* SQL Plan Directives (page 4-24)

e When Adaptive Statistics Are Enabled (page 4-25)

4.4.2.1 Dynamic Statistics

Dynamic statistics are an optimization technique in which the database executes a
recursive SQL statement to scan a small random sample of a table's blocks to estimate
predicate cardinalities.

During SQL compilation, the optimizer decides whether to use dynamic statistics by
considering whether available statistics are sufficient to generate an optimal plan. If
the available statistics are insufficient, then the optimizer uses dynamic statistics to
augment the statistics. To improve the quality of optimizer decisions, the optimizer
can use dynamic statistics for table scans, index access, joins, and GROUP BY
operations.

See Also:

"Supplemental Dynamic Statistics (page 10-13)" to learn more about dynamic
statistics and optimizer statistics in general

4.4.2.2 Automatic Reoptimization

In automatic reoptimization, the optimizer changes a plan on subsequent executions
after the initial execution.

Adaptive query plans are not feasible for all kinds of plan changes. For example, a
query with an inefficient join order might perform suboptimally, but adaptive query
plans do not support adapting the join order during execution. At the end of the first
execution of a SQL statement, the optimizer uses the information gathered during
execution to determine whether automatic reoptimization has a cost benefit. If

Query Optimizer Concepts 4-21

About Adaptive Query Optimization

execution information differs significantly from optimizer estimates, then the
optimizer looks for a replacement plan on the next execution.

The optimizer uses the information gathered during the previous execution to help
determine an alternative plan. The optimizer can reoptimize a query several times,
each time gathering additional data and further improving the plan.

Automatic reoptimization takes two forms: statistics feedback and performance
feedback.

See Also:

"Controlling Adaptive Optimization (page 19-10)"

4.4.2.2.1 Reoptimization: Statistics Feedback

A form of reoptimization known as statistics feedback (formerly known as cardinality
feedback) automatically improves plans for repeated queries that have cardinality
misestimates.

The optimizer can estimate cardinalities incorrectly for many reasons, such as missing
statistics, inaccurate statistics, or complex predicates. The basic process of
reoptimization using statistics feedback is as follows:

1. During the first execution of a SQL statement, the optimizer generates an
execution plan.

The optimizer may enable monitoring for statistics feedback for the shared SQL
area in the following cases:

e Tables with no statistics
* Multiple conjunctive or disjunctive filter predicates on a table

e Predicates containing complex operators for which the optimizer cannot
accurately compute selectivity estimates

At the end of execution, the optimizer compares its initial cardinality estimates to
the actual number of rows returned by each operation in the plan during
execution. If estimates differ significantly from actual cardinalities, then the
optimizer stores the correct estimates for subsequent use. The optimizer also
creates a SQL plan directive so that other SQL statements can benefit from the
information obtained during this initial execution.

2. After the first execution, the optimizer disables monitoring for statistics feedback.

3. If the query executes again, then the optimizer uses the corrected cardinality
estimates instead of its usual estimates.

Example 4-4 Statistics Feedback

This example shows how the database uses statistics feedback to adjust incorrect
estimates.

1. The user oe runs the following query of the or der s, order _i t ens, and
product _i nf or mat i on tables:

SELECT o.order_id, v.product_nane
FROM orders o,
(SELECT order_id, product_name

4-22 Oracle Database SQL Tuning Guide

About Adaptive Query Optimization

FROM order_itens o, product_information p
WHERE p. product _id = o.product _id
AND list_price <50
AND mn_price <40) v
WHERE o.order_id = v.order_id

2. Querying the plan in the cursor shows that the estimated rows (E- Rows) is far
fewer than the actual rows (A- Rows).

| 1d | Operation | Nane | Starts| E- Rows| A- Rows| A- Ti me| Buf f ers| Oven{ 1Men] O 1/ M
| 0] SELECT STATEMENT | 1] | 269 | 00:00: 00. 14| 1338]

I | |
1	NESTED LOOPS	[1] 1] 269	00:00:00.141338]		
2	MERGE JOIN CARTES	AN [1] 419135 [00:00:00.05 33			
*3] TABLE ACCESS FULL	PRODUCT_INFCRMATION 1] 1] 87]00:00:00.01 32				

| 4 BUFFER SORT | | 87] 105 | 9135 |00: 00: 00.02| 1| 4096] 4096| 1/0/0
| 5| INDEX FULL SCAN | ORDER PK | 1] 105 | 105 |00:00:00.01 1] | |
|*6] INDEX UNIQUE SCAN |ORDER ITEMS_UK |9135] 1| 269 |00:00:00.04|1305 | |

3 - filter(("MN_PRICE"<40 AND "LI ST_PRI CE"<50))
6 - access("0'."ORDER | D'="ORDER | D' AND "P"."PRODUCT_| D'="0O". "PRODUCT_I D")

3. The user o€ reruns the query in Step 1.

4. Querying the plan in the cursor shows that the optimizer used statistics feedback
(shown in the Not e) for the second execution, and also chose a different plan.

[1d | Operation | Name | Starts | E-Rows| A-Rows| A- Ti ne| Buf f er s| Reads| Oven] 1Men] O’ 1/ M
| 0] SELECT STATEMENT 1] | 269 |00:00: 00. 05| 60| 1| | | |
269 | 00: 00: 00. 05] 60] 1] | | |

I
| 1| NESTED LOOPS |
[*2] HASH JOIN | 1]313] 269 | 00: 00: 00. 05| 39| 1| 1398K| 1398K| 1/ 0/ 0|
|*3| TABLE ACCESS FULL | PRODUCT | NFCRMATION| 1| 87| 87 |00: 00: 00.01] 15| 0| | | |
| 4 INDEX FAST FULL SCAN ORDER ITEMS UK | 1/665| 665 |00:00: 00. 01| 24] 1| | | |
[*5| INDEX UNIQUE SCAN | ORDER PK |269] 1| 269 |00:00: 00. 01| 21| O] | | |

=
)
o
©

2 - access("P"."PRODUCT_I D'="Q". " PRODUCT_I D")
3 - filter(("MN_PRICE"<40 AND "LI ST_PRI CE"<50))
5 - access("O'."ORDER_ I D'="ORDER | D")

- statistics feedback used for this statenent

In the preceding output, the estimated number of rows (269) in Step 1 matches
the actual number of rows.
4.4.2.2.2 Reoptimization: Performance Feedback

Another form of reoptimization is performance feedback. This reoptimization helps
improve the degree of parallelism automatically chosen for repeated SQL statements
when PARALLEL_DEGREE_POQOLI CY is set to ADAPTI VE.

Query Optimizer Concepts 4-23

About Adaptive Query Optimization

The basic process of reoptimization using performance feedback is as follows:

1. During the first execution of a SQL statement, when PARALLEL_DEGREE POLI CY
is set to ADAPTI VE, the optimizer determines whether to execute the statement in
parallel, and if so, which degree of parallelism to use.

The optimizer chooses the degree of parallelism based on the estimated
performance of the statement. Additional performance monitoring is enabled for
all statements.

2. At the end of the initial execution, the optimizer compares the following;:
¢ The degree of parallelism chosen by the optimizer

* The degree of parallelism computed based on the performance statistics (for
example, the CPU time) gathered during the actual execution of the statement

If the two values vary significantly, then the database marks the statement for
reparsing, and stores the initial execution statistics as feedback. This feedback
helps better compute the degree of parallelism for subsequent executions.

3. If the query executes again, then the optimizer uses the performance statistics
gathered during the initial execution to better determine a degree of parallelism
for the statement.

Note:

Even if PARALLEL_DEGREE POLI CY is not set to ADAPTI VE, statistics
feedback may influence the degree of parallelism chosen for a statement.

4.4.2.3 SQL Plan Directives

A SQL plan directive is additional information that the optimizer uses to generate a
more optimal plan.

The directive is a “note to self” by the optimizer that it is misestimating cardinalities of
certain types of predicates, and also a reminder to DBM5_STATS to gather statistics
needed to correct the misestimates in the future.

For example, during query optimization, when deciding whether the table is a
candidate for dynamic statistics, the database queries the statistics repository for
directives on a table. If the query joins two tables that have a data skew in their join
columns, then a SQL plan directive can direct the optimizer to use dynamic statistics
to obtain an accurate cardinality estimate.

The optimizer collects SQL plan directives on query expressions rather than at the
statement level so that it can apply directives to multiple SQL statements. The
optimizer not only corrects itself, but also records information about the mistake, so
that the database can continue to correct its estimates even after a query—and any
similar query—is flushed from the shared pool.

The database automatically creates directives, and stores them in the SYSAUX
tablespace. You can alter, save to disk, and transport directives using the PL/SQL
package DBM5_SPD.

4-24 Oracle Database SQL Tuning Guide

About Approximate Query Processing

See Also:
e "SQL Plan Directives (page 10-18)"
e "Managing SQL Plan Directives (page 12-15)"

® Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPD package

4.4.2.4 When Adaptive Statistics Are Enabled
Adaptive statistics are disabled by default.

Adaptive statistics are enabled when the following initialization parameters are set:
e OPTIM ZER_ADAPTI VE_STATI STI CSis t r ue (the defaultis f al se)

e OPTIM ZER _FEATURES_ENABLEis 12. 1. 0. 1 or later

Enabling adaptive statistics enables the following features:

e SQL plan directives

e Statistics feedback

* Performance feedback

¢ Adaptive dynamic sampling

Note:

Setting OPTI M ZER_ADAPTI VE_STATI STI CSto f al se preserves cardinality
feedback.

See Also:

"Controlling Adaptive Optimization (page 19-10)"

4.5 About Approximate Query Processing

Approximate query processing is a set of optimization techniques that speed analytic
queries by calculating results within an acceptable range of error.

Business intelligence (BI) queries heavily rely on aggregate functions (SUM RANK,

MEDI AN, and so on) that require sorting. For example, an application generates reports
showing how many distinct customers are logged on, or which products were most
popular last week. It is not uncommon for Bl applications to have the following
requirements:

* Queries must be able to process data sets that are orders of magnitude larger than
in traditional data warehouses.

For example, the daily volumes of web logs of a popular website can reach tens or
hundreds of terabytes a day.

¢ Queries must provide near real-time response.

Query Optimizer Concepts 4-25

About Approximate Query Processing

For example, a company requires quick detection and response to credit card

fraud.

* Explorative queries of large data sets must be fast.

For example, a user might want to find out a list of departments whose sales have
approximately reached a specific threshold. A user would form targeted queries
on these departments to find more detailed information, such as the exact sales
number, the locations of these departments, and so on.

For large data sets, exact aggregation queries consume extensive memory, often
spilling to temp space, and can be unacceptably slow. Applications are often more
interested in a general pattern than exact results, so customers are willing to sacrifice
exactitude for speed. For example, if the goal is to show a bar chart depicting the most
popular products, then whether a product sold 1 million units or .999 million units is

statistically insignificant.

Oracle Database implements its solution through approximate query processing.
Typically, the accuracy of the approximate aggregation is over 97% (with 95%
confidence), but the processing time is orders of magnitude faster. The database uses
less CPU, and avoids writing to temp files.

You can implement approximate query processing without changing existing code by
using the APPROX_FOR_* initialization parameters. You can set these parameters at
the database or session level. The following table describes initialization parameters
and SQL functions relevant to approximation techniques.

Table 4-1 Approximate Query User Interface

User Interface

Description

See Also

APPROX_FOR_AGCGREGATI ONinitialization
parameter

Enables approximate query
processing.

Setting this parameter to f al se
disables all automatic conversion
from exact aggregate to
approximate aggregate,
regardless of the settings of the
APPROX_FOR_COUNT_DI STI NCT
and APPROX_FOR_PERCENTI LE
parameters.

Oracle Database Reference

APPROX_FOR_COUNT_DI STI NCT initialization
parameter

Converts COUNT(DI STI NCT) to
APPROX_COUNT DI STI NCT.

Oracle Database Reference

APPROX_FOR_PERCENTI LE initialization
parameter

Converts eligible exact percentile
functions to their
APPROX_PERCENTI LE_*
counterparts.

Oracle Database Reference

APPROX_COUNT_DI STI NCT function

Returns the approximate number
of rows that contain distinct
values of an expression.

Oracle Database SQL
Language Reference

APPROX_COUNT_DI STI NCT_AGG function

Aggregates the precomputed
approximate count distinct
synopses to a higher level.

Oracle Database SQL
Language Reference

4-26 Oracle Database SQL Tuning Guide

About SQL Plan Management

Table 4-1 (Cont.) Approximate Query User Interface
. __________________ |

User Interface

Description

See Also

APPROX_CQOUNT_DI STI NCT_DETAI L function

Returns the synopses of the
APPROX_COUNT_DI STI NCT
function as a BLOB.

The database can persist the
returned result to disk for further
aggregation.

Oracle Database SQL
Language Reference

APPROX_PERCENTI LE function

Accepts a percentile value and a
sort specification, and returns an
approximate interpolated value
that falls into that percentile
value with respect to the sort
specification.

This function provides an
alternative to the

PERCENTI| LE_CONT function.

Oracle Database SQL
Language Reference

APPROX_MEDI AN function

Accepts a numeric or date-time
value, and returns an
approximate middle or
approximate interpolated value
that would be the middle value
when the values are sorted.

This function provides an
alternative to the MEDI AN
function.

Oracle Database SQL
Language Reference

See Also:

"NDV Algorithms: Adaptive Sampling and HyperLogLog (page 13-22)"

4.6 About SQL Plan Management

SQL plan management enables the optimizer to automatically manage execution
plans, ensuring that the database uses only known or verified plans.

SQL plan management can build a SQL plan baseline, which contains one or more
accepted plans for each SQL statement. The optimizer can access and manage the plan
history and SQL plan baselines of SQL statements. The main objectives are as follows:

¢ Identify repeatable SQL statements

* Maintain plan history, and possibly SQL plan baselines, for a set of SQL

statements

® Detect plans that are not in the plan history

® Detect potentially better plans that are not in the SQL plan baseline

The optimizer uses the normal cost-based search method.

Query Optimizer Concepts 4-27

About the Expression Statistics Store (ESS)

See Also:

"Managing SQL Plan Baselines (page 29-1)"

4.7 About the Expression Statistics Store (ESS)

The Expression Statistics Store (ESS) is a repository maintained by the optimizer to
store statistics about expression evaluation.

When an IM column store is enabled, the database leverages the ESS for its In-Memory
Expressions (IM expressions) feature. However, the ESS is independent of the IM
column store. The ESS is a permanent component of the database and cannot be
disabled.

The database uses the ESS to determine whether an expression is “hot” (frequently
accessed), and thus a candidate for an IM expression. During a hard parse of a query,
the ESS looks for active expressions in the SELECT list, WHERE clause, GROUP BY
clause, and so on.

For each segment, the ESS maintains expression statistics such as the following;:
¢ Frequency of execution
* Cost of evaluation

e Timestamp evaluation

The optimizer assigns each expression a weighted score based on cost and the number
of times it was evaluated. The values are approximate rather than exact. More active
expressions have higher scores. The ESS maintains an internal list of the most
frequently accessed expressions.

The ESS resides in the SGA and also persists on disk. The database saves the statistics
to disk every 15 minutes, or immediately using the

DBMS_STATS. FLUSH_DATABASE_MONI TORI NG_I NFOprocedure. The statistics are
visible in the DBA EXPRESSI ON_STATI STI CS view.

See Also:

® Oracle Database In-Memory Guide to learn more about the ESS

® Oracle Database PL/SQL Packages and Types Reference to learn more about
DBVS_STATS. FLUSH_DATABASE_MONI TORI NG_| NFO

4-28 Oracle Database SQL Tuning Guide

5

Query Transformations

The optimizer employs many query transformation techniques. This chapter describes
some of the most important.

This chapter contains the following topics:

* OR Expansion (page 5-1)

* View Merging (page 5-3)

* DPredicate Pushing (page 5-9)

* Subquery Unnesting (page 5-10)

* Query Rewrite with Materialized Views (page 5-10)

¢ Star Transformation (page 5-11)

* In-Memory Aggregation (VECTOR GROUP BY) (page 5-18)
¢ Cursor-Duration Temporary Tables (page 5-18)

¢ Table Expansion (page 5-19)

* Join Factorization (page 5-25)

See Also:

"Query Transformer (page 4-5)"

5.1 OR Expansion

In CRexpansion, the optimizer transforms a query block containing top-level
disjunctions into the form of a UNI ON ALL query that contains two or more branches.
The optimizer achieves this goal by splitting the disjunction into its components, and
then associating each component with a branch of a UNI ON ALL query.

The optimizer can choose OR expansion for various reasons. For example, it may
enable more efficient access paths or alternative join methods that avoid Cartesian
products. As always, the optimizer performs the expansion only if the cost of the
transformed statement is lower than the cost of the original statement.

In previous releases, the optimizer used the CONCATENATI ON operator to perform the
ORexpansion. Starting in Oracle Database 12c Release 2 (12.2), the optimizer uses the
UNI ON- ALL operator instead. The framework provides the following enhancements:

* Enables interaction among various transformations

* Avoids sharing query structures

Query Transformations 5-1

OR Expansion

¢ Enables the exploration of various search strategies
* Provides the reuse of cost annotation

* Supports the standard SQL syntax

Example 5-1 Transformed Query: UNION ALL Condition

To prepare for this example, log in to the database as an administrator, execute the
following statements to add a unique constraint to the

hr. depart nment s. depart nent _nane column, and then add 100,000 rows to the
hr . enpl oyees table:

ALTER TABLE hr. departnents ADD CONSTRAI NT departnment _nane_uk UNI QUE
(departnent _nane);

DELETE FROM hr. enpl oyees WHERE enpl oyee_id > 999;

DECLARE
v_counter NUMBER(7) := 1000;

BEG N

FOR i IN 1..100000 LOCOP

I NSERT | NTO hr. enpl oyees

VALUES (v_counter,null,'Doe',' Doe' || v_counter || '@xanple.con, null,'07-

JUN-02', " AC_ACCOUNT' , nul I, nul ', nul I, 50);

v_counter :=v_counter + 1,

END LOOCP;

END,
/
COWM T;

EXEC DBVS_STATS. GATHER TABLE_STATS (ownnane => 'hr', tabnane => 'enpl oyees');

You then connect as the user hr , and execute the following query, which joins the
enpl oyees and depart nent s tables:

SELECT *

FROM enpl oyees e, departnents d

WHERE (e.email="SSTILES' OR d.department_nanme='Treasury')
AND e.departnment _id = d.department _id;

Without OR expansion, the optimizer treats e. ermai | =" SSTI LES' OR

d. depart nent _nanme=' Treasury' as a single unit. Consequently, the optimizer
cannot use the index on either the e. emai | or d. depart nent _nane column, and so
performs a full table scan of enpl oyees and depart nent s.

With OR expansion, the optimizer breaks the disjunctive predicate into two
independent predicates, as shown in the following example:

SELECT *

FROM enpl oyees e, departnents d

VWHERE e.email| = 'SSTILES

AND e.department _id = d.departnent __id
UNION ALL

SELECT *

FROM enpl oyees e, departnents d

VWHERE d. department _nane = 'Treasury'
AND e.departnment _id = d.department _id;

This transformation enables the e. emai | and d. depar t ment _nane columns to
serve as index keys. Performance improves because the database filters data using two
unique indexes instead of two full table scans, as shown in the following execution
plan:

5-2 Oracle Database SQL Tuning Guide

View Merging

Pl an hash val ue: 2512933241

| 1d] Operation | Nane | Rows| Byt es| Cost (%CPU) | Tine |
| 0| SELECT STATEMENT | | | | 122 (100) | |
| 1] VIEW | VW ORE_19FF4E3E | 9102| 1679K| 122 (5) | 00: 00: 01]
| 2] UNOVALL I I I I I I
| 3| NESTED LOOPS | | 1] 78] 4 (0) |00:00:01]
| 4| TABLE ACCESS BY | NDEX ROW D | EMPLOYEES | 1] 57| 3 (0) |00:00:01]
[*5 | | NDEX UNI QUE SCAN | EMP_EMAIL_UK | 1] | 2 (0) |00:00:01]
| 6| TABLE ACCESS BY | NDEX ROW D | DEPARTNENTS | 1] 21] 1 (0) |00:00:01]
[*7 | | NDEX UNI QUE SCAN | DEPT_ID PK | 1] | 0 (0) | |
| 8| NESTED LOOPS | | 9101 693K| 118 (5) |00:00: 01]
| 9| TABLE ACCESS BY | NDEX ROW D | DEPARTNENTS | 1] 21] 1 (0) |00:00:01]
| *10| | NDEX UNI QUE SCAN | DEPARTVENT_NAME K| 1 | | 0 (0) | |
| *11] TABLE ACCESS BY | NDEX ROW D BATCHED| EMPLOYEES | 9101| 506K| 117 (5) |00: 00: 01]
| *12] | NDEX RANGE SCAN | EMP_DEPARTMENT_I X | 9101] | 35 (6) |00:00:01

5 - access("E"."EMAI L"="SSTI LES")

7 - access("E"."DEPARTMENT | D'="D". " DEPARTMENT | D")
10 - access("D'." DEPARTMENT_NAME'=' Treasury')
11 - filter(LNNVL("E". "EMAIL"=" SSTILES'))
12 - access("E"."DEPARTMENT | D'="D". " DEPARTMENT | D")

35 rows sel ected.

5.2 View Merging

In view merging, the optimizer merges the query block representing a view into the
query block that contains it. View merging can improve plans by enabling the
optimizer to consider additional join orders, access methods, and other
transformations.

For example, after a view has been merged and several tables reside in one query
block, a table inside a view may permit the optimizer to use join elimination to
remove a table outside the view. For certain simple views in which merging always
leads to a better plan, the optimizer automatically merges the view without
considering cost. Otherwise, the optimizer uses cost to make the determination. The
optimizer may choose not to merge a view for many reasons, including cost or validity
restrictions.

If OPTI M ZER_SECURE_VI EW MERG NGis t r ue (default), then Oracle Database
performs checks to ensure that view merging and predicate pushing do not violate the
security intentions of the view creator. To disable these additional security checks for a
specific view, you can grant the MERGE VI EWprivilege to a user for this view. To
disable additional security checks for all views for a specific user, you can grant the
MERGE ANY VI EWprivilege to that user.

Note:

You can use hints to override view merging rejected because of cost or
heuristics, but not validity.

Query Transformations 5-3

View Merging

This section contains the following topics:

* Query Blocks in View Merging (page 5-4)
e Simple View Merging (page 5-4)

¢ Complex View Merging (page 5-7)

See Also:

* Oracle Database SQL Language Reference for more information about the
MERGE ANY VI EWand MERGE VI EWprivileges

e Oracle Database Reference for more information about the
OPTI M ZER_SECURE_VI EW MERG NGinitialization parameter

5.2.1 Query Blocks in View Merging

The optimizer represents each nested subquery or unmerged view by a separate
query block. The database optimizes query blocks separately from the bottom up.
Thus, the database optimizes the innermost query block first, generates the part of the
plan for it, and then generates the plan for the outer query block, representing the
entire query.

The parser expands each view referenced in a query into a separate query block. The
block essentially represents the view definition, and thus the result of a view. One
option for the optimizer is to analyze the view query block separately, generate a view
subplan, and then process the rest of the query by using the view subplan to generate
an overall execution plan. However, this technique may lead to a suboptimal
execution plan because the view is optimized separately.

View merging can sometimes improve performance. As shown in Example 5-2
(page 5-5), view merging merges the tables from the view into the outer query block,
removing the inner query block. Thus, separate optimization of the view is not
necessary.

5.2.2 Simple View Merging

In simple view merging, the optimizer merges select-project-join views. For example,
a query of the enpl oyees table contains a subquery that joins the depart nent s and
| ocati ons tables.

Simple view merging frequently results in a more optimal plan because of the
additional join orders and access paths available after the merge. A view may not be
valid for simple view merging because:

* The view contains constructs not included in select-project-join views, including:
- GROUP BY
- DI STINCT
— Outer join
- MODEL

- CONNECT BY

5-4 Oracle Database SQL Tuning Guide

View Merging

— Set operators

- Aggregation
e The view appears on the right side of a semijoin or antijoin.
¢ The view contains subqueries in the SELECT list.
e The outer query block contains PL/SQL functions.

¢ The view participates in an outer join, and does not meet one of the several
additional validity requirements that determine whether the view can be merged.

Example 5-2 Simple View Merging

The following query joins the hr . enpl oyees table with the dept _| ocs_v view,
which returns the street address for each department. dept _| ocs_v is a join of the
department s and | ocat i ons tables.

SELECT e.first_name, e.last_name, dept_|ocs_v.street_address,
dept _l ocs_v. postal _code
FROM enpl oyees e,
(SELECT d. departnent _id, d.departnent_nane,
| . street_address, |.postal _code
FROM departnents d, locations |
WHERE d.location_id = 1I.location_id) dept_locs_v
VWHERE dept | ocs_v. departnent _id = e.departnent_id
AND e.last_name = 'Snith';

The database can execute the preceding query by joining depart ment s and

| ocat i ons to generate the rows of the view, and then joining this result to
enpl oyees. Because the query contains the view dept _| ocs_v, and this view
contains two tables, the optimizer must use one of the following join orders:

e enpl oyees,dept | ocs_v (departnent s, | ocati ons)

e enpl oyees,dept | ocs_v (I ocati ons,departnments)

dept _| ocs_v (departnment s, | ocati ons), enpl oyees

dept | ocs_v (l ocati ons, depart nents), enpl oyees

Join methods are also constrained. The index-based nested loops join is not feasible for
join orders that begin with enpl oyees because no index exists on the column from
this view. Without view merging, the optimizer generates the following execution
plan:

| 1d | Operation | Nane | Cost (%CPU)|
| 0| SELECT STATENENT | | 7 (15)]
[* 1] HASHJON | | 7 (15)]
| 2| TABLE ACCESS BY | NDEX ROND| EMPLOYEES | 2 (0)]
[* 3] | NDEX RANGE SCAN | EMP_NAME I X | 1 (0)]
| 4] VIEW | | 5 (20|
[* 5] HASH JO'N | | 5 (20)]
| 6] TABLE ACCESS FULL | LOCATIONS | 2 (0)]
| 7] TABLE ACCESS FULL | DEPARTMENTS | 2 (0)]

Query Transformations 5-5

View Merging

1 - access("DEPT_LOCS V'." DEPARTMENT | D'="E". " DEPARTMENT | D")
3 - access("E'."LAST_NAME"='Smith")
5 - access("D'."LOCATI ON | D'="L". " LOCATION_| D)

View merging merges the tables from the view into the outer query block, removing
the inner query block. After view merging, the query is as follows:

SELECT e.first_name, e.last_name, |.street_address, |.postal _code
FROM enpl oyees e, departnments d, locations |

WHERE d.location_id = 1.location_id

AND d.department _id = e.departnent _id

AND e.last_name = 'Snmith';

Because all three tables appear in one query block, the optimizer can choose from the
following six join orders:

e enpl oyees,departnents,| ocati ons
e enpl oyees, | ocati ons,departnents
e departnents, enpl oyees,| ocati ons
e departnents,|ocations,enpl oyees
e | ocations,enpl oyees,departnents

e | ocations,departnents,enpl oyees

The joins to enpl oyees and depar t nent s can now be index-based. After view
merging, the optimizer chooses the following more efficient plan, which uses nested

loops:

| 1d | Operation | Name | Cost (%CPU)|
| 0| SELECT STATEMENT | | 4 (0)]
| 1] NESTED LOOPS | | |
| 2] NESTED LOOPS | | 4 (0)]
| 3] NESTED LOOPS | | 3 (0)]
| 4] TABLE ACCESS BY | NDEX ROND| EMPLOYEES | 2 (0)]
|* 5| | NDEX RANGE SCAN | EMP_NAME | X | 1 (0)]
| 6] TABLE ACCESS BY | NDEX RON D| DEPARTMENTS | 1 (0)]
|* 7] I NDEX UNI QUE SCAN | DEPT_IDPK | 0 (0]
|* 8| I NDEX UNI QUE SCAN | LOCIDPK | 0 (0]
| 9| TABLE ACCESS BY I NDEX ROND | LOCATIONS | 1 (0)]

5 - access("E"."LAST_NAME'="Smith")
7 - access("E"."DEPARTMENT_| D'="D". " DEPARTMENT | D")
8 - access("D'."LOCATION | D'="L"."LOCATION | D")

See Also:

The Oracle Optimizer blog at ht t ps: // bl ogs. oracl e. com opti m zer/
to learn about outer join view merging, which is a special case of simple view
merging

5-6 Oracle Database SQL Tuning Guide

https://blogs.oracle.com/optimizer/

View Merging

5.2.3 Complex View Merging

In complex view merging, the optimizer merges views containing GROUP BY and
DI STI NCT views. Like simple view merging, complex merging enables the optimizer
to consider additional join orders and access paths.

The optimizer can delay evaluation of GROUP BY or DI STI NCT operations until after
it has evaluated the joins. Delaying these operations can improve or worsen
performance depending on the data characteristics. If the joins use filters, then
delaying the operation until after joins can reduce the data set on which the operation
is to be performed. Evaluating the operation early can reduce the amount of data to be
processed by subsequent joins, or the joins could increase the amount of data to be
processed by the operation. The optimizer uses cost to evaluate view merging and
merges the view only when it is the lower cost option.

Aside from cost, the optimizer may be unable to perform complex view merging for
the following reasons:

* The outer query tables do not have a rowid or unique column.
¢ The view appears in a CONNECT BY query block.
e The view contains GROUPI NG SETS, ROLLUP, or PI VOT clauses.

* The view or outer query block contains the MODEL clause.

Example 5-3 Complex View Joins with GROUP BY
The following view uses a GROUP BY clause:

CREATE VI EWcust _prod_totals_v AS

SELECT SUMs. quantity sold) total, s.cust_id, s.prod_id
FROM sales s

GROUP BY s.cust_id, s.prod_id;

The following query finds all of the customers from the United States who have
bought at least 100 fur-trimmed sweaters:

SELECT c.cust _id, c.cust_first_name, c.cust_last_name, c.cust_enmail
FROM custoners ¢, products p, cust_prod_totals_v

WHERE c.country_id = 52790

AND c.cust_id = cust_prod_totals_v.cust_id

AND cust_prod_totals_v.total > 100

AND cust_prod_totals v.prod_id = p.prod_id

AND p.prod_name = ' T3 Faux Fur-Trimed Sweater';

The cust _prod_t ot al s_v view is eligible for complex view merging. After
merging, the query is as follows:

SELECT c.cust_id, cust_first_nane, cust_last_name, cust_email

FROM custoners ¢, products p, sales s

VWHERE c.country_id = 52790

AND c.cust_id =s.cust_id

AND s.prod_id = p.prod_id

AND p.prod_name = 'T3 Faux Fur-Trinmed Sweater'

GROUP BY s.cust_id, s.prod_id, p.rowid, c.rowid, c.cust_emil, c.cust_|ast_nane,
c.cust_first_nanme, c.cust_id

HAVI NG SUM s. quantity_sol d) > 100;

The transformed query is cheaper than the untransformed query, so the optimizer
chooses to merge the view. In the untransformed query, the GROUP BY operator

Query Transformations 5-7

View Merging

applies to the entire sal es table in the view. In the transformed query, the joins to
product s and cust oner s filter out a large portion of the rows from the sal es table,
so the GROUP BY operation is lower cost. The join is more expensive because the

sal es table has not been reduced, but it is not much more expensive because the
GROUP BY operation does not reduce the size of the row set very much in the original
query. If any of the preceding characteristics were to change, merging the view might
no longer be lower cost. The final plan, which does not include a view, is as follows:

| 1d | Operation | Name | Cost (%CPU)|
| 0| SELECT STATENENT | | 2101 (18)]
[* 1] FILTER | | |
| 2| HASH GROUP BY | | 2101 (18)]
[* 3] HASH JO'N | | 2099 (18)]
[* 4] HASH JOIN | | 1801 (19)]
[* 5| TABLE ACCESS FULL| PRODUCTS | 96 (5]
| 6| TABLE ACCESS FULL| SALES | 1620 (15)]
[* 7| TABLE ACCESS FULL | CUSTOMERS | 296 (11)]

1 - filter(SUM"QUANTITY_SOLD")>100)

3 - access("C'."CUST_ID'="CUST_ID")

4 - access("PROD_ID'="P"."PROD_ID")

5 - filter("P"."PROD_NAME"=' T3 Faux Fur-Trirmmed Sweater')
7 - filter("C'."COUNTRY_ID'='US)

Example 5-4 Complex View Joins with DISTINCT
The following query of the cust _pr od_v view uses a DI STI NCT operator:

SELECT c.cust _id, c.cust_first_nanme, c.cust_last_name, c.cust_enmail
FROM custoners c, products p,

(SELECT DI STINCT s.cust_id, s.prod_id

FROM sales s) cust_prod_v

VWHERE c.country_id = 52790
AND c.cust_id = cust_prod_v.cust_id
AND cust_prod_v.prod_id = p.prod_id
AND p.prod_name = ' T3 Faux Fur-Trimed Sweater';

After determining that view merging produces a lower-cost plan, the optimizer
rewrites the query into this equivalent query:

SELECT nww. cust _i d, nww. cust_first_name, nww cust_| ast_nane, nww. cust_enai |
FROM (SELECT DI STINCT(c.rowid), p.rowid, s.prod_id, s.cust_id,
c.cust_first_name, c.cust_last_name, c.cust_emil

FROM custoners c, products p, sales s

VWHERE c.country_id = 52790

AND c.cust_id = s.cust_id

AND s.prod_id = p.prod_id

AND p.prod_name = 'T3 Faux Fur-Trimed Sweater') nww;

The plan for the preceding query is as follows:

1d	Operation	Name
0	SELECT STATENENT	
1] VIEW	VM NWW 1	
2	HASH UNIQUE	
[* 3| HASH JO'N | |

5-8 Oracle Database SQL Tuning Guide

Predicate Pushing

HASH JOI N	
TABLE ACCESS FULL	PRODUCTS
TABLE ACCESS FULL	SALES
TABLE ACCESS FULL	CUSTOMERS

3 - access("C'."CUST_ID'="S"."CUST_I D")

4 - access("S"."PROD_ID'="P"."PROD_I D")
5
7

filter("P'."PROD_NAME"'="T3 Faux Fur-Trimmed Sweater')
filter("C'."COUNTRY_ID'='US")

Py

The preceding plan contains a view named vm nww_1, known as a projection view,
even after view merging has occurred. Projection views appear in queries in which a
DI STI NCT view has been merged, or a GROUP BY view is merged into an outer query
block that also contains GROUP BY, HAVI NG, or aggregates. In the latter case, the
projection view contains the GROUP BY, HAVI NG, and aggregates from the original
outer query block.

In the preceding example of a projection view, when the optimizer merges the view, it
moves the DI STI NCT operator to the outer query block, and then adds several
additional columns to maintain semantic equivalence with the original query.
Afterward, the query can select only the desired columns in the SELECT list of the
outer query block. The optimization retains all of the benefits of view merging: all
tables are in one query block, the optimizer can permute them as needed in the final
join order, and the DI STI NCT operation has been delayed until after all of the joins
complete.

5.3 Predicate Pushing

In predicate pushing, the optimizer "pushes" the relevant predicates from the
containing query block into the view query block. For views that are not merged, this
technique improves the subplan of the unmerged view because the database can use
the pushed-in predicates to access indexes or to use as filters.

For example, suppose you create a table hr . cont r act _wor ker s as follows:

DROP TABLE contract workers;
CREATE TABLE contract _workers AS (SELECT * FROM enpl oyees where 1=2);

I NSERT | NTO contract _workers VALUES (306, 'Bill', 'Jones', 'BJONES,
' 555. 555.2000", '07-JUN-02', ' AC ACCOUNT', 8300, 0,205, 110);
I NSERT | NTO contract _workers VALUES (406, 'Jill', 'Ashworth', "JASHWORTH ,

' 555.999.8181', '09-JUN-05', 'AC ACCOUNT', 8300, 0,205, 50);

I NSERT | NTO contract _workers VALUES (506, 'Marcie', 'Lunsford', 'MUNSFORD ,
' 555. 888.2233", '22-JUL-01', 'AC ACCOUNT', 8300, 0,205, 110);

COW T;

CREATE | NDEX contract _workers_i ndex ON contract_workers(departnent _id);

You create a view that references enpl oyees and cont r act _wor ker s. The view is
defined with a query that uses the UNI ON'set operator, as follows:

CREATE VI EWal | _enpl oyees_vw AS
(SELECT enpl oyee_id, last_name, job_id, commission_pct, department_id
FROM enpl oyees)
UNI ON
(SELECT enpl oyee_id, last_name, job_id, commission_pct, department_id
FROM contract_workers);

You then query the view as follows:

Query Transformations 5-9

Subquery Unnesting

SELECT | ast _nane
FROM al | _enpl oyees_vw
WHERE departnent _id = 50;

Because the view is a UNI ON'set query, the optimizer cannot merge the view's query
into the accessing query block. Instead, the optimizer can transform the accessing
statement by pushing its predicate, the WHERE clause condition depar t ment _i d=50,
into the view's UNI ON set query. The equivalent transformed query is as follows:

SELECT | ast _nane

FROM (SELECT enpl oyee_id, last_name, job_id, conmssion_pct, department_id
FROM enpl oyees
VWHERE depart ment _i d=50
UNI ON
SELECT enpl oyee_id, last_nane, job_id, comr ssion_pct, departnent_id
FROM contract_workers
VWHERE departnent _i d=50);

The transformed query can now consider index access in each of the query blocks.

5.4 Subquery Unnesting

In subquery unnesting, the optimizer transforms a nested query into an equivalent
join statement, and then optimizes the join. This transformation enables the optimizer
to consider the subquery tables during access path, join method, and join order
selection. The optimizer can perform this transformation only if the resulting join
statement is guaranteed to return the same rows as the original statement, and if
subqueries do not contain aggregate functions such as AVG

For example, suppose you connect as user sh and execute the following query:

SELECT *

FROM sal es

WHERE cust_id IN (SELECT cust_id
FROM customers);

Because the cust orrer s. cust _i d column is a primary key, the optimizer can
transform the complex query into the following join statement that is guaranteed to
return the same data:

SELECT sal es. *
FROM sales, custoners
VWHERE sal es.cust_id = custoners. cust_id,;

If the optimizer cannot transform a complex statement into a join statement, it selects
execution plans for the parent statement and the subquery as though they were
separate statements. The optimizer then executes the subquery and uses the rows
returned to execute the parent query. To improve execution speed of the overall
execution plan, the optimizer orders the subplans efficiently.

5.5 Query Rewrite with Materialized Views

A materialized view is a query result that the database materializes and stores in a
table.

When the optimizer finds a user query compatible with the query associated with a
materialized view, then the database can rewrite the query in terms of the materialized
view. This technique improves query execution because the database has
precomputed most of the query result.

5-10 Oracle Database SQL Tuning Guide

Star Transformation

The optimizer looks for any materialized views that are compatible with the user
query, and then selects one or more materialized views to rewrite the user query. The
use of materialized views to rewrite a query is cost-based. Thus, the optimizer does
not rewrite the query when the plan generated unless the materialized views has a
lower cost than the plan generated with the materialized views.

Consider the following materialized view, cal _nont h_sal es_nv, which aggregates
the dollar amount sold each month:

CREATE MATERI ALI ZED VI EW cal _nonth_sal es_nv
ENABLE QUERY REWRI TE
AS
SELECT t. cal endar _nonth_desc, SUMs.anount_sol d) AS dollars
FROM sales s, times t
VHERE s.time_id =t.time_id
GROUP BY t. cal endar_nont h_desc;

Assume that sales number is around one million in a typical month. The view has the
precomputed aggregates for the dollar amount sold for each month. Consider the
following query, which asks for the sum of the amount sold for each month:

SELECT t. cal endar _nmont h_desc, SUMs. anount _sol d)
FROM sales s, times t

VWHERE s.time_id =t.time_id

GROUP BY t. cal endar_nont h_desc;

Without query rewrite, the database must access sal es directly and compute the sum
of the amount sold. This method involves reading many million rows from sal es,
which invariably increases query response time. The join also further slows query
response because the database must compute the join on several million rows. With
query rewrite, the optimizer transparently rewrites the query as follows:

SELECT cal endar _nonth, dollars
FROM cal _nonth_sal es_nv;

See Also:

Oracle Database Data Warehousing Guide to learn more about query rewrite

5.6 Star Transformation

Star transformation is an optimizer transformation that avoids full table scans of fact
tables in a star schema.

This section contains the following topics:

® About Star Schemas (page 5-12)

¢ Purpose of Star Transformations (page 5-12)
e How Star Transformation Works (page 5-12)
* Controls for Star Transformation (page 5-13)
e Star Transformation: Scenario (page 5-13)

* Temporary Table Transformation: Scenario (page 5-16)

Query Transformations 5-11

Star Transformation

5.6.1 About Star Schemas

A star schema divides data into facts and dimensions.

Facts are the measurements of an event such as a sale and are typically numbers.
Dimensions are the categories that identify facts, such as date, location, and product.

A fact table has a composite key made up of the primary keys of the dimension tables
of the schema. Dimension tables act as lookup or reference tables that enable you to
choose values that constrain your queries.

Diagrams typically show a central fact table with lines joining it to the dimension
tables, giving the appearance of a star. The following graphic shows sal es as the fact
table and pr oduct s, ti nes, cust omer s, and channel s as the dimension tables.

Figure 5-1 Star Schema

products times

sales
(amount_sold,
quantity_sold)

Fact Table
customers channels

Dimension Table Dimension Table

A snowflake schema is a star schema in which the dimension tables reference other
tables. A snowstorm schema is a combination of snowflake schemas.

See Also:

Oracle Database Data Warehousing Guide to learn more about star schemas

5.6.2 Purpose of Star Transformations

In joins of fact and dimension tables, a star transformation can avoid a full scan of a
fact table.

The star transformation improves performance by fetching only relevant fact rows that
join to the constraint dimension rows. In some cases, queries have restrictive filters on
other columns of the dimension tables. The combination of filters can dramatically
reduce the data set that the database processes from the fact table.

5.6.3 How Star Transformation Works

Star transformation adds subquery predicates, called bitmap semijoin predicates,
corresponding to the constraint dimensions.

The optimizer performs the transformation when indexes exist on the fact join
columns. By driving bitmap AND and CR operations of key values supplied by the
subqueries, the database only needs to retrieve relevant rows from the fact table. If the
predicates on the dimension tables filter out significant data, then the transformation
can be more efficient than a full scan on the fact table.

5-12 Oracle Database SQL Tuning Guide

Star Transformation

After the database has retrieved the relevant rows from the fact table, the database
may need to join these rows back to the dimension tables using the original predicates.

The

database can eliminate the join back of the dimension table when the following

conditions are met:

All the predicates on dimension tables are part of the semijoin subquery predicate.
The columns selected from the subquery are unique.

The dimension columns are not in the SELECT list, GROUP BY clause, and so on.

5.6.4 Controls for Star Transformation

The

STAR_TRANSFORNMATI ON_ENABLED initialization parameter controls star

transformations. This parameter takes the following values:

5.6.5 Star Transfor
This

true

The optimizer performs the star transformation by identifying the fact and
constraint dimension tables automatically. The optimizer performs the star
transformation only if the cost of the transformed plan is lower than the
alternatives. Also, the optimizer attempts temporary table transformation
automatically whenever materialization improves performance (see "Temporary
Table Transformation: Scenario (page 5-16)").

f al se (default)
The optimizer does not perform star transformations.

TEMP_DI SABLE

This value is identical to t r ue except that the optimizer does not attempt
temporary table transformation.

See Also:

Oracle Database Reference to learn about the
STAR_TRANSFORNMATI ON_ENABLED initialization parameter

mation: Scenario

scenario demonstrates a star transformation of a star query.

Example 5-5 Star Query

The

following query finds the total Internet sales amount in all cities in California for

quarters Q1 and Q2 of year 1999:
SELECT c.cust_city,

FROM

t.cal endar _quarter_desc,
SUM s. anmount _sol d) sal es_amount

sal es s,
times t,
custoners c,
channel s ch

WHERE s.tinme_id =t.tinme_id

AND
AND
AND

s.cust_id = c.cust_id
s.channel _id = ch. channel _id
c.cust_state_province = 'CA

Query Transformations 5-13

Star Transformation

AND ch. channel _desc = "Internet’
AND t.cal endar_quarter_desc IN ('1999-01',"'1999-02")
GROUP BY c.cust_city, t.calendar_quarter_desc;

Sample output is as follows:

CUST_CATY CALENDA SALES_AMOUNT
Mont ar a 1999- 02 1618. 01
Pal a 1999-01 3263. 93
Cloverdal e 1999- 01 52. 64
Cloverdal e 1999- 02 266. 28

In this example, sal es is the fact table, and the other tables are dimension tables. The
sal es table contains one row for every sale of a product, so it could conceivably
contain billions of sales records. However, only a few products are sold to customers
in California through the Internet for the specified quarters.

Example 5-6 Star Transformation

This example shows a star transformation of the query in Example 5-5 (page 5-13). The
transformation avoids a full table scan of sal es.

SELECT c.cust_city, t.calendar_quarter_desc, SUMs.anmount_sol d) sal es_anount
FROM sales s, tinmes t, customers ¢
WHERE s.time_id =t.time_id
AND s.cust_id = c.cust_id
AND c.cust_state_province = 'CA
AND t.cal endar_quarter_desc IN ('1999-01',"'1999-02")
AND s.tinme_id IN(SELECT tine_id
FROM tines
VWHERE cal endar _quarter_desc | N('1999-01','1999-02"))
AND s.cust _id IN (SELECT cust_id
FROM custoners
VWHERE cust_state_province='CA')
AND s.channel _id IN (SELECT channel _id
FROM channel s
VWHERE channel _desc = 'Internet')
GROUP BY c.cust_city, t.calendar_quarter_desc;

Example 5-7 Partial Execution Plan for Star Transformation

This example shows an edited version of the execution plan for the star transformation
in Example 5-6 (page 5-14).

Line 26 shows that the sal es table has an index access path instead of a full table
scan. For each key value that results from the subqueries of channel s (line 14),

ti mes (line 19), and cust oner s (line 24), the database retrieves a bitmap from the
indexes on the sal es fact table (lines 15, 20, 25).

Each bit in the bitmap corresponds to a row in the fact table. The bit is set when the
key value from the subquery is same as the value in the row of the fact table. For
example, in the bitmap 101000. . . (the ellipses indicates that the values for the
remaining rows are 0), rows 1 and 3 of the fact table have matching key values from
the subquery.

The operations in lines 12, 17, and 22 iterate over the keys from the subqueries and
retrieve the corresponding bitmaps. In Example 5-6 (page 5-14), the cust oner s
subquery seeks the IDs of customers whose state or province is CA. Assume that the
bitmap 101000. .. corresponds to the customer ID key value 103515 from the
cust oner s table subquery. Also assume that the cust onmer s subquery produces the

5-14 Oracle Database SQL Tuning Guide

Star Transformation

key value 103516 with the bitmap 010000. . . , which means that only row 2 in
sal es has a matching key value from the subquery.

The database merges (using the OR operator) the bitmaps for each subquery (lines 11,
16, 21). In our cust onmer s example, the database produces a single bitmap
111000. .. for the cust oner s subquery after merging the two bitmaps:

101000... # bitmap corresponding to key 103515
010000... # bitmap corresponding to key 103516
111000... # result of OR operation

In line 10, the database applies the AND operator to the merged bitmaps. Assume that
after the database has performed all OR operations, the resulting bitmap for channel s
is 100000. . . If the database performs an AND operation on this bitmap and the
bitmap from cust oner s subquery, then the result is as follows:

100000... # channels bitmap after all OR operations perforned
111000... # custoners bitmap after all OR operations performed
100000... # bitmap result of AND operation for channels and custoners

In line 9, the database generates the corresponding rowids of the final bitmap. The
database retrieves rows from the sal es fact table using the rowids (line 26). In our
example, the database generate only one rowid, which corresponds to the first row,
and thus fetches only a single row instead of scanning the entire sal es table.

| 1d | Operation | Name

| 0 | SELECT STATEMENT |

| 1] HASH GROUP BY |

[* 2| HASH JON |

[* 3| TABLE ACCESS FULL | CUSTOMERS

[* 4| HASH JO N |

[* 5| TABLE ACCESS FULL | TINMES

| 6| VI EW | VW ST B1772830
| 7] NESTED LOOPS |

| 8| PARTI TI ON RANGE SUBQUERY |

| 9| BI TMAP CONVERSI ON TO ROW DS|

| 10 | Bl TMAP AND |

| 11| Bl TMAP MERGE |

| 12 | BI TMAP KEY | TERATION |

| 13| BUFFER SORT |

|* 14 | TABLE ACCESS FULL | CHANNELS

|* 15 | BI TMAP | NDEX RANGE SCAN| SALES CHANNEL_BI X
| 16 | BI TMAP NERGE |

| 17 | BI TMAP KEY | TERATION |

| 18 | BUFFER SORT |

[* 19 | TABLE ACCESS FULL | TIMES

|* 20 | BI TMAP | NDEX RANGE SCAN| SALES TIME_BI X
| 21| BI TMAP MERGE |

| 22| BI TMAP KEY | TERATION |

| 23| BUFFER SORT |

|* 24 | TABLE ACCESS FULL | CUSTOMERS

|* 25 | BI TMAP | NDEX RANGE SCAN| SALES CUST BI X
| 26 | TABLE ACCESS BY USER ROND | SALES

Query Transformations 5-15

Star Transformation

2 - access("ITEM 1"="C'."CUST_ID")
3- filter("C CUST STATE_PROVI NCE"=' CA')
4 - access("l TMZ-T "TIME_ID")
5 - filter(("T. CALENDAR _QUARTER_DESC' =" 1999- 01"
CR "T"."CALENDAR QUARTER DESC'='1999-02'))
14 - filter("CH." CHANNEL_DESC' ='Internet')
15 - access("S". CHANNEL_I D'="CH'."CHANNEL_I D")

19 - filter(("T"."CALENDAR QUARTER DESC'=' 1999-01'
"T"." CALENDAR QUARTER DESC'=' 1999- 02'))

™
R

20 - access("S'."TINEID'="T"."TIME_ID")
c.
s

24 - filter(" ‘CUST_STATE_PRO\/I NCE"=' CA')
25 - access("S"."CUST_ID'="C"."CUST_ID")
Not e

- star transformation used for this statenent

5.6.6 Temporary Table Transformation: Scenario

In Example 5-7 (page 5-14), the optimizer does not join back the table channel s to the
sal es table because it is not referenced outside and the channel _i d is unique. If the
optimizer cannot eliminate the join back, however, then the database stores the
subquery results in a temporary table to avoid rescanning the dimension table for
bitmap key generation and join back. Also, if the query runs in parallel, then the
database materializes the results so that each parallel execution server can select the
results from the temporary table instead of executing the subquery again.

Example 5-8 Star Transformation Using Temporary Table

In this example, the database materializes the results of the subquery on cust oner s
into a temporary table:

SELECT t1.cl cust_city, t.calendar_quarter_desc cal endar_quarter_desc,
SUM s. amount _sol d) sal es_amount
FROM sales s, sh.times t, sys_tenp_0fd9d6621_e7e24 t1
WHERE s.time_id=t.tinme_id
AND s.cust _id=tl.c0
AND (t.cal endar_quarter_desc='1999-ql' ORt.cal endar_quarter_desc='1999-q2')
AND s.cust_id IN (SELECT t1.c0
FROM sys_tenp_0fd9d6621_e7e24 t1)
AND s.channel _id IN (SELECT ch. channel _id
FROM channel s ch
VHERE ch. channel _desc="internet')
AND s.time_id IN (SELECT t.tinme_id
FROM times t
VWHERE t.cal endar_quarter_desc='1999-ql'
R t.cal endar _quarter_desc='1999-q2')
GROUP BY t1.cl, t.calendar_quarter_desc

The optimizer replaces cust oner s with the temporary table

sys_t enp_0f d9d6621_e7e24, and replaces references to columns cust _i d and
cust _ci t y with the corresponding columns of the temporary table. The database
creates the temporary table with two columns: (cO NUMBER, c¢1 VARCHAR2(30)).
These columns correspond to cust _i d and cust _ci t y of the cust oner s table. The
database populates the temporary table by executing the following query at the
beginning of the execution of the previous query:

SELECT c.cust_id, c.cust_city FROM customers WHERE c.cust_state_province = ' CA

5-16 Oracle Database SQL Tuning Guide

Star Transformation

Example 5-9 Partial Execution Plan for Star Transformation Using Temporary Table

The following example shows an edited version of the execution plan for the query in
Example 5-8 (page 5-16):

| 1d | Operation | Name

| 0 | SELECT STATEMENT |

| 1| TEMP TABLE TRANSFORMATI ON |

| 2| LOAD AS SELECT |

[* 3| TABLE ACCESS FULL | CUSTOMERS

| 4| HASH GROUP BY |

[* 5| HASH JO'N |

| 6| TABLE ACCESS FULL | SYS TEMP_OFD9D6613_C716F
[* 7| HASH JO'N |

|* 8| TABLE ACCESS FULL | TINES

| 9| VI EW | VW ST_A3F94988
| 10 | NESTED LOOPS |

| 11 | PARTI TI ON RANGE SUBQUERY |

| 12] BI TMAP CONVERSI ON TO ROW DS|

| 13| Bl TMAP AND |

| 14| Bl TMAP MERGE |

| 15 | BI TMAP KEY | TERATION |

| 16 | BUFFER SORT |

|* 17 | TABLE ACCESS FULL | CHANNELS

|* 18 | Bl TMAP | NDEX RANGE SCAN| SALES CHANNEL_BI X
| 19 | Bl TMAP MERGE |

| 20 | BI TMAP KEY | TERATION |

| 21| BUFFER SORT |

|* 22 | TABLE ACCESS FULL | TINES

|* 23 | BI TMAP | NDEX RANGE SCAN| SALES TIME_BI X
| 24| Bl TMAP MERGE |

| 25 | BI TMAP KEY | TERATION |

| 26 | BUFFER SORT |

| 27| TABLE ACCESS FULL | SYS TEMP_OFD9D6613_C716F
|* 28 | BI TMAP | NDEX RANGE SCAN| SALES CUST BI X
| 29 | TABLE ACCESS BY USER ROND | SALES

3 - filter("C'."CUST_STATE PROVI NCE'=' CA')

5 - access("I TEM 1"="Q0")

7 - access("ITEM 2"="T"."TIME_I D")

8 - filter(("T"."CALENDAR QUARTER DESC'='1999-01' CR

. " CALENDAR_QUARTER_DESC'='1999- 02'))

17 - filter("CH'."CHANNEL_DESC'='Internet')

18 - access("S"."CHANNEL | D'="CH'. " CHANNEL_| D")

22 - filter(("T"."CALENDAR QUARTER DESC'='1999-01' OR
"T". " CALENDAR_QUARTER DESC'=' 1999-02'))

"TIME_ID'="T"."TIME_ID")

"CUST_I D'="C0")

T

T
“T
“T

23 - access("S'.
28 - access("S'.
Lines 1, 2, and 3 of the plan materialize the cust omer s subquery into the temporary
table. In line 6, the database scans the temporary table (instead of the subquery) to
build the bitmap from the fact table. Line 27 scans the temporary table for joining back
instead of scanning cust oner s. The database does not need to apply the filter on
cust omer s on the temporary table because the filter is applied while materializing
the temporary table.

Query Transformations 5-17

In-Memory Aggregation (VECTOR GROUP BY)

5.7 In-Memory Aggregation (VECTOR GROUP BY)

The key optimization of in-memory aggregation is to aggregate while scanning. To
optimize query blocks involving aggregation and joins from a single large table to
multiple small tables, such as in a typical star query, the transformation uses KEY
VECTORand VECTOR GROUP BY operations. These operations use efficient in-
memory arrays for joins and aggregation, and are especially effective when the
underlying tables are in-memory columnar tables.

See Also:

Oracle Database In-Memory Guide to learn more about in-memory aggregation

5.8 Cursor-Duration Temporary Tables

To materialize the intermediate results of a query, Oracle Database may create a
cursor-duration temporary table in memory during query compilation.

Complex queries sometimes process the same query block multiple times. To avoid
this scenario, Oracle Database can create temporary tables for the query results and
store them in memory for the duration of the cursor. For complex operations such as
W TH clause queries and star transformations, this optimization enhances the
materialization of intermediate results from repetitively used subqueries. In this way,
cursor-duration temporary tables improve performance and optimize I/O.

When using cursor-duration temporary tables, the database performs the following
steps:

1. Chooses a plan that uses a cursor-duration temporary table
2. Creates the temporary table
3. Rewrites the query to refer to the temporary table

4. Loads data into memory until no memory remains, in which case it creates
temporary segments on disk

5. Executes the query, returning data from the temporary table

6. Truncates the table, releasing memory and any on-disk temporary segments

The preceding scenario depends on the availability of memory. For serial queries, the
temporary tables use PGA memory.

The implementation of cursor-duration temporary tables is similar to sorts. If no more
memory is available, then the database writes data to temporary segments. For cursor-
duration temporary tables, the differences are as follows:

¢ The database releases memory and temporary segments at the end of the query
rather than when the row source is no longer active.

e Data in memory stays in memory, unlike in sorts where data can move between
memory and temporary segments.

When the database uses cursor-duration temporary tables, the keyword CURSOR
DURATI ON MEMORY appears in the execution plan.

5-18 Oracle Database SQL Tuning Guide

Table Expansion

Example 5-10 Cursor-Duration Temporary Tables
The following query uses a W TH clause to create three subquery blocks:

W TH
ql AS (SELECT department _id, SUMsalary) sumsal FROM hr.enpl oyees GROUP BY
departnent _id),
g2 AS (SELECT * FROM ql),
g3 AS (SELECT departnent _id, sumsal FROM ql)
SELECT * FROM q1
UNION ALL
SELECT * FROM g2
UNION ALL
SELECT * FROM g3;

The following sample plan shows the transformation:

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(FORMAT=>' BAS| C +ROWS +COST'));

PLAN_TABLE_OUTPUT

| 1d | Operation | Nane | Rows | Cost (9%CPU) |

| 0| SELECT STATEMENT | | |6 (100)]

| 1] TEWP TABLE TRANSFORMATI ON | | | |

| 2| LOAD AS SELECT (CURSOR DURATI ON MEMORY) | SYS_TEMP OFDIDG606_LAE004 | | |

| 3| HASH GROUP BY | | 11| 3 (34)]

| 4] TABLE ACCESS FULL | EMPLOYEES | 107 | 2 (0) |

| 5] UNONVALL | | | |

| 6] VIEW | | 111 2 (0) |

| 7 TABLE ACCESS FULL | SYS_TEMP_OFDID6606_LAE004 | 11| 2 (0) |

| 8] VIEW | | 111 2 (0) |

| 9| TABLE ACCESS FULL | SYS_TEMP_OFDID6606_LAE004 | 11| 2 (0) |

| 10| VIEW | | 11| 2 (0) |

| 11 | TABLE ACCESS FULL | SYS_TEMP_OFDOD6606_1AE004 | 11 | 2 (0) |
In the preceding plan, TEMP TABLE TRANSFORMATI ONin Step 1 ind