Oracle® Database
Java Developer's Guide
12c Release 2 (12.2)
E50047-11

May 2017

This book describes how to develop, load, and run Java
applications in Oracle Database.

ORACLE"

Oracle Database Java Developer's Guide, 12¢ Release 2 (12.2)
E50047-11

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Tulika Das

Contributors: Sheryl Maring, Rick Sapir, Michael Wiesenberg, Venkatasubramaniam Iyer, Brian Wright,
Timothy Smith, Malik Kalfane

Contributing Authors: Tanmay Choudhury , Kuassi Mensah, Mark Jungerman, Suresh Srinivasan, Ernest
Tucker, Robert H Lee, Dmitry Nizhegorodov, Nataraju Neeluru, David Unietis, Paul Lo, Steve Harris, Ellen
Barnes, Peter Benson, Greg Colvin, Bill Courington, Matthieu Devin, Jim Haungs, Hal Hildebrand, Susan
Kraft, Thomas Kurian, Scott Meyer, Tom Portfolio, Dave Rosenberg, Jerry Schwarz, Harlan Sexton, Xuhua Li

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ... xiii
N Lo 1<) o ol <RSP SRUURRPRSR Xiii
Documentation AcCeSSIDILILYcccvviiimiiiiiiiiiiiiiiiic e Xiii
Related DOCUIMENES.ccoiiieiieieietieire ettt et estesse st eseesessesse st essessessessessessessessessessessessaseessesensenns Xiii
COMVEINTIONS ...tievieeiieeiie et eette et e st e ete e beeebe e beeasseesseeasseasssaassaessaaasseessaeassaasaesssaassseasseessseansessseanseenssensses Xiv

Changes in This Release for Oracle Database Java Developer's Guide.............cco....... XV
Changes in Oracle Database 12c Release 2 (12.2.0.1) c...ocouvuveriveririrreeeirerrereeresererereeeeeseeee s XV

INEW FEALUTES ...ttt ettt sttt ettt et e st et e s bt e e s st et e eseesseeneensesntanseensessesnsensenn XV
Desupported FEaturescooiiiiiiiiiiiicc e XV

1 Introduction to Java in Oracle Database

T.1 OVEIVIEW Of JAVA..eiiiuiiiiieiietieit ettt ettt et ettt e e sttt s b e st e st et e b et et ent et e st eneeneeseebeebessessensenes 1-1
1.1.1 Java and Object-Oriented Programming Terminologycccocoeeieiermeieinincieieinnnne. 1-2
1.1.2 Key Features of the Java Language..........c.cococeueunirieinieiiieiccce s 1-5
1.1.3 Java Virtual Machine.........cc.ccveieieieieieieieeeieese ettt saeseesassessessessassessenss 1-6
1.1.4 Java Class HIETarChycccccoiiiiiiiiiiiiiiiicccccc e 1-8

1.2 About Using Java in Oracle Database.............cccooiuiiiiiiiiiicc 1-8
1.2.1 Java and RDBMS: A Robust COmMDbINation.........c.cceeeerienenienienenieieieceeeceese e 1-9
1.2.2 About Multithreading.........c.cocoviiiiiiiiiiiiiiiii s 1-9
1.2.3 Memory Spaces Managementccccovueuiiiiiniiiiniiniiicc e 1-10
1.2.4 FOOPIINt .ot 1-12
1.2.5 Performance of an Oracle JVM ..ottt 1-13
1.2.6 Dynamic Class Loading...........cccoueueueiiiiirieiniiiiciecei i e 1-14

1.3 OVerview Of Oracle JVM.... .ottt eeete et ste e sb e s sae s s essessessessessessasassessessess 1-15
1.3.1 PrOCESS ATccuiiiiiiiiiiiiiiiiictcc s 1-16
1.3.2 Java session initialization, duration and entrypoints...........c.cccocoveiriviiieiicienen 1-16
1.3.3 The GUIL...ooiiiiiii s 1-17
1.34 TREIDE ..o s 1-17

1.4 Feature List Of Oracle JVMccociiiiiiiiieieieieteteteieete et te e ste st sse s e s essessessessessessssassessessenss 1-17

1.5 Main Components of Oracle JVM ... 1-18
1.5.1 Library Manager ..ottt 1-19

1.6

1.7
1.8

1.9

1.5.2 COMPILET ..ot 1-19

1.5.3 INEEIPTOET ..c.oiviiiiiiiiiiiic e 1-19
1.5:4 Class LOAdErcoiiiiiiiiiiiiciiicct s 1-19
1.5.5 VIO ..ottt 1-20
1.5.6 Server-Side JDBC INternal DITVeTcccoeviririiiirinienieriesiesie ettt 1-20
1.5.7 Server-Side SQLJ Translatorcccocevieirererineneniesieesiesteet ettt 1-20
1.5.8 SYSTEM CLaSSES ...ouvuvimiiuiiiiiiicicicieieicicce e 1-20
Java Programming in Oracle Database...........c.cccocoviviiiiinininniiiniiiiiiicce 1-21
1.6.1 Javain Database Application Development............ccccccccuiiiiiiiiiiiiiiiiicciccccnne, 1-21
1.6.2 Java Programming Environment UsSageccccooiuiiiiiiiiiiiiiiiiiicccniciciciin, 1-21
1.6.3 Java Stored ProCeAUTIES.........cccoviiiiiiiiriieieceee ettt ettt 1-22
1.6.4 PL/SQL Integration and Oracle RDBMS Functionalitycccccccocveeiiiiccciccnnas 1-22
1.6.5 Development TOOISccccciiiiiiiiiiiiiiiieeceeceee e 1-23
1.6.6 Internet Protocol Version 6 SUPPOIt..........cccoiiieiiiciciiiiiccece s 1-24
SUPPOTE fOT JAVA 8 ... e 1-24
Introduction to Nashorn JavaScript Engine..........ccccooviiiiiiiiiiiccccc, 1-25
1.8.1 About Using Nashorn JavaScript ENgine ... 1-25
1.8.2 JavaScript Data Access using JDBC ... 1-29
1.8.3 REST Enable Your JavaScript Applicationccooeeiiiiiiiniiiice 1-33
Memory Model for Dedicated Mode SeSSiONSccoceviueiiieiiieiiiciicic s 1-35

Java Applications on Oracle Database

2.1
2.2
2.3
24
25

2.6
2.7
2.8

Database Sessions Imposed on Java Applications..........cccueveiirieiiiiicieieiicec 2-1
Execution Control of Java APPLCAtiONScccceuiuiuiiiiiiiiiciircccerecc e 2-3
Java Code, Binaries, and Resources StOragecoccvviiiiiiiiiniiiiiicccicccccceeees 2-3
About Java Classes Loaded in the Database...........ccccevieiririnininienieeeeeeeeeeeee e 2-4
Preparing Java Class Methods for EXecution ..o, 2-5
2.5.1 Compiling Java Classescccouoeueieiiiuiieiiiicicie it 2-6
2.5.2 Overview of Resolving Class Dependencies............ccccviiniiiiinininicnininenecccreeenen. 2-10
2.5.3 Logging in Oracle JVMccoooiiiiiiiccec s 2-13
2.5.4 Overview of Loading Classes Using the loadjava ToOL...........cccccouviiiiinninninininnnnne. 2-14
2.5.5 Overview of Granting Execute Rights...........cccooioi 2-19
2.5.6 Overview of Controlling the Current User...........cccoveuviriiininiciiicccece e, 2-20
2.5.7 Overview of Checking Java Uploadscccoiiiiiiiiiiniiiiiicccceccecceeeee 2-21
2.5.8 About Publishing Java Methods Loaded in the Database............ccccccooeiiiniiinnnnne. 2-23
2.5.9 Overview of Auditing Java Classes Loaded in the Databasecccccccouviiiiinnnnn. 2-23
User Interfaces On the SEIVer ... 2-25
Shortened Class NAIMES ... 2-25
Class.forName() in Oracle Databaseccccevveeveieieieieieieeseeesesesetete et eseseseeseesessessenas 2-26
2.8.1 Supply ClassLoader in Class.forName().........ccocouiiiiiiiiiniiiiiiiiicccccceaes 2-27
2.8.2 Supply Class and Schema Names to classForNameAndSchema()c.ccoevvviennnee. 2-28
2.8.3 Supply Class and Schema Names to lookupClass().........cocovueveriimurieiiiniiicieiiiicieieae 2-29
2.8.4 Supply Class and Schema Names when Serializingcccccovveeininininncnninnenenee. 2-29

2.8.5 Class.forName EXamplecccooviiniiiniiiniiieiiee 2-29

2.9 About Managing Your Operating System ReSOUICEScccovueueurururiririeirirriceieeeeeeeeeenes 2-30
29.1 Overview of Operating System ReSOUICESccocviiiiiiiiiiiiiiicccceae, 2-31
2.9.2 Garbage Collection and Operating System Resourcesccocoeeveieireinniicceennnes 2-32

2.10 About Using the Runtime.exec Functionality in Oracle Database............cccccoooeriiininnnnn. 2-33

2.11 Managing Your Applications Using JMXcccccooriiiiiiiiiiiiiic e 2-33
2111 OVEIVIEW Of JMX .ottt ettt et e et te st s b e be b essessessessesseseesassansessessenss 2-33
2.11.2 Enabling and Starting JMX in @ SeSSioncccccceuvirriiiniceneieiiceeccee e 2-34
2.11.3 Setting Oracle JVM JMX Defaults and Configurabilityc.cccccooviviinnnninnnnnne. 2-35
2.11.4 Examples of SQL calls to dbms_java.start_jmx_agent............cccooeeveniirniiiinincnnnnes 2-36
2.11.5 Using JConsole to Monitor and Control Oracle JVM........cccccccoovnnnnnnn, 2-37
2.11.6 Important Security NOLES ... 2-50
2.11.7 Shared Server Limitations fOr JMXcccceceiiriiririninesiesieneriesie et seeeas 2-50

2.12 Opverview of Threading in Oracle Databasecccooeiiiiiiiiiiniiii e, 2-51
2.12.1 Thread Life CYCle ..o 2-52
2.12.2 System.exit(), OracleRuntime.exitSession(), and OracleRuntime.exitCall().............. 2-53

2.13 Shared Servers Considerationsccccccuviieueriiniiiiiiiiie s 2-54
2.13.1 End-of-Call MIGration..........cccciiiiiiiiiiiiiiicccccccc s 2-54
2.13.2 Oracle-Specific Support for End-of-Call Optimization.............ccoceveiviicieiiiiicciennes 2-55
2.13.3 The EndOfCallRegistry.registerCallback() Methodcccoovviiiiiiniiniiiniicie, 2-58
2.13.4 The EndOfCallRegistry.runCallbacks() Method..........cccccoveuiiiiininininininicccceene. 2-58
2.13.5 The Callback INterfacecccoveuiviiiiiimiiiiiicc e 2-59
2.13.6 The Callback.act() MEthOdcccoueviriiririiiriiiiiieeerree et 2-59
2.13.7 Operating System Resources Affected Across Calls.........ccccoovirieiiiiiiiiiiiiicc 2-59

3 Calling Java Methods in Oracle Database

4

3.1

3.2
3.3

Invoking Java Methods ..o 3-1
3.1.1 Using PL/SQL WIAPPETS ..ot 3-1
3.1.2 ADOUL JNI SUPPOTT ...eviiiiiiiiiicccictcccccc et 3-3
3.1.3 About Utilizing SQLJ and JDBC with Java in the Database...........ccccceeviiiiiiinnace. 3-3
3.1.4 About Using the Command-Line Interface...........cccooeoviiiiiiiiiiiiice, 3-8
3.1.5 Overview of Using the Client-Side Stubc.ccccoooiiiiiii 3-10
How To Tell Whether You Are Running on the Server ..., 3-12
About Redirecting Output on the SErver ... 3-12

Java Installation and Configuration

4.1

4.2
4.3
44

Initializing a Java-Enabled Databaseccccocoiiiiiiiiiiiiiiiicccccccccceee 4-1
41.1 Configuring the Oracle JVM Option within the Oracle Database Template................ 4-1
4.1.2 Modifying an Existing Oracle Database to Include Oracle JVM............ccccooinnnnn. 4-1
Configuring Oracle JVMcoooiiiiiice e 4-2
The DBMS_JAVA PaCKAZEcuvimimiiiiiiiciieicicccieccteicieictseee e 4-2
Enabling the Java CHENt.........cccciiiiiiiiiiiiccccce e 4-2
4.4.1 Installing Java SE on the CHent ... 4-3

Vi

4.42 Setting Up Environment Variables.............cooooooiiiiii, 4-3
4.5 Two-Tier Duration for Java SESSI0N StAteccceeieieririeriisesesieiesieietetereeereeese e s esessessens 4-4

4.6 About Setting System Properties. ... 4-4

Developing Java Stored Procedures

5.1 Stored Procedures and Run-Time COontexts...........ccccovviriririririniiiiinniiiiiincrcceeeeeeeeeenes 5-1
5.1.1 Functions and Procedures.............ccocociiiiiinniiiiniciiicecree et 5-2
5.1.2 Database TIIggeTS.......cccooiiurieiiiicieieiiccie it 5-2
5.1.3 Object-Relational Methods...........ccoviiiiiiiiiii 5-2

5.2 Advantages of Stored Procedurescccevuviiiiiiiininiiiiiiicirciceereeeeeeeeee s 5-3
5.2.1 PerfOrmMannCeccoceueuieiririeuiiriiieiciieieettseete ettt et 5-3
5.2.2 Productivity and Ease of Use..........ccooovriiiiiriiiiiii 5-3
5.2.3 5€alability......cooiueieiiiiiiei 5-4
5.2.4 Maintainability.......cccoooiiiiiiiiiiii 5-4
5.2.5 INtEroperabilityc.cciiiiiiiiiiiiicc e 5-4
5.2.6 RePLCAtION.....coiuiiiiiiiiiiiiii e 5-4
5.2.7 SECUIILY woeviiieieet e e 5-4

5.3 Running Java Stored Procedures...........coooiiiiriiiiiiiiiieicc e 5-5
5.3.1 Creating or Reusing the Java Classescccouiiiiiiiiiiiiiiirecccreeeeeneeeens 5-6
5.3.2 Loading and Resolving the Java Classes..........ccocoeiiiiiiiiiiiiiiiciiiccccceeeee 5-6
5.3.3 Publishing the Java Classes.........cccoiiiiiiiiiiiiiiic e 5-6
5.3.4 Calling the Stored Procedures.............coooouoiiiriiiiiiicieic 5-7

5.4 Debugging Java Stored Procedures ..ot 5-7
5.4.1 Prerequisites for Debugging Java Stored Procedures...........ccoooiiiiiininnccncncncnnnnce. 5-8
5.4.2 Debugging Java Stored Procedures Using the jdb Debugger...........ccccooviiiiinnnnace. 5-9
5.4.3 Debugging Java Stored Procedures Using JDeveloper...........cccccooviiniiininininiininnnnn. 5-10

Publishing Java Classes With Call Specifications

6.1 What Are Call Specifications?...........cccocouviiiriiiniiiiiniiiiii s 6-1
6.2 Defining Call SpecifiCationscccouoiirieieiiiici e 6-2
6.2.1 About Setting Parameter Modes............ccoorueieiiiiiiiiiic 6-3
6.2.2 About Mapping Data TYPEScccccvururrrriririirirririrrreeeeete e 6-3
6.2.3 Using the Server-Side Internal JDBC DIivVerccccovviiniininnniiiiiinnccnnenes 6-5
6.3 Writing Top-Level Call Specifications............coceueioiiiieiiiiicc e 6-7
6.3.1 EXAMPLES....oimiiiiiii s 6-8
6.4 Writing Packaged Call Specificationsccocvvviiiniiiiiiniiccnes 6-11
6.5 Writing Object Type Call Specifications...........ccccceueuriririiiririiriiicicrceccreeceeeeee s 6-13
6.5.1 AbOUL ALETIDULES.......cooviiiiiiiii s 6-14
6.5.2 Declaring Methods ..o 6-14

Calling Stored Procedures

7.1 Calling Java from the Top Level.......ccooi 7-1
7.1.1 Redirecting the OUtput........c.cooouiiiiiii 7-2

10

11

7.1.2 Examples of Calling Java Stored Procedures From the Top Levelc.ccccccccoevnnnne. 7-2

7.2 Calling Java from Database TTIgZErScccevururreririririrerinrrrerreeerree s 7-4
7.3 Calling Java from SQL DMLccccooiiiiiiiinninirrnrrrese s 7-7
7.4 Calling Java from PL/SQLccccoiiiiiiiiiiiiiiiiiiin s 7-8
7.5 Calling PL/SQL from JAVa ...t 7-10
7.6 How Oracle JVM Handles EXCEPHONS.coviiiimiiiiiiiiiicccctcssanna 7-10

Java Stored Procedures Application Example

8.1 About Planning the Database Schema..........ccccooiiiiiiiii e 8-1
8.2 Creating the Database Tables..........cccccoviiiiiiiriiiiiiiiccreeee s 8-2
8.3 Writing the Java Classescccoeviiiriririiiiiiiiiiiiiicrrs s 8-3
8.4 Loading the Java Classescccoocrieiiiriiieiicce s 8-7
8.5 Publishing the Java Classescccceiiiirieiiiiiciec e 8-7
8.6 Calling the Java Stored Procedures............cccoovvviviiiiiiiiiiiiii s 8-9

Oracle Database Java Application Performance

9.1 Oracle JVM Just-in-Time Compiler (JIT)ccocovuerrrriiirrreeerreeerereeeeeeeeeeeee s 9-1
9.1.1 Overview of Oracle JVM JITcooeoieieieieicieteteteetse ettt eseesesseesassesse s ssenns 9-1
9.1.2 Advantages of JIT Compilation...........ccccoiiiiiiiiiiiiiiiicces 9-2
9.1.3 Methods Introduced in Oracle Database 11g........ccccooooiriiiiiiiniiiicce, 9-2

9.2 About Java MemoOTy USAGeccccueieiiiirieieiicicie ittt e 9-4
9.2.1 Configuring Memory Initialization Parameters ... 9-4
9.2.2 About Java POOL MEMOTYc.cciiimimiiiiiiiiiiiiiccccccccecsse e 9-6
9.2.3 Displaying Used Amounts of Java Pool MEMOTYcccoceuriirnieiiiicieeiccec, 9-7
9.2.4 Correcting Out of Memory EITOrsccooiiiiioiiiiic 9-8
9.2.5 Displaying Java Call and Session Heap Statistics.........cccooeeiiiinieiiiiciiiiiicic, 9-8

Security for Oracle Database Java Applications

10.1 Network Connection SECUTItY ... 10-1
10.2 Database Contents and Oracle JVM SeCUTity ... 10-2
10.2.1 Overview of Java 2 Security Features..........ccccoovueiiniiiiiniiiccecce 10-3
10.2.2 Overview of Setting Permissions...........c.cooeceieiiiicieieiiicceece s 10-4
10.2.3 Debugging Permissions...........ccoceuoiiiiiieiiiiciciccci e 10-20
10.2.4 Permission for Loading Classescccccviiiiiniiiiiiiiiiiiiicssees 10-21
10.2.5 Customizing the Default java.security Resource.............cccocociiiiiiiiiccncciicncnes 10-21
10.3 Database Authentication Mechanisms Available with Oracle JVM........cccccecveevinvinenennene 10-23
10.4 Secure Use of Runtime.exec Functionality in Oracle Databasecccooooeiiiiirninnnnne. 10-23

Native Oracle JVM Support for INDI

11.1 Overview of Oracle JVM Support for JNDI..........cccooiiiiiii 11-1
11.2 Requirements for Oracle JVM Support for JNDIccccccoovriiiiiiiiiiee 11-1
11.2.1 NAMESPACE ..cvvviniiiiiitiietiieticc e 11-1
11.2.2 Oracle Java Directory Service JNDI Name Space Provider..........cccccccceiiiiiinnnes 11-3

Vii

11.2.3 Namespace BrOWSeTc.ccviiiiiiiiiiiiiiiiiiiiiii 11-5

11.3 OJDS Command-Line TOOISccciviriirieiiieieieieieteeeeereee et ssesse st e esseseessesassessessesas 11-6
11.3.1 1S COMMANG ..ttt ettt ettt ettt b ettt bens 11-7
11.3.2 cd COMMANG....oooiiiiiiiieiiitieieeteeee ettt ettt ettt et e te e v e steeabeeseenseesaesseessesseensesseensesseans 11-7
11.3.3 pwd CommMANdcoouiiiiiiic e 11-7
11.3.4 cChOWN COMMAN ..ottt sttt ettt ettt ebe et sbeebesbesaens 11-8
11.3.5 mMKAir COMMAN ...c.eoviieiiieiiieiiieieeee ettt ettt ettt ssenes 11-8
11.3.6 11N COMMIANA ..euviviiiieieieiesiee ettt ettt sttt testeste s e ssessessessessessessensessesseseasessensessensens 11-9
11.3.7 1IN COMMEANG.....oiiiiiiiiiieieiiceeeteete ettt ettt et este e b e te e b e s seesseeseebeessesseessesseessesseensenseans 11-9
11.3.8 MV COMMANA ..utirtiiiiiieeiee ettt sttt ettt et ettt ettt ebeebe b e 11-10
11.3.9 chmod CoOmMMANG.......cceouiieiierieieieeeetetee ettt ettt ettt ettt 11-10
11.3.10 bind COmMMANGcoeririirieiirieiirieeriere ettt ettt sttt sttt sttt se b e 11-11
11.3.11 bindds COmMIMANd.........ccceeiieiierieiietieeie ettt ettt ettt e et e eteereeeteeaeeereensesseennas 11-12
11.3.12 bindur]l COmMMANG.......coerieiieieieieeete ettt ettt ettt be s e 11-13

11.4 OJDS APIS aNd CIASSESceveeueruiriiniiriiiiierienietetetet ettt st st sbe st beste st et et et et et et ebeebesbesbens 11-14
11.4.1 oracle.aurora.jndi.ojds.OjdsClientContext.........c.ccoevvvivirniiriiiiiiine, 11-14
11.4.2 oracle.aurora.jndi.ojds.OjdsServerContext............ococeiiiiiiiicceiiiccecceenenes 11-15
11.4.3 oracle.aurora.jndi.ojds.OjdsInitialContextFactory ... 11-15
11.4.4 oracle.aurora.jndi.ojds.OjdsURLContextFactory ... 11-16
11.4.5 oracle.aurora.jndi.ojds.OjdsURLCONteXtccovoimiurieiiiiiieieiiccc 11-16

12 Schema Objects and Oracle JVM Utilities

viii

12.1 Overview of Schema ODbJects..........coeuiriiriiiiiniic s 12-1
12.2° What and When t0 Load.........cccoviiiiiiiiiiiii s 12-2
12.3 Resolution of Schema ODJECtScciiiiiiiiiiiiiicccce e 12-2
12.4 Compilation of Schema ODbJects...........ccoiiiiiiiiiiiii e 12-3
12.5 The oJvmtc TOOL ... 12-4
12.5.1 About the 0jvmtc TOOL......coiiiiiiiiiiii e 12-4
12.5.2 Arguments of ojvmtc COMMANccceuiuiuiuimimimiiimiieciiccceeeeeeeeere e enenenes 12-5
12.6 The loadjava TOOL........cccoiiiiiiiiiiic s 12-6
12.6.1 loadjava TOOl SYNEAX......ccciiiiiiiiiiiiiiiciiic e 12-7
12.6.2 loadjava Tool Argument SUMMATYcccooiruriiiiiirieieiicice e 12-8
12.6.3 loadjava Tool Argument Detailsccooviimiiiiiiiii 12-13
12.7 The dropjava TOOL. ... 12-18
12.7.1 dropjava TOOL SYNEAXccviimiiiiiiiiiiiiiicccc e 12-19
12.7.2 dropjava Tool Argument SUMMATYcccooeuiiiiiirieiiiccie e 12-20
12.7.3 dropjava Tool Argument Detailscccoovoiriiiiiiiii 12-21
12.7.4 About Dropping Resources Using dropjava Tool ..o 12-22
12.8 The 0Jvmjava TOOL........ccoiiiiiiiiiiiiic e 12-22
12.8.1 ojvmjava TOOL SYNEaAX......cccciimiiiiiiiiiiiiiiiiiccece e 12-23
12.8.2 ojvmjava Tool Argument SUMMATYccccoeueiiiiiririeiiiice e 12-23
12.8.3 ojvmjava Tool EXample ... 12-24
12.8.4 ojvmjava Tool FUNCHONALEYccvuimiiiiiiiiiiiiicccccccccccccceeeeeeee e 12-24

13 Database Web Services

13.1 Overview of Database Web Services ... 13-1
13.2 About Using Oracle Database as Web Services Consumerc.ccooveueieiiiinieieiinciennns 13-1
13.2.1 About Using Oracle JVM Web Services Call-Out Utilitycccccoeoeeiiicccccccnnes 13-2
13.2.2 Web Service Data Sources (Virtual Table SUpport)..........cccccceiieiiiiciccciccnna. 13-7
13.2.3 Features of Oracle Database as a Web Service Consumer.............ccccceueeieuiiiniuincnnns 13-8

A DBMS_JAVA Package

AT JONGNAMIE.....oiiiiiciic et A-1
A2 SNOTTNAINE ...ttt et e st et e e seesae e b e sbeesbesseesbessaessasseassassaessesssensenseensennes A-1
A3 get_compiler_OPHONcccoviiiiiiiiiiii s A-1
A4 set_COMPILEr_OPLION ...c.cccuiiiiiiiiiiicicccec s A-2
A5 reset_cOMPIler_OPLiON ... A-2
ALD TESOLVET ...ttt ettt et e e aa e st e e st e sae e b e s baesbeebeesbesbaesbeebeenbeeteenteersenteeraenteeres A-2
J AN e U=l s 74T I 2 o) s 4 DS U PR TPRSRP A-2
A8 FIXOA_ AN TNISTATICE .ottt et e et e e ee e e et e e e et e seaaeesarteessaseesaaeessareesesnseeseseesanseesanne A-3
A9 St _OULPUL ... A-3
ALD @XPOTT_SOUICEouvvviiiiicict e et a s A-3
AT eXPOTE_CLASS ..o A-4
A12 @XPOTE_IOSOUICE.ouieiiietitiiietet ettt s bttt ene e A-4
AL3 JOAAJAVA .. A-4
AT4 AIOPJAVE .ot s A-5
A5 grant_PermiSSION ..ot A-5
A16 Grant_PermMUSSION ...ttt A-5
A.17 reStrict_PermiSSIONcccciiiiiviiiiiiiiiiiiicii e A-6
A8 restrict_PermiSSiONcccoiiiiuiiiiiiiiiiiiic e A-6
A19 grant_poOliCy_PermiSSION ...t A-7
A20 grant_poliCy_PermiSSION ..ot A-7
A2]1 1eVOKE_PEIrMISSION ...cucuimiiiiiiiiiiniiiiic s A-8
A.22 disable_permisSSion ... A-8
A.23 enable_pPermiSSIOn ... s A-9
A24 delete_PermiSSIOn.......ciiiiiiiiiiiiiiic s A-9
A25 SEt_PIEfETeNCe. ... A-9
A20 TUINJAVA .ottt A-9
A.27 runjava_in_cUrrent_SESSION.........ccccuiiiiiiiiiiiiiii s A-10
A28 SEt_PIOPETILY ..oovivieiiiiiiiciicc e A-10
A29 ZEt_PIOPEITY .o A-10
A.30 TOMOVE_PTOPETILY cuoiiiiiiiiiiiii s A-10
A.31 SHOW_PTOPEITY ceeviiet e A-11
A32 set_output_to_Sql......cccooiiiiiiiiii s A-11
A.33 remove_outPUt_tO_SqL...cccoiiiiiiiiiiiiiiiiicc s A-12
A.34 enable_output_to_Sql.......cccooiiiiiiiiiii s A-12

A.35 disable_output_to_Sql.....ccccooiiiiiiiiii s A-12

A36 qUETY_OULPUL_tO_SOL..eviiiiiiiiiciciiciece s A-12
A.37 set_oUtPUL_tO_JAVA.....ccooiiiiiiiiiiiicc s A-13
A38 1emove_oUtPUL_tO_JAVA ...ocoiiiiiiiiicicicc e A-13
A.39 enable_output_tO_JAVA ..o A-13
A.40 disable_oUtput_tO_JAVa......cccoociiiiiiiiiiiiiccii e A-14
A4l qUEry_outPu_tO_JAVAcoiiiiiiiiiiiiic s A-14
A42 set_output_tO_file ... A-14
A.43 remove_output_to_file.......ccooiiiiiiiii A-14
A.44 enable_output to_file........ccooviiiiiiiiii A-15
A45 disable_oUtput_tO_file........ccocoiiiiiiiiiiirieiieiceeece s A-15
A46 qUEry_oUtPUL_tO_fIle......coiiiiiiiiiciic s A-15
A.47 enable_oUtPUt_tO_tIC ... A-15
A48 disable_oUtpUt_tO_IC ... A-15
A9 QUETY_OUtPUL_tO_tTC ..ttt A-16
AB0D ENASESSIONuvieieeieiieiiietieieeteste et e st et e ste et e st et e s teesbesse e bessaesseeseesseeseeseentesseestesseesseaseensenseensenseans A-16
A 51 endsession_ and_ Telated StAT.........oooveiiieieeeeieeeeeeeeeeeeeeeee ettt e e st e e e e eaaesseaaeeas A-16
A.52 set_native_compiler_Option ... A-16
A.53 unset_native_compiler_Option ... A-17
A54 COMPILE_ClASS.....ciiiiiiiii s A-17
A.55 UNCOMPILE_CLASS ...ttt aes A-17
A56 compile_MeEthodcccooiiiiiiiiiiiiiiii s A-17
A.57 uncompile_method.........ccoiiiiiiiiiii e A-18
AB8 start_JMX_QZeNt ... A-18
A59 set_runtime_exXeC_CredentialScooviiiviiiiiiiiieeieeee et e A-18

B Classpath Extensions and User Classloaded Metadata

B.1 Classpath EXtENSIONSc.ccovviviiiiiiiiiiiiiiiiiciccce s B-1
B.1.1 jserverQuotedClassPathTermPrefiX.........ccoiiiiiiiiiiiiiiiicccecccceeeeeee B-1
B.1.2 jSerVETURLPIEfIX....c.cuiuiiiiiiiiiiiiiiiiiiiiiiicccccc e B-1
B.1.3 jserverSpecial TOKENPTIEfiX ... B-1
B.1.4 JSERVER_CP.....coiiiiiiiiiiiiiiiii s B-2
B.1.5 JSERVER_SCHEMALC......cccooiiiiiiiiiiiiiiiiiss s B-2
B.1.6 jserver:/CP general SYNtaX ... B-2
B.2 User Classloaded Metadataccccoeovrieueiiniiiciiniiiciciineiccreeereteeiereee et ne e B-3
Index

List of Tables

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-1
3-2
3-3
6-1
10-1
10-2
10-3
10-4
10-5
10-6
10-7
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
13-1
13-2

Feature List 0f Oracle JVMo ..ottt ettt 1-17
Description of Java Code and Classes Storage in Oracle Database...........c.ccccoooeueinirnnnnnn. 2-4
Definitions for the Name and Option Parameters.............ccccovviviviviiirinininiiiinninicreinns 2-8
Example JAVASOPTIONS Table........cccccovuiiiiiiiiiiiiiiiciiicscc s 2-9
ORA EITOTS....ocviiiiiiiiiiicicicc ettt seneaes 2-12
Description of Java Files...........ccciiiiiiiiiiiii s 2-15
loadjava Operations on Schema ODbjJECtS..........cccccuiuiuiiiiiiiiiiiiiicccceceeeeeeenees 2-15
Key USER_OBJECT COIUMMNS.......ccoiiiiiiiiiiiiiiiiiiiiciiciieccccese s 2-21
Statement Auditing Options Related to Java Schema Objects..........ccccceeuiuiiiiiiiniinnnnnn. 2-24
Object Auditing Options Related to Java Schema Options..........cccccccuvuviciiiiivivniiiiiiinnens 2-24
Description of the Overview Tab Fields in JConsole Interface...........cccocecevurrrvrrrencncnes 2-39
Command Line Argument SUMMATIY.........cccoovimieiiiicicieiiccie e 3-9
set_output_to_sql Argument SUMMATY.........ccccoeririiiiiiiiiiiiice s 3-13
set_output_to_java Argument SUMMATY..........ccccovimiiiiniiiiiiiiiccceen 3-16
Legal Data Type Mappings........c.cccouoerueieiiicieiiicieieeie et 6-3
Predefined Permissions............ccccccuiuiiiiiiiiiiiiiiiiiiiicicc s 10-15
JServerPermission Description..........ccccociiiiiiiiiiininiiiiiiice 10-16
SYS Initial PermisSSions..........ccocoiviiviiiiiiiiiii s 10-17
PUBLIC Default PEermiSsions...........ccccceueiiiiiiiiiiiiiiiiiiiiiiiieciiceeeeieseesenenenenesenenes 10-18
JAVAUSERPRIV PeImUSSIONS. ...c..eectiruieriiriierieeitenieetesteetesieetesseetessteeesseessestessesssessesssessens 10-19
JAV ASYSPRIV PermiSSIONS.ccuveveruirierieeieriieiteseestessessesseesesseessesssessesssessesssessesssessesssesses 10-19
JAVADEBUGPRIV PermiSSions.........cccceeeeruiriiriererienieniententetetesteteteeeieesesse i svesiesseseeneas 10-20
OjvmMtc Argument SUMIMATYcceiriiieieriiiieieccete e re e 12-5
loadjava Argument SUMMATY.......cccovrirriiiriiinnirieinrreese s 12-8
dropjava Argument SUIMIMATYcccveuereieiireiiieiieeeeee et seseaesenes 12-20
ojvmjava Argument SUMIMATY........ccooeioirurieieiiicie ettt 12-23
ojvmjava Command Common OPtionsS...........eeveeieveiiiniiinieeieecce s 12-26
java Argument SUMMATY ..o 12-27
connect Argument SUMIMATYc.cuoirueiiiirieieiiiieie it 12-29
runjava Argument SUMMATY ..ot erse e 12-29
JAWP ATGUMENt SUMIMATYooviviiiiiicicieietcicieeteee et senene 12-30
Input to Oracle JVM Web Services Call-Out Utility.......ccoeuoviiiiiiiiiiiiic 13-4
Output of the Oracle JVM Web Services Call-Out Utility.........cccooorriiiiirniiine 13-6

Xi

Xii

Preface

Java is the object-oriented programming language of choice that provides platform
independence and automated storage management techniques. It enables you to create
applications and applets. Oracle Database provides support for developing and
deploying Java applications.

Audience

The Oracle Database Java Developer's Guide is intended for both Java and non-Java
developers. For PL/SQL developers who are not familiar with Java programming, this
manual provides a brief overview of Java and object-oriented concepts. For both Java
and PL/SQL developers, this manual discusses the following:

¢ How Java and Database concepts merge

* How to develop, load, and run Java stored procedures

e Oracle JVM

* Database concepts for managing Java objects in the database

¢ Oracle Database and Java security policies
To use this document, you need knowledge of Oracle Database, SQL, and PL/SQL.
Prior knowledge of Java and object-oriented programming can be helpful.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, refer to the following Oracle resources:

® Oracle Database JDBC Developer's Guide

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

Xiv

The

Oracle Database SQLJ Developer’s Guide
Oracle Database Net Services Administrator’s Guide
Oracle Database Advanced Security Guide

Oracle Database Development Guide

following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,

or in both locations.
Angle brackets enclose user-supplied names.

Brackets enclose optional clauses from which you can choose one or
none.

Changes in This Release for Oracle
Database Java Developer's Guide

This preface contains:

Changes in Oracle Database 12c Release 2 (12.2) (page xv)

Changes in Oracle Database 12¢ Release 2 (12.2.0.1)

The following are changes in Oracle Database Java Developer’s Guide for Oracle Database
12¢ Release 2 (12.2.0.1).

New Features

The following features are new in this release:

Oracle JVM Web Services Call-Out Utility
See "About Using Oracle JVM Web Services Call-Out Utility (page 13-2)"

Support for Java 8
See "Support for Java 8 (page 1-24)"

Oracle JVM Support for Running JavaScript in the database
See "About Using Nashorn JavaScript Engine (page 1-25)"

Improvements to Java Debug Wire Protocol (JDWP)
See "Debugging Java Stored Procedures (page 5-7)"

Oracle JVM Support for Long Identifiers

Starting from Oracle Database 12¢ Release 2 (12.2.0.1), the maximum length of a
SQL identifier is 128 bytes for Oracle JVM. A longer maximum length for SQL
identifiers provides better compatibility and integration with other RDBMS
components. It also improves performance because there is little or no conversion
needed between short names and long names in Oracle JVM.

In Oracle Database 12¢ Release 1 (12.1.0.1), the maximum length of a SQL
identifier or a database schema object name is 30 bytes, and all characters must be
legal and convertible to the target database character set.

Desupported Features

XV

XVi

The following features are no longer supported by Oracle. See Oracle Database Upgrade
Guide for a complete list of desupported features in this release.

Desupport of JPublisher

All Oracle JPublisher features are desupported and unavailable in Oracle Database 12c
Release 2 (12.2.0.1). Oracle recommends that you use the alternatives listed here:

e To continue to use Web service callouts, Oracle recommends that you use the
Oracle JVM Web Services Callout utility, which is a replacement for the Web
Services Callout utility.

¢ Toreplace other JPublisher automation capabilities, including mapping user-
defined SQL types or SQL types, wrapping PL/SQL packages and similar
capabilities, Oracle recommends that developers use explicit steps, such as
precompiling code with SQLJ precompiler, building Java STRUCT classes, or
using other prestructured options.

See Also:

My Oracle Support Note 1937939.1 for more information about JDeveloper
deprecation and desupport:

https:/ /support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1937939.1

Desupport of Server-Side SQLJ

Starting with Oracle Database 12c Release 2 (12.2.0.1), server-side SQL] is desupported.
SQL]J is currently supported only as a client-side command-line tool.

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1937939.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1937939.1

1

Introduction to Java in Oracle Database

Oracle Database provides support for developing, storing, and deploying Java
applications. This chapter introduces the Java language to Oracle PL/SQL developers,
who are accustomed to developing server-side applications that are integrated with
SQL data. You can develop server-side Java applications that take advantage of the
scalability and performance of Oracle Database.

This chapter contains the following sections:

e Overview of Java (page 1-1)

* About Using Java in Oracle Database (page 1-8)

e Overview of Oracle JVM (page 1-15)

* Feature List of Oracle JVM (page 1-17)

* Main Components of Oracle JVM (page 1-18)

* Java Programming in Oracle Database (page 1-21)

* Support for Java 8 (page 1-24)

* Introduction to Nashorn JavaScript Engine (page 1-25)

* Memory Model for Dedicated Mode Sessions (page 1-35)

1.1 Overview of Java

Java has emerged as the object-oriented programming language of choice. Some of the
important concepts of Java include:

* A Java virtual machine (JVM), which provides the fundamental basis for platform
independence

* Automated storage management techniques, such as garbage collection

e Language syntax that is similar to that of the C language

The result is a language that is object-oriented and efficient for application
programming.

This section covers the following topics:
¢ Java and Object-Oriented Programming Terminology (page 1-2)
* Key Features of the Java Language (page 1-5)

* Java Virtual Machine (page 1-6)

Introduction to Java in Oracle Database 1-1

Overview of Java

Java Class Hierarchy (page 1-8)

1.1.1 Java and Object-Oriented Programming Terminology

The following terms are common in Java application development in Oracle Database
environment:

Classes (page 1-2)
Objects (page 1-3)
Interfaces (page 1-4)
Encapsulation (page 1-4)
Inheritance (page 1-3)

Polymorphism (page 1-4)

1.1.1.1 Classes

All object-oriented programming languages support the concept of a class. As with a
table definition, a class provides a template for objects that share common
characteristics. Each class can define the following:

Fields

Fields are variables that are present in each object or instance of a particular class,
or are variables that are global and common to all instances. Instance fields are
analogous to the columns of a relational table row. The class defines the fields and
the type of each field.

You can declare fields in Java as static. Fields of a class that are declared as static
are global and common to all instances of that class. There is only one value at any
given time for a static field within a given instantiation of a Java runtime. Fields
that are not declared as static are created as distinct values within each instance of
the class.

The publ i c, pri vat e, pr ot ect ed, and default access modifiers define the
scope of the field in the application. The Java Language Specification (JLS) defines
the rules of visibility of data for all fields. These rules define under what
circumstances you can access the data in these fields.

In the example illustrated in Figure 1-1 (page 1-3), the employee identifier is
defined as pri vat e, indicating that other objects cannot access this field directly.
In the example, objects can access the i d field by calling the get | d() method.

Methods

Methods are procedures associated with a class. Like a field, a method can be
declared as st at i ¢, in which case it can be called globally. If a method is not
declared as static, it means that the method is an instance method and can be
called only as an operation on an object, where the object is an instance of the
class.

Similar to fields, methods can be declared as publ i ¢, pri vat e, pr ot ect ed, or
default access. This declaration defines the scope in which the method can be
called.

1-2 Oracle Database Java Developer's Guide

Overview of Java

1.1.1.2 Objects

A Java object is an instance of a class and is analogous to a relational table row. Objects
are collections of data values, the individual elements of which are described by the
non-static field definitions of the class.

Figure 1-1 (page 1-3) shows an example of an Enpl oyee class defined with two
fields, i d, which is the employee identifier, and | ast Name, which is the last name of
the employee, and the get | d() and set I d(Stri ng anl d) methods. Thei d field is
privat e, and the | ast Nane field, the get | d() method and the set | d(St ri ng

anl d) method are publ i c.

Figure 1-1 Classes and Instances

Classes and Instances

public class Employee (Employee
fields new Employee () id=215632179
P> |astName = Smith
private String id
public String lastName
N J
methods
e N
public getld () Employee
public setld (String anld) p-| id=372743215
new Employee () lastName = Jones
Employee class defines N y,
the fields that instances
hold (state) and methods Each instance of
you can invoke on Employee holds its own
instances of Employee state. You can access that
(behavior). state only if the creator of
the class defines itin a

way that provides access
to you.

When you create an instance, the fields store individual and private information
relevant only to the employee. That is, the information contained within an employee
instance is known only to that particular employee. The example in Figure 1-1

(page 1-3) shows two instances of the Enpl oyee class, one for the employee Smith
and one for Jones. Each instance contains information relevant to the individual
employee.

1.1.1.3 Inheritance

Inheritance is an important feature of object-oriented programming languages. It
enables classes to include properties of other classes. The class that inherits the
properties is called a child class or subclass, and the class from which the properties
are inherited is called a parent class or superclass. This feature also helps in reusing
already defined code.

In the example illustrated in Figure 1-1 (page 1-3), you can create a

Ful | Ti meEnpl oyee class that inherits the properties of the Enpl oyee class. The
properties inherited depend on the access modifiers declared for each field and
method of the superclass.

Introduction to Java in Oracle Database 1-3

Overview of Java

1.1.1.4 Interfaces

Java supports only single inheritance, that is, each class can inherit fields and methods
of only one class. If you need to inherit properties from more than one source, then
Java provides the concept of interfaces, which is a form of multiple inheritance.
Interfaces are similar to classes. However, they define only the signature of the
methods and not their implementations. The methods that are declared in the interface
are implemented in the classes. Multiple inheritance occurs when a class implements
multiple interfaces.

1.1.1.5 Encapsulation

Encapsulation describes the ability of an object to hide its data and methods from the
rest of the world and is one of the fundamental principles of object-oriented
programming. In Java, a class encapsulates the fields, which hold the state of an object,
and the methods, which define the actions of the object. Encapsulation enables you to
write reusable programs. It also enables you to restrict access only to those features of
an object that are declared publ i c. All other fields and methods are pri vat e and can
be used for internal object processing.

In the example illustrated in Figure 1-1 (page 1-3), the i d field is pri vat e, and access
to it is restricted to the object that defines it. Other objects can access this field using
the get | d() method. Using encapsulation, you can deny access to the i d field either
by declaring the get | d() method as pri vat e or by not defining the get | d()
method.

1.1.1.6 Polymorphism

Polymorphism is the ability for different objects to respond differently to the same
message. In object-oriented programming languages, you can define one or more
methods with the same name. These methods can perform different actions and return
different values.

In the example in Figure 1-1 (page 1-3), assume that the different types of employees
must be able to respond with their compensation to date. Compensation is computed
differently for different types of employees:

e Full-time employees are eligible for a bonus.

¢ Non-exempt employees get overtime pay.

In procedural languages, you write a swi t ch statement, with the different possible
cases defined, as follows:

switch: (enployee.type)
{
case: Enpl oyee
return enpl oyee. sal aryToDat e;
case: Ful | Ti meEnpl oyee
return enpl oyee. sal aryToDate + enpl oyee. bonusToDat e

}...

If you add a new type of employee, then you must update the swi t ch statement. In
addition, if you modify the data structure, then you must modify all swi t ch
statements that use it. In an object-oriented language, such as Java, you can implement
a method, conpensat i onToDat e(), for each subclass of the Enpl oyee class, if it
contains information beyond what is already defined in the Enpl oyee class. For

1-4 Oracle Database Java Developer's Guide

Overview of Java

example, you could implement the conpensat i onToDat e() method for a non-
exempt employee, as follows:

public float conpensationToDate()
{

return (super.conpensationToDate() + this.overtimeToDate());

}

For a full-time employee, the conmpensat i onToDat e() method can be implemented
as follows:

public float conpensationToDate()
{

return (super.conpensationToDate() + this.bonusToDate());

}

This common use of the method name enables you to call methods of different classes
and obtain the required results, without specifying the type of the employee. You do
not have to write specific methods to handle full-time employees and part-time
employees.

In addition, you can create a Cont r act or class that does not inherit properties from
Enpl oyee and implements a conpensat i onToDat e() method in it. A program that
calculates total payroll to date would iterate over all people on payroll, regardless of
whether they were full-time or part-time employees or contractors, and add up the
values returned from calling the conpensat i onToDat e() method on each. You can
safely make changes to the individual conpensat i onToDat e() methods or the
classes, and know that callers of the methods will work correctly.

1.1.2 Key Features of the Java Language

The Java language provides certain key features that make it ideal for developing
server applications. These features include:

e Simplicity

Java is simpler than most other languages that are used to create server
applications, because of its consistent enforcement of the object model. The large,
standard set of class libraries brings powerful tools to Java developers on all
platforms.

¢ Portability

Java is portable across platforms. It is possible to write platform-dependent code
in Java, and it is also simple to write programs that move seamlessly across
systems.

See Also:

" Java Virtual Machine (page 1-6)"

* Automatic storage management

A JVM automatically performs all memory allocation and deallocation while the
program is running. Java programmers cannot explicitly allocate memory for new
objects or free memory for objects that are no longer referenced. Instead, they
depend on a JVM to perform these operations. The process of freeing memory is
known as garbage collection.

Introduction to Java in Oracle Database 1-5

Overview of Java

* Strong typing

Before you use a field, you must declare the type of the field. Strong typing in Java
makes it possible to provide a reasonable and safe solution to interlanguage calls
between Java and PL/SQL applications, and to integrate Java and SQL calls
within the same application.

¢ No pointers

Although Java is quite similar to C in its syntax, it does not support direct pointers
or pointer manipulation. You pass all parameters, except primitive types, by
reference and not by value. As a result, the object identity is preserved. Java does
not provide low level, direct access to pointers, thereby eliminating any possibility
of memory corruption and leaks.

¢ Exception handling

Java exceptions are objects. Java requires developers to declare which exceptions
can be thrown by methods in any particular class.

¢ Flexible namespace

Java defines classes and places them within a hierarchical structure that mirrors
the domain namespace of the Internet. You can distribute Java applications and
avoid name collisions. Java extensions, such as the Java Naming and Directory
Interface (JNDI), provide a framework for multiple name services to be federated.
The namespace approach of Java is flexible enough for Oracle to incorporate the
concept of a schema for resolving class names in full compliance with the JLS.

e Security

The design of Java bytecodes and JVM specification allow for built-in mechanisms
to verify the security of Java binary code. Oracle Database is installed with an
instance of Security Manager that, when combined with Oracle Database security,
determines who can call any Java methods.

¢ Standards for connectivity to relational databases

Java Database Connectivity (JDBC) and SQLJ enable Java code to access and
manipulate data in relational databases. Oracle provides drivers that allow
vendor-independent, portable Java code to access the relational database.

1.1.3 Java Virtual Machine

As with other high-level computer languages, the Java source compiles to low-level

machine instructions. In Java, these instructions are known as bytecodes, because each
instruction has a uniform size of one byte. Most other languages, such as C, compile to
machine-specific instructions, such as instructions specific to an Intel or HP processor.

When compiled, the Java code gets converted to a standard, platform-independent set
of bytecodes, which are executed by a Java Virtual Machine (JVM). A JVM is a
separate program that is optimized for the specific platform on which you run your
Java code.

Figure 1-2 (page 1-7) illustrates how Java can maintain platform independence. Each
platform has a JVM installed that is specific to the operating system. The Java
bytecodes get interpreted through the JVM into the appropriate platform dependent
actions.

1-6 Oracle Database Java Developer's Guide

Overview of Java

Figure 1-2 Java Component Structure

Java Application

Java Virtual Machine

Operating System

When you develop a Java application, you use predefined core class libraries written
in the Java language. The Java core class libraries are logically divided into packages
that provide commonly used functionality. Basic language support is provided by the
j ava. | ang package, I/O support is provided by the j ava. i 0 package, and network
access is provided by the j ava. net package. Together, a JVM and the core class
libraries provide a platform on which Java programmers can develop applications,
which will run successfully on any operating system that supports Java. This concept
is what drives the "write once, run anywhere" idea of Java.

Figure 1-3 (page 1-7) illustrates how Oracle Java applications reside on top of the

Java core class libraries, which reside on top of the JVM. Because the Oracle Java
support system is located within the database, the JVM interacts with Oracle Database
libraries, instead of directly interacting with the operating system.

Figure 1-3 Oracle Database Java Component Structure

Java Server Applications

Oracle-Supported Java APls: SQLJ, JDBC, JNDI

Java Core Class Libraries

Oracle Database JVM

Oracle Database Libraries

Operating System

To know more about Java and JVM, you can refer to the Java Language Specification
(JLS) and the JVM specification. The JLS defines the syntax and semantics, and the
JVM specification defines the necessary low-level actions for the system that runs the
application. In addjition, there is also a compatibility test suite for JVM implementors
to determine if they have complied with the specifications. This test suite is known as
the Java Compatibility Kit (JCK). Oracle JVM implementation complies fully with JCK.
Part of the overall Java strategy is that an openly specified standard, together with a
simple way to verify compliance with that standard, allows vendors to offer uniform
support for Java across all platforms.

Introduction to Java in Oracle Database 1-7

About Using Java in Oracle Database

1.1.4 Java Class Hierarchy

Java defines classes within a large hierarchy of classes. At the top of the hierarchy is
the Qbj ect class. All classes in Java inherit from the Qbj ect class at some level, as
you walk up through the inheritance chain of superclasses. When we say Class B
inherits from Class A, each instance of Class B contains all the fields defined in class B,
as well as all the fields defined in Class A.

Figure 1-4 (page 1-8) illustrates a generic Java class hierarchy. The

Ful | Ti meEnpl oyee class contains the i d and | ast Nane fields defined in the

Enpl oyee class, because it inherits from the Enpl oyee class. In addition, the

Ful | Ti meEnpl oyee class adds another field, bonus, which is contained only within
Ful | Ti meEnpl oyee.

You can call any method on an instance of Class B that was defined in either Class A
or Class B. In the example, the Ful | Ti meEnpl oyee instance can call methods defined
only in the Ful | Ti meEnpl oyee class and methods defined in the Enpl oyee class.

Figure 1-4 Class Hierarchy

Using Inheritance to Localize Behavior and State
Employee class has two
subclasses,
\/ PartTimeEmployee and
FullTimeEmployee,
class Employee rather than using
attributes of Employee to
id differentiate between
lastName different Employee types.
v PartTimeEmployees
class PartTimeEmployee class FullTimeEmployee have to track their
schedules, while
schedule ‘ ’ bonus FullTimeEmployees
are eligible for bonuses.
Each
I meEmploveels class ExemptEmployee class NonExemptEmployee
considered exempt
QZitmc;r::I;Or;?or salaryToDate() ‘ ’ salaryToDate()
non-exempt if he
works at an hourly
rate. Each one
computes
salaryToDate
differently.

Instances of Class B can be substituted for instances of Class A, which makes
inheritance another powerful construct of object-oriented languages for improving
code reuse. You can create classes that define behavior and state where it makes sense
in the hierarchy, yet make use of preexisting functionality in class libraries.

1.2 About Using Java in Oracle Database

You can write and load Java applications within the database because it is a safe
language with a lot of security features. Java has been developed to prevent anyone
from tampering with the operating system where the Java code resides in. Some
languages, such as C, can introduce security problems within the database. However,
Java, because of its design, is a robust language that can be used within the database.

1-8 Oracle Database Java Developer's Guide

About Using Java in Oracle Database

Although the Java language presents many advantages to developers, providing an
implementation of a JVM that supports Java server applications in a scalable manner is
a challenge. This section discusses the following challenges:

¢ Java and RDBMS: A Robust Combination (page 1-9)
e About Multithreading (page 1-9)

¢ Memory Spaces Management (page 1-10)

e Footprint (page 1-12)

* Performance of an Oracle JVM (page 1-13)

* Dynamic Class Loading (page 1-14)

1.2.1 Java and RDBMS: A Robust Combination

Oracle Database provides Java applications with a dynamic data-processing engine
that supports complex queries and different views of the same data. All client requests
are assembled as data queries for immediate processing, and query results are
generated dynamically.

The combination of Java and Oracle Database helps you to create component-based,
network-centric applications that can be easily updated as business needs change. In
addition, you can move applications and data stores off the desktop and onto
intelligent networks and network-centric servers. More important, you can access
those applications and data stores from any client device.

Figure 1-5 (page 1-9) shows a traditional two-tier, client/server configuration in
which clients call Java stored procedures the same way they call PL/SQL stored
procedures. The figure also shows how Oracle Net Services Connection Manager can
combine many network connections into a single database connection. This enables
Oracle Database to support a large number of concurrent users.

Figure 1-5 Two-Tier Client/Server Configuration

Oracle Database

Thin Client \/
Java JDBC Oracle Net
e Applet Driver
Relational Object Relational
Data Data
Fat Client
Oracle Net Q Q O
ocl Pre* ODBC | | OracleNet | Gonnection | Oracle Net
Clients Client Client Manager

Java Stored
Procedure
Oracle Net
Oracle Forms and Oracle Reports PL/SQL Stored
w

1.2.2 About Multithreading

Multithreading is one of the key scalability features of the Java language. The Java
language and class libraries make it simpler to write multithreaded applications in
Java than many other languages, but it is still a daunting task in any language to write
reliable, scalable multithreaded code.

Introduction to Java in Oracle Database 1-9

About Using Java in Oracle Database

Oracle Database server efficiently schedules work for thousands of users. The Oracle
JVM takes advantage of the session architecture of Oracle database to concurrently run
Java applications for hundreds to thousands of users. Although Oracle Database
supports Java language-level threads required by the JLS and JCK, scalability will not
increase by using threads within the scope of the database. By using the embedded
scalability of the database, the need for writing multithreaded Java servers is
eliminated.

You should use the facilities of Oracle Database for scheduling users by writing single-
threaded Java applications. The database can schedule processes between each
application, and thus, you achieve scalability without having to manage threads. You
can still write multithreaded Java applications, but multiple Java threads will not
increase the performance of the server.

One complication multithreading creates is the interaction of threads and automated
storage management or garbage collection. The garbage collector running in a generic
JVM has no knowledge of which Java language threads are running or how the
underlying operating system schedules them. The difference between a non-Oracle
Database model and an Oracle JVM model is as follows:

e Non-Oracle Database model

A single user maps to a single Java thread and a single garbage collector manages
all garbage from all users. Different techniques typically deal with allocation and
collection of objects of varying lifetimes and sizes. The result in a heavily
multithreaded application is, at best, dependent upon operating system support
for native threads, which can be unreliable and limited in scalability. High levels
of scalability for such implementations have not been convincingly demonstrated.

e QOracle JVM model

Even when thousands of users connect to the server and run the same Java code,
each user experiences it as if he or she is running his or her own Java code on his
or her own JVM. The responsibility of an Oracle JVM is to make use of operating
system processes and threads and the scalable approach of Oracle Database. As a
result of this approach, the garbage collector of the Oracle JVM is more reliable
and efficient because it never collects garbage from more than one user at any
time.

See Also:

"Overview of Threading in Oracle Database (page 2-51)"

1.2.3 Memory Spaces Management

Garbage collection is a major function of the automated storage management feature
of Java, eliminating the need for Java developers to allocate and free memory
explicitly. Consequently, this eliminates a large source of memory leaks that are
commonly found in C and C++ programs. However, garbage collection contributes to
the overhead of program execution speed and footprint.

Garbage collection imposes a challenge to the JVM developer seeking to supply a
highly scalable and fast Java platform. An Oracle JVM meets these challenges in the
following ways:

* The Oracle JVM uses Oracle Database scheduling facilities, which can manage
multiple users efficiently.

1-10 Oracle Database Java Developer's Guide

About Using Java in Oracle Database

¢ Garbage collection is performed consistently for multiple users, because garbage
collection is focused on a single user within a single session. The Oracle JVM has
an advantage, because the burden and complexity of the job of the memory
manager does not increase as the number of users increases. The memory
manager performs the allocation and collection of objects within a single session,
which typically translates to the activity of a single user.

* The Oracle JVM uses different garbage collection techniques depending on the
type of memory used. These techniques provide high efficiency and low

overhead.

The two types of memory space are call space and session space.

Memory space

Description

Call space

Session space

It is a fast and inexpensive type of memory. It primarily exists for the
length of a call. Call memory space is divided into new and old
segments. All new objects are created within new memory. Objects
that have survived several scavenges are moved into old memory.

It is an expensive, performance-wise memory. It primarily exists for
the length of a session. All st at i ¢ fields and any objects that exist
beyond the lifetime of a call exist here.

Figure 1-6 (page 1-11) illustrates the different actions performed by the garbage

collector.

Figure 1-6 Garbage Collection

Call and Sessions Memory Space

“new” Objects

Garbage collection algorithms within an Oracle JVM adhere to the following rules:

1.

Garbage collected
often and very
quickly during Call

Call Memory

New Space

O

O

C—0—0

go here

Garbage collected
less often
during Call

Old Space

O

Survived objects
after several
scavenging

Garbage collected
at end of Call

Session Memory

© O0—+0

Y

Survived objects
after the end
of a call

New objects are created within a new call space.

Introduction to Java in Oracle Database 1-11

About Using Java in Oracle Database

2. Scavenging occurs at a set interval. Some programmers create objects frequently
for only a short duration. These types of objects are created and garbage-collected
quickly within the new call space. This is known as scavenging.

3. Any objects that have survived several iterations of scavenging are considered to
be objects that can exist for a while. These objects are moved out of new call space
into old call space. During the move, they are also compacted. Old call space is
scavenged or garbage collected less often and, therefore, provides better
performance.

4. At the end of the call, any objects that are to exist beyond the call are moved into
session space.

Figure 1-6 (page 1-11) illustrates the steps listed in the preceding text. This approach
applies sophisticated allocation and collection schemes tuned to the types and
lifetimes of objects. For example, new objects are allocated in fast and inexpensive call
memory, designed for quick allocation and access. Objects held in Java st at i ¢ fields
are migrated to the more precious and expensive session space.

1.2.4 Footprint

The footprint of a running Java program is affected by many factors:

® Size of the program

The size of the program depends on the number of classes and methods and how
much code they contain.

¢ Complexity of the program

The complexity of the program depends on the number of core class libraries that
the Oracle JVM uses as the program runs, as opposed to the program itself.

* Amount of space the JVM uses

The amount of space the JVM uses depends on the number of objects the JVM
allocates, how large these objects are, and how many objects must be retained
across calls.

* Ability of the garbage collector and memory manager to deal with the demands of
the program running

This can not be determined often. The speed with which objects are allocated and
the way they are held on to by other objects influences the importance of this
factor.

From a scalability perspective, the key to supporting multiple clients concurrently is a
minimum per-user session footprint. The Oracle JVM keeps the per-user session
footprint to a minimum by placing all read-only data for users, such as Java bytecodes,
in shared memory. Appropriate garbage collection algorithms are applied against call
and session memories to maintain a small footprint for the user's session. The Oracle
JVM uses the following types of garbage collection algorithms to maintain the user's
session memory:

* Generational scavenging for short-lived objects
* Mark and lazy sweep collection for objects that exist for the life of a single call

¢ Copying collector for long-lived objects, that is, objects that live across calls within
a session

1-12 Oracle Database Java Developer's Guide

About Using Java in Oracle Database

1.2.5 Performance of an Oracle JVM

The performance of an Oracle JVM is enhanced by the embedding of an innovative
Just-In-Time compiler similar to HotSpot on standard JVM. The platform-independent
Java bytecodes run on top of a JVM, and the JVM interacts with the specific hardware
platform. Any time you add levels within software, the performance is degraded.
Because Java requires going through an intermediary to interpret the bytecodes, a
degree of inefficiency exists for Java applications as compared to applications
developed using a platform-dependent language, such as C. To address this issue,
several JVM suppliers create native compilers. Native compilers translate Java
bytecodes into platform-dependent native code, which eliminates the interpreter step
and improves performance.

The following table describes two methods for native compilation:

Compiler Description

Just-In-Time (JIT) JIT compilers quickly compile Java bytecodes to platform-specific, or

Compilation native, machine code during run time. These compilers do not produce
an executable file to be run on the platform. Instead, they provide
platform-dependent code from Java bytecodes that is run directly after it
is translated. JIT compilers should be used for Java code that is run
frequently and at speeds closer to that of code developed in other
languages, such as C.

Ahead-of-Time This compilation translates Java bytecodes to platform-independent C

Compilation code before run time. Then a standard C compiler compiles the C code
into an executable file for the target platform. This approach is more
suitable for Java applications that are not modified frequently. This
approach takes advantage of the mature and efficient platform-specific
compilation technology found in modern C compilers.

Oracle Database uses Just-In-Time (JIT) compilation to deliver its core Java class
libraries, such as JDBC code, in natively compiled form. The JIT compiler is enabled
without the support of any plug-ins and it is applicable across all the platforms that
Oracle supports.

See Also:

Oracle JVM Just-in-Time Compiler (JIT) (page 9-1)

Figure 1-7 (page 1-14) illustrates how natively compiled code runs up to 10 times
faster than interpreted code. As a result, the more native code your program uses, the
faster it runs.

Introduction to Java in Oracle Database 1-13

About Using Java in Oracle Database

Figure 1-7 Interpreter versus Accelerator

Java Source Code

Java Compiler

Java Bytecode

Java Interpreter Accelerator

C Source Code

Platform C Compiler

Execution Speed is 2X to 10X
(depends on the number of casts,
array accesses, message sends,
accessor calls, etc. in the code)

Execution speed is X

1.2.6 Dynamic Class Loading

Another strong feature of Java is dynamic class loading. The class loader loads classes
from the disk and places them in the JVM-specific memory structures necessary for
interpretation. The class loader locates the classes in CLASSPATHand loads them only
when they are used while the program is running. This approach, which works well
for applets, poses the following problems in a server environment:

1-14 Oracle Database Java Developer's Guide

Overview of Oracle JVM

Problem

Description

Solution

Predictability

Reliability

The class loading operation places a
severe penalty when the program is
run for the first time. A simple
program can cause an Oracle JVM to
load many core classes to support its
needs. A programmer cannot easily
predict or determine the number of
classes loaded.

A benefit of dynamic class loading is
that it supports program updating.
For example, you would update
classes on a server, and clients, who
download the program and load it
dynamically, see the update
whenever they next use the
program. Server programs tend to
emphasize reliability. As a
developer, you must know that
every client runs a specific program
configuration. You do not want
clients to inadvertently load some
classes that you did not intend them
to load.

The Oracle JVM loads classes
dynamically, just as with any other
JVM. The same one-time class loading
speed hit is encountered. However,
because the classes are loaded into
shared memory, no other users of
those classes will cause the classes to
load again, and they will use the same
preloaded classes.

Oracle Database separates the upload
and resolve operation from the class
loading operation at run time. You
upload Java code you developed to the
server using the | oadj ava tool.
Instead of using CLASSPATH, you
specify a resolver at installation time.
The resolver is analogous to
CLASSPATH, but enables you to
specify the schemas in which the
classes reside. This separation of
resolution from class loading ensures
that you always know what programs
users run.

See Also: Schema Objects and Oracle
JVM Utilities (page 12-1)

1.3 Overview of Oracle JVM

The Oracle JVM is a standard, Java-compatible environment that runs any pure Java
application. It is compatible with the standard JLS and the JVM specifications. It
supports the standard Java binary format and the standard Java APIs. In addition,
Oracle Database adheres to standard Java language semantics, including dynamic
class loading at run time.

Java in Oracle Database introduces the following terms:

Session

A session in Oracle Database Java environment is identical to the standard Oracle
Database usage. A session is typically, although not necessarily, bounded by the
time a single user connects to the server. As a user who calls a Java code, you
must establish a session in the server.

Call

When a user causes a Java code to run within a session, it is termed as a call. A call

can be started in the following different ways:

— A SQL client program runs a Java stored procedure.

— A trigger runs a Java stored procedure.

- APL/SQL program calls a Java code.

In all the cases defined, a call begins, some combination of Java, SQL, or PL/SQL
code is run to completion, and the call ends.

Introduction to Java in Oracle Database 1-15

Overview of Oracle JVM

Note:

The concept of session and call apply across all uses of Oracle Database.

Unlike other Java environments, the Oracle JVM is embedded within Oracle Database
and introduces a number of new concepts. This section discusses some important
differences between an Oracle JVM and typical client JVMs based on:

® Process Area (page 1-16)

e Java session initialization_ duration and entrypoints (page 1-16)
e The GUI (page 1-17)

e The IDE (page 1-17)

1.3.1 Process Area

In a standard Java environment, you run a Java application through the interpreter by
issuing the following command on the command line, where cl assnane is the name
of the class that you want the JVM to interpret first:

java cl assnane

When using the Oracle JVM, you must load the application into the database, publish
the interface, and then run the application within a database session. The database
session is the environment in which the Oracle JVM runs and as such is the analog of
the operating system process in which a standard client JVM runs.

See Also:

Java Applications on Oracle Database (page 2-1) for information about
loading, publishing, and running Java applications

1.3.2 Java session initialization, duration and entrypoints

Standard client-based Java applications declare a single, top-level method, publ i ¢
static void main(String args[]).This method is executed once and the
instantiation of the Java Virtual Machine lasts for the duration of that call. But, Oracle
Java applications are not restricted to a single top-level main entrypoint, and the
duration of the Oracle JVM instantiation is not determined by a single call and the exit
of the call from this entrypoint. Each client begins a session, calls its server-side logic
modules through top-level entry points, and eventually ends the session. The same
JVM instance remains in place for the entire duration of the session, so data state such
as static variable values can be used across multiple calls to multiple top-level entry
points.

Class definitions that have been loaded and published in the database are generally
available to all sessions in that database. The JVM instance in a given session and the
Java data objects and global field values in that JVM instance are private to the session.
This data is present for the duration of the session and may be used by multiple calls
within the lifetime of that session. But, neither this data is visible to other sessions nor
the data can be shared in any way with other sessions. This is analogous to how in a
standard client Java application separate invocations of the main method share the

1-16 Oracle Database Java Developer's Guide

Feature List of Oracle JVM

1.3.3 The GUI

1.3.4 The IDE

same class definitions, but the data created and used during those invocations are
separate.

A server cannot provide GUISs, but it can provide the logic that drives them. The
Oracle JVM supports only the headless mode of the Java Abstract Window Toolkit
(AWT). All Java AWT classes are available within the server environment and your
programs can use the Java AWT functionality, as long as they do not attempt to
materialize a GUI on the server.

See Also:

"User Interfaces on the Server (page 2-25)"

The Oracle JVM is oriented to Java application deployment, and not development. You
can write and test applications on any preferred integrated development environment
(IDE), such as Oracle JDeveloper, and then deploy them within the database for the
clients to access and run them.

See Also:

"

"Development Tools (page 1-23)

The binary compatibility of Java enables you to work on any IDE and then upload the
Java class files to the server. You need not move your Java source files to the database.
Instead, you can use powerful client-side IDEs to maintain Java applications that are
deployed on the server.

1.4 Feature List of Oracle JVM

Table 1-1 (page 1-17) lists the features of Oracle JVM and the versions in which they
were first supported.

Table 1-1 Feature List of Oracle JVM
- - -

Feature Supported Since Oracle
JVM Release
| oadj ava URL support 11.1
List-Based operations with dr opj ava support 11.1
oj vnt ¢ Tool 11.1
Runj ava command-line interface (JDK-like interface) 11.1
Database-Resident JARs 11.1
Sharing of user classloaded classes metadata support 11.1
Two-tier duration for the Java session state support 11.1

Introduction to Java in Oracle Database 1-17

Main Components of Oracle JVM

Table 1-1 (Cont.) Feature List of Oracle JVM
__|

Feature Supported Since Oracle
JVM Release
Default service feature 11.1
Just-in-Time compiler (JIT) 11.1
Internet Protocol Version 6 (IPv6) Support 11.2
JDK 6 support 12.1
JDK 7 support 12.1
JDK 8 support 12.2

1.5 Main Components of Oracle JVM

This section briefly describes the main components of an Oracle JVM and some of the
facilities they provide.

The Oracle JVM is a complete, Java 2-compliant environment for running Java
applications. It runs in the same process space and address space as the database
kernel by sharing its memory heaps and directly accessing its relational data. This
design optimizes memory use and increases throughput.

The Oracle JVM provides a run-time environment for Java objects. It fully supports
Java data structures, method dispatch, exception handling, and language-level
threads. It also supports all the core Java class libraries, including j ava. | ang,
java.io,java. net,java. math,andjava. util.

Figure 1-8 (page 1-18) shows the main components of an Oracle JVM.

Figure 1-8 Main Components of an Oracle JVM

Oracle JVM
Interpreter &
Run-time System
Memory
SQL Calls > Natively
Compiled Code
Class Loader Garbage Collector
loadjava Utility > RDBMS RDBMS
CREATE JAVA Statement Library Manager Memory Manager

The Oracle JVM embeds the standard Java namespace in the database schemas. This
feature lets Java programs access Java objects stored in Oracle Database and
application servers across the enterprise.

In addition, the Oracle JVM is tightly integrated with the scalable, shared memory
architecture of the database. Java programs use call, session, and object lifetimes

1-18 Oracle Database Java Developer's Guide

Main Components of Oracle JVM

efficiently without user intervention. As a result, the Oracle JVM and middle-tier Java
business objects can be scaled, even when they have session-long state.

The following sections provide an overview of some of the components of the Oracle
JVM and the JDBC driver and the SQL]J translator:

¢ Library Manager (page 1-19)

e Compiler (page 1-19)

¢ Interpreter (page 1-19)

e C(lass Loader (page 1-19)

e Verifier (page 1-20)

* Server-Side JDBC Internal Driver (page 1-20)
¢ Server-Side SQL]J Translator (page 1-20)

e System Classes (page 1-20)

1.5.1 Library Manager

To store Java classes in Oracle Database, you use the | oadj ava command-line tool,
which uses the SQL CREATE JAVA statements to do its work. When called by the
CREATE JAVA {SOURCE | CLASS | RESOURCE} statement, the library manager
loads Java source, class, or resource files into the database. These Java schema objects
are not accessed directly, and only an Oracle JVM uses them.

1.5.2 Compiler

The Oracle JVM includes a standard Java compiler. When the CREATE JAVA SOURCE
statement is run, it translates Java source files into architecture-neutral, one-byte
instructions known as bytecodes. Each bytecode consists of an opcode followed by its
operands. The resulting Java class files, which conform fully to the Java standard, are
submitted to the interpreter at run time.

1.5.3 Interpreter

To run Java programs, the Oracle JVM includes a standard Java 2 bytecode interpreter.
The interpreter and the associated Java run-time system run standard Java class files.
The run-time system supports native methods and call-in and call-out from the host
environment.

Note:

You can also compile your Java code to improve performance. The Oracle
JVM uses natively compiled versions of the core Java class libraries, SQL]J
translator, and JDBC drivers.

1.5.4 Class Loader

In response to requests from the run-time system, the Java class loader locates, loads,
and initializes Java classes stored in the database. The class loader reads the class and
generates the data structures needed to run it. Immutable data and metadata are
loaded into initialize-once shared memory. As a result, less memory is required for

Introduction to Java in Oracle Database 1-19

Main Components of Oracle JVM

1.5.5 Verifier

each session. The class loader attempts to resolve external references when necessary.
In addition, if the source files are available, then the class loader calls the Java
compiler automatically when Java class files must be recompiled.

Java class files are fully portable and conform to a well-defined format. The verifier
prevents the inadvertent use of spoofed Java class files, which might alter program
flow or violate access restrictions. Oracle security and Java security work with the
verifier to protect your applications and data.

1.5.6 Server-Side JDBC Internal Driver

JDBC is a standard and defines a set of Java classes providing vendor-independent
access to relational data. The JDBC classes are modeled after ODBC and the X/Open
SQL Call Level Interface (CLI) and provide standard features, such as simultaneous
connections to several databases, transaction management, simple queries, calls to
stored procedures, and streaming access to LONG column data.

Using low-level entry points, a specially tuned JDBC driver runs directly inside Oracle
Database, providing fast access to Oracle data from Java stored procedures. The
server-side JDBC internal driver complies fully with the standard JDBC specification.
Tightly integrated with the database, the JDBC driver supports Oracle-specific data
types, globalization character sets, and stored procedures. In addition, the client-side
and server-side JDBC APIs are the same, which makes it easy to partition applications.

1.5.7 Server-Side SQLJ Translator

SQLJ enables you to embed SQL statements in Java programs. It is more concise than
JDBC and more responsive to static analysis and type checking. The SQL]J
preprocessor, which itself is a Java program, takes as input a Java source file in which
SQLJ clauses are embedded. Then, it translates the SQL]J clauses into Java class
definitions that implement the specified SQL statements. The Java type system ensures
that objects of those classes are called with the correct arguments.

A highly optimized SQL]J translator runs directly inside the database, where it
provides run-time access to Oracle data using the server-side internal JDBC driver.
SQLJ forms can include queries, data manipulation language (DML) statements, data
definition language (DDL) statements, transaction control statements, and calls to
stored procedures. The client-side and server-side SQL] APIs are identical, making it
easy to partition applications.

1.5.8 System Classes

A set of classes that constitute a significant portion of the implementation of Java in
Oracle Database environment is known as the System classes. These classes are
defined in the SYS schema and exported for all users by public synonym. A class with
the same name as one of the System classes can be defined in a schema other than the
SYS schema'l. But, this is a bad practice because the alternate version of the class may
behave in a manner that violates assumptions about the semantics of that class that are
present in other System classes or in the underlying implementation of Java Virtual
Machine. Oracle strongly discourages this practice.

1 You cannot always define a class with the same name as one of the System classes. For the classes present in
some packages, for example, j ava. | ang, such definitions are explicitly prohibited by the code.

1-20 Oracle Database Java Developer's Guide

Java Programming in Oracle Database

1.6 Java Programming in Oracle Database

Oracle provides enterprise application developers an end-to-end Java solution for
creating, deploying, and managing Java applications. The total solution consists of
client-side and server-side programmatic interfaces, tools to support Java
development, and a JVM integrated with Oracle Database. All these products are fully
compatible with Java standards. This section covers the following topics:

e Javain Database Application Development (page 1-21)

¢ Java Programming Environment Usage (page 1-21)

® Java Stored Procedures (page 1-22)

¢ PL/SQL Integration and Oracle RDBMS Functionality (page 1-22)
* Development Tools (page 1-23)

¢ Internet Protocol Version 6 Support (page 1-24)

1.6.1 Java in Database Application Development
The most important features of Java in database application development are:
¢ Designing data-bound procedures and functions using Java SE APIs and JDBC.

e Extending the reach and capabilities of the database with standard and third-
party Java libraries. For example, accessing third-party databases using their
drivers in the database and accessing Hadoop /HDFS.

¢ Providing flexible partitioning of Java2 Platform, Standard Edition (J2SE)
applications for symmetric data access at the JDBC level.

e Bridging SQL and the Java2 Platform, Enterprise Edition (J2EE) world by:
- Calling out Web components, such as JSP and servlet
- Bridging SQL and Web Services using Web Service Callouts

¢ Using an Oracle JVM as ERP Integration Hub.

¢ Invalidating cache.

1.6.2 Java Programming Environment Usage

In addition to the Oracle JVM, the Java programming environment provides:

¢ Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call Java stored
procedures from PL/SQL packages and PL/SQL procedures from Java stored
procedures.

e The JDBC and SQL]J programming interfaces for accessing SQL data.

¢ Tools and scripts that assist in developing, loading, and managing classes.

The following table helps you decide when to use which Java API:

Introduction to Java in Oracle Database 1-21

Java Programming in Oracle Database

Type of functionality you need Java API to use
To have a Java procedure called from SQL, such as a trigger. Java stored procedures
To call a static, simple SQL statement from a known table with SQLJ

known column names from a Java object.

To call dynamic, complex SQL statements from a Java object. JDBC

1.6.3 Java Stored Procedures

Java stored procedures are Java programs written and deployed on a server and run
from the server, exactly like a PL/SQL stored procedure. You invoke it directly with
products like SQL*Plus, or indirectly with a trigger. You can access it from any Oracle
Net client, such as OCI and PRO*, or JDBC or SQL]J.

See Also:

Developing Java Stored Procedures (page 5-1)

In addition, you can use Java to develop powerful, server-side programs, which can be
independent of PL/SQL. Oracle Database provides a complete implementation of the
standard Java programming language and a fully compliant JVM.

1.6.4 PL/SQL Integration and Oracle RDBMS Functionality

You can call existing PL/SQL programs from Java and Java programs from PL/SQL.
This solution protects and leverages your PL/SQL and Java code and opens up the
advantages and opportunities of Java-based Internet computing.

Oracle Database offers two different Java APIs for accessing SQL data, JDBC and
SQLJ. Both these APIs are available on the client, and the JDBC API is also available on
the server. As a result, you can deploy your applications on the client and server.

The following topics introduce the Java APIs provided by Oracle Database:
e JDBC Drivers (page 1-22)
e SQLJ (page 1-23)

1.6.4.1 JDBC Drivers

JDBC is a database access protocol that enables you to connect to a database and run
SQL statements and queries to the database. The core Java class libraries provide the
following JDBC APIs: j ava. sql andj avax. sql . However, JDBC is designed to
enable vendors to supply drivers that offer the necessary specialization for a particular
database. Oracle provides the following distinct JDBC drivers:

Driver Description

JDBC Thin driver ~ You can use the JDBC Thin driver to write pure Java applications and
applets that access Oracle SQL data. The JDBC Thin driver is especially
well-suited for Web-based applications and applets, because you can
dynamically download it from a Web page, similar to any other Java
applet.

1-22 Oracle Database Java Developer's Guide

Java Programming in Oracle Database

Driver Description

JDBC OCI driver The JDBC OCI driver accesses Oracle-specific native code, that is, non-
Java code, and libraries on the client or middle tier, providing
performance boost compared to the JDBC Thin driver, at the cost of
significantly larger size and client-side installation.

JDBC server-side Oracle Database uses the server-side internal driver when the Java code

internal driver runs on the server. It allows Java applications running in the Oracle JVM
on the server to access locally defined data, that is, data on the same
system and in the same process, with JDBC. It provides a performance
boost, because of its ability to use the underlying Oracle RDBMS
libraries directly, without the overhead of an intervening network
connection between the Java code and SQL data. By supporting the
same Java-SQL interface on the server, Oracle Database does not require
you to rework code when deploying it.

See Also:
Oracle Database [DBC Developer’s Guide
About Utilizing SQL]J and JDBC with Java in the Database (page 3-3)

1.6.4.2 SQLJ

Oracle has worked with other vendors, including IBM, Tandem, and Sybase, to
develop a standard way to embed SQL statements in Java programs called SQLJ. This
work has resulted in a new standard, ANSI x.3.135.10-1998, for a simpler and more
highly productive programming API than JDBC. A user writes applications to this
higher-level API and then uses a preprocessor to translate the program to standard
Java source with JDBC calls. At run time, the program can communicate with multi-
vendor databases using standard JDBC drivers.

SQL]J provides a simple, but powerful, way to develop client-side applications that
access databases from Java. You can use SQLJ in stored procedures and triggers. In
addition, you can combine SQL] programs with JDBC.

The SQLJ translator is a Java program that translates embedded SQL in Java source
code to pure JDBC-based Java code.

See Also:

Oracle Database SQL] Developer’s Guide

1.6.5 Development Tools

The introduction of Java in Oracle Database enables you to use several Java IDEs. The
adherence of Oracle Database to the Java standards and specifications and the open
Internet standards and protocols ensures that your Java programs work successfully,
when you deploy them on Oracle Database. Oracle provides many tools or utilities
that are written in Java making development and deployment of Java server
applications easier. Oracle JDeveloper, a Java IDE provided by Oracle, has many
features designed specifically to make deployment of Java stored procedures and E]Bs
easier. You can download JDeveloper from

Introduction to Java in Oracle Database 1-23

Support for Java 8

http://ww. oracl e. com' t echnet wor k/ devel oper -t ool s/ j dev/ overvi ew
i ndex. htm

1.6.6 Internet Protocol Version 6 Support

Starting from Oracle Database 11g Release 2, Oracle JVM supports Internet Protocol
Version 6 (IPv6) addresses in the URL and machine names of the Java code in the
database, which resolve to IPv6 addresses. IPv6 is a new Network layer protocol
designed by the Internet Engineering Task Force (IETT) to replace the current version
of Internet Protocol, Internet Protocol Version 4 (IPv4). The primary benefit of IPv6 is a
large address space, derived from the use of 128-bit addresses. IPv6 also improves
upon IPv4 in areas such as routing, network autoconfiguration, security, quality of
service, and so on.

The following system properties enable you to configure IPv6 preferences:

java.net.preferlPv4Stack

If IPv6 is available on the operating system, then the underlying native socket will be
an IPv6 socket. This enables Java applications to connect to, and accept connections
from both IPv4 and IPv6 hosts. If you have an application that has a preference to use
only IPv4 sockets, then you can set this property to t r ue. If you set the property to

t r ue, then it implies that the application will not be able to communicate with IPv6
hosts.

java.net.preferlPv6Addresses

Even if IPv6 is available on the operating system, then for backward compatibility
reasons, the addresses are mapped to IPv4. For example, applications that depend on
access to only an IPv4 service, benefit from this type of mapping. If you want to
change the preferences to use IPv6 addresses over IPv4 addresses, then you can set the
java. net. pref er| Pv6Addr esses property to t r ue. This allows applications to be
tested and deployed in environments, where the application is expected to connect to
IPv6 services.

Note:

All the new System classes that are required for IPv6 support are loaded when
Java is enabled during database initialization. So, if your application does not
have any addresses that are included in the software code, then you do not
need to change your code to use IPv6 functionality.

1.7 Support for Java 8

Oracle Database 12c¢ Release 2 (12.2.0.1) provides support for Java 8, which enables
portability of Java applications and libraries, and compliance with the latest Java
standards. Java 8 furnishes Nashorn, a JavaScript engine that enables running
JavaScript directly in the database.

Note: This release of Oracle JVM supports only Java 8. However, because
Oracle JVM is a database-resident JVM, some JDK specific features including
JavaFX, command line tools, Java tools, GUI interfaces, HotSpot, Mission
Control, and so on are not supported in Oracle JVM.

1-24 Oracle Database Java Developer's Guide

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

Introduction to Nashorn JavaScript Engine

See Also: Introduction to Nashorn JavaScript Engine (page 1-25)

1.8 Introduction to Nashorn JavaScript Engine

Nashorn JavaScript engine enables running JavaScript directly in the database. The
ability to reuse existing client-side JavaScript in the database, and then combining it
with the Java SE libraries, enables the design of rich, powerful, and versatile data-
bound applications that can run directly in RDBMS sessions. This section describes the
Nashorn JavaScript Engine in the following sections:

* About Using Nashorn JavaScript Engine (page 1-25)
e JavaScript Data Access using JDBC (page 1-29)
* REST Enable Your JavaScript Application (page 1-33)

1.8.1 About Using Nashorn JavaScript Engine

One of the important features of Java 8 is the Nashorn JavaScript engine. Starting from
Oracle Database 12¢ Release 2 (12.2.0.1), Oracle JVM supports Java 8, so you can
execute JavaScript in the database using the Nashorn JavaScript engine, built into
Oracle JVM running Java 8 codebase. Executing JavaScript directly in the database
provides the following benefits:

See Also:

https:/ /docs.oracle.com/javase/8/docs/technotes/guides/scripting/
nashorn/api.html

Benefits of Running JavaScript in Oracle Database
* Reusing existing skills and code.

¢ Avoiding shipping data residing in Oracle Database. Executing JavaScript in the
database enables in-place and faster processing of JSON documents inside the
database. This enables avoiding shipping data to external infrastructure and
improving performance as network overhead is avoided.

* Achieving new database capabilities.

For running JavaScript code, using the Nashorn engine of 12.2 Oracle JVM in your
sessions, your schema must be granted the DBJAVASCRIPT role. This role includes
the permissions that are required to run Nashorn in the database. The role can be
granted by your DBA and must be done only once per user.

The preferred way to maintain JavaScript sources in Oracle Database is to load them
into your schema as Java resources and then run the scripts within the database.

Introduction to Java in Oracle Database 1-25

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/api.html
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/api.html

Introduction to Nashorn JavaScript Engine

Note:
e The direct invocation of Nashorn classes is restricted in Oracle JVM.
e All scripting mode extensions are disabled in Oracle JVM.

* You can run scripts either from strings or from file streams, using
standard scripting APIs, but Oracle does not recommend it. Scripts
invoked in this way can run only in sandboxed mode, with the default
permissions.

1.8.1.1 Loading JavaScript Code into a Schema

Use the | oadj ava command to load your JavaScript code into your database schema.
Scripts are loaded as Java resources. For example, suppose you have a JavaScript file
hel | 0. j s as follows:

function hello()

{

/*

*This is a sanple Javascript file that prints "Hello Wrld".
*|

var hellow = "Hello Wrld";

return hel |l ow

}

var output = hello();
print (output);

Use the following command to load the hel | 0. j s script file into a schema named
your schena:

| oadjava -v -u yourschema hello.js

The | oadj ava command prompts you for a password and then creates a schema-
local resource hel | 0. j s with the following output:

argunents: '-u' 'yourschema/***' '-v' 'hello.js'
creating : resource hello.js
loading : resource hello.js
O asses Loaded: 0

Resour ces Loaded: 1

Sources Loaded: 0

Publ i shed Interfaces: 0

Cl asses generated: 0

Cl asses skipped: 0

Synonyns Created: 0

Errors: 0

You can also use the following command to verify whether you have successfully
loaded the hel | 0. j s file into the database or not:

sel ect object_name, object_type from user_objects;

This resource can then be passed to the Nashorn engine using the ways mentioned in
the following sections:

1.8.1.2 How to run JavaScript in Oracle JVM

1-26 Oracle Database Java Developer's Guide

Introduction to Nashorn JavaScript Engine

After loading the scripts in the database, you can run them in the following three
ways:

¢ Using the DBMS_JAVASCRIPT.RUN PL/SQL Procedure (page 1-27)
* Using the DbmsJavaScript Java Class (page 1-27)

¢ Using the Standard javax.script Java Package (page 1-28)
1.8.1.2.1 Using the DBMS_JAVASCRIPT.RUN PL/SQL Procedure

This approach is useful for JavaScript procedures that do not return any value. Invoke
the DBMS_JAVASCRI PT. RUN procedure for providing the resource name as the
argument. Make sure that your schema is granted the DBJAVASCRI PT role. The
DBMS_JAVASCRI PT. RUN procedure is a wrapper for the

oracl e. aurora. rdbns. DonsJavaScri pt. r un Java method, which invokes
Nashorn functionality internally.

From SQL

call dbns_javascript.run('hello.js");

If your JavaScript code returns an output value, then you must use the following
instructions to display the value on the standard output device:

SQ.>set serveroutput on
SQ >cal | dbns_j ava. set _out put (20000) ;
SQ.>cal | dbns_javascript.run("hello.js");

From PL/SQL:

dbns_j avascript.run(' hello.js");

If your JavaScript code returns an output value, then you must use the following
instructions to display the value on the standard output device:

SQL>set serveroutput on
SQ >cal | dbns_j ava. set _out put (20000) ;
SQ.>cal | dbms_javascript.run("hello.js");

See Also:

“Using the Standard javax.script Java Package” section for using JavaScript
functions

1.8.1.2.2 Using the DbmsJavaScript Java Class

This is the preferred way to invoke the scripts from Java code in Oracle JVM because it
enables you to apply the schema permissions to the JavaScript code. Invoke the
JavaScript that you loaded as resource hel | 0. j s from your Java code running in the
database. Invoke the method run of or acl e. aur or a. r dbns. DonsJavaScr i pt
class, passing in the resource name as the argument, as shown in the following code
snippet:

Note:
Make sure that your schema is granted the DBJAVASCRI PT role.

Introduction to Java in Oracle Database 1-27

Introduction to Nashorn JavaScript Engine

i mport oracl e.aurora.rdbns. DomsJavaScri pt;
DonsJavaScript.run("hello.js");
1.8.1.2.3 Using the Standard javax.script Java Package

This approach is useful for JavaScript functions that return values. Typically, you
perform the following tasks:

Note:
You must make sure that your schema is granted the DBJAVASCRI PT role.

1. Load the JavaScript in the database as a Java resource, using the | oadj ava
command.

2. Usethej avax. scri pt package to run the JavaScript.
3. Instantiate a script manager
4. Create an engine

5. Pass your resource stream reader as the argument to the eval method of the
engine

The following code snippet shows how to use the j avax. scri pt package to run
code from resource hel | 0. j s:

inport javax.script.*;
inport java.net.*;
inport java.io.*;

Il create a script engine manager
Scri pt Engi neManager factory = new Scri pt Engi neManager () ;
/'l create a JavaScript engine
Scri pt Engi ne engine =
factory. get Engi neByNane("j avascript");
Il create schema resource URL
URL url = Thread. current Thread()
. get Cont ext O assLoader (). get Resource("hello.js");
engi ne. eval (new | nput StreanReader (url.openStrean()));

You can also read the JavaScript code from a String. The following code snippet shows
how to read and evaluate JavaScript code from a String:

/'l evaluate JavaScript code from String
engi ne. eval (new StringReader (<script>));

Otherwise, you can also read the JavaScript code from a file. However, this involves
extra privileges. The following code snippet shows how to read and evaluate
JavaScript code from the scri pt _nane file:

inport javax.script.*;
Script Engi ne engine = new Scri pt Engi neManager ()

. get Engi neByName(" JavaScript");
engi ne. eval (new Fi | eReader ("scri pt_name"));

1-28 Oracle Database Java Developer's Guide

Introduction to Nashorn JavaScript Engine

After evaluating the JacaScript code, you typically perform the following tasks for
invoking JavaScript functions:

1. Cast the Nashorn engine to | nvocabl e and use i nvokeFuncti on.

For example, if the hel | 0. j s script defines a JavaScript function named hel | o,
then you can perform these tasks as shown in the following code snippet:

Il create a JavaScript engine as above
I nvocabl e i nvocabl e = (I nvocabl e) engine;
Obj ect nyResult = invocabl e.invokeFunction("hello");

Note:

An alternative way to use the i nvocabl e. i nvokeFunct i on is to pass the
return value to a Java method invoked from inside of a script. This alternative
way is preferable as it requires less boilerplate code and is compatible with the
DBMSJAVASCRI PT. RUN procedure.

For example, suppose your JavaScript resource hel | 0. j s defines the
sel ect Query function, and you want to pass the result to the pri nt () Java
method, which is defined in your class Quer yTest as follows:

public static void print (String results) {
Systemout.printIn("m results: \n" + results);

}

Then, to achieve this from JavaScript, add the following lines to the hel | 0. j s
file:

var queryTest = Java.type("QueryTest");
queryTest. print(sel ectQuery("all"));

Now, invoke hel | p. j s in one of the following ways:

DbmsJavaScript.run("hello.js");

DBVB_JAVASCRI PT. RUN(' hel 1 0.} s');

2. Create a PL/SQL procedure for invoking the JavaScript application, as shown in
the following example:

- Create a procedure for select
CREATE OR REPLACE PROCEDURE sel ectproc(id IN varchar?2)
IS
out put varchar2(10000);
BEG N
SELECT i nvokeScript Eval (id) | NTO output from dual;
ht p. prn(out put);
END;
/
SHOW ERRCRS;

1.8.2 JavaScript Data Access using JDBC

This section describes how to access data in RDBMS using JavaScript. Currently, there
is no JavaScript standard for accessing data in RDBMS. The Nashorn JavaScript engine
enables using standard JDBC within JavaScript.

Introduction to Java in Oracle Database 1-29

Introduction to Nashorn JavaScript Engine

Perform the following steps to publish your application using JDBC with JavaScript as
a service:

1. Create a table in the database and populate it using JSON, as shown in the
following example:

DROP TABLE enpl oyees PURCE;

CREATE TABLE enpl oyees (
id RAW 16) NOT NULL,
data CLOB,
CONSTRAI NT enpl oyees_pk PRI MARY KEY (id),
CONSTRAI NT enpl oyees_j son_chk CHECK (data 1S JSON)

);
TRUNCATE TABLE enpl oyees;

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS GUI D),

{
" Enpl d" . "100",
"FirstName" : "Kuassi",
"Last Name" : "Mensah",
"Job" . "Manager",
"Emai | " : "kuassi @r acl e. conf',
"Address" : {
"City" : "Redwood",
"Country" : "US"
}
P

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS GUI D),

{
" Enpl d" . "200",
"FirstName" : "Nancy",
"Last Name" . "G eenberg",
"Job" . "Manager",
"Emai | " : "Nancy@r acl e. cont',
"Address" : {
"City" : "Boston",
"Country" : "US"
}
P

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS GUI D),

{
" Enpl d" . "300",
"FirstName" : "Suresh",
"Last Nane" : "Mhan",
"Job" . "Devel oper",
"Emai | " . "Suresh@racl e. conf,
"Address" : {
"City" : "Bangal ore",
“Country" : "India"
}
P

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS GUI D),

{

1-30 Oracle Database Java Developer's Guide

Introduction to Nashorn JavaScript Engine

"Enpl d"
"Fi rst Name" :
"Last Name"
"Job"
"Emai | "

" Addr ess"

).

I NSERT | NTO enpl oyees (
VALUES (SYS GUI D),
{

"Enpl d"
"FirstName" :
"Last Name"
"Job"
"Emai "

" Addr ess"

).

. 400",

"N rnala",

. "Sundar appa”,
. "Manager",
© "N rmal a@r acl e. cont',

A

"Gty"
"Country" :
}

" Redwood",

d, data)

: "500",

" Amar nat h",

. "Chandana",
. "Test Devloper"”,
. "amar nat h@r acl e. cont',

A

"City" . "Bangalore",
"Country" : "India"
}

2. Write a JavaScript application using JDBC, as shown in the following example and
load the JavaScript code into a schema:

See Also:

Loading JavaScript Code into a Schema (page 1-26)

var sel ectQuery = function(id)

{
var Driver = Packages. oracle.jdbc. OracleDriver;
var oracl eDriver = new Driver();
var url = "jdbc:defaul t:connection:";
var query ="";
var output ="";
if(id=="all") {
query ="SELECT a.data FROM enpl oyees a";
} else {
query ="SELECT a.data FROM enpl oyees a WHERE a. dat a. Enpl d=" + id;
}

var connection = oracl eDriver.defaul t Connection();

/'l Prepare statenent

var preparedStatenent = connection. prepareStatenent (query);

/] execute Query

var resultSet = preparedStatenent. executeQuery();

/] display results

while(resultSet.next()) {
output = output + resultSet.getString(l) + "
";

}

/'l cl eanup

Introduction to Java in Oracle Database 1-31

Introduction to Nashorn JavaScript Engine

result Set.close();

prepar edSt at ement . cl ose();
connection. cl ose();

return output;

}

3. Create a Java resource, as shown in the following example:

create or replace and conpile java source nanmed "InvokeScript" as
import javax.script.*;

inport java.net.*;

inport java.io.*;

public class InvokeScript {
public static String eval (String inputld) throws Exception {
String output = new String();
try {
/] create a script engine manager
Scri pt Engi neManager factory = new Scri pt Engi neManager ();

/] create a JavaScript engine
Script Engi ne engine = factory. get Engi neByName("j avascript");

//read the script as a java resource
engi ne. eval (new
I nput St r eanReader (| nvokeScri pt. cl ass. get Resour ceAsStrean("sel ect.js")));
/1 Aternative approach

11
engi ne. eval (Thread. current Thread() . get Cont ext O assLoader (). get Resource("sel ect.js"
)i
I nvocabl e invocabl e = (Invocabl e) engine;
(oj ect sel ectResult = invocabl e.invokeFunction("sel ect Query", inputld);
output = selectResult.toString();
} catch(Exception e) {
out put =e. get Message();
}
return output;
}
}
/

4. Create a wrapper for the eval method of the engine, as shown in the following
example:

-- Create function

CREATE OR REPLACE FUNCTI ON i nvokeScri pt Eval (i nputld varchar2) return varchar2 as
| anguage j ava

name 'InvokeScript.eval (java.lang.String) return java.lang.String';

/

5. Invoke thei nvokeScri pt Eval JavaScript function from SQL, as shown in the
following example:

CREATE OR REPLACE PROCEDURE sql demp(id IN varchar2)
IS
out put varchar 2(10000);
BEG N
SELECT i nvokeScript Eval (id) INTO output from dual;
dbns_out put . put _I'i ne(out put);
END;

1-32 Oracle Database Java Developer's Guide

Introduction to Nashorn JavaScript Engine

/
SHOW ERRCRS;

6. Invoke the sql denp procedure from SQL, as shown in the following example:
SQL> set serveroutput on
SQ> cal | dbns_j ava. set _out put (5000) ;
SQ> cal | sql denmo(' 100');

Related Topics:

Publishing Your JavaScript Application to Cloud (page 1-33)
1.8.3 REST Enable Your JavaScript Application

Perform the following steps to make your JavaScript application a cloud-enabled
service using Oracle REST Data Services (ORDS):

1. Download the Oracle REST Data Services (ORDS) installer file from the following
location:

http:/ /www.oracle.com/technetwork/developer-tools/rest-data-services/
downloads/index.html

Note:

* You can perform similar steps for making your Java in the Database

application a cloud-enabled service using Oracle REST Data Services
(ORDS).

¢ For installing ORDS, you must have a USERS tablespace with at least 40
MB space.

2. Install ORDS by selecting the default options, except the following:

¢ When it prompts whether you want to use PL/SQL Gateway or not, select 2
for skipping the step.

* When it prompts you to specify passwords for Application Express RESTful
Services database users (APEX_LISTENER, APEX_REST_PUBLIC_USER),
select 2 for skipping the step.

¢ When it prompts whether you wish to start the service in standalone mode or
exit, select 1 for starting the service in standalone mode.

3. Assign a listening port to the service. By default, port 8080 is used, but you may
change this value in the or ds_par ans. proper ti es file under the . . . / par ans
directory. Then, use the following command to bounce the jersey server:

java -jar ords.war

4. Create a procedure similar to the following as a wrapper to the
i nvokeScri pt Eval method:

Rem Create a procedure for select

CREATE OR REPLACE PROCEDURE sel ectproc(id I N varchar?2)
IS

out put varchar2(10000);

Introduction to Java in Oracle Database 1-33

http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html

Introduction to Nashorn JavaScript Engine

BEG N
SELECT i nvokeScri pt Eval (i d) | NTO output from dual;
ht p. prn(out put);

END,

/

SHOW ERRCRS;

5. Create a procedure similar to the following for executing an external JavaScript
SELECT query:

begin
ords. create_service(
p_nmodul e_nanme => 'l oad.routes' ,
p_base path =>'/load/routes/",

p_pattern => 'nashorn/sel ectbyid/:id",
p_source_type => 'plsql/block',
p_source => 'pegin selectproc(:id); end;’
);
commit;
end;

/

6. Invoke the service from your browser, where the URL will be of the following
format:

http://<server>:<port>/ ords/ <workspace>/| oad/ r out es/ nashor n/ <your _JSON_quer y>/
<i nput >

For example:

http://1 ocal host: 8090/ ords/ ordstest/| oad/ rout es/ nashorn/ sel ect byi d/ 100

Here, 100 specifies the employee ID of the employee, whose details need to be
fetched. The following image illustrates the output:

1-34 Oracle Database Java Developer's Guide

Memory Model for Dedicated Mode Sessions

Figure 1-9 Output of the JavaScript Application

=) Mozilla Firefox s m

/ B http:jflocal...ectbyid/all: x | dF

¥ | € @ localhost:8090/ords/ordstest/load/routes/nashorm/selectbyid/a v

{ "Empld" : "100", "FirstName" : "Kuassi", "LastName" : "Mensah", "Job" :
"Manager"”, "Email" : "kuassi@oracle.com", "Address" : { "City" :
"Redwood", "Country" : "US" } }

{ "Empld" : "200", "FirstName" : "Nancy", "LastName" : "Greenberg",
"Job" : "Manager”, "Email" : "Nancy@oracle.com", "Address" : { "City" :
"Boston", "Country” : "US" } }

{ "Empld" : "300", "FirstName" : "Suresh", "LastName" : "Mohan", "Job" :
"Developer", "Email" : "Suresh@oracle.com", "Address" : { "City" :
"Bangalore", "Country" : "India" } }

{ "Empld" : "400", "FirstName" : "Nirmala", "LastName" : "Sundarappa",
"Job" : "Manager”, "Email" : "Nirmala@oracle.com", "Address" : { "City" :
"Redwood", "Country" : "US" } }

{ "Empld" : "500", "FirstName" : "Amarnath", "LastName" : "Chandana",
"Job" : "Test Devloper”, "Email" : "amarnath@oracle.com", "Address" : {
"City" : "Bangalore”, "Country” : "India" } }

The output is displayed in JSON format.

1.9 Memory Model for Dedicated Mode Sessions

Since Oracle Database 10g, the Oracle JVM has a new memory model for sessions that
connect to the database through a dedicated server. The basic memory structures
associated with Oracle include:

¢ System Global Area (SGA)

The SGA is a group of shared memory structures, known as SGA components,
that contain data and control information for one Oracle Database instance. The
SGA is shared by all server and background processes. Examples of data stored in
the SGA include cached data blocks and shared SQL areas.

® Program Global Areas (PGA)

A PGA is a memory region that contains data and control information for a server
process. It is nonshared memory created by Oracle when a server process is

started. Access to the PGA is exclusive to the server process. There is one PGA for
each server process. Background processes also allocate their own PGAs. The total

Introduction to Java in Oracle Database 1-35

Memory Model for Dedicated Mode Sessions

PGA memory allocated for all background and server processes attached to an
Oracle instance is referred to as the aggregate PGA.

The simplest way to manage memory is to allow the database to automatically
manage and tune it for you. To do so, you set only a target memory size initialization
parameter (MEMORY_TARGET) and a maximum memory size initialization parameter
(MEMORY_MAX_TARGET), on most platforms. The database then tunes to the target
memory size, redistributing memory as needed between the SGA and aggregate PGA.
Because the target memory initialization parameter is dynamic, you can change the
target memory size at any time without restarting the database. The maximum
memory size serves as an upper limit so that you cannot accidentally set the target
memory size too high. Because certain SGA components either cannot easily shrink or
must remain at a minimum size, the database also prevents you from setting the target
memory size too low.

See Also:

Oracle Database Administrator’s Guide

1-36 Oracle Database Java Developer's Guide

2

Java Applications on Oracle Database

Oracle Database runs standard Java applications. However, the Java-integrated Oracle
Database environment is different from a typical Java development environment. This
chapter describes the basic differences for writing, installing, and deploying Java
applications within Oracle Database in the following sections:

* Database Sessions Imposed on Java Applications (page 2-1)

® Execution Control of Java Applications (page 2-3)

¢ Java Code_ Binaries_ and Resources Storage (page 2-3)

¢ About Java Classes Loaded in the Database (page 2-4)

® Preparing Java Class Methods for Execution (page 2-5)

¢ User Interfaces on the Server (page 2-25)

® Shortened Class Names (page 2-25)

¢ (lass.forName() in Oracle Database (page 2-26)

* About Managing Your Operating System Resources (page 2-30)
* About Using the Runtime.exec Functionality in Oracle Database (page 2-33)
* Managing Your Applications Using JMX (page 2-33)

* Overview of Threading in Oracle Database (page 2-51)

® Shared Servers Considerations (page 2-54)

2.1 Database Sessions Imposed on Java Applications

In the Java-integrated Oracle Database, your Java applications exist within the context

of a database session. Oracle JVM sessions are entirely analogous to traditional Oracle

sessions. Each Oracle JVM session maintains the state of the Java applications accessed
by the client across calls within the session.

Figure 2-1 (page 2-2) illustrates how each Java client starts a database session as the
environment for running Java applications within the database. Each Java database
session has a separate garbage collector, session memory, and call memory.

Java Applications on Oracle Database 2-1

Database Sessions Imposed on Java Applications

Figure 2-1 Java Environment Within Each Database Session

database session 1

e
A

client 1

{3
i P
\r | I database session 2

client 2 >

{3
=2
1 | I database session 3

client 3

Each Java
database

session
session call g
memory memory

Within the context of a session, the client performs the following;:

1. Connects to the database and opens a session.

2. Runs Java within the database. This is referred to as a call.

3. Continues to work within the session, performing as many calls as required.
4. Ends the session.

Within a session, the client has its own Java environment. It appears to the client as if a
separate, individual JVM was started for each session, although the implementation is
more efficient than this seems to imply. Within a session, Oracle JVM manages the
scalability of applications. Every call from a single client is managed within its own
session, and calls from each client is handled separately. Oracle JVM maximizes
sharing read-only data between clients and emphasizes a minimum amount of per-
session incremental footprint, to maximize performance for multiple clients.

The underlying server environment hides the details associated with session, network,
state, and other shared resource management issues from the Java code. Fields defined
as st at i ¢ are local to the client. No client can access the st at i ¢ fields of other
clients, because the memory is not available across session boundaries. Because each
client runs the Java application calls within its own session, activities of each client are

2-2 Oracle Database Java Developer's Guide

Execution Control of Java Applications

separate from any other client. During a call, you can store objects in st at i ¢ fields of
different classes, which will be available in the next call. The entire state of your Java
program is private and exists for your entire session.

Oracle JVM manages the following within the session:

e All the objects referenced by st at i ¢ Java fields, all the objects referred to by
these objects, and so on, till their transitive closure

* Garbage collection for the client that created the session
* Session memory for st at i ¢ fields and across call memory needs

e Call memory for fields that exist within a call

2.2 Execution Control of Java Applications

In the Java 2 Platform, Standard Edition (J2SE) environment, you develop Java
applications with a mai n() method, which is called by the interpreter when the class
is run. The mai n() method is called when you enter the following command on the
command-line:

java cl assnane

This command starts the Java interpreter and passes the desired class, that is, the class
specified by cl assnane, to the Java interpreter. The interpreter loads the class and
starts running the application by calling mai n() . However, Java applications within
the database do not start by a call to the mai n() method.

After loading your Java application within the database, you can run it by calling any
st at i ¢ method within the loaded class. The class or methods must be published
before you can run them. In Oracle Database, the entry point for Java applications is
not assumed to be mai n() . Instead, when you run your Java application, you specify
a method name within the loaded class as your entry point.

For example, in a standard Java environment, you would start the Java object on the
server by running the following command:

java myprogram

where, my pr ogr amis the name of a class that contains the mai n() method. In
nmypr ogr am nei n() immediately calls mymet hod() for processing incoming
information.

In Oracle Database, you load the mypr ogr am cl ass file into the database and
publish myrret hod() as an entry-point. Then, the client or trigger can invoke
nmymet hod() explicitly.

2.3 Java Code, Binaries, and Resources Storage

In the standard Java development environment, Java source code, binaries, and
resources are stored as files in a file system, as follows:

e Source code files are saved as . j ava files.
e Compiled Java binary files are saved as . cl ass files.

* Resources are any data files, such as . properti es or. ser files, that are stored
in the file system hierarchy and are loaded and used at run time.

Java Applications on Oracle Database 2-3

About Java Classes Loaded in the Database

In addition, when you run a Java application, you specify the CLASSPATH, which is a
file or directory path in the file system that contains your . cl ass files. Java also
provides a way to group these files into a single archive form, a ZIP or Java Archive
(JAR) file.

Both these concepts are different in Oracle Database environment.

Table 2-1 (page 2-4) describes how Oracle Database handles Java classes and locates
dependent classes.

Table 2-1 Description of Java Code and Classes Storage in Oracle Database

Tasks How it differs for Oracle JVM
Storing Java code, In Oracle Database, source code, classes, and resources reside
binaries, and resources within the database and are known as Java schema objects,

where a schema corresponds to a database user. There are three
types of Java schema objects: source, class, and resource. There
areno.java,.class,.sqlj,.properties,or. ser fileson
the server. Instead, these files map to the appropriate Java
schema objects.

Locating Java classes Instead of the CLASSPATH, you use a resolver to specify one or
more schemas to search for Java source, class, and resource
schema objects.

2.4 About Java Classes Loaded in the Database

If you are not using the command-line interface, you must load Java files into the
database as schema objects, to make them available to Oracle JVM. As Figure 2-2
(page 2-5) illustrates, the | oadj ava tool can call the Java compiler of Oracle JVM,
which compiles source files into standard class files.

See Also:

"About Using the Command-Line Interface (page 3-8)"

Figure 2-2 (page 2-5) shows that the | oadj ava tool can set the values of options
stored in a system database table. Among other things, these options affect the
processing of Java source files.

2-4 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

Figure 2-2 Loading Java into Oracle Database

©
=
=
o

Jjava file .class file

g

loadjava

N

1
1
1
| Java Java Java Java
1
1

p- Java Options &
Complier Table

N

Each Java class is stored as a schema object. The name of the object is derived from the
fully qualified name of the class, which includes the names of containing packages.
For example, the full name of the class Handl e is:

oracl e. aurora. rdbns. Handl e

In the Java schema object name, slashes replace periods, so the full name of the class
becomes:

oracl e/ aurora/ rdbns/ Handl e

Oracle Database accepts Java names up to 4000 characters long. However, the names
of Java schema objects cannot be longer than 30 characters. Therefore, if a schema
object name is longer than 30 characters, then the system generates a short name, or
alias, for the schema object. Otherwise, the fully qualified name, also called full name,
is used. You can specify the full name in any context that requires it. When needed,
name mapping is handled by Oracle Database.

See Also:

"Shortened Class Names (page 2-25)" and "System Classes (page 1-20)"

2.5 Preparing Java Class Methods for Execution

To ensure that your Java methods run, you must do the following:

1. Decide when the Java source code is going to be compiled.

2. Decide if you are going to use the default resolver or another resolver for locating
supporting Java classes within the database.

Java Applications on Oracle Database 2-5

Preparing Java Class Methods for Execution

3. Load the classes into the database. If you do not wish to use the default resolver for

your classes, then you should specify a separate resolver with the load command.

4. Publish your class or method.

This sections covers the following topics:

Compiling Java Classes (page 2-6)

Overview of Resolving Class Dependencies (page 2-10)

Overview of Loading Classes Using the loadjava Tool (page 2-14)
Overview of Granting Execute Rights (page 2-19)

Overview of Controlling the Current User (page 2-20)

Overview of Checking Java Uploads (page 2-21)

About Publishing Java Methods Loaded in the Database (page 2-23)

Overview of Auditing Java Classes Loaded in the Database (page 2-23)

2.5.1 Compiling Java Classes

Compilation of the Java source code can be done in one of the following ways:

You can compile the source explicitly on a client system before loading it into the
database, through a Java compiler, such as j avac.

You can ask the database to compile the source during the loading process, which
is managed by the | oadj ava tool.

You can force the compilation to occur dynamically at run time.

Note:

If you decide to compile through the | oadj ava tool, then you can specify the
compiler options. Refer to "Specifying Compiler Options (page 2-7)" for
more information.

This section includes the following topics:

Compiling Source Through javac (page 2-6)

Compiling Source Through the loadjava Tool (page 2-7)
Compiling Source at Run Time (page 2-7)

Specifying Compiler Options (page 2-7)

Recompiling Source Programs Automatically (page 2-9)

2.5.1.1 Compiling Source Through javac

You can compile Java source code with a conventional Java compiler as shown in the
following example:

javac <file_nanme>.java

2-6 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

After compilation, you load the compiled binary into the database, rather than the
source itself. This is a better option, because it is usually easier to debug the Java code
on your own system, rather than debugging it on the database.

2.5.1.2 Compiling Source Through the loadjava Tool

When you specify the - r esol ve option with the | oadj ava tool for a source file, the
following occurs:

1. The source file is loaded as a source schema object.
2. The source file is compiled.
3. Class schema objects are created for each class defined in the compiled . j ava file.

4. The compiled code is stored in the class schema objects.

Oracle Database writes all compilation errors to the log file of the | oadj ava tool as
well as the USER_ERRORS view.
2.5.1.3 Compiling Source at Run Time

When you load the Java source into the database without the - r esol ve option, for
example:

| oadj ava <file_name>.java

Then, Oracle Database compiles the source automatically when the class is needed
during run time. The source file is loaded into a source schema object. Oracle Database
writes all compilation errors to the log file of the | oadj ava tool as well as the
USER_ERRCRS view.

2.5.1.4 Specifying Compiler Options

You can specify the compiler options in the following ways:

® Specify compiler options on the command line with the | oadj ava tool. You can
also specify the encoding option with the | oadj ava tool.

* Specify persistent compiler options in the JAVA$SOPTI ONS table. The JAVA
$OPTI ONS table exists for each schema. Every time you compile, the compiler
uses these options. However, any compiler options specified with the | oadj ava
tool override the options defined in this table. You must create this table yourself
if you wish to specify compiler options in this manner.

2.5.1.4.1 Specifying Default Compiler Options

When compiling a source schema object for which neither a JAVA$OPTI ONS entry
exists nor a command-line value for any option is specified, the compiler assumes a
default value as follows:

e encodi ng=System get Property("fil e.encoding");

e online=true

This option applies only to Java sources that contain SQL] constructs.
e debug=true

This option is equivalent to:

javac -g

Java Applications on Oracle Database 2-7

Preparing Java Class Methods for Execution

2.5.1.4.2 Specifying Compiler Options on the Command Line

The encodi ng compiler option specified with the | oadj ava tool identifies the
encoding of the . j ava file. This option overrides any matching value in the JAVA
$OPTI ONS table. The values are identical to:

javac -encodi ng
This option is relevant only when loading a source file.

2.5.1.4.3 Specifying Compiler Options Specified in a Database Table

Each JAVASOPTI ONS entry contains the names of source schema objects to which an
option setting applies. You can use multiple rows to set the options differently for
different source schema objects.

You can set JAVASOPTI ONS entries by using the following procedures and functions,
which are defined in the database package DBMS_JAVA:

PROCEDURE set _conpi | er _option(name VARCHAR2, option VARCHAR?, val ue VARCHAR?);
FUNCTI ON get _conpi | er _opti on(name VARCHAR2, option VARCHAR2) RETURNS VARCHARZ;
PROCEDURE r eset _conpi | er_option(name VARCHAR2, option VARCHAR?);

2.5.1.4.4 Details About Specifying Compiler Options Specified in the Database Table

Table 2-2 (page 2-8) describes the parameters for the methods described in
Specifying Compiler Options Specified in a Database Table (page 2-8) section.

Table 2-2 Definitions for the Name and Option Parameters

Parameter Description

name This is a Java package name, a fully qualified class name, or an
empty string. When the compiler searches the JAVASOPTI ONS
table for the options to use for compiling a Java source schema
object, it uses the row that has a value for name that most
closely matches the fully qualified class name of a schema
object. A name whose value is the empty string matches any
schema object name.

option The opt i on parameter is either onl i ne, encodi ng, or debug.

Initially, a schema does not have a JAVASOPTI ONS table. To create a JAVASOPTI ONS
table, use the j ava. set _conpi | er _opti on procedure from the DBMS_JAVA
package to set a value. The procedure will create the table, if it does not exist. Specify
parameters in single quotes. For example:

SQ> execute dbns_j ava. set_conpiler_option('x.y', 'online', 'false');

Table 2-3 (page 2-9) represents a hypothetical JAVASOPTI ONS database table. The
pattern match rule is to match as much of the schema name against the table entry as
possible. The schema name with a higher resolution for the pattern match is the entry
that applies. Because the table has no entry for the encodi ng option, the compiler
uses the default or the value specified on the command line. The onl i ne option
shown in the table matches schema object names as follows:

¢ Thename a. b. c. d matches class and package names beginning with a. b. c. d.
The packages and classes are compiled with onl i ne=t r ue.

2-8 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

¢ Thename a. b matches class and package names beginning with a. b. The name
a. b does not match a. b. c. d. The packages and classes are compiled with

onl i ne=f al se.

¢ All other packages and classes match the empty string entry and are compiled

with onl i ne=t r ue.

Table 2-3 Example JAVASOPTIONS Table

___|
Match Examples

Name Option

Value

a.b.c.d onli ne

ab onli ne

Empty string online

true

fal se

true

a.b.c.d

Matches the pattern exactly.
a.b.c.d.e
First part matches the pattern

exactly. No other rule matches the
full qualified name.

a.b

Matches the pattern exactly
a.b.c.x
First part matches the pattern

exactly. No other rule matches
beyond this rule.

a.c

No pattern match with any defined
name. Defaults to the empty string
rule.

X.y
No pattern match with any defined

name. Defaults to the empty string
rule.

2.5.1.5 Recompiling Source Programs Automatically

Oracle Database provides a dependency management and automatic build facility that
transparently recompiles source programs when you make changes to the source or
binary programs upon which they depend. Consider the following example:

public class A

{
B b;
public void assignB()
{
b = new B()

}

public class B

{
Cc;
public void assignC()
{
c = new ()

}

public class C

{
A a;

Java Applications on Oracle Database 2-9

Preparing Java Class Methods for Execution

public void assignA()
{

a = new A()
}
}

The system tracks dependencies at a class level of granularity. In the preceding
example, you can see that classes A, B, and C depend on one another, because A holds
an instance of B, B holds an instance of C, and Cholds an instance of A. If you change
the definition of class Aby adding a new field to it, then the dependency mechanism
in Oracle Database flags classes B and Cas invalid. Before you use any of these classes
again, Oracle Database attempts to resolve them and recompile, if necessary. Note that
classes can be recompiled only if the source file is present on the server.

The dependency system enables you to rely on Oracle Database to manage
dependencies between classes, to recompile, and to resolve automatically. You must
force compilation and resolution yourself only if you are developing and you want to
find problems early. The | oadj ava tool also provides the facilities for forcing
compilation and resolution if you do not want the dependency management facilities
to perform this for you.

2.5.2 Overview of Resolving Class Dependencies

Many Java classes contain references to other classes, which is the essence of reusing
code. A conventional JVM searches for . cl ass, . zi p,and . j ar files within the
directories specified in CLASSPATH. In contrast, Oracle JVM searches database
schemas for class objects. In Oracle Database, because you load all Java classes into the
database, you may need to specify where to find the dependent classes for your Java
class within the database.

All classes loaded within the database are referred to as class schema objects and are
loaded within certain schemas. All predefined Java application programming
interfaces (APIs), such as j ava. | ang. * , are loaded within the PUBLI Cschema. If
your classes depend on other classes you have defined, then you will probably load
them all within your own schema. For example, if your schema is HR, then the
database resolver searches the HR schema before searching the PUBLI Cschema. The
listing of schemas to search is known as a resolver specification. Resolver
specifications are defined for each class. This is in contrast to a classic JVM, where
CLASSPATHIs global to all classes.

When locating and resolving the interclass dependencies for classes, the resolver
marks each class as valid or invalid, depending on whether all interdependent classes
are located. If the class that you load contains a reference to a class that is not found
within the appropriate schemas, then the class is listed as invalid. Unsuccessful
resolution at run time produces a G assNot Found exception. Also, run-time
resolution can fail for lack of database resources, if the tree of classes is very large.

Note:

As with the Java compiler, the | oadj ava tool resolves references to classes,
but not to resources. Ensure that you correctly load the resource files that your
classes require.

For each interclass reference in a class, the resolver searches the schemas specified by
the resolver specification for a valid class schema object that satisfies the reference. If
all references are resolved, then the resolver marks the class valid. A class that has

2-10 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

never been resolved, or has been resolved unsuccessfully, is marked invalid. A class
that depends on a schema object that becomes invalid is also marked invalid.

To make searching for dependent classes easier, Oracle Database provides a default
resolver and resolver specification that searches the definer's schema first and then
searches the PUBLI Cschema. This covers most of the classes loaded within the
database. However, if you are accessing classes within a schema other than your own
or PUBLI C, you must define your own resolver specification.

Classes can be resolved in the following ways:

* Loading using the default resolver, which searches the definer's schema and
PUBLI C:

| oadj ava -resol ve

¢ Loading using your own resolver specification definition:

| oadj ava-resol ve -resolver "((* HR)(* OTHER)(* PUBLIQ))"

In the preceding example, the resolver specification definition includes the HR
schema, OTHER schema, and PUBLI C.

The - r esol ver option specifies the objects to search within the schemas defined. In
the preceding example, all class schema objects are searched within HR, OTHER, and
PUBLI C. However, if you want to search for only a certain class or group of classes
within the schema, then you could narrow the scope for the search. For example, to
search only for the ny/ gui / * classes within the OTHER schema, you would define the
resolver specification as follows:

| oadj ava -resolve -resolver '((* HR) ("ny/gui/*" OTHER) (* PUBLIQ))'

The first parameter within the resolver specification is for the class schema object, and
the second parameter defines the schema within which to search for these class
schema objects.

2.5.2.1 Allowing References to Nonexistent Classes

You can specify a special option within a resolver specification that allows an
unresolved reference to a nonexistent class. Sometimes, internal classes are never used
within a product. In a standard Java environment, this is not a problem, because as
long as the methods are not called, JVM ignores them. However, when resolving a
class, Oracle JVM tries to resolve all names referenced by that class, including names
that may never be used. If Oracle JVM cannot find a matching class for each such
names referenced by that class, then the class being resolved is marked as invalid and
cannot be run.

To ignore references, you can specify the wildcard, minus sign (-), within the resolver
specification. The following example specifies that any references to classes within
ny/ gui are to be allowed, even if it is not present within the resolver specification
schema list.

| oadj ava -resolve -resolver '((* HR (* PUBLIC) ("ny/gui/*" -))'
Without the wildcard, if a dependent class is not found within one of the schemas,
your class is listed as invalid and cannot be run.

In addition, you can define that all classes not found are to be ignored. However, this
is dangerous, because a class that has a dependent class will be marked as valid, even
if the dependent class does not exist. However, the class can never run without the
dependent class. In this case, you will receive an exception at run time.

Java Applications on Oracle Database 2-11

Preparing Java Class Methods for Execution

To ignore all classes not found within HR or PUBLI C, specify the following resolver
specification:

| oadj ava -resolve -resolver "((* HR) (* PUBLIC) (* -))"

If you later intend to load the nonexistent classes that required you to use such a
resolver, then you should not use a resolver containing the minus sign (-) wildcard.
Instead, include all referenced classes in the schema before resolving.

Even when a minus sign (-) wildcard is used, the super class of a class can never be
nonexistent. If the super class is not found, then the class will be invalid regardless of
the use of a minus sign (-) wildcard in the resolver.

Note:

An alternative mechanism for dealing with nonexistent classes is using the -
gem ssi ng option of the | oadj ava tool. This option causes the | oadj ava
tool to create and load definitions of classes that are referenced, but not
defined.

2.5.2.2 Bytecode Verifier

According to JVM specification, . cl ass files are subject to verification before the class
they define is available in a JVM. In Oracle JVM, the verification process occurs at class
resolution.

Table 2-4 (page 2-12) describes the problems the resolver may find and the
appropriate Oracle error code issued.

Table 2-4 ORA Errors
- - -

Error Code Description

ORA- 29545 If the resolver determines that the class is malformed, then the
resolver does not mark it valid. When the resolver rejects a
class, it issues an ORA- 29545 error. The | oadj ava tool reports
the error. For example, this error is thrown if the contents of
a . cl ass file are not the result of a Java compilation or if the
file has been corrupted.

The ORA- 29545 error may also show up if you used the minus
sign (-) wild card expression with the resolver and the validity
of some classes was not verified.

ORA- 29552 In some situations, the resolver allows a class to be marked
valid, but will replace bytecodes in the class to throw an
exception at run time. In these cases, the resolver issues an
ORA- 29552 warning that the | oadj ava tool reports. The
| oadj ava tool issues this warning when the Java Language
Specification (JLS) requires an
I nconpat i bl eC assChangeErr or to be thrown. Oracle
JVM relies on the resolver to detect these situations, supporting
the proper run-time behavior that the JLS requires.

A resolver with the minus sign (-) wildcard marks your class valid, regardless of
whether classes referenced by your class are present. Because of inheritance and
interfaces, you may want to write valid Java methods that use an instance of a class as
if it were an instance of a superclass or of a specific interface. When the method being

2-12 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

verified uses a reference to class A as if it were a reference to class B, the resolver must
check that A either extends or implements B. For example, consider the following
potentially valid method, whose signature implies a return of an instance of B, but
whose body returns an instance of A:

B nyMet hod(A a)
{

return a,

}

The method is valid only if A extends the class B or Aimplements the interface B. If A
or B have been resolved using the minus sign (-) wildcard, then the resolver does not
know that this method is safe. In this case, the resolver replaces the bytecodes of

nmy Met hod with bytecodes that throw an exception if my Met hod is called.

A resolver without the minus sign (-) wildcard ensures that the class definitions of A
and B are found and resolved properly if they are present in the schemas they
specifically identify. The only time you may consider using the alternative resolver is
if you must load an existing JAR file containing classes that reference other nonsystem
classes, which are not included in the JAR file.

See Also:

Schema Objects and Oracle JVM Utilities (page 12-1) for more information
about class resolution and loading your classes within the database.

2.5.3 Logging in Oracle JVM

Oracle JVM extends the JDK Java Logging APl in the area of logging properties
lookup to enhance security of logging configuration management and to support
logging configurations on a user basis.

See Also:
For more information about Java Logging APIs, visit the following site:

http://docs.oracle.conijavase/ 7/ docs/

You must activate the Loganager in the session to initialize the logging properties
in Oracle JVM. The logging properties are initialized once per session with the
LogManager API that is extended with the database resident resource lookup.

Oracle JVM performs the following steps to configure logging options:

1. Ifthejava. util.l oggi ng. config. cl ass property is set, then the logging
behavior is the same as in standard JDK.

2. Ifthejava. util.logging.config.class property is not set, then Oracle JVM
inspects the availability of the j avavni | i b/ | oggi ng. pr operti es resource in
the current user schema.

If available, this resource is used as the configuration setting for the LogManager
and thej ava. util. | oggi ng. config.fil e property is set.

Java Applications on Oracle Database 2-13

http://docs.oracle.com/javase/7/docs/

Preparing Java Class Methods for Execution

3. If both the above conditions do not hold true, then the
java.util.logging.config.fil e property isinspected and if specified, it is
used as described in LogManager APL

4. If none of the conditions in step 1, 2, and 3 holds true, then the j avavni | i b/
| oggi ng. properti es resource in the SYS schema is used. This resource is a
copy of the $(j ava. hone) /i b/ | oggi ng. properti es file that is loaded into
the SYS schema at database creation time. This means, by default, the LogManager
behaves as if it is configured as per the $(j ava. hone) /j avavm | i b/
| oggi ng. properti es file. However, altering this file has no effect until the
database is re-created

If you are not satisfied with the default settings in the j avavni | i b/

| oggi ng. properti es file, then prepare a different set of properties and load them
in your schema using the | oadj ava command. For example, if your schema is HRand
your current file directory is nydi r, then create a directory j avavni | i b/ under

nmydi r and specify the required properties in the | oggi ng. pr operti es file under
thenydi r/j avavm | i b/ directory. Then, invoke the | oadj ava command from
nydi r as follows:

mydir% | oadjava -u HR -v -r javavm |ib/l oggi ng. properties
passwor d: <passwor d>

After invoking the | oadj ava command, you can delete the nydi r/j avavni | i b/

| oggi ng. properti es file. Any session running as HR and performing activation of
LogManager will have the LogManager configured with properties coming from this
database resident resource private to HR

Note:

Oracle JVM always runs with a security manager. So, HR must be granted
logging permissions, regardless of the logging configuration method used. In
most cases, the following call issued by a privileged user is sufficient to grant
these permissions:

call dbns_java.grant_permission('HR,
"SYS:java.util.logging. Loggi ngPermission', 'control', "');

2.5.4 Overview of Loading Classes Using the loadjava Tool

You can use the | oadj ava tool to create schema objects from files and load the
schema objects to different schemas. For example,

| oadj ava -u HR -schema TEST MyC ass.java
Password: password

2-14 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

Note:

You do not have to load the classes to the database as schema objects if you
use the command-line interface. For example,

C:\oracl ehone\ bi n>l oadj ava -u HR MyCl ass. j ava
Password: password

For more information about the command-line interface, refer to "About Using
the Command-Line Interface (page 3-8)".

See Also:

Schema Objects and Oracle JVM Utilities (page 12-1)

You can also run the | oadj ava tool from within SQL commands. Unlike a
conventional JVM, which compiles and loads from files, Oracle JVM compiles and
loads from database schema objects.

Table 2-5 (page 2-15) describes database schema objects that correspond to the files
used by a conventional JVM.

Table 2-5 Description of Java Files

Java File Types Description

. j ava source files or . sql j source files correspond to Java source schema objects

. ¢l ass compiled Java files correspond to Java class schema objects

. properti es Java resource files, . ser SQLJ correspond to Java resource schema objects

profile files, or data files

You must load all classes or resources into the database to be used by other classes
within the database. In addition, at load time, you define who can run your classes
within the database.

Table 2-6 (page 2-15) describes the activities the | oadj ava tool performs for each
type of file.

Table 2-6 loadjava Operations on Schema Objects

Schema Object loadjava Operations on Objects

. j ava source files
1. Creates a Java source schema object in the definer's schema
unless another schema is specified.

2. Loads the contents of the source file into a schema object.

3. Creates a class schema object for all classes defined in the
source file.

4. If-resol ve is requested, compiles the source schema

object and resolves the class and its dependencies. It then
stores the compiled class into a class schema object.

Java Applications on Oracle Database 2-15

Preparing Java Class Methods for Execution

Table 2-6 (Cont.) loadjava Operations on Schema Objects
___|

Schema Object loadjava Operations on Objects

. sql j source files
1. Creates a source schema object in the definer's schema

unless another schema is specified.
2. Loads contents of the source file into the schema object.

3. Creates a class schema object for all classes and resources
defined in the source file.

4. If-resol ve is requested, translates and compiles the
source schema object and stores the compiled class into a
class schema object. It then stores the profile into a . ser
resource schema object and customizes it.

. ¢l ass compiled Java files
1. Creates a class schema object in the definer's schema

unless another schema is specified.
2. Loads the class file into the schema object.

3. Resolves and verifies the class and its dependencies if -
r esol ve is specified.

. properties Java
resource files 1. Creates a resource schema object in the definer's schema
unless another schema is specified.

2. Loads a resource file into a schema object.

. ser SQLJ profile
1. Creates a resource schema object in the definer's schema
unless another schema is specified.

2. Loadsthe. ser resource file into a schema object and
customizes it.

Note:

The dr opj ava tool performs the reverse of the | oadj ava tool. It deletes
schema objects that correspond to Java files. Always use the dr opj ava tool to
delete a Java schema object created with the | oadj ava tool. For example,

dropjava -u HR -schema TEST Myd ass.java
Password: password

Dropping with SQL data definition language (DDL) commands will not
update the auxiliary data maintained by the | oadj ava tool and the

dr opj ava tool. You can also run the dr opj ava tool from within SQL
commands.

After loading the classes and resources, you can access the USER_OBJECTS
view in your database schema to verify whether your classes and resources
have been loaded properly.

2-16 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

2.5.4.1 About Sharing of Metadata for User Classloaded Classes

Classes loaded by the built-in mechanism for loading database resident classes are
known as system classloaded, whereas those loaded by other means are called user
classloaded. When you load a class into the database, a representation of the class is
created in memory, part of which is referred to here as the class metadata. The class
metadata is the same for any session using the class and is potentially sharable.
Earlier, such sharing was available only for system classloaded classes. Since Oracle
Database 11g, you can also share class metadata of user classloaded classes, at the
discretion of the system administrator.

See Also:

Classpath Extensions and User Classloaded Metadata (page B-1)

2.5.4.2 Defining the Same Class Twice

You cannot have two class objects with the same name in the same schema. This rule
affects you in two ways:

Note:

An exception to this rule is when you use the - pr ependj ar nanes option for
database resident JARs. If you use this option, then you can have two classes
with the same class name in the same schema. For more information about
database resident JARs, see "Database Resident JARs (page 2-18)".

® You can load either a particular Java . cl ass file or its . j ava file, but not both.

Oracle Database tracks whether you loaded a class file or a source file. If you want
to update the class, then you must load the same type of file that you originally
loaded. If you want to update the other type, then you must drop the first before
loading the second. For example, if you loaded x. j ava as the source for class y,
then to load x. cl ass, you must first drop x. j ava.

* You cannot define the same class within two different schema objects in the same
schema. For example, suppose x. j ava defines class y and you want to move the
definition of y to z. j ava. If X. j ava has already been loaded, then the | oadj ava
tool rejects any attempt to load z. j ava, which also defines y. Instead, do either of
the following:

- Dropx.java,load z.] ava, which defines y, and then load the new x. j ava,
which does not define y.

— Load the new x. j ava, which does not define y, and then load z. j ava,
which defines y.

See Also:

"Database Resident JARs (page 2-18)"

Java Applications on Oracle Database 2-17

Preparing Java Class Methods for Execution

2.5.4.3 About Designating Database Privileges and JVM Permissions
You must have the following SQL database privileges to load classes:
e CREATE PROCEDURE and CREATE TABLE privileges to load into your schema.

e CREATE ANY PROCEDURE and CREATE ANY TABLE privileges to load into
another schema.

e oracle.aurora.security.JServerPerm ssion. | oadLi braryl nC ass.
cl assnane.

See Also:

"Permission for Loading Classes (page 10-21)"

2.5.4.4 About Loading JAR or ZIP Files

The | oadj ava tool accepts . cl ass, . j ava,. properties,.sqglj,.ser,.jar,
or. zi p files. The JAR or ZIP files can contain source, class, and data files. When you
pass a JAR or ZIP file to the | oadj ava tool, it opens the archive and loads the
members of the archive individually. There is no JAR or ZIP schema object. If the JAR
or ZIP content has not changed since the last time it was loaded, then it is not
reloaded. Therefore, there is little performance penalty for loading JAR or ZIP files. In
fact, loading JAR or ZIP files is the simplest way to use the | oadj ava tool.

Note:

Oracle Database does not reload a class if it has not changed since the last
load. However, you can force a class to be reloaded using the - f or ce option.

2.5.4.5 Database Resident JARs

Starting with 11g release 1 (11.1), when you load the contents of a JAR into the
database, you have the option of creating a database object representing the JAR itself.
In this way, you can retain an association between this JAR object and the class,
resource, and source objects loaded from the JAR. This enables you to:

* Usessigned JARs and JAR namespace segregation in the same way as you use
them in standard JVM.

* Manage the classes that you have derived from a JAR while loading it into the
database as a single unit. This helps you to prevent individual redefinition of the
classes loaded from the JAR. It also enables you to drop the whole set of classes
loaded from the JAR, irrespective of the contents or the continued existence of the
JAR on the external file system, at the time of dropping it.

In order to load a JAR into the database, you have the following options of the
| oadj ava tool:

e -jarsasdbobjects

e -prependj ar nanes

For more information regarding the | oadj ava tool options, refer to "The loadjava
Tool (page 12-6)" section.

2-18 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

2.5.5 Overview of Granting Execute Rights

If you load all classes within your own schema and do not reference any class outside
your schema, then you already have rights to run the classes. You have the privileges
necessary for your objects to call other objects loaded in the same schema. That is, the
ability for class A to call class B. Class Amust be given the right to call class B.

The classes that define a Java application are stored within Oracle Database under the
SQL schema of their owner. By default, classes that reside in one user's schema cannot
be run by other users, because of security concerns. You can provide other users the
right to run your class in the following ways:

e Using the | oadj ava - grant option

See Also:

"The loadjava Tool (page 12-6)"

¢ Using the following command:

SQL> grant execute on myclass to HR

where, nycl ass is the name of the underlying Java class.

Note:

Prior to Oracle Database 11g release 1 (11.1), granting execute right to a stored
procedure meant granting execute right to both the stored procedure and the
Java class referred by the stored procedure. Since Oracle Database 11g release,
if you want to grant execute right on the underlying Java class as well, then
you must grant execute right on the class explicitly. This is implemented for
better security.

Figure 2-3 (page 2-19) illustrates the rights required to run classes.

Figure 2-3 Rights to Run Classes

Method invocation: Class A invokes Class B; Class B invokes Class C.
Execution rights for classes:

— Class A needs execution rights for B.

— Class A does not need execution rights for C.

— Class B needs execution rights for C.

See Also:

Oracle Database Java Application Performance (page 9-1) for information
about JVM security permissions

Java Applications on Oracle Database 2-19

Preparing Java Class Methods for Execution

2.5.6 Overview of Controlling the Current User

During the execution of PL/SQL code, there is always a current user. The same
concept is used for the execution of Java code. Initially, the current user is the user,
who creates the session that invokes the Java code. A Java method is called from SQL
or PL/SQL through a corresponding wrapper. Java wrappers are special PL/SQL
entities, which expose Java methods to SQL and PL/SQL as PL/SQL stored
procedures or functions. Such a wrapper might change the current effective user. The
wrappers that change the current effective user to the owner of the wrapper are called
definer's rights wrappers. If a wrapper does not change the current effective user, then
the effective user remains unchanged.

By default, Java wrappers are definer's rights wrappers. If you want to override this,
then create the wrapper using the AUTHI D CURRENT_USER option.

See Also:

"Writing Top-Level Call Specifications (page 6-7)" for more information
about the AUTHI D CURRENT_USER option

At any time during the execution of Java code, a Java call stack is maintained. The
stack contains frames corresponding to Java methods entered, with the innermost
frame corresponding to the currently executing method. By default, Java methods
execute on the stack without changing the current user, that is, with the privileges of
their current effective invoker, not their definer.

You can load a Java class to the database with the | oadj ava - defi ner option. Any
method of a class having the definer attribute marked, becomes a definer's rights
method. When such a method is entered, a special kind of frame called a definer's
frame is created onto the Java stack. This frame switches the current effective user to
the owner (definer) of such a class. A new user ID remains effective for all inner
frames until either the definer's frame is popped off the stack or a nested definer's
frame is entered.

Thus, at any given time during the execution of a Java method that is called from SQL
or PL/SQL through its wrapper, the effective user is one of the following:

e The innermost definer's frame on the Java stack

e Either the owner of the PL/SQL wrapper of the topmost Java method, if it is
definer's rights, or the user who called the wrapper.

Consider a company that uses a definer's rights procedure to analyze sales. To provide
local sales statistics, the procedure anal yze must access sal es tables that reside at
each regional site. To do this, the procedure must also reside at each regional site. This
causes a maintenance problem. To solve the problem, the company installs an
invoker's rights version of the procedure anal yze at headquarters.

Figure 2-4 (page 2-21) shows how all regional sites can use the same procedure to
query their own sal es tables.

2-20 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

Figure 2-4 Invoker's rights Solution

Schema WEST Schema HQ

Schema EAST

analyze
(IR)

Occasionally, you may want to override the default invoker's rights behavior. Suppose
headquarters wants the anal yze procedure to calculate sales commissions and
update a central payr ol | table. This presents a problem, because invokers of

anal yze should not have direct access to the payr ol | table, which stores employee
salaries and other sensitive data.

Figure 2-5 (page 2-21) illustrates the solution, where the anal yze procedure call the
definer's rights procedure, cal cComm which in turn updates the payr ol | table.

Figure 2-5 Indirect Access

analyze
(IR)

Y

| L
I [
I [
I [
! | |
I [
i .
T 1
I Vol
I Vol
| |
I Vol
i i
1 | 1
. calc_comm ! !
| |
I Vo
I vl
| |
| |

I o
| |
I [
I [
! | |
! | |
I [
! | |
| [

(OR)

Sales ¢ e Sales

Y

payroll

2.5.7 Overview of Checking Java Uploads

You can query the USER_OBJECTS database view to obtain information about schema
objects that you own, including Java sources, classes, and resources. This enables you,

for example, to verify whether sources, classes, or resources that you load are properly
stored in schema objects.

Table 2-7 (page 2-21) lists the key columns in USER_OBJECTS and their description.

Table 2-7 Key USER_OBJECT Columns

Name Description
OBJECT_NAME Name of the object
OBJECT_TYPE Type of the object, such as JAVA SOURCE, JAVA CLASS, or

JAVA RESOURCE.

Java Applications on Oracle Database 2-21

Preparing Java Class Methods for Execution

Table 2-7 (Cont.) Key USER_OBJECT Columns
___|

Name Description

STATUS Status of the object. The values can be either VALI Dor
I NVALI D. It is always VALI D for JAVA RESOURCE.

Object Name and Type

An OBJECT_NAME in USER_OBJECTS is the alias. The fully qualified name is stored as
an alias if it exceeds 30 characters.

See Also:

"Shortened Class Names (page 2-25)" for information about fully qualified
names and aliases.

If the server uses an alias for a schema object, then you can use the LONGNAME()
function of the DBMS_JAVA package to receive it from a query as a fully qualified
name, without having to know the alias or the conversion rules.

SQ.> SELECT dbns_j ava. | ongnane(obj ect _nane) FROM user_obj ects WHERE
obj ect _type="JAVA SOURCE';

This statement displays the fully qualified name of the Java source schema objects.
Where no alias is used, no conversion occurs.

Note:
SQL and PL/SQL are not case-sensitive.

You can use the SHORTNAME() function of the DBMS_JAVA package to use a fully
qualified name as a query criterion, without having to know whether it was converted
to an alias in the database.

SQL*Pl us> SELECT obj ect _type FROM user _objects WHERE
obj ect _name=dbns_j ava. short name("' known_f ul | nane');

This statement displays the OBJECT_TYPE of the schema object with the specified
fully qualified name. This presumes that the fully qualified name is representable in
the database character set.

SQ> select * fromjavasnm
SHORT LONGNAMVE

/ 78e6d350_Bi nar yExcept i onHandl sun/tool s/javal Bi naryExcepti onHandl er
[b6c774bb_C assDecl aration sun/tool s/javal C assDecl aration
/ af 5a8ef 3_Jar VerifierStreaml sun/tools/jar/JarVerifierStreantl

This statement displays all the data stored in the j avasnmview.

Status

STATUS is a character string that indicates the validity of a Java schema object. A Java
source schema object is VAL| Dif it compiled successfully, and a Java class schema

2-22 Oracle Database Java Developer's Guide

Preparing Java Class Methods for Execution

object is VALI Dif it was resolved successfully. A Java resource schema object is always
VALI D, because resources are not resolved.

Example: Accessing USER_OBJECTS

The following SQL*Plus script accesses the USER_OBJECTS view to display
information about uploaded Java sources, classes, and resources:

COL object_name format a30

COL object_type format alb

SELECT obj ect _nane, object_type, status
FROM user _obj ects
WHERE obj ect _type IN (' JAVA SOURCE', 'JAVA CLASS , 'JAVA RESOURCE')
ORDER BY obj ect _type, object_nane;

You can optionally use wildcards in querying USER_OBJECTS, as in the following
example:

SELECT obj ect _nane, object_type, status
FROM user _obj ects
VHERE obj ect _name LIKE '%Al erter’;

The preceding statement finds any OBJECT_NAME entries that end with the characters
Alerter.

2.5.8 About Publishing Java Methods Loaded in the Database

Oracle Database enables clients and SQL to call Java methods that are loaded in the
database after they are published. You publish either the object itself or individual
methods. If you write a Java stored procedure that you intend to call with a trigger,
directly or indirectly in SQL data manipulation language (DML) or in PL/SQL, then
you must publish individual methods in the class. Using a call specification, specify
how to access the method. Java programs consist of many methods in many classes.
However, only a few st at i ¢ methods are typically exposed with call specifications.

See Also:

Publishing Java Classes With Call Specifications (page 6-1)

2.5.9 Overview of Auditing Java Classes Loaded in the Database

In releases prior to Oracle Database 10g release 2 (10.2), Java classes in the database
cannot be audited directly. However, you can audit the PL/SQL wrapper. Typically,
all Java stored procedures are started from some wrappers. Therefore, all Java stored
procedures can be audited, though not directly.

Since Oracle Database 10g release 2 (10.2), you can audit DDL statements for creating,
altering, or dropping Java source, class, and resource schema objects, as with any other
DDL statement. Oracle Database provides auditing options for auditing Java activities
easily and directly. You can also audit any modification of Java sources, classes, and
resources.

You can audit database activities related to Java schema objects at two different levels,
statement level and object level. At the statement level you can audit all activities
related to a special pattern of statements.

Table 2-8 (page 2-24) lists the statement auditing options and the corresponding SQL
statements related to Java schema objects.

Java Applications on Oracle Database 2-23

Preparing Java Class Methods for Execution

Table 2-8 Statement Auditing Options Related to Java Schema Objects

Statement Option SQL Statements

CREATE JAVA SOURCE CREATE JAVA SOURCE
CREATE OR REPLACE JAVA SOURCE

ALTER JAVA SOURCE ALTER JAVA SOURCE
DROP JAVA SOURCE DROP JAVA SOURCE
CREATE JAVA CLASS CREATE JAVA CLASS

CREATE OR REPLACE JAVA CLASS

ALTER JAVA CLASS ALTER JAVA CLASS
DROP JAVA CLASS DROP JAVA CLASS
CREATE JAVA RESOURCE CREATE JAVA RESOURCE

CREATE OR REPLACE JAVA RESOURCE
ALTER JAVA RESOURCE ALTER JAVA RESOURCE

DROP JAVA RESCQURCE DROP JAVA RESOURCE

For example, if you want to audit the ALTER JAVA SOURCE DDL statement, then
enter the following statement at the SQL prompt:

AUDI T ALTER JAVA SOURCE
Object level auditing provides finer granularity. It enables you to identify specific
problems by zooming into specific objects.

Table 2-9 (page 2-24) lists the object auditing options for each Java schema object. The
entry X in a cell indicates that the corresponding SQL command can be audited for
that Java schema object. The entry NA indicates that the corresponding SQL command
is not applicable for that Java schema object.

Table 2-9 Object Auditing Options Related to Java Schema Options

Object Option Java Source Java Resource Java Class
ALTER X NA X
EXECUTE NA NA X
AUDI T X X X
GRANT X X X

See Also:

® Oracle Database Security Guide

® Oracle Database SQL Language Reference

2-24 Oracle Database Java Developer's Guide

User Interfaces on the Server

2.6 User Interfaces on the Server

Oracle Database furnishes all core Java class libraries on the server, including those
associated with presentation of the user interfaces. However, it is inappropriate for
code running on the server to attempt to materialize or display a user interface on the
server. Users running applications in Oracle JVM environment should not be expected
nor allowed to interact with or depend on the display and input hardware of the
server where Oracle Database is running.

To address compatibility issues on platforms that do not support display, keyboard, or
mouse, Java 1.4 outlines Headless Abstract Window Toolkit (AWT) support. The
Headless AWT API introduces a new publ i ¢ run-time exception class,

j ava. awt . Headl essExcept i on. The constructors of the Appl et class, all heavy-
weight components, and many of the methods in the Tool ki t and

G aphi csEnvi ronnment classes, which rely on the native display devices, are
changed to throw Headl essExcept i on if the platform does not support a display. In
Oracle Database, user interfaces are supported only on client applications.
Accordingly, Oracle JVM is a Headless Platform and throws Headl essExcept i on if
these methods are called.

Most AWT computation that does not involve accessing the underlying native display
or input devices is allowed in Headless AWT. In fact, Headless AWT is quite powerful
as it provides programmers access to fonts, imaging, printing, and color and ICC
manipulation. For example, applications running in Oracle JVM can parse,
manipulate, and write out images as long as they do not try to physically display it on
the server. The standard JVM implementation can be started in the Headless mode, by
supplying the - Dj ava. awt . headl ess=t r ue property, and run with the same
Headless AWT restrictions as Oracle JVM does. Oracle JVM fully complies with the
Java Compatibility Kit (JCK) with respect to Headless AWT.

See Also:

http://ww. oracl e.com technetwork/articles/javase/
headl ess-136834. ht m

Oracle JVM takes a similar approach for sound support. Applications in Oracle JVM
are not allowed to access the underlying sound system for purposes of sound
playback or recording. Instead, the system sound resources appear to be unavailable
in a manner consistent with the sound API specification of the methods that are trying
to access the resources. For example, methods in j avax. sound. i di . M di Syst em
that attempt to access the underlying system sound resources throw the

M di Unavai | abl eExcept i on checked exception to signal that the system is
unavailable. However, similar to the Headless AWT support, Oracle Database
supports the APIs that allow sound file manipulation, free of the native sound devices.
Oracle JVM also fully complies with the JCK, when it implements the sound APL

2.7 Shortened Class Names

Each Java source, class, and resource is stored in its own schema object in the server.
The name of the schema object is derived from the fully qualified name, which
includes relevant path or package information. Dots are replaced by slashes.

Schema object names, however, have a maximum of only 30 characters, and all
characters must be legal and convertible to characters in the database character set. If

Java Applications on Oracle Database 2-25

http://www.oracle.com/technetwork/articles/javase/headless-136834.html
http://www.oracle.com/technetwork/articles/javase/headless-136834.html

Class.forName() in Oracle Database

any fully qualified name is longer than 30 characters or contains illegal or
nonconvertible characters, then Oracle Database converts it to a short name, or alias, to
use as the name of the schema object. Oracle Database keeps track of both the names
and how to convert between them. If the fully qualified name is 30 characters or less
and has no illegal or inconvertible characters, then it is used as the schema object
name.

Because Java classes and methods can have names exceeding the maximum SQL
identifier length, Oracle Database uses abbreviated names internally for SQL access.
Oracle Database provides the LONGNAME() function within the DBMS_JAVA package
for retrieving the original Java class name for any truncated name.

FUNCTI ON | ongnane (shortname VARCHAR2) RETURN VARCHAR2

This function returns the fully qualified name of the Java schema object, which is
specified using its alias. The following is an example of a statement used to display the
fully qualified name of classes that are invalid:

SELECT dbms_j ava. | ongnane (object _nane) FROM user_objects WHERE object _type = ' JAVA
CLASS' and status = 'INVALID ;

You can also specify a full name to the database by using the SHORTNAME() function
of the DBMS_JAVA package. The function takes a full name as input and returns the
corresponding short name. This function is useful for verifying whether the classes are
loaded successfully, by querying the USER_OBJECTS view.

FUNCTI ON shortnane (I ongnane VARCHAR2) RETURN VARCHAR2

See Also:

"System Classes (page 1-20)"

2.8 Class.forName() in Oracle Database
The JLS provides the following description of Cl ass. f or Name() :

Given the fully qualified name of a class, this method attempts to locate, load, and link
the class. If it succeeds, then a reference to the Cl ass object for the class is returned. If
it fails, then an instance of Cl assNot FoundExcept i on is thrown.

Class lookup is always on behalf of a referencing class and is done through an instance
of Ol assLoader . The difference between the Java Development Kit (JDK)
implementation and Oracle JVM implementation is the method in which the class is
found:

* The JDK uses one instance of Cl assLoader that searches the set of directory tree
roots specified by the CLASSPATH environment variable.

¢ Oracle JVM defines several resolvers that specify how to locate classes. Every class
has a resolver associated with it, and each class can, potentially, have a different
resolver. When you run a method that calls O ass. f or Nane() , the resolver of
the currently running class, which is t hi s, is used to locate the class.

See Also:

"Overview of Resolving Class Dependencies (page 2-10)"

2-26 Oracle Database Java Developer's Guide

Class.forName() in Oracle Database

You can receive unexpected results if you try to locate a class with an incorrect
resolver. For example, if a class X in schema X requests a class Y in schema Y to look up
class Z, you will experience an error if you expected the resolver of class X to be used.
Because class Y is performing the lookup, the resolver associated with class Y is used
to locate class Z. In summary, if the class exists in another schema and you specified
different resolvers for different classes, as would happen by default if they are in
different schemas, you may not find the class.

You can solve this resolver problem as follows:
¢ Avoid any class name lookup by passing the Cl ass object itself.
* Supply the Cl assLoader instance in the C ass. f or Nane() method.

* Supply the class and the schema it resides in to the cl assFor NameAndSchema()
method.

® Supply the schema and class name to Cl assFor Nare. | ookupC ass() .

® Serialize your objects with the schema name and the class name.

Note:

Another unexpected behavior can occur if system classes invoke

Cl ass. f or Nanme() . The desired class is found only if it resides in SYS or in
PUBLI C. If your class does not exist in either SYS or PUBLI C, then you can
declare a PUBLI Csynonym for the class.

This section covers the following topics:

* Supply ClassLoader in Class.forName() (page 2-27)

® Supply Class and Schema Names to classForNameAndSchema() (page 2-28)
* Supply Class and Schema Names to lookupClass() (page 2-29)

e Supply Class and Schema Names when Serializing (page 2-29)

® (lass.forName Example (page 2-29)

2.8.1 Supply ClassLoader in Class.forName()

Oracle Database uses resolvers for locating classes within schemas. Every class has a
specified resolver associated with it, and each class can have a different resolver
associated with it. As a result, the locating of classes is dependent on the definition of
the associated resolver. The Cl assLoader instance knows which resolver to use,
based on the class that is specified. When you supply a C assLoader instance to

Cl ass. f or Nane(), your class is looked up in the schemas defined in the resolver of
the class. The syntax of this variant of Cl ass. f or Name() is as follows:

Cl ass.forName (String nane, boolean initialize, CassLoader |oader);

The following examples show how to supply the class loader of either the current class
instance or the calling class instance.

Java Applications on Oracle Database 2-27

Class.forName() in Oracle Database

Example 2-1 Retrieve Resolver from Current Class

You can retrieve the class loader of any instance by using the
Cl ass. get C assLoader () method. The following example retrieves the class
loader of the class represented by instance x:

Cass cl = dass.forName (x.whatC ass(), true, x.getC ass().getC assLoader());

Example 2-2 Retrieve Resolver from Calling Class

You can retrieve the class of the instance that called the running method by using the
oracl e. aurora.vm Oracl eRunt i ne. get Cal | er O ass() method. After you
retrieve the class, call the O ass. get C assLoader () method on the returned class.
The following example retrieves the class of the instance that called the

wor kFor Cal | er () method. Then, its class loader is retrieved and supplied to the

d ass. f or Name() method. As a result, the resolver used for looking up the class is
the resolver of the calling class.

voi d workFor Cal | er ()
{

C assLoader cl=oracle.aurora.vm Oracl eRuntine. get Cal | erC ass().get O assLoader();

C ass c¢=C ass. forNane(name, true, cl);

}...

2.8.2 Supply Class and Schema Names to classForNameAndSchema()

You can resolve the problem of where to find the class by supplying the resolver,
which can identify the schemas to be searched. Alternatively, you can supply the
schema in which the class is loaded. If you know in which schema the class is loaded,
then you can use the cl assFor NamreAndSchema() method, which is in the
DonsJava class provided by Oracle Database. This method takes both the name of the
class and the schema in which the class resides and locates the class within the
designated schema.

Example 2-3 Providing Schema and Class Names

The following example shows how you can save the schema and class names using the
save() method. Both names are retrieved, and the class is located using the
DbnsJava. cl assFor NaneAndSchema() method.

i mport oracle. aurora.rdbns. O assHandl e;
i mport oracle. aurora.rdbns. Schemg;
i mport oracle. aurora.rdbns. DbnsJava,;

void save (Class cl)

C assHandl e handl e = C assHandl e. | ookup(cl);
Schema schema = handl e. schema();

writeName (schema. get Nanme());

writeName (cl.getName());

}

Cl ass restore()

{

String schemaNane = readName();
String className = readNane();
return DbrmsJava. cl assFor NameAndSchema (schemaNane, cl assNane);

}

2-28 Oracle Database Java Developer's Guide

Class.forName() in Oracle Database

2.8.3 Supply Class and Schema Names to lookupClass()

You can supply a St ri ng value containing both the schema and class names to the
oracl e.aurora.util.d assForNane. | ookupd ass() method. When called,
this method locates the class in the specified schema. The string must be in the
following format:

"<schenma>: <cl ass>"

For example, to locate com package. mycl ass in the HRschema, use the following:

oracl e.aurora. util.d assForName. | ookupC ass("HR com package. nycl ass");

Note:

Use uppercase characters for the schema name. In this case, the schema name
is case-sensitive.

2.8.4 Supply Class and Schema Names when Serializing

When you deserialize a class, part of the operation is to lookup a class based on a
name. To ensure that the lookup is successful, the serialized object must contain both
the class and schema names.

Oracle Database provides the following classes for serializing and deserializing
objects:

e oracle.aurora. rdbrs. DonmsObj ect Qut put St ream

This class extends j ava. i 0. Cbj ect Qut put St r eamand adds schema names in
the appropriate places.

e oracle.aurora.rdbns. DonsQbj ect | nput St ream

This class extends j ava. i 0. Obj ect | nput St r eamand reads streams written by
Dbrs Chj ect Qut put St r eam You can use this class in any environment. If used
within Oracle Database, then the schema names are read out and used when
performing the class lookup. If used on a client, then the schema names are
ignored.

2.8.5 Class.forName Example
The following example shows several methods for looking up a class:

import oracle.aurora.vm Oracl eRunti ne;
i mport oracle. aurora.rdbns. Scheng;
i mport oracle. aurora.rdbns. DbnsJava,;

public class ForName

{

private Cass from

/* Supply an explicit class to the constructor */
public ForNanme(d ass from
{

this.from= from

}

Java Applications on Oracle Database 2-29

About Managing Your Operating System Resources

/* Use the class of the code containing the "new ForName()" */
public For Nane()

{
from= Oacl eRuntine. getCallerdass();

}

/* 1ookup relative to Cass supplied to constructor */
public O ass | ookupWthd assLoader (String name) throws C assNot FoundException

{

/* A O assLoader uses the resolver associated with the class*/
return O ass.forName(nane, true, from getC assLoader());

}

/* In case the schema containing the class is known */
static C ass | ookupWthSchema(String nane, String schenm)

{

Schema s = Schena. | ookup(schems);
return DbmsJava. cl assFor NameAndSchenma(nane, s);

}
}

The preceding example uses the following methods for locating a class:

e To use the resolver of the class of an instance, call | ookupW t hCl assLoader ().
This method supplies a class loader to the Ol ass. f or Name() method in the
f r omvariable. The class loader specified in the f r omvariable defaults to this
class.

® To use the resolver from a specific class, call For Narme() with the designated class
name, followed by | ookupW t hCl assLoader () . The For Narme() method sets
the f r omvariable to the specified class. The | ookupW t hCl assLoader ()
method uses the class loader from the specified class.

* To use the resolver from the calling class, first call the For Nane() method
without any parameters. It sets the f r omvariable to the calling class. Then, call
the | ookupW t hCl assLoader () method to locate the class using the resolver of
the calling class.

e Tolookup a class in a specified schema, call the | ookupW t hSchema() method.
This provides the class and schema name to the cl assFor NaneAndSchenma()
method.

2.9 About Managing Your Operating System Resources

Operating system resources are a limited commodity on any computer. Because Java is
targeted at providing a computing platform as well as a programming language, it
contains platform-independent classes and frameworks for accessing platform-specific
resources. The Java class methods access operating system resources through JVM.
Java has potential problems with this model because programmers rely on the garbage
collector to manage all resources, when all that the garbage collector manages is Java
objects and not the operating system resources that the Java objects hold on to.

In addition, when you use shared servers, your operating system resources, which are
contained within Java objects, can be invalidated if they are maintained across calls
within a session.

2-30 Oracle Database Java Developer's Guide

About Managing Your Operating System Resources

See Also:

"Operating System Resources Affected Across Calls (page 2-59)"

The following sections discuss these potential problems:
* Overview of Operating System Resources (page 2-31)

e Garbage Collection and Operating System Resources (page 2-32)

2.9.1 Overview of Operating System Resources

In general, your operating system resources contain the following;:

Operating System Description

Resources

memory

files and sockets

threads

Oracle Database manages memory internally, allocating memory as you create objects
and freeing objects as you no longer need them. The language and class libraries do not
support a direct means to allocate and free memory.

See Also: "Memory Spaces Management (page 1-10)".

Java contains classes that represent file or socket resources. Instances of these classes hold
on to the file or socket constructs, such as file handles, of the operating system.

Oracle JVM threads provide no additional scalability over what is provided by the
database support of multiple concurrently executing sessions. However, Oracle JVM
supports the full Java threading API

See Also: "Overview of Threading in Oracle Database (page 2-51)".

Operating System Resource Access

By default, a Java user does not have direct access to most operating system resources.
A system administrator can give permissions to a user to access these resources by
modifying JVM security restrictions. JVM security enforced upon system resources
conforms to Java 2 security.

See Also:

"Overview of Java 2 Security Features (page 10-3)"

Operating System Resource Lifetime

You can access operating system resources using the standard core Java classes and
methods. Once you access a resource, the time that it remains active varies according
to the type of resource. Memory is garbage collected. Files, threads, and sockets persist
across calls when you use a dedicated mode server. In shared server mode, files,
threads, and sockets terminate when the call ends.

See Also:

"Operating System Resources Affected Across Calls (page 2-59)".

Java Applications on Oracle Database 2-31

About Managing Your Operating System Resources

2.9.2 Garbage Collection and Operating System Resources

Imagine that memory is divided into two realms: Java object memory and operating
system constructs. The Java object memory realm contains all objects and variables.
Operating system constructs include resources that the operating system allocates to
the object when it asks. These resources include files, sockets, and so on.

Basic programming rules dictate that you close all memory, both Java objects and
operating system constructs. Java programmers incorrectly assume that memory is
freed by the garbage collector. The garbage collector was created to collect all unused
Java object memory. However, it does not close operating system constructs. All
operating system constructs must be closed by the program before the Java object is
garbage collected.

For example, whenever an object opens a file, the operating system creates the file and
gives the object a file handle. If the file is not closed, then the operating system holds
the file handle construct open until the call ends or JVM exits. This may cause you to
run out of these constructs earlier than necessary. There are a finite number of handles
within each operating system. To guarantee that you do not run out of handles, close
your resources before exiting the method. This includes closing the streams attached
to your sockets before closing the socket.

For performance reasons, the garbage collector cannot examine each object to see if it
contains a handle. As a result, the garbage collector collects Java objects and variables,
but does not issue the appropriate operating system methods for freeing any handles.

Example 2-4 (page 2-32) shows how to close the operating system constructs.

If you do not close i nFi | e, then eventually the Fi | e object will be garbage collected.
Even after the Fi | e object is garbage collected, the operating system treats the file as if
it were in use, because it was not closed.

Note:

You may want to use Java finalizers to close resources. However, finalizers are
not guaranteed to run in a timely manner. Instead, finalizers are put on a
queue to run when the garbage collector has time. If you close your resources
within your finalizer, then it might not be freed until JVM exits. The best
approach is to close your resources within the method.

Example 2-4 Closing Your Operating System Resources

public static void addFile(String[] newFile)

{
File inFile = new File(newFile);
Fi | eReader in = new Fil eReader (inFile);
int i;
while ((i =in.read()) !'=-1)
out.write(i);
/*closing the file, which frees up the operating systemfile handle*/
in.close();
}

2-32 Oracle Database Java Developer's Guide

About Using the Runtime.exec Functionality in Oracle Database

2.10 About Using the Runtime.exec Functionality in Oracle Database

Java Virtual Machine fully supports the family of Java Standard Edition

j ava. |l ang. Runt i ne. exec methods. These methods spawn a new operating
system (OS) process to run a user-supplied command. On the server, you must use
these methods with caution. In Java Virtual Machine, OS command execution
permissions are not granted to all database users by default and are issued only by
privileged administrators. If you are a DBA, then you must go through the "Secure
Use of Runtime.exec Functionality in Oracle Database (page 10-23)" section and follow
the recommendations. Also, you must be selective about issuing these permissions to
database users.

2.11 Managing Your Applications Using JMX

This section contain the following topics:

¢ Overview of JMX (page 2-33)

* Enabling and Starting JMX in a Session (page 2-34)

¢ Setting Oracle JVM JMX Defaults and Configurability (page 2-35)
e Examples of SQL calls to dbms_java.start_jmx_agent (page 2-36)
¢ Using JConsole to Monitor and Control Oracle JVM (page 2-37)

* Important Security Notes (page 2-50)

® Shared Server Limitations for J]MX (page 2-50)

2.11.1 Overview of JMX

JMX (Java Management Extensions) is a Java technology that supplies tools for
managing and monitoring applications, system objects, devices, service-oriented
networks, and JVM (Java Virtual Machine). This API allows its classes to be
dynamically constructed and changed. So, you can use this technology to monitor and
manage resources as they are created, installed, and implemented. The JMX API also
includes remote access, so a remote management program can interact with a running
application for these purposes.

In JMX, a given resource is instrumented by one or more Java objects known as
MBeans (Managed Beans). These MBeans are registered in a core managed object
server, known as an MBean server, that acts as a management agent and can run on
most devices enabled for the Java programming language. A JMX agent consists of an
MBean server, in which MBeans are registered, and a set of services for handling
MBeans.

See Also:

e http://ww. oracl e. com technetwork/javaljavase/tech/
j avamanagenent - 140525. ht

e http://docs.oracl e.conijavase/ 7/ docs/t echnot es/ gui des/
security/jssel/ JSSERef Gui de. ht m

Java Applications on Oracle Database 2-33

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

Managing Your Applications Using JMX

2.11.2 Enabling and Starting JMX in a Session

To help in enabling and running JMX services in sessions running Java, the
JMXSERVERTrole and the dbs_j ava. st art _j mx_agent procedure are provided.
The JMXSERVERTrole is granted specific Java permissions that enable you to start and
run MBeanServer and JMX agent in a session. The procedure

dbns_j ava. start_j nx_agent starts the agent in a specific session that generally
remains active for the duration of the session. Perform the following to enable and
start JMX:

1. Obtain JMXSERVER from SYS or SYSTEM

SQ> grant jnxserver to HR

where, HRis the user name.

2. Invoke the procedure dbns_j ava. start _j nx_agent to startup JMX in the
session. The dbrs_j ava. st art_j mx_agent procedure can be invoked with the
following arguments:

por t : the port for the JMX listener. The value of this parameter sets the Java
property COm sun. managenent . j nxr enot e. port .

ssl : sets the value for the Java property
com sun. managenent . j mxr enot e. ssl . Case fort r ue and f al se values is
ignored.

aut h: the value for the property

com sun. managenent . j nkr enot e. aut hent i cat e, otherwise a semicolon-
separated list of Java Authentication and Authorization Service (JAAS) credentials.
The value is not case-sensitive.

Each of these arguments can be nul | or omitted, with nul | as the default value.
when an argument is nul | , it does not alter the previously present value of the
corresponding property in the session.

Note:

The Java properties corresponding to the parameters of

dbns_j ava. start _j nx_agent are from the set of Java properties specified
in standard Java 5.0 JMX documentation. For the full list of Java J]MX
properties please refer to ht t p: / / www. or acl e. coni t echnet wor k/ j ava/
j avasel/ t ech/j avamanagenent - 140525. ht m

The dbns_j ava. start_j nx_agent procedure starts an agent activating OJVM
JMX server and a listener. The J]MX server runs as one or more daemon threads in
the current session and in general is available for the duration of the session. Once
JMX Agent is started in a session, Java code running in the session can be
monitored.

The dbrrs_j ava. st art _j mx_agent procedure is a PL/SQL wrapper for the Java
method or acl e. aur or a. r dbrs. JMXAgent . st ar t QJVMAgent , which by itself
can also be called programmatically from Java stored procedures. The

st art QJVMAgent method starts the JMX Server and the JMX connectivity daemon
threads, and then exits. On dedicated servers, these threads may remain active for
the duration of the session, but go into an inert state for the time intervals between

2-34 Oracle Database Java Developer's Guide

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Managing Your Applications Using JMX

calls. When these intervals are short, then the same socket connections resume
transparently. This enables clients such as JConsole to remain connected across
multiple calls.

See Also:

"Shared Server Limitations for JMX (page 2-50)"

A different mode of JMX monitoring is possible with the

EXI T_CALL_WHEN_ALL_THREADS_TERM NATE policy. By setting the call exit
policy to Or acl eRunt i me. EXI T_CALL_WHEN _ALL_THREADS_TERM NATE, you
can configure the session to run JMX server continuously in a call that invokes the
st art QJVMAgent method till the Java call is exited programmatically. This mode
is convenient when various Java tasks are fired up from a JMX client as operations
of specific MBeans. This way, continuous JMX management and monitoring is
driven by these operations. Please refer to the JVM JMX demo for such a bean, for
example, j nxserv. Load.

2.11.3 Setting Oracle JVM JMX Defaults and Configurability

When dbrs_j ava. st art_j nx_agent is activated, the property

com sun. managenent . j nxr enot e is set to t r ue. Before invoking

start_j mx_agent, a JMXSERVER-privileged user can preset various management
properties in the following ways:

¢ Using the PL/SQL function dbns_j ava. set _property

e Invoking method j ava. | ang. Syst em set Property

The JMXSERVER role user can also preset the properties in database resident Java
resource specified by Java property com sun. managenent . confi g. fil e. The
default name for this resource, tried when com sun. nanagenent .. config.fileis
not set, is | i b. managenent . nanagenent . properti es. This resource mechanism
is Oracle JVM extension of standard file-based J]MX configuration management. This
mechanism is superior for Oracle JVM as it provides more security and per-schema
management. When the resource does not exist in schema, a file-read is attempted as a
fall-back. The default file path, tried when com sun. managenent . config.fil eis
not set, is $(j ava. hone) / | i b/ managenent / managenent . properti es. In Oracle
Database 12c this file contains the following presets:

com sun. managenent . j nxrenot e. ssl . need. client.auth = true
com sun. managenent . j nxrenot e. aut henticate = fal se

The property com sun. managenent . j nxr enpt e. ssl . need. cl i ent. aut hin
conjunction with com sun. managenent . j nxr enot e. ssl, sets JMX for two-way
encrypted SSL authentication with client and server certificates. The default value of
com sun. managenent . j nxr enot e. ssl ist r ue. This configuration is the default
and is preferred over JAAS password authentication.

Java Applications on Oracle Database 2-35

Managing Your Applications Using JMX

Note:

For more information visit the following:

e http://ww. oracl e.comtechnetwork/javaljavase/tech/
j avamanagenent - 140525. ht m

e http://docs.oracl e.conijavase/ 7/ docs/t echnot es/ gui des/
security/jssel/ JSSERef Gui de. ht m

Note:

The default J]MX Login Module providing file-based store for passwords is not
supported in Oracle JVM for security reasons. So, if JAAS password
authentication must be used instead of SSL client authentication, then pass
transient JAAS credentials securely as the aut h parameter to

dbns_j ava. start _j nx_agent as illustrated in this section, or configure
JMX to use a secure custom LDAP login module.

2.11.4 Examples of SQL calls to dbms_java.start_jmx_agent

Following are some examples of starting the JMX server:

Starts the JMX server and the listener using the default settings as described in the
preceding sections or the values set earlier in the same session:

call dbnms_java.start_jmx_agent();

Starts the JMX server and the listener using the default settings as described in the
preceding sections or the values set earlier in the same session:

call dbns_java.start_jm_agent(null, null, null);

Starts the JMX server and the listener on port 9999 with the other JMX settings
having the default values or the values set earlier in the same session:

call dbns_java.start_jmx_agent (' 9999');

Starts the JMX server and the listener on port 9999 with the other JMX settings
having the default values or the values set earlier in the same session:

call dbns_java.start_jm_agent('9999', null, null);

Starts the JMX server and the listener with the JMX settings having the default
values or the values set earlier in the same session and with JAAS credentials
nmoni t or Rol e/ 1z2x and cont r ol Rol e/ 2p3o:

call dbns_java.start_jm_agent(null, null, "monitorRolel1z2x; control Rol e/ 2p30');

These credentials are transient. The property
com sun. managenent . j nxr enot e. aut henti cat eissettotrue.

Starts JMX listener on port 9999 with no SSL and no JAAS authentication. Used
only for development or demonstration.

2-36 Oracle Database Java Developer's Guide

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

Managing Your Applications Using JMX

See Also:

"Important Security Notes (page 2-50)"

call dbns_java.start_jmx_agent('9999', 'false', 'false');

2.11.5 Using JConsole to Monitor and Control Oracle JVM

This section describes how to use JConsole, a standard JMX client tool, for monitoring
and controlling Oracle JVM. JConsole is a part of standard Java JDK.

This section discusses the following topics:

¢ Using the jconsole Command (page 2-37)

* About Using the JConsole interface (page 2-38)
¢ The OracleRuntime MBean (page 2-46)

* Memory Thresholds (page 2-48)

Note:

To monitor Java in the database with JConsole, you should have a server-side
Java session running JMX Agent. For more information refer Enabling and
Starting JMX in a Session (page 2-34).

2.11.5.1 Using the jconsole Command

Use the j consol e command syntax to start JConsole. The simplest format to start the
JConsole tool is the following:

jconsol e [host Nane: port Nunj
where:
* host nane is the name of the system running the application

* port Numis the port number of the J]MX listener

In the following examples, we connect to a host with name exanpl e. comthrough
default port 9999. This mode assumes no authentication and encryption. This mode is
adequate only for demo or testing, and can be used to connect to Oracle JVM JMX
sessions that are started with the following command:

call dbns_java.start_jmx_agent (portNum false, false);

Remember that you can connect to and interact with Oracle JVM from JConsole, only
when the daemon threads of the server are running and are not dormant. This means
that there should be an active Java call in the session, which is running the JMX server
on the specified port. During the time interval between subsequent Java calls, JMX
server preserves its state and statistics, but is unable to communicate with JConsole.

See Also:

Important Security Notes (page 2-50)

Java Applications on Oracle Database 2-37

Managing Your Applications Using JMX

2.11.5.2 About Using the JConsole interface

The JConsole interface consists of the following tabs:

Summary tab

It displays summary information on Oracle JVM and the values monitored by
JMX. For more information see About Viewing Oracle JVM Summary Information
(page 2-38).

Memory tab

It displays information on memory usage. For more information see About
Monitoring Memory Consumption (page 2-40).

Threads tab

It displays information on thread usage. For more information see About
Monitoring Thread Use (page 2-42).

Classes tab

It displays information on class loading. For more information see About
Monitoring Class Loading (page 2-42).

MBeans tab

It displays information on MBeans. For more information see About Monitoring
and Managing MBeans (page 2-43).

VM tab

It displays information on Oracle JVM. For more information see About Viewing
VM Information (page 2-46).

Note:

In Oracle Database 12¢ Release 1 (12.1), the data collected and passed to
JConsole is limited to the Oracle JVM session that runs the JMX agent. This
data does not include the attributes of other sessions that may be running in
Oracle JVM. One exception is the Or acl eRunt i me MBean that provides
information about many WholeJVM_ Attributes and operations of Oracle
JVM. For more information on Or acl eRunt i ne MBean, refer to "The
OracleRuntime MBean (page 2-46)".

2.11.5.3 About Viewing Oracle JVM Summary Information

You can use the Summary tab of the JConsole interface to view Oracle JVM Summary
Information. This tab displays key monitoring information on thread usage, memory
consumption, class loading, and other VM and operating system specifics.

If JConsole successfully connects to an Oracle JVM session running a JMX Agent, then
the Overview Tab looks the following image:

2-38 Oracle Database Java Developer's Guide

Managing Your Applications Using JMX

Figure 2-6 The Overview Tab of the JConsole Interface

20 Mb

15 Mb

10Mb

6.0 Mb

Classes

2,000

1,500

1,000

|£| Connection ‘Window Help o

»
Overview | Memoary | Threads | Classes | ¥M Summary | MBeans L

Heap Memory Usage Threads

o

Time Range: v

20

Used
< 11434888

s Live threads
9
8

12:30 13:00 13:30 14:00 12:30 13:00 13:30 14:00

Used: 11.5Mb Committed: 23.4 Mb Max: 14 Gb Live: 9 Peak: 11 Total: 47

CPU Usage

0.2%

Loaded
1742

4
/ .

CPU Usage
0.0% 4 0.0%

12:30 13:00 13:30 14.00 12:30 13:00 13:30 14:00

Loaded: 1,742 Unloaded: 0 Total: 1,742 CPU Usage: 0.0%

Table 2-10 (page 2-39) provides description of the fields present in the Overview tab.

Table 2-10 Description of the Overview Tab Fields in JConsole Interface
- - |

Field Description

Uptime The duration for which the Oracle JVM session has been
running.

Process CPU time This information is not gathered for Oracle JVM sessions in
Oracle Database 12c Release 1 (12.1).

Live threads The current number of live daemon and non-daemon threads.

Peak Highest number of live threads since Oracle JVM started.

Daemon threads

Total started

Current heap size
Committed memory
Maximum heap size

Objects pending for
finalization

Current number of live daemon threads.

Total number of threads started since Oracle JVM started. It
includes daemon, non-daemon, and terminated threads.

Number of kilobytes currently occupied by the heap.
Total amount of memory allocated for use by the heap.
Maximum number of kilobytes occupied by the heap.

Number of objects pending for finalization.

Java Applications on Oracle Database 2-39

Managing Your Applications Using JMX

Table 2-10 (Cont.) Description of the Overview Tab Fields in JConsole Interface

Field

Description

Garbage collector
information

Current classes loaded

Total classes loaded

Total classes unloaded

Total physical memory

Free physical memory

Committed virtual memory

Information about the garbage collector, which includes name,
number of collections performed, and total time spent
performing garbage collection.

Number of classes currently loaded into memory for execution.

Total number of classes loaded into session memory since the
session started.

Number of classes unloaded from memory. Typically this is
zero for Oracle Database 12¢ Release 1 (12.1).

This information is not gathered for Oracle JVM sessions in
Oracle Database 12c Release 1 (12.1). So, the value displayed is
zero.

This information is not gathered for Oracle JVM sessions in
Oracle Database 12c Release 1 (12.1). So, the value displayed is
Zero.

This information is not gathered for Oracle JVM sessions in
Oracle Database 12c Release 1 (12.1). So, the value displayed is
Zero.

2.11.5.4 About Monitoring Memory Consumption

You can use the Memory tab of the JConsole interface to monitor memory
consumption. This tab provides information on memory consumption and memory
pools. Figure 2-7 shows the Memory tab.

Figure 2-7 The Memory Tab of the JConsole Interface

Connection

Chart: Heap Memory Usage

Summary | Memory | Threads | Classes | MBeans | WM |

> Perform GC

70 Mb
60 Mb
50 Mb
40 Mb
30 Mb
20 Mb
10 Mb
0.0 Mb

e Al

Msed
4 24790048

1551
Details
Time: 2008-04-22 15:53:40
Used: 25,834 kbytes

Committed: 111,407 kbytes
Max: 13,107,455 kbytes

GC time:

1 minute seconds on
GCMamwger (12,362 collections)

15:52 1553

100% -

6% - |
0% -
5% -

0%~

2-40 Oracle Database Java Developer's Guide

Managing Your Applications Using JMX

The chart on the Memory tab shows Oracle JVM memory usages versus time, for the
whole memory space and also for specific memory pools. The memory pools available
for Oracle JVM reflect the internal organization of Oracle JVM and correspond to
object memories of Oracle JVM Memory Manager. The available memory pools in this
release of Oracle Database are:

New Generation Space

This is the memory pool from which memory is initially allocated for most objects.
This pool is also referred to as the Eden Space.

Old Generation Space

This memory pool contains objects that have survived the garbage collection
process in Eden Space. This pool is also referred to as the Survival Space.

Malloc/Free Space

This memory pool contains objects for which memory is allocated and freed in
malloc/free fashion.

End of Migration Space

This memory pool contains objects surviving end-of-session migration.

Dedicated Session Space

This memory pool is used to allocate memory to session objects in Oracle
Dedicated Sessions mode.

Paged Session Space

This memory pool is used to allocate memory to session objects that are big and
paged.

Run space

This memory pool is used to allocate memory to temporary and auxiliary objects.

Stack space

This memory pool is used to allocate memory to temporary objects for which
memory is allocated and freed in stack-like fashion.

The Details area in the Memory tab displays current memory matrixes that include the
following:

Used

This matrix indicates the amount of memory currently used by the process
running the session.

Committed

This matrix indicates the amount of memory guaranteed to be available for use by
Oracle JVM, as if the memory has already been allocated. The amount of
Committed memory may change over time. But Committed memory will always
be greater than or equal to Used memory.

Max

This matrix indicates the maximum amount of memory that can be used for
memory management. It usually corresponds to the initial configuration of Oracle
JVM.

Java Applications on Oracle Database 2-41

Managing Your Applications Using JMX

The bar chart at the lower right corner of the Memory tab shows memory consumed
by the individual memory pools. The bar turns red when the memory used exceeds
the memory usage threshold. You can set the memory usage threshold through an
attribute of the Menor yMXBean. For more information, see Memory Thresholds
(page 2-48).

2.11.5.5 About Monitoring Thread Use

You can use the Threads tab of the JConsole interface to monitor thread usage.

Figure 2-8 The Threads Tab of the JConsole Interface

Connection

[Summany Memonry Thraads] .Classes MBeans \-‘M [

Time Range: All -

Number of Threads
40
Feak
30 €+ 32
Total State
20 g : H.t i Startied
10 R e ssrie il o o e Live Threads
— - - 4 8
0
15:51 15:52 15:53 15:54 15:55 15:56 1557 15:58 | ==
Live Threads
RMI TCP Connection(3)-141.144.65.230 || java lang Object wait(Mative Method) b=
iJNK server connection timeout 9 com.sunjmcremote.internal ArayNotificationBuffer fetchN
'RMI LeaseChecker com.sun.jmcremote.internal ArayNotificationBuffer§Share =
im TCP Accept-9999 com.sun jracremote.internal ServerMotifF orwarder fetchiN
IRMI TCP Accept-0 | Jjavaxmanagementremote rmiRMIConnectionimpl fetchiig__|
| lsup.reflect MativeMethodAccessormalinvokedNative Meth ™|
Timer-0 = ; P >

Filter: ; 4 |

The chart on the Threads tab displays the number of live threads versus time, with a
particular color representing a particular type of thread:

* Magenta signifies total number of threads
* Red signifies peak number of threads

¢ Blue signifies number of live threads

The list of threads on this tab displays the active threads. Select a thread in the list to
display information about that thread on the right pane. This information includes
name, state, and stack trace of the thread.

The Filter field helps to narrow the threads.

2.11.5.6 About Monitoring Class Loading

You can use the Classes tab of the JConsole interface to monitor class loading. The
chart on this tab plots the number of classes loaded versus time.

2-42 Oracle Database Java Developer's Guide

Managing Your Applications Using JMX

Figure 2-9 The Classes tab of the JConsole interface

Connection
Summary i Memory | Threads Classes [MBeans [VM |

Time Range: Al e ."I ¥ Werhose Output

Number of Loaded Classes

2,000

1,500 Total Loaded

{ toaded
« 1m
1,000
16:28 16:29 16:30

Details

Time: 2008-04-28 16:30:03
Cwrrent classes loaded: 1,171
Total classes loaded: 1,171
Total classes unloaded: 0

2.11.5.7 About Monitoring and Managing MBeans

You can use the MBeans tab to monitor and manage MBeans. This tab displays
information on all the MBeans registered with the platform MBean server.

The tree on the left pane of the MBean tab is called the MBean tree and it shows all the
MBeans, organized according to their object Names. When you select an MBean in the
MBean tree, then its attributes, operations, notifications, and other information are
displayed on the right pane. For example, in Figure 2-10 (page 2-43), we have selected
the O d Gener ati on MemoryPool MBean in the MBean tree on the left and the
attributes of the O d Gener at i on MemoryPool MBean are displayed on the right.

Figure 2-10 Displaying the Attributes of an MBean

Connection
[Summary | Memory | Threads | Classes | MBeans | VM |
MBeans
[res : i | operati | Notificati " Info
f-'-lj.JMImnlsmeniahon E: o Value
§ Hiavalang |callectionUsage A% T « L0
@ Classloading - CollectionUsageThreshold o
@@ Compilztion ‘| CallectionUsageThresholdCount |0
o= [BarbageCallector ‘| CollectionUsageThresholdExce. . |tue
@@ Memory - CollectionUsageThresholdSupp... [fue
o=] MemaryManager | Memaryanagertames jarva. ane. String[3]
¢ = MemaryPool “Name Ol Generation
@ Dadicated Session Space - [Peaklsage vaxmanagement.openmbean.Co..,
@ End Of Migraltion Space [TP HEAP
@ MallocFree Space Usage avax management.openmbean.Co..
6 New Generation UsageThreshald o
i< UsageThresholdCount 0
@ Paged Session Space ‘| UsageThresholdExceeded frue
& Run Space |UsapeThresholdSuppored e
@ Stack Space || valid frue
@ operatingSystem :
@@ Runtime
@ Thraading
o [java util logging
o [jmxsans

Java Applications on Oracle Database 2-43

Managing Your Applications Using JMX

You can set the values of an attribute, if it is writeable. The writeable values are
displayed in blue color. For example, in Figure 2-10 (page 2-43), the attributes
Col I ecti onUaageThr eshol d and UsageThr eshol d are writable.

You can also display a chart of the values of an attribute versus time, by double-
clicking on the attribute value. For example, if you click on the value of the

Col | ecti onTi e property of the GCManager MBean, then you will see a chart
similar to Figure 2-11 (page 2-44):

Figure 2-11 Displaying a Chart of the Values of an Attribute

Connection

Summary | Memory | Threads | Classes | MBeans | VM |

&] MemoryManage
¢ 3 MemoaryPoal
@ Dedicated £
@ End Of Migr:
@ MallocFree
@ New Gener:
@ Old Generat
@ Paged Sess
4@ Run Space
@ Stack Space
@ OperatingSyste
@@ Runtime
@ Threading
¢ (=] jawa.util logging
@ Logging
q il I »

CaollectionTime

LaslGelinfo
MemorPoolNames
Name

Walid

MBeans
ETree |" Attributes | Operations | Motifications | Info |
o [JMimplementation R T T
¥ [j':"‘;a lang CollectionCount 127894
@ ClassLoading | [——
@ Compilation Discard chart |
¢ [=] GarbageCollect 300,000
@ GCManaget
@ Memory 250,000

CollectionTime

200,000 / 1, S

150,000
100,000
16:39

jja\rmc.mmagsmsm openmbean.CompositeD...
java.lang.String[6]

|GCManager

[rue

| Refresh

You can display the details of a complex attribute by clicking on the attribute. For
example, you can display the details of Usage and PeakUsage attributes of the
Memory Pools as shown in Figure 2-12 (page 2-45):

2-44 Oracle Database Java Developer's Guide

Managing Your Applications Using JMX

Figure 2-12 Displaying Details of a Complex Attribute in the MBeans Tab

Connection
" Summary | Memory | Threads | Classes | MBeans | VM |
MBeans
B ree | Attributes | Operations | Notifications | Info
¢ 3 JMimplementation : BTG Value
® MBeanServerDelegale i -
¢ £ javalang = #te Navigation| |
@ ClassLoading §§ Composite Navigation
@@ Compilation Name
o= (=] GarbageColleclor ey committed 112742400
B Memory it T R S
o= 3 MemoryManager ; max_ 268304384
¢ = MemonPool used 1112742400
@ Dedicaled Session Space i
@@ End Of Migration Space 3
@ MallociFree Space
@ New Generalion 2
@ Old Generalion oType. HEAP =
; ;z?‘egpsaissmn Space i < | Tahular Navigation
¥ Stack Space i
@ OperatingSystem << | Composite Navigation
@ Runtime :
@ Threading __Name |
o java.utillogging Hlusage committed 112742400
o O jmxserv ; init 984
i max 268304384
used 2779136 |
Refresh

The Operations tab of an MBean provides manageability interface. For example,
garbage collection can be invoked on a Memory Pool or Memory Manager by clicking
Perform Garbage Collection. The JMX demo of Oracle JVM, namely, j avavni deno/
j mx/ , provides several additional custom MBeans that are loaded into Oracle JVM.
Here is an example shows the result of the get Pr op operation of the DBPr ops
Mbean:

Figure 2-13 Operations Tab of the MBeans Tab of the JConsole Interface

Connection

[Summary | Memory r Threads | Class;i_r MBeans [|

MBeans
g EJ;;;:"I:VU“NW' ~ | attributes TQ‘H‘]UM ["Nm'rlu:aﬂn'n.t:' " Info]
- |
E
|
|

& [MemoryManager
¢ [MemoryPool
@ Dedicated Session Spa
@ End OfMigration Space ||
@ Malloc/Free Space
@ New Generation
@ 0ld Generation
@@ Paged Session Space
@ Run Space |
@ Stack Space |
@@ OperatingSystem |
@ Runtime
@@ Threading | @ Linux
o [java.util logging |], m2| String [)

? i |
J't‘r;usi;Br\iPrnns I

@ FilePermission d|
@ Load
@ PermissionManager EE
@ PropertyPermission hd 2

I [l Satresh .l

Cwopron | ([osname)

[

Java Applications on Oracle Database 2-45

Managing Your Applications Using JMX

2.11.5.8 About Viewing VM Information

You can use the VM tab of the JConsole interface to view VM information.

Figure 2-14 The VM Tab of the JConsole Interface

| £| Connection Window Help

1
m
*

| VM Summary

Wednesday, November 2, 2011 83641 PM VET

| Connection name: your machine name:9999
| Virtual Machine: JServer VM version 160
Vendor: Oracle Corporation
Name: (PID=21164;SID=1T)@ 7 our_machine name

Uptime: 4 minutes

Process CPU time: 0.000 seconds

JIT compiler: Oracle 11g
Total compile time: Unavailable

Maximum heap size: 13,632,255 kbytes

minutes

Live threads: & Current classes loaded: 1,233
Peak: ¢ Total classes loaded: 1,293
Daemon threads: 7 Total classes unloaded:]
Total threads started: 2
Current heap size: 8,176 kbytes Committed memory: 20,509

kbytes
Pending finalization: 0 objects

Garbage collector: Name ="GCManager, Collections = 54,061, Total time spent =2

Operating System: Linux2.6.18-238.0.0.0.1 el5xen
Architecture: =86 64
Number of precessors: 1
Committed virtual memory: 0 kbytes

Total physical memeory:
Free physical memory:
Total swap space:
Free swap space:

0 kbytes
0 kbytes
0 kbytes
0 kbytes

| VM arguments: DEDICATED MODE
Class path:

Library path: <your env libpath»
| Boot class path: Unavailable

2.11.5.9 The OracleRuntime MBean

Starting from Oracle Database 11g Release 2 (11.2), a new MBean, Or acl eRunt i e is

added to the list of Oracle JVM platform MBeans, when the

dbns_j ava. start_j nx_agent procedure is called. This MBean is specific to Oracle

JVM.

The Attributes Tab of the Or acl eRunt i me MBean exposes most of the parameters

manipulated by the or acl e. aur ora. vm Or acl eRunt i me class. Figure 2-15
(page 2-47) shows the Attributes tab of the Or acl eRunt i me MBean.

2-46 Oracle Database Java Developer's Guide

Managing Your Applications Using JMX

Figure 2-15 Attributes Tab of the OracleRuntime MBean

Connection
| Summary | Memory I Threads |'Classes I MBeans | VM
MBeans
EJ Tree Al Attrihutes | Operations I Naotifications | Info |
*Ij_JMImp:Iemeniallon 7 G
o [java. ang A CallExitPalicy ExitCalivhenalianDaernnThraadsTermi. |~
0= [Jawa, il loguing Jefauithlawepara T enraPolicyg 0
o |3 im¥sen A Forcesctive Theead TherminatinnAhsall |fa|se
o [aracle jurm AIntainTahlen axdize 6201456 L
@ IntzrnTahleSize 1227658
| araPoolSize 83886080
| araStackSize 4194304 1
MaviermonSize 268435456
Max=unspacefize 4294967295
Max3assionSize 4294967295
MinkewszspaceTenurePolicy 0
MewespaceEnabled [true
MewsspacekaxGeneraticn 2
JNewcpacesize 524288
| MeveopaceTenureGeneration 0 |
| Flatorm Linux Fort b
| Refresh |

The parameters displayed in black color are read-only and cannot be modified. For
example, JavaPool Si ze, Pl at f or m and so on. Values in blue color are read /write,
which means you can modify them. Most of the attributes of the Or acl eRunt i e
MBean are local to the current session.

The Whol eJVM_ attributes of the Or acl eRunt i me MBean are global. These attributes
reflect the totals of Oracle JVM memory usage statistics across all Java-enabled
sessions in the Database instance, as gathered from the v$sessi on and v$sesst at
performance views. Figure 2-16 (page 2-47) displays the Whol eJVM_ attributes of the
Oracl eRunt i me MBean.

Figure 2-16 OracleRuntime MBean

Connection
[Summary | Memory | Threads | Classes | MBeans | VM |
MBeans
B Tree | Attributes | Operations | Notifications | Info
o= 9 IMIeplemertation B TETE
ot @ iren | P g
o_é’.afa g |Tesdstackaze 262141 e
A UBLIOOEING g cle WM _CallHeanta lecledBytes 141220187136
o=] el JwhcleJVM_CallHeapCo lectedCourt (213694031
¢ T urazle jvm AWhcleJvh_CallHeapGoCount 5513
C] “ihclevi_CallHeapLiveObjectCount 111143

whcledvi_CallHeapLliveQObjectCount. .. |671365

“vihcledVh_CallHeapLiveSize 6735312

“vihcledVh_CallHeapiiveSizeMax 00262144

AvihcleJv_CallHeapOb ectCount |111143

wihcleyM_CaliHeapOh eciCountax 671365

Awihcledyi_CallHeapTota Size |81312l:lﬁ:1

“rhiclevid_CallHeapTota SizeMax 187445248 =

“hcledvM_CallHeapilsadSize 2082418

AWhcleJVid_CallHeaptlsadSzeMax 103351600

“rhicledyvid_ExacutionElapsedTime 1442016193 -
Refresh

Java Applications on Oracle Database 2-47

Managing Your Applications Using JMX

The Operations Tab of the Or acl eRunt i me MBean exposes many of the operations of
the oracl e. aurora. vm Oracl eRunt i me class.

In addition, individual memory consumption statistics of a specific Java-active
Database session can be monitored using the sessi onsRunni ngJava and
sessi onDet ai | sBy S| D operations as shown in Figure 2-17 (page 2-48) and
Figure 2-18 (page 2-48).

Figure 2-17 Operation sessionsRunningJava

Connection

Summary | Memory [Threads [CIasses [HBsans [\ml |

MBeans
% Tree ~ Attributes | Operations [Notifications [Info
o=] JMimplementation o
o (3 java.lang | java.lang.String | sessionsRunningJava | 0]
& [java.util logoing |
o= [jmxserv | javalang.String Operation return value
? [oracle jvm ®
D OracleRuntime | e e r SID USER o
| java.lang.String |: 89 null
: 91 8YS =
o
14T I |]]
P T » Refresh
Figure 2-18 Operation sessionDetailsBySID
Connection
[Summary r Memory r Threads [Classes [MBeans [VM |
MBeans
i Operation return value iz] = = -
1 Tree Operations | Motifications | Info |
o= ® java call heap collected bytes: 206719744 =
i java call heap collected count: 4648546 [exitCallvhenMainThreadTerminates] oH
=i java call heap gc count: 11707

* S Il jawa call heap live object count: 18924 emitStackTrace Q)
? 0
"

java call heap live object count max: 22427
java call heap live size: 1048616

jawva call heap live size max: 1186968

java call heap object count: 26293

java call heap object count max: 27158 N omng I
java call heap total size: 10964992

java call heap total size max: 10964992

java call heap used size: 1383152 .
java call heap used size max: 1441944 ageSoftRefPolicy | ()

-m I | [*]

Refresh

LMERIOCR 40

|_sessionDetaisBySiD_| (p0| 85

2.11.5.10 Memory Thresholds

The usage threshold is a manageable attribute of the memory pools. Collection usage
threshold is a manageable attribute of some of the garbage-collected memory pools.

2-48 Oracle Database Java Developer's Guide

Managing Your Applications Using JMX

You can set each of these to a positive value to enable corresponding threshold
checking for a pool. Setting a threshold to zero disables the threshold checking for the
memory pool. By default, threshold checking for all Oracle JVM pools is disabled.

The usage threshold and the collection usage threshold are set in the MBeans tab. For
example, if you select the Old Generation memory pool from the tree on the left pane,
and set the usage threshold of this memory pool to 20 megabytes and the collection
threshold to 1 megabyte, then after a while, the threshold counts will show the
number of threshold crossing events as shown in Figure 2-19 (page 2-49):

Figure 2-19 Setting the Usage Threshold and Collection Usage Threshold in the
MBeans Tab

Connection
Summary = Memory | Threads |' Classes MBeans | VM
MBeans
EﬂTrEE = | Attributes .’ Operations | Notifications " Info |
¢ I JMimplementation I Name | Vallo
_’ MBeanServerDelegate CollectionUsage javax.management.openmbean.Com...
¢ Elava.lang CollectionUsageThreshold |1000000
® ClassLoading CollectionUsageThresholdCountl69
@@ Compilation (CollectionUsageThresholdExe... ffrue
o~] GarbageCollector CollectionUsageThresholdSup... ftrue
@ Memory MemoryManagerNames javalang.String[3]
o= =] MemoryManager Name |01d Generation
¢ I MemoryPool =| /|PeakUsage javax.management.openmbean.Com..
@ Dedicated Session Spa Type HEAP
@3 End Of Migration Space Usage avax.management.openmbean.Com...
a3 Malloc/Free Space UsageThreshald 20000000
3 New Generation UsageThreshaldCount 244
& Old Generation \UsageThresholdExceeded true
@ Paged Session Space UsageThresholdSupported true
@@ Run Space Valid [true
@ Stack Space
@ OperalingSystem L
@ Runtime
@ Threading =
7]] [T»] fialeal

When the memory usage of the Old Generation memory pool exceeds 20 megabytes,
then part of the bar representing the Old Generation memory pool in the JConsole
interface turns red. The red portion indicates the portion of used memory that exceeds
the usage threshold. The bar representing the heap memory also turns red as shown in
Figure 2-20 (page 2-50):

Java Applications on Oracle Database 2-49

Managing Your Applications Using JMX

Figure 2-20 Memory Tab of the JConsole Interface When Used Memory Exceeds
the Usage Threshold

Connection
Summary | Memory | Threads | Classes | MBeans | 'vM
Chart: Memory Pool "Old Generation” ~ | Perform GC
il
80 Mb
70 Mb
60 Mb o
50 Mb « w0
40 Mb
30 Mb Threshald
20 Mb 4 20,000,000
0.0 Mb 4
15:55 16:00 16:05 16:10
Details
Time: 2005-04-22 16:11.08 1007% -- o
Used: 48,826 Koytes 75% -
Committed: 110, 100 kbytes
Max: 262,016 kbytes e
Usage Threshold: 19, 531 kbytes % -
GC time: 3 lln‘..l.'tES seconds on GCManager 0 .. L | |
e IR
_____ ']

2.11.6 Important Security Notes

By starting the remote listener with disabled SSL and authentication you violate the
general security guidelines and hence make server vulnerable to attacks. Therefore, it
is always advisable not to use such mode in production environment. This mode is
supported for compatibility with JDK and for development; any production use of
JMX in Oracle JVM must use secure J]MX connections.

When supplying security-related property values to dbrs_j ava. set _property,
System set Property,ordbns_j ava. start_j nx_agent , use a non-echo listener
or invoke these through an encrypted JDBC connection from a secure application
layer, such as Oracle Application Server. Do not store passwords in clear-text files. Use
Oracle Wallet to create and manage certificates. Use client certificates for SSL
authentication for better security.

See Also:

Oracle Database Security Guide

2.11.7 Shared Server Limitations for JMX

On dedicated mode servers, JMX connectivity is supported for the duration of a
session. Shared server J]MX connectivity is typically limited to a single call. The main
factor causing this limitation is the fact that JMX connectivity intrinsically depends on
operating system resources such as threads and sockets. These resources do not
survive shared server call boundaries. As the result, JMX connectivity is fully
supported only for the duration of a single call.

2-50 Oracle Database Java Developer's Guide

Overview of Threading in Oracle Database

Note:

This restriction only affects agent connectivity and not the state of the
MBeanSrver and Mbeans registered in it. The state of the MBeanSrver and
Mbeans, and in particular, the statistics, are persevered across shared server
call boundaries.

See Also:

"Shared Servers Considerations (page 2-54)"

If using dedicated server mode is not feasible, you can still establish JMX connectivity
and monitor shared servers by following these guidelines:

* Plan for all JMX management and monitoring activities to happen within a single
Java call.

* Do not set the com sun. managenent . j nxr enot e. port property by calling
the DBMS_JAVA. set _pr operty function and do not use the
DBMS_JAVA. st art _j nx_agent method because these calls activate JMX and
introduce a shared server call boundary. Instead, start the JMX agent by calling
the or acl e. aur or a. r dbrs. JMXAgent . st ar t QJVMAgent method directly
from the Java code to be monitored. The value for the
com sun. managemnent . j nxr enot e. por t property should be passed to the
st art QJVMAgent method. JMX-related properties other than the
com sun. managemnent . j nxr enot e. por t property do not wake up a JMX
Agent and can be set using any means.

2.12 Overview of Threading in Oracle Database

Oracle JVM is based on the database session model, which is a single-client,
nonpreemptive threading model. Although Java in Oracle Database allows running
threaded programs, it is single-threaded at the execution level. In this model, JVM
runs all Java threads associated with a database session on a single operating system
thread. Once dispatched, a thread continues execution until it explicitly yields by
calling Thr ead. yi el d(), blocks by calling Socket . read(), oris preempted by
the execution engine. Once a thread yields, blocks or is preempted, JVM dispatches
another thread.

Note:

Starting with 11g release 1 (11.1), Oracle JVM supports thread preemption.
Thread preemption is not mandated by the Java specification, but is needed to
support thenew j ava. util . concurrent API, present in JDK1.5, properly.

Oracle JVM has added the following features for better performance and thread
management:

¢ System calls are at a minimum. Oracle JVM has exchanged some of the standard
system calls with nonsystem solutions. For example, entering a monitor-
synchronized block or method does not require a system call.

Java Applications on Oracle Database 2-51

Overview of Threading in Oracle Database

Deadlocks are detected.

— Oracle JVM monitors for deadlocks between threads. If a deadlock occurs,
then Oracle JVM terminates one of the threads and throws the
oracl e. aurora. vm Deadl ockError exception.

— Single-threaded applications cannot suspend. If the application has only a
single thread and you try to suspend it, then the
oracl e. aurora. vm Li mboEr r or exception is thrown.

2.12.1 Thread Life Cycle

In a single-threaded application, a call ends when one of the following events occurs:

The thread returns to its caller.
An exception is thrown and is not caught in Java code.

The System exi t (), Oracl eRunti me. exit Session(), or
oracl e.aurora.vm Oracl eRunti me. exi t Cal | () method is called.

The DBMS_JAVA. endsessi on() or
DBM5_JAVA. endsessi on_and_rel at ed_st at e() method is called.

If the initial thread creates and starts other Java threads, then the call ends in one of
the following ways:

The main thread returns to its caller or an exception is thrown and not caught in
this thread and in either case all other non-daemon threads are processed. Non-
daemon threads complete either by returning from their initial method or because
an exception is thrown and not caught in the thread.

Any thread calls the Syst em exi t (), Oracl eRunti ne. exi t Session(), or
oracl e.aurora.vm Oracl eRunti ne. exi t Cal | () method.

A call to DBM5_JAVA. endsessi on() or
DBMS_JAVA. endsessi on_and_rel at ed_st at e() method.

See Also:

"Operating System Resources Affected Across Calls (page 2-59)".

Prior to 11g release 1 (11.1), when a call ended because of a call to Syst em exi t () or
oracl e. aurora.vm Oracl eRunti ne. exi t Cal | (), Oracle JVM ended the call
abruptly and terminated all threads, in both the dedicated and shared server modes.
Since 11g release 1 (11.1), this is addressed by the addition of the following PL/SQL
functions to the DBMS_JAVA package:

FUNCTI ON endsessi on RETURN VARCHARZ;
FUNCTI ON endsession_and_rel ated_state RETURN VARCHARZ;

See Also:

"Two-Tier Duration for Java Session State (page 4-4)".

2-52 Oracle Database Java Developer's Guide

Overview of Threading in Oracle Database

During a call, a Java program can recursively cause more Java code to be run. For
example, your program can issue a SQL query using JDBC or SQL]J that, in turn, calls a
trigger written in Java. All the preceding remarks regarding call lifetime apply to the
top-most call to Java code, not to the recursive call. For example, a call to

System exi t () from within a recursive call exits the entire top-most call to Java, not
just the recursive call.

2.12.2 System.exit(), OracleRuntime.exitSession(), and OracleRuntime.exitCall()

The Syst em exi t () method terminates JVM, preserving no Java state. It does not
cause the database session to terminate or the client to disconnect. However, the
database session may, and often does, terminate itself immediately afterward.
Oracl eRunt i me. exi t Sessi on() also terminates JVM, preserving no Java state.
However, it also terminates the database session and disconnects the client.

The behavior of Or acl eRunt i me. exi t Cal | () varies depending on

Oracl eRunti ne. t hreadTer m nati onPol i cy() . This method returns a bool ean
value. If this value is t r ue, then any active thread should be terminated, rather than
left quiescent, at the end of a database call.

* Inashared server process, t hr eadTer i nat i onPol i cy() is alwaystrue.

¢ Inashadow (dedicated) process, the default value is f al se. You can change the
value by calling Or acl eRunt i me. set ThreadTer m nati onPol i cy().

- If you set the value to false, that is the default value, all threads are left
quiescent but receive a Thr eadDeat h exception for graceful termination.

— If the value is true, all threads are terminated abruptly.

In addition, there is another method, Or acl eRunti ne. cal | Exi t Pol i cy() . This
method determines when a call is exited if none of the

O acl eRunti ne. exi t Session(),O acl eRuntine.exitCall (), or

Syst em exi t () methods were ever called. The call exit policy can be set to one of
the following, using Or acl eRunti me. set Cal | Exi t Pol i cy():

e Oracl eRuntime. EXI T_CALL_WHEN_MAI N_THREAD TERM NATES

If set to this value, then as soon as the main thread returns or an uncaught
exception occurs on the main thread, all remaining threads, both daemon and
non-daemon are:

- Killed, if t hr eadTer mi nati onPol i cy() is true, always in shared server
mode.

— Left quiescent, if t hr eadTer i nat i onPol i cy() is false.

e Oracl eRuntime. EXI T_CALL_WHEN_ALL_NON_DAEMON_THREADS_TERM NAT
E

This is the default value. If this value is set, then the call ends when only daemon
threads are left running. At this point:

- IfthethreadTerm nati onPolicy() istrue, always in shared server
mode, then the daemon threads are killed.

— IfthethreadTerm nationPolicy() isfal se, then the daemon threads
are left quiescent until the next call. This is the default setting for shadow
(dedicated) server mode.

Java Applications on Oracle Database 2-53

Shared Servers Considerations

Oracl eRunt i nme. EXI T_CALL_WHEN_ALL_THREADS TERM NATE

If set to this value, then the call ends only when all threads have either returned or
ended due to an uncaught exception. At this point, the call ends regardless of the
value of t hr eadTer mi nati onPol i cy().

Note:

In Oracle database 9.x and earlier database releases, JVM behaves as if the

cal | Exi t Pol i cy() were

Oracl eRunti nme. EXI T_CALL_WHEN_ALL_NON_DAEMON_ THREADS TERM N
ATE and the t hr eadTer mi nati onPol i cy() weret r ue for both shared and
dedicated server processes. This means kill the daemon threads at this point.
Also, if exi t Cal | () were executed, then all threads are killed before the call
is ended, in both shared and dedicated server processes.

2.13 Shared Servers Considerations

Note:

Oracle recommends dedicated servers for performance reasons. Additionally,
dedicated servers support a class of applications that rely on threads and
sockets that stay open across calls. For example, the JMX agent connectivity
functionality. Refer to "Managing Your Applications Using JMX (page 2-33)"
for more information about the JMX agent.

For sessions that use shared servers, certain limitations exist across calls. The reason is
that a session that uses a shared server is not guaranteed to connect to the same
process on a subsequent database call, and hence the session-specific memory and
objects that need to live across calls are saved in the SGA. This means that process-
specific resources, such as threads, open files, and sockets, must be cleaned up at the
end of each call, and therefore, will not be available for the next call.

This section covers the following topics:

End-of-Call Migration (page 2-54)

Oracle-Specific Support for End-of-Call Optimization (page 2-55)
The EndOfCallRegistry .registerCallback() Method (page 2-58)
The EndOfCallRegistry.runCallbacks() Method (page 2-58)

The Callback Interface (page 2-59)

The Callback.act() method (page 2-59)

Operating System Resources Affected Across Calls (page 2-59)

2.13.1 End-of-Call Migration

In the shared server mode, Oracle Database preserves the state of your Java program
between calls by migrating all objects that are reachable from st at i ¢ variables to
session space at the end of the call. Session space exists within the session of the client

2-54 Oracle Database Java Developer's Guide

Shared Servers Considerations

to store st at i ¢ variables and objects that exist between calls. Oracle JVM
automatically performs this migration operation at the end of every call.

This migration operation is a memory and performance consideration. Hence, you
should be aware of what you designate to exist between calls and keep the st ati ¢
variables and objects to a minimum. If you store objects in st at i ¢ variables
needlessly, then you impose an unnecessary burden on the memory manager to
perform the migration and consume per-session resources. By limiting your st ati c
variables to only what is necessary, you help the memory manager and improve the
performance of your server.

To maximize the number of users who can run your Java program at the same time, it
is important to minimize the footprint of a session. In particular, to achieve maximum
scalability, an inactive session should take up as little memory space as possible. A
simple technique to minimize footprint is to release large data structures at the end of
every call. You can lazily re-create many data structures when you need them again in
another call. For this reason, Oracle JVM has a mechanism for calling a specified Java
method when a session is about to become inactive, such as at the end of a call.

This mechanism is the EndCf Cal | Regi st ry notification. It enables you to clear

st at i ¢ variables at the end of the call and reinitialize the variables using a lazy
initialization technique when the next call comes in. You should run this only if you
are concerned about the amount of storage you require the memory manager to store
in between calls. It becomes a concern only for complex stateful server applications
that you implement in Java.

The decision of whether to null-out data structures at the end of the call and then re-
create them for each new call is a typical time and space trade-off. There is some extra
time spent in re-creating the structure, but you can save significant space by not
holding on to the structure between calls. In addition, there is a time consideration,
because objects, especially large objects, are more expensive to access after they have
been migrated to session space. The penalty results from the differences in
representation of session, as opposed to objects based on call-space.

Examples of data structures that are candidates for this type of optimization include:
¢ Buffers or caches.

e Static fields, such as arrays, which once initialized can remain unchanged during
the course of the program.

¢ Any dynamically built data structure that can have a space-efficient
representation between calls and a more speed-efficient representation for the
duration of a call. This can be tricky and may complicate your code, making it
hard to maintain. Therefore, you should consider doing this only after
demonstrating that the space saved is worth the effort.

2.13.2 Oracle-Specific Support for End-of-Call Optimization

You can register the st at i ¢ variables that you want cleared at the end of the call
when the buffer, field, or data structure is created. Within the

oracl e. aurora. menor yManager . EndX Cal | Regi st ry class, the

regi st er Cal | back() method takes an object that implements a Cal | back object.
Ther egi st er Cal | back() method stores this object until the end of the call. At the
end of the call, Oracle JVM calls the act () method within all registered Cal | back
objects. The act () method within the Cal | back object is implemented to clear the
user-defined bulffer, field, or data structure. Once cleared, the Cal | back object is
removed from the registry.

Java Applications on Oracle Database 2-55

Shared Servers Considerations

Note:

If the end of the call is also the end of the session, then callbacks are not
started, because the session space will be cleared anyway.

A weak table holds the registry of end-of-call callbacks. If either the Cal | back object
or value are not reachable from the Java program, then both the object and the value
will be dropped from the table. The use of a weak table to hold callbacks also means
that registering a callback will not prevent the garbage collector from reclaiming that
object. Therefore, you must hold on to the callback yourself if you need it, and you
cannot rely on the table holding it back.

The way you use EndCOf Cal | Regi st ry depends on whether you are dealing with
objects held in st at i ¢ fields or instance fields.

Static fields

Use EndOf Cal | Regi st ry to clear state associated with an entire class. In this case,
the Cal | back object should be held ina pri vat e st ati ¢ field. Any code that
requires access to the cached data that was dropped between calls must call a method
that lazily creates, or re-creates, the cached data.

Consider the following example:

i mport oracle. aurora. menor yManager . Cal | back;
i nport oracle. aurora. menor yManager . EndCf Cal | Regi stry;

class Exanpl e

{
static Object cachedField = null;
private static Callback thunk = null;

static void clearCachedFiel d()

{
/1 clear out both the cached field, and the thunk so they don't
/] take up session space between calls
cachedField = nulI;

thunk = null;
1
private static Object getCachedField()
{
if (cachedField == null)
{
Il save thunk in static field so it doesn't get reclained
/'l by garbage collector
thunk = new Cal I back () {
public void act(Chject obj)
{
Exanpl e. cl ear CachedFi el d();
}
1
Il register thunk to clear cachedField at end-of-call.
EndCf Cal | Regi stry. regi sterCal | back(thunk);
I/ finally, set cached field
cachedFiel d = createCachedFiel d();
1
return cachedFi el d;
1

2-56 Oracle Database Java Developer's Guide

Shared Servers Considerations

private static Object createCachedFiel d()
{

=
}

The preceding example does the following;:
1. Creates a Cal | back object within a st at i ¢ field, t hunk.
2. Registers this Cal | back object for end-of-call migration.

3. Implements the Cal | back. act () method to free up all st at i ¢ variables,
including the Cal | back object itself.

4. Provides a method, cr eat eCachedFi el d(), for lazily re-creating the cache.

When you create the cache, the Cal | back object is automatically registered within the

get CachedFi el d() method. At end-of-call, Oracle JVM calls the registered
Cal | back. act () method, which frees the static memory.

Instance fields

Use EndOf Cal | Regi st ry to clear state in data structures held in instance fields. For

example, when a state is associated with each instance of a class, each instance has a
field that holds the cached state for the instance and fills in the cached field as
necessary. You can access the cached field with a method that ensures the state is
cached.

Consider the following example:

i nport oracle. aurora. menor yManager . Cal | back;
i mport oracle. aurora. menor yManager . EndCf Cal | Regi stry;

class Exanpl e2 inplements Call back
{

private Cbject cachedField = null;

public voidact (Cbject obj)
{
/I clear cached field
cachedField = null;
obj = null;

}

/'l our accessor method
private static bject getCachedField()

{
if (cachedField == null)
{
Il if cachedField is not filled in then you nust
Il register self, and fill it in.
EndCf Cal | Regi stry. registerCal | back(sel f);
cachedFiel d = createCachedFiel d();
}
return cachedFi el d;
1
private Chject createCachedField()

{

Java Applications on Oracle Database 2-57

Shared Servers Considerations

}
}

The preceding example does the following;:
1. Implements the instance as a Cal | back object.
2. Implements the Cal | back. act () method to free up the instance fields.

3. When you request a cache, the Cal | back object registers itself for the end-of-call
migration.

4. Provides a method, cr eat eCachedFi el d(), for lazily re-creating the cache.

When you create the cache, the Cal | back object is automatically registered within the
get CachedFi el d() method. At end-of-call, Oracle JVM calls the registered
Cal | back. act () method, which frees the cache.

This approach ensures that the lifetime of the Cal | back object is identical to the
lifetime of the instance, because they are the same object.

2.13.3 The EndOfCallRegistry.registerCallback() Method

The r egi st er Cal | back() method installs a Cal | back object within a registry. At
the end of the call, Oracle JVM calls the act () method of all registered Cal | back
objects.

You can register your Cal | back object by itself or with an Qbj ect instance. If you
need additional information stored within an object to be passed into act () , then you
can register this object with the val ue parameter, which is an instance of Cbj ect .

The following are the valid signatures of the r egi st er Cal | back() method:

public static void registerCallback(Callback thunk, Object value);
public static void registerCallback(Callback thunk);

The following table lists the parameters of r egi st er Cal | back and their description:

Parameter Description
t hunk The Cal | back object to be called at the end-of-call migration.
val ue If you need additional information stored within an object to be passed into

act (), then you can register this object with the val ue parameter. In some
cases, the val ue parameter is necessary to hold the state that the callback
needs. However, most users do not need to specify a value for this
parameter.

2.13.4 The EndOfCallRegistry.runCallbacks() Method
The signature of the r unCal | backs() method is as follows:

static void runCall backs()

JVM calls this method at end-of-call and calls act () for every Cal | back object
registered using r egi st er Cal | back() . It is called at end-of-call, before object
migration and before the last finalization step.

2-58 Oracle Database Java Developer's Guide

Shared Servers Considerations

Note:

Do not call this method in your code.

2.13.5 The Callback Interface

The interface is declared as follows:

Interface oracle.aurora. menoryManager. Cal | back

Any object you want to register using

EndOf Cal | Regi stry. regi sterCal | back() mustimplement the Cal | back
interface. This interface can be useful in your application, where you require
notification at end-of-call.

2.13.6 The Callback.act() method

The signature of the act () method is as follows:

public void act(Chject val ue)

You can implement any activity that you require to occur at the end of the call.
Usually, this method contains procedures for clearing any memory that would be
saved to session space.

2.13.7 Operating System Resources Affected Across Calls

In the shared server mode, Oracle JVM closes any open operating system resources at
the end of a database call, as shown in the following table:

Resource Lifetime
Files The system closes all files left open when a database call ends.
Threads All threads are terminated when a call ends.
Sockets e (Client sockets can exist across calls.

e Server sockets terminate when the call ends.
Objects that depend Regardless of the usable lifetime of the object, the Java object can be
on operating system valid for the duration of the session. This can occur, for example, if the
resources Java object is stored in a St at i ¢ class variable, or a class variable

references it directly or indirectly. If you attempt to use one of these
Java objects after its usable lifetime is over, then Oracle Database will
throw an exception. This is true for the following examples:
e If an attempt is made to read from a
java.io. Fil el nput St r eamthat was closed at the end of a
previous call, thenaj ava. i 0. | OExcept i on is raised.
e java.lang. Thread.isAlive() isfal se forany Thr ead

object running in a previous call and still accessible in a
subsequent call.

You should close resources that are local to a single call when the call ends. However,
for st at i ¢ objects that hold on to operating system resources, you must be aware of
how these resources are affected after the call ends.

Java Applications on Oracle Database 2-59

Shared Servers Considerations

Files

In the shared server mode, Oracle JVM automatically closes open operating system
constructs when the call ends. This can affect any operating system resources within
your Java object. If you have a file opened within a st at i ¢ variable, then the file
handle is closed at the end of the call for you. Therefore, if you hold on to the Fi | e
object across calls, then the next usage of the file handle throws an exception.

In Example 2-5 (page 2-60), the Concat class enables multiple files to be written into
a single file, out Fi | e. On the first call, out Fi | e is created. The first input file is
opened, read, written to out Fi | €, and the call ends. Because out Fi | e is defined as a
st at i ¢ variable, it is moved into session space between call invocations. However,
the file handle is closed at the end of the call. The next time you call addFi | (), you
will get an exception.

Example 2-5 Compromising Your Operating System Resources

public class Concat

{

static File outFile = new File("outne.txt");
FileWiter out = new FileWiter(outFile);

public static void addFile(String[] newrile)
{

File inFile = new File(newFile);
Fi | eReader in = new Fil eReader (inFile);
inti;

while ((i =in.read()) !'=-1)
out.write(i);
in.close();
}
}

There are workarounds. To ensure that your handles stay valid, close your files,
buffers, and so on, at the end of every call, and reopen the resource at the beginning of
the next call. Another option is to use the database rather than using operating system
resources. For example, try to use database tables rather than a file. Alternatively, do
not store operating system resources within st at i ¢ objects that are expected to live
across calls. Instead, use operating system resources only within objects local to the
call.

Example 2-6 (page 2-60) shows how you can perform concatenation, as in

Example 2-5 (page 2-60), without compromising your operating system resources. The
addFi | e() method opens the out ie. t xt file within each call, ensuring that
anything written into the file is appended to the end. At the end of each call, the file is
closed. Two things occur:

¢ The Fi | e object no longer exists outside a call.

* The operating system resource, the out ie. t xt file, is reopened for each call. If
you had made the Fi | e object a st at i ¢ variable, then the closing of out e. t xt
within each call would ensure that the operating system resource is not
compromised.

Example 2-6 Correctly Managing Your Operating System Resources

public class Concat

{

public static void addFile(String[] newFile)

2-60 Oracle Database Java Developer's Guide

Shared Servers Considerations

[*open the output file each call; make sure the input*/
[*file is witten out to the end by making it "append=true"*/
FileWiter out = new FileWiter("outne.txt", TRUE);

File inFile = new File(newFile);

Fi | eReader in = new Fil eReader (inFile);

int i;

while ((i =in.read()) !'=-1)
out.write(i);
in.close();

/*close the output file between calls*/
out.close();

Sockets

Sockets are used in setting up a connection between a client and a server. For each
database connection, sockets are used at either end of the connection. Your application
does not set up the connection. The connection is set up by the underlying networking
protocol, TTC or IIOP of Oracle Net.

See Also:

"Configuring Oracle JVM (page 4-2)" for information about how to
configure your connection.

You may also want to set up another connection, for example, connecting to a
specified URL from within one of the classes stored within the database. To do so,
instantiate sockets for servicing the client and server sides of the connection using the
following:

e Thejava. net. Socket () constructor creates a client socket.

e Thejava. net. Server Socket () constructor creates a server socket.

A socket exists at each end of the connection. The server side of the connection that
listens for incoming calls is serviced by a Ser ver Socket instance. The client side of
the connection that sends requests is serviced through a Socket instance. You can use
sockets as defined within JVM with the restriction that a Ser ver Socket instance
within a shared server cannot exist across calls.

The following table lists the socket types and their description:

Socket Type Description

Socket Because the client side of the connection is outbound, the Socket
instance can be serviced across calls within a shared server.

ServerSocket The server side of the connection is a listener. The Ser ver Socket
instance is closed at the end of a call within a shared server. The
shared servers move on to another client at the end of every call. You
will receive an I/O exception stating that the socket was closed, if you
try to use the Ser ver Socket instance outside of the call it was
created in.

Java Applications on Oracle Database 2-61

Shared Servers Considerations

Threads

In the shared server mode, when a call ends because of a return or uncaught
exceptions, Oracle JVM throws Thr eadDeat hExcept i on in all daemon threads.

Thr eadDeat hExcept i on essentially forces threads to stop running. Code that
depends on threads living across calls does not behave as expected in the shared
server mode. For example, the value of a st at i ¢ variable that tracks initialization of a
thread may become incorrect in subsequent calls because all threads are killed at the
end of a database call.

As a specific example, the standard RMI Server functions in the shared server mode.
However, it is useful only within the context of a single call. This is because the RMI
Server forks daemon threads, which are in the shared server mode, are killed at the
end of call, that is, the daemon thread are killed when all non-daemon threads return.
If the RMI server session is reentered in a subsequent call, then these daemon threads
are not restarted and the RMI server fails to function properly.

2-62 Oracle Database Java Developer's Guide

3

Calling Java Methods in Oracle Database

This chapter provides an overview and examples of calling Java methods that reside in
Oracle Database. It contains the following sections:

* Invoking Java Methods (page 3-1)
e How To Tell You Are Running on the Server (page 3-12)

* About Redirecting Output on the Server (page 3-12)

3.1 Invoking Java Methods

The type of the Java application determines how the client calls a Java method. The
following sections discuss each of the Java application programming interfaces (APIs)
available for calling a Java method:

¢ Using PL/SQL Wrappers (page 3-1)

e About JNI Support (page 3-3)

* About Utilizing SQLJ and JDBC with Java in the Database (page 3-3)
* About Using the Command-Line Interface (page 3-8)

¢ Overview of Using the Client-Side Stub (page 3-10)

3.1.1 Using PL/SQL Wrappers

You can run Java stored procedures in the same way as PL/SQL stored procedures. In
Oracle Database, Java is usually invoked through PL/SQL interface.

To call a Java stored procedure, you must publish it through a call specification. The
following example shows how to create, resolve, load, and publish a simple Java
stored procedure that returns a string:

1. Define a class, Hel | 0, as follows:

public class Hello

{
public static String world()

{

return "Hello world";

}
}

Save the file as a Hel | 0. j ava file.

2. Compile the class on your client system using the standard Java compiler, as
follows:

Calling Java Methods in Oracle Database 3-1

Invoking Java Methods

javac Hello.java

It is a good idea to specify the CLASSPATH on the command line with the j avac
command, especially when writing shell scripts or make files. The Java compiler
produces a Java binary file, in this case, Hel | 0. cl ass.

You must determine the location at which this Java code will run. If you run

Hel | 0. cl ass on your client system, then it searches the CLASSPATH for all the
supporting core classes that Hel | 0. cl ass needs for running. This search should
result in locating the dependent classes in one of the following:

e Asindividual files in one or more directories, where the directories are
specified in the CLASSPATH

e Within . j ar or. zi p files, where the directories containing these files are
specified in the CLASSPATH

3. Decide on the resolver for the Hel | o class.

In this case, load Hel | 0. cl ass on the server, where it is stored in the database as
a Java schema object. When you call the wor | d() method, Oracle JVM locates the
necessary supporting classes, such as St r i ng, using a resolver. In this case, Oracle
JVM uses the default resolver. The default resolver looks for these classes, first in
the current schema, and then in PUBLI C. All core class libraries, including the

j ava. | ang package, are found in PUBLI C. You may need to specify different
resolvers. You can trace problems earlier, rather than at run time, by forcing
resolution to occur when you use the | oadj ava tool.

See Also:

"Overview of Resolving Class Dependencies (page 2-10)" and Schema Objects
and Oracle JVM Utilities (page 12-1)

4. Load the class on the server using the | oadj ava tool. You must specify the user
name and password. Run the | oadj ava tool as follows:

| oadj ava -user HR Hello.class
Passwor d: password

5. Publish the stored procedure through a call specification.

To call a Java st at i ¢ method with a SQL call, you must publish the method with a
call specification. A call specification defines the arguments that the method takes
and the SQL types that it returns.

In SQL*Plus, connect to the database and define a top-level call specification for
Hel | o. wor | d() as follows:

sqgl plus HR

Enter password: password

connect ed

SQL> CREATE OR REPLACE FUNCTI ON hel | owor | d RETURN VARCHAR2 AS
2 LANGUAGE JAVA NAME 'Hello.world () return java.lang. String';
3

Function creat ed.

6. Call the stored procedure, as follows:

3-2 Oracle Database Java Developer's Guide

Invoking Java Methods

SQ.> VARI ABLE nyString VARCHAR2(20);
SQ.> CALL helloworld() INTO :nyString;
Cal | conpl et ed.

SQ> PRINT nyString;

MYSTRI NG

Hel 1 o world
SQL>

Thecall helloworld() into :myString statement performs a top-level call
in Oracle Database. SQL and PL/SQL see no difference between a stored procedure
that is written in Java, PL/SQL, or any other language. The call specification
provides a means to tie inter-language calls together in a consistent manner. Call
specifications are necessary only for entry points that are called with triggers or
SQL and PL/SQL calls. Furthermore, JDeveloper can automate the task of writing
call specifications.

See Also:

Developing Java Stored Procedures (page 5-1)

3.1.2 About JNI Support

The Java Native Interface (JNI) is a standard programming interface for writing Java
native methods and embedding the JVM into native applications. The primary goal of
JNIL is to provide binary compatibility of Java applications that use platform-specific
native libraries.

Native methods can cause server failure, violate security, and corrupt data. Oracle
Database does not support the use of JNI in Java applications. If you use JNI, then
your application is not 100 percent pure Java and the native methods require porting
between platforms.

3.1.3 About Utilizing SQLJ and JDBC with Java in the Database

You can use SQLJ and Java Database Connectivity (JDBC) APIs from a Java client.
Both APIs establish a session with a given user name and password on the database
and run SQL queries against the database. The following table lists the APIs and their

description:
API Description
JDBC Use this API for more complex or dynamic SQL queries. JDBC requires you
to establish the session, construct the query, and so on.
SQLJ Use this API for easy SQL queries, both static and dynamic. SQLJ typically

runs against a known table with known column names.

This section covers the following topics:
¢ Using JDBC (page 3-4)
e Using SQLJ (page 3-4)

Calling Java Methods in Oracle Database 3-3

Invoking Java Methods

¢ Example Comparing JDBC and SQLJ (page 3-6)
* SQLJ Strong Typing Paradigm (page 3-7)

e Translating a SQLJ Program (page 3-8)

* Interaction with PL/SQL (page 3-8)

3.1.3.1 Using JDBC

JDBC is an industry-standard API that lets you embed SQL statements as Java method
arguments. JDBC is based on the X/Open SQL Call Level Interface (CLI) and complies
with the Entry Level of SQL-92 standard. Each vendor, such as Oracle, creates its JDBC
implementation by implementing the interfaces of the standard j ava. sql package.
Oracle provides the following JDBC drivers that implement these standard interfaces:

e The JDBC Thin driver, a 100 percent pure Java solution that you can use for either
client-side applications or applets and requires no Oracle client installation.

* The JDBC OCI driver, which you use for client-side applications and requires an
Oracle client installation.

e The server-side JDBC driver embedded in Oracle Database.
Using JDBC is a step-by-step process of performing the following tasks:

1. Obtaining a connection handle

2. Creating a statement object of some type for your desired SQL operation
3. Assigning any local variables that you want to bind to the SQL operation
4. Carrying out the operation

5. Optionally retrieving the result sets

This process is sufficient for many applications, but becomes cumbersome for any
complicated statements. Dynamic SQL operations, where the operations are not
known until run time, require JDBC. However, in typical applications, this represents
a minority of the SQL operations.

See Also:

Oracle Database JDBC Developer’s Guide

3.1.3.2 Using SQLJ

SQLJ offers an industry-standard way to embed any static SQL operation directly into
the Java source code in one simple step, without requiring the multiple steps of JDBC.
Oracle SQL] complies with the X3H2-98-320 American National Standards Institute
(ANSI) standard.

SQLJ consists of a translator, which is a precompiler that supports standard SQL]J
programming syntax, and a run-time component. After creating your SQL]J source
codeina. sqlj file, you process it with the translator. The translator translates the
SQLJ source code to standard Java source code, with SQL operations converted to calls
to the SQLJ run time. In Oracle Database SQLJ] implementation, the translator calls a
Java compiler to compile the Java source code. When your SQLJ application runs, the
SQL]J run time calls JDBC to communicate with the database.

3-4 Oracle Database Java Developer's Guide

Invoking Java Methods

SQLJ also enables you to catch errors in your SQL statements before run time. JDBC
code, being pure Java, is compiled directly. The compiler cannot detect SQL errors. On
the other hand, when you translate SQL]J code, the translator analyzes the embedded
SQL statements semantically and syntactically, catching SQL errors during
development, instead of allowing an end user to catch them when running the
application.

Following is a complete example of a simple SQL]J program:

inport java.sql.*;
import sqlj.runtine. ref.DefaultContext;
import oracle.sqlj.runtine. Oacle;

#sql iterator Mylter (String first_name, int enployee_id, float salary);

public class MyExampl e

{
public static void main (String args[]) throws SQLException

{
Oracl e. connect ("j dbc: oracl e: thin: @ocal host:5521:orcl", "HR', "<password>");
#sql { INSERT I NTO enpl oyees (first_nane, enployee_ id, salary) VALUES (' SMTH ,
32, 20000) };
Mlter iter;
#sql iter={ SELECT first_nane, enployee_id, salary FROM enpl oyees };
while (iter.next())
{

Systemout.printin(iter.first_name()+" "+iter.enployee_id()+" "+iter.salary());
}
1
}

In the preceding example, you perform the following:

1. Declare your iterators.

SQLJ uses a strongly-typed version of JDBC result sets, known as iterators. An
iterator has a specific number of columns of specific data types. You must define
your iterator types before using them, as in this example.

#sql | TERATOR Mylter (String first_nane, int enployee_id, float salary);

This declaration results in SQL] creating an iterator class, Myl t er . Iterators of
type M/l t er can store results whose first column maps to a Java St r i ng, second
column maps to a Java i nt, and third column maps to a Java f | oat . This
definition also names the three columns as f i r st _name, enpl oyee_i d, and

sal ary, to match the column names of the referenced table in the database.

Myl t er is a named iterator.

2. Connect to the database.

Oracl e. connect ("j dbc: oracl e: thin: @ocal host: 5521: orcl","HR", "<password>");

SQL]J provides the Or acl e class and its connect () method accomplishes the
following important tasks:

a. Registers Oracle JDBC drivers that SQL]J uses to access the database, in this
case, the JDBC Thin driver.

b. Opens a database connection for the specified schema, in this case, user HR

with the specified password, at the specified URL. In this case, the URL points
to host | ocal host, port 5521, and SID or cl .

Calling Java Methods in Oracle Database 3-5

Invoking Java Methods

c. Establishes this connection as the default connection for the SQL]J statements.
Although each JDBC statement must explicitly specify a connection object, a
SQLJ statement can either implicitly use a default connection or optionally
specify a different connection.

Process a SQL statement. The following is accomplished:

a. Insert a row into the enpl oyees table:

#sql {I NSERT I NTO enpl oyees (first_name, enployee_id, salary) VALUES
("SMTH, 32, 20000)};

b. Instantiate and populate the iterator:

Mlter iter;
#sql iter={SELECT first_nane, enployee_id, salary FROM enpl oyees};

Access the data that was populated within the iterator.

while (iter.next())
{

Systemout.printin(iter.first_name()+" "+iter.enmployee id()+" "+iter.salary());

}

The next () method is common to all iterators and plays the same role as the
next () method of a JDBC result set, returning t r ue and moving to the next row
of data, if any rows remain. You can access the data in each row by calling iterator
accessor methods whose names match the column names. This is a characteristic
of all named iterators. In this example, you access the data using the methods
first_nane(),enpl oyee id(),andsal ary().

See Also:

Oracle Database SQLJ Developer’s Guide

3.1.3.3 Example Comparing JDBC and SQLJ

The following is an example of a JDBC code and a SQL] code that perform a simple
operation:

JDBC:

/1 Assunme you al ready have a JDBC Connection object conn
/1 Define Java variabl es

String naneg;

int id=37115;

float sal ary=20000;

/1 Set up JDBC prepared statenent.

PreparedStat enent pstnt = conn. prepar eSt at enent

(" SELECT first_name FROM enpl oyees WHERE enpl oyee_i d=? AND sal ary>?");
pstnt.setInt(1, id);

pstnt.setFloat(2, salary);

/] Execute query; retrieve nane and assign it to Java variable.
Resul t Set rs = pstnt.executeQuery();
while (rs.next())

{

nane=rs. get String(1);

3-6 Oracle Database Java Developer's Guide

Invoking Java Methods

Systemout.printIn("Nane is: " + nane);

}

/] Cose result set and statenent objects.
rs.close()
pstnt.close();

Assume that you have established a JDBC connection, conn. Next, you must do the
following:

1. Define the Java variables, nane, i d, and sal ary.

2. Create a Prepar edSt at enent instance.

You can use a prepared statement whenever values in the SQL statement must be
dynamically set. You can use the same prepared statement repeatedly with
different variable values. The question marks (?) in the prepared statement are
placeholders for Java variables. In the preceding example, these variables are
assigned values using the pst nt . set | nt () and pst nt . set Fl oat () methods.
The first ? refers to the i nt variable i d and is set to a value of 37115. The
second ? refers to the f | oat variable sal ary and is set to a value of 20000.

3. Run the query and return the data into a Resul t Set object.

4. Retrieve the data of interest from the Resul t Set object and display it. In this
case, the fi r st _name column. A result set usually contains multiple rows of
data, although this example has only one row.

SQLJ:

String nane;

int id=37115;

float sal ary=20000;

#sql {SELECT first_name |INTO : name FROM enpl oyees WHERE enpl oyee_id=:id AND
sal ary>: sal ary};

Systemout.printIn("Name is: " + nanme);

In addition to allowing SQL statements to be directly embedded in Java code, SQL]J
supports Java host expressions, also known as bind expressions, to be used directly in
the SQL statements. In the simplest case, a host expression is a simple variable, as in
this example. However, more complex expressions are allowed as well. Each host
expression is preceded by colon (:). This example uses Java host expressions, nane, i d,
and sal ary. In SQLJ, because of its host expression support, you do not need a result
set or equivalent when you are returning only a single row of data.

Note:

All SQL]J statements, including declarations, start with the #sql token.

3.1.3.4 SQLJ Strong Typing Paradigm

SQLJ uses strong typing, such as iterators, instead of result sets. This enables the SQL
instructions to be checked against the database during translation. For example, SQL]J
can connect to a database and check your iterators against the database tables that will
be queried. The translator will verify that they match, enabling you to catch SQL
errors during translation that would otherwise not be caught until a user runs your

Calling Java Methods in Oracle Database 3-7

Invoking Java Methods

application. Furthermore, if changes are subsequently made to the schema, then you
can determine if these changes affect the application by rerunning the translator.

3.1.3.5 Translating a SQLJ Program

Integrated development environments (IDEs), such as Oracle JDeveloper, can
translate, compile, and customize your SQLJ program as you build it. Oracle
JDeveloper is a Microsoft Windows-based visual development environment for Java
programming. If you are not using an IDE, then use the front-end SQLJ utility, sql j .
You can run it as follows:

%qlj MyExanple.sql]j

The SQLJ translator checks the syntax and semantics of your SQL operations. You can
enable online checking to check your operations against the database. If you choose to
do this, then you must specify an example database schema in your translator option
settings. It is not necessary for the schema to have data identical to the one that the
program will eventually run against. However, the tables must have columns with
corresponding names and data types. Use the user option to enable online checking
and specify the user name, password, and URL of your schema, as in the following
example:

9qlj -user=HR@dbc: oracle:thin: @ocal host:5521: orcl MyExanple. sql |
Password: password

3.1.3.6 Interaction with PL/SQL

All Oracle JDBC drivers communicate seamlessly with Oracle SQL and PL/SQL, and
it is important to note that SQLJ interoperates with PL/SQL. You can start using SQL]
without having to rewrite any PL/SQL stored procedures. Oracle SQLJ includes
syntax for calling PL/SQL stored procedures and also lets you embed anonymous
PL/SQL blocks in SQL]J statements.

3.1.4 About Using the Command-Line Interface

The command-line interface to Oracle JVM is analogous to using the JDK or JRE shell
commands. You can:

* Use the standard - cl asspat h syntax to indicate where to find the classes to load

® Set the system properties by using the standard - D syntax

The interface is a PL/SQL function that takes a string (VARCHAR2) argument, parses it
as a command-line input and if it is properly formed, runs the indicated Java method
in Oracle JVM. To do this, PL/SQL package DBM5_JAVA provides the following
functions:

* runjava (page 3-8)

* runjava_in_current_session (page 3-9)

runjava

This function takes the Java command line as its only argument and runs it in Oracle
JVM. The return value is null on successful completion, otherwise an error message.
The format of the command line is the same as that taken by the JDK shell command,
that is:

[option switches] nanme_of class_to _execute [argl arg2 ... argn]

3-8 Oracle Database Java Developer's Guide

Invoking Java Methods

You can use the option switches - cl asspat h, -D, -Xbootcl asspath, and -

j ar. This function differs from the r unj ava_i n_current _sessi on function in
that it clears any Java state remaining from previous use of Java in the session, prior to
running the current command. This is necessary, in particular, to guarantee that static
variable values derived at class initialization time from - ¢l asspat h and - D
arguments reflect the values of those switches in the current command line.

FUNCTI ON runj ava(cndl i ne VARCHAR2) RETURN VARCHARZ;

runjava_in_current_session

This function is the same as the r unj ava function, except that it does not clear Java
state remaining from previous use of Java in the session, prior to executing the current
command line.

FUNCTI ON runj ava_i n_current _sessi on(cndl i ne VARCHAR2) RETURN VARCHAR?;

Syntax
The syntax of the command line is of the following form:

[-options] classname [arguments...]
[-options] -jar jarfile [argunents...]

Options

-classpath

-D

- Xboot cl asspat h

- Xboot cl asspath/ a
- Xboot cl asspat h/ p

-Cp

Note:

The effect of the first form is to run the main method of the class identified by
classname with the arguments. The effect of the second form is to run the
main method of the class identified by the Mai n- Cl ass attribute in the
manifest of the JAR file identified by JAR. This is analogous to how the
JDK/]JRE interprets this syntax.

Argument Summary

Table 3-1 (page 3-9) summarizes the command-line arguments.

Table 3-1 Command Line Argument Summary
- - - -]

Argument Description

classpath Accepts a colon (:) separated (semicolon-separated on Windows
systems) list of directories, JAR archives, and ZIP archives to search
for class files. In general, the value of - cl asspat h or similar
arguments refer to file system locations as they would in a standard
Java runtime. You also have an extension to this syntax to allow for
terms that refer to database resident Java objects and sets of bytes.
Refer to Classpath Extensions and User Classloaded Metadata
(page B-1) for more information about - ¢l asspat h extensions.

Calling Java Methods in Oracle Database 3-9

Invoking Java Methods

Table 3-1 (Cont.) Command Line Argument Summary
___|

Argument Description

D Establishes values for system properties when there is no existing
Java session state. The default behavior of the command-line
interface, that is, the r unj ava function, is to terminate any existing
Java session prior to running the new command. On the other hand,
the alternative function, r unj ava_i n_current _sessi on leaves
any existing session in place. So, values established with the - D
option always take effect when r unj ava function is used, but the
values may not take effect when r unj ava_i n_current _sessi on
function is used.

Xbootclasspath Accepts a colon (:) separated (semicolon-separated on Windows
systems) list of directories, JAR archives, and ZIP archives. This
option is used to set search path for bootstrap classes and resources.

Xboot cl asspat h/a Accepts a colon (:) separated (semicolon-separated on Windows
systems) list of directories, JAR archives, and ZIP archives. This is
appended to the end of bootstrap class path.

Xboot cl asspath/ p Accepts a colon (:) separated (semicolon-separated on Windows
systems) list of directories, JAR archives, and ZIP archives. This is

added in front of bootstrap class path.

cp Acts as a synonym of - cl asspat h.

Note:

System classes created by cr eat e j ava syst emare always used before
using any file or folder that are found using the - Xboot cl asspat h option.

3.1.5 Overview of Using the Client-Side Stub

Oracle Database 10g introduced the client-side stub, formerly known as native Java
interface, for calls to server-side Java code. It is a simplified application integration.
Client-side and middle-tier Java applications can directly call Java in the database
without defining a PL/SQL wrapper. The client-side stub uses the server-side Java
class reflection capability.

In previous releases, calling Java stored procedures and functions from a database
client required Java Database Connectivity (JDBC) calls to the associated PL/SQL
wrappers. Each wrapper had to be manually published with a SQL signature and a
Java implementation. This had the following disadvantages:

¢ The signatures permitted only Java types that had direct SQL equivalents

* Exceptions issued in Java were not properly returned

Starting from Oracle Database 12¢ Release 2 (12.2.0.1), you can use the Oracle JVM
Web Services Call-Out Utility for generating the client-side stub.

See Also:

"How to use the Oracle JVM Web Services Call-Out Utility (page 13-2)"

3-10 Oracle Database Java Developer's Guide

Invoking Java Methods

3.1.5.1 Using the Default Service Feature

Starting from Oracle Database 11g release 1 (11.1), Oracle Database client provides a
new default connection feature. If you install Oracle Database client, then you need
not specify all the details of the database server in the connection URL. Under certain
conditions, Oracle Database connection adapter requires only the host name of the
computer where the database is installed.

For example, in the JDBC connection URL syntax, that is:

jdbc:oracle:driver_type:[username/ password] @//]host _nane[: port][: ORCL]
,the following have become optional:
e /[is optional.

e :port isoptional

You must specify a port only if the default Oracle Net listener port (1521) is not
used.

® ORCL or the service name is optional.

The connection adapter for Oracle Database Client connects to the default service
on the host. On the host, this is set to ORCL in the | i st ener . or a file.

Note:

Default service is a feature since Oracle Database 11¢g Release 1 (11.1). If you
use any version prior to Oracle Database 11g Client to connect to the database,
then you must specify the Sl D.

3.1.5.2 Testing the Default Service with a Basic Configuration

The following code snippet shows a basic configuration of the | i st ener . or a file,
where the default service is defined:

MYLI STENER = (ADDRESS_LI| ST=(ADDRESS=(PROTOCOL=t cp) (HOST=t est ser ver 1) (PORT=1521)))
DEFAULT_SERVI CE_MYL| STENER=dbj f . app. myserver. com

SID LI ST_MyLI STENER = (SI D LI ST=(SI D_DESC=(S| D_NAVME=dbj f)

(GLOBAL_DBNAME=dbj f . app. nyser ver. com) (ORACLE_HOVE=/t est/oracl e))

)

After defining the | i st ener . or a file, restart the listener with the following
command:

I'snrctl start nylistener

Now, any of the following URLs should work with this configuration of the
l'i stener. ora file:

e jdbc:oracle:thin: @/testserverl. myserver.comcom
e jdbc:oracle:thin: @/testserverl. nyserver.com 1521
e jdbc:oracle:thin: @estserverl. nyserver.com

e jdbc:oracle:thin: @estserverl. nyserver.com 1521

Calling Java Methods in Oracle Database 3-11

How To Tell Whether You Are Running on the Server

e jdbc:oracl e:thin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP)
(HOST=t est server 1. nyserver. com (PORT=1521)))

e jdbc:oracl e:thin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP)
(HOST=t est server 1. nyserver.com))

e jdbc:oracle:thin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP)
(HOST=t est server 1. nyserver. conm (PORT=1521))
(CONNECT_DATA=(SERVI CE_NAME=)))

3.2 How To Tell Whether You Are Running on the Server

You may want to write Java code that runs in a certain way on the server and in
another way on the client. In general, Oracle does not recommend this. In fact, JDBC
enable you to write portable code that avoids this problem, even though the drivers
used in the server and client are different.

If you want to determine whether your code is running on the server, then use the
Syst em get Property() method, as follows:

System get Property ("oracle.jserver.version")
The get Proper t y() method returns the following;:

* A String that represents Oracle Database release, if running on the server

e nul |, if running on the client

3.3 About Redirecting Output on the Server

You can pass Java output to SQL statements to provide more extensive control over
the destination of output from Oracle JVM. The PL/SQL package DBM5_JAVA has
been enhanced by adding the following new functions, which provide extended
functionality to what was previously available only with the

DBMS_JAVA. SET_QOUTPUT procedure:

* set_output_to_sql (page 3-12)

e remove_output_to_sql (page 3-14)
* enable_output_to_sql (page 3-14)
e disable_output_to_sql (page 3-15)
* query_output_to_sql (page 3-15)

set_output_to_sql

set_out put _t o_sqgl defines a named output specification that constitutes an
instruction for executing a SQL statement, whenever output to the default

Syst em out and Syst em err streams occurs. The specification is defined either for
the duration of the current session, or till the r enove_out put _t o_sql function is
called with its ID. The SQL actions prescribed by the specification occur whenever
there is Java output. This can be stopped and started by calling the

di sabl e_out put _t o_sqgl and enabl e_out put _t o_sql functions respectively.
The return value of this function is null on success, otherwise an error message.

FUNCTI ON set _out put _to_sql (id VARCHARZ,
stm VARCHARZ,

3-12 Oracle Database Java Developer's Guide

About Redirecting Output on the Server

bi ndi ngs VARCHAR?,

no_new i ne_stnt VARCHAR2 default null,
no_new i ne_bi ndi ngs VARCHAR2 default null,
new ine_only_stnm VARCHAR2 default null,
new i ne_only_bindi ngs VARCHAR2 default null,
maxi mum | i ne_segnent _| engt h NUMBER defaul t 0,
al l ow_repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,

fromstderr NUMBER default 1,

i ncl ude_new i nes NUMBER default 0,

eager NUMBER default 0) return VARCHARZ;

Table 3-2 (page 3-13) describes the arguments the set _out put _t o_sql function
takes.

Table 3-2 set_output_to_sql Argument Summary
|

Argument Description

id The name of the specification. Multiple specifications may exist in
the same session, but each must have a distinct ID. The ID is used to
identify the specification in the functions
renove_out put _to_sql, enable_output_to_sql,

di sabl e_out put _to_sql, andquery_output_to_sql.

stmt The default SQL statement to execute when Java output occurs.

bindings A string containing tokens from the set ID, TEXT, LENGTH,

LINENO, SEGNO, NL, and ERROUT. This string defines how the

SQL statement st nt is bound. The position of a token in the

bindings string corresponds to the bind position in the SQL

statement. The meanings of the tokens are:

e IDis the ID of the specification. It is bound as a VARCHAR2.

e TEXT is the text being output. It is bound as a VARCHAR?2.

e LENGTH is the length of the text. It is bound as a NUMBER.

e LINENO is the line number since the beginning of session
output. It is bound as a NUMBER.

e SEGNO is the segment number within a line that is being
output in more than one piece. It is bound as a NUMBER.

¢ NL is a boolean indicating whether the text is to be regarded as
newline terminated. It is bound as a NUMBER. The newline
may or may not actually be included in the text, depending on
the value of the i ncl ude_new i nes argument.

e ERROUT is a boolean indicating whether the output came from
Syst em out or System err. Itis bound asa NUMBER. The
value is 0, if the output came from Syst em out .

no_newline_stmt An optional alternate SQL statement to execute, when the output is
not newline terminated.

no_newline_bindings A string with the same syntax as for the bindings argument
discussed previously, describing how the no_newl i ne_st nt is
bound.

newline_only_stmt An optional alternate SQL statement to execute when the output is a
single newline.

Calling Java Methods in Oracle Database 3-13

About Redirecting Output on the Server

Table 3-2 (Cont.) set_output_to_sql Argument Summary
- - - |

Argument Description

newline_only_bindin A string with the same syntax as for the bindings argument
gs discussed previously, describing how the new i ne_onl y_stnt is
bound.

maximum_line_segm The maximum number of characters that is bound in a given

ent_length execution of the SQL statement. Longer output sequences are broken
up into separate calls with distinct SEGNO values. A value of 0
means N0 NMaxi mum

allow_replace Controls behavior when a previously defined specification with the
same ID exists. A value of 1 means replacing the old specification. 0
means returning an error message without modifying the old
specification.

from_stdout Controls whether output from Syst em out causes execution of the
SQL statement prescribed by the specification. A value of 0 means
that if the output came from Syst em out, then the statement is not
executed, even if the specification is otherwise enabled.

from_stderr Controls whether output from Syst em err causes execution of the
SQL statement prescribed by the specification. A value of 0 means
that if the output came from Syst em err, then the statement is not
executed, even if the specification is otherwise enabled.

include_newlines Controls whether newline characters are left in the output when they
are bound to text. A value of 0 means new lines are not included. But
the presence of the newline is still indicated by the NL binding and
the use of no_new i ne_stnt.

eager Controls whether output not terminated by a newline causes
execution of the SQL statement every time it is received, or
accumulates such output until a newline is received. A value of 0
means that unterminated output is accumulated.

remove_output_to_sq|l

renpve_out put _t o_sql deletes a specification created by set _out put _t o_sql .
If no such specification exists, an error message is returned.

FUNCTI ON renove_output _to_sql (id VARCHAR2) return VARCHARZ;

enable_output_to_sql

enabl e_out put _t o_sql reenables a specification created by set _out put _t o_sq|
and subsequently disabled by di sabl e_out put _t o_sql . If no such specification
exists, an error message is returned. If the specification is not currently disabled, there
is no change.

FUNCTI ON enabl e_out put _to_sql (id VARCHAR2) return VARCHARZ;

3-14 Oracle Database Java Developer's Guide

About Redirecting Output on the Server

disable_output_to_sql

di sabl e_out put _t o_sql disables a specification created by

set _out put _to_sqgl. You can enable the specification by calling

enabl e_out put _t o_sql . While disabled, the SQL statement prescribed by the
specification is not executed. If no such specification exists, an error message is
returned. If the specification is already disabled, there is no change.

FUNCTI ON di sabl e_out put _to_sql (id VARCHAR2) return VARCHARZ;

guery_output_to_sql

query_out put _t o_sql returns a message describing a specification created by

set _out put _t o_sql . If no such specification exists, then an error message is
returned. Passing nul | to this function causes all existing specifications to be
displayed.

FUNCTI ON query_output _to_sql (id VARCHAR2) return VARCHARZ;

Another way of achieving control over the destination of output from Oracle JVM is to
pass your Java output to an autonomous Java session. This provides a very general
mechanism for propagating the output to various kinds of targets, such as disk files,
sockets, and URLS. But, you must keep in mind that the Java session that processes the
output is logically distinct from the main session, so that there are no other, unwanted

interactions between them. To do this, PL/SQL package DBM5_JAVA provides the
following functions:

* set_output_to_java (page 3-15)

* remove_output_to_java (page 3-17)
* enable_output_to_java (page 3-17)
¢ disable_output_to_java (page 3-17)
® query_output_to_java (page 3-17)

¢ set_output_to_file (page 3-17)

e remove_output_to_file (page 3-17)
* enable_output_to_file (page 3-17)

e disable_output_to_file (page 3-18)

* query_output_to_file (page 3-18)

set_output_to_java

set _out put _t o_j ava defines a named output specification that gives an instruction
for executing a Java method whenever output to the default Syst em out and

Syst em err streams occurs. The Java method prescribed by the specification is
executed in a separate VM context with separate Java session state from the rest of the
session.

FUNCTI ON set _output _to_java (id VARCHARZ,
cl ass_nanme VARCHARZ,

cl ass_schema VARCHAR?,

met hod VARCHAR2,

bi ndi ngs VARCHAR?,

no_new i ne_net hod VARCHAR2 default null,

Calling Java Methods in Oracle Database 3-15

About Redirecting Output on the Server

no_new i ne_bi ndi ngs VARCHAR2 default null,

new i ne_only_method VARCHAR2 default null,

new i ne_only_bindi ngs VARCHAR2 default null,
maxi mum | i ne_segnent _| ength NUMBER defaul t 0,
al l ow_repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,

fromstderr NUMBER default 1,

i ncl ude_new i nes NUMBER default 0,

eager NUMBER default O,
initialization_statement VARCHAR2 default null,
finalization_statement VARCHAR2 default null)return VARCHARZ;

Table 3-3 (page 3-16) describes the arguments the set _out put _t o_j ava method
takes.

Table 3-3 set_output_to_java Argument Summary
|

Argument Description
class_name The name of the class defining one or more methods.
class_schema The schema in which the class is defined. A null value means the

class is defined in the current schema, or PUBLIC.
method The name of the method.

bindings A string that defines how the arguments to the method are bound.
This is a string of tokens with the same syntax as
set _out put _t o_sql . The position of a token in the string
determines the position of the argument it describes. All arguments
must be of type INT, except for those corresponding to the tokens ID
or TEXT, which must be of type j ava. | ang. Stri ng.

no_newline_method An optional alternate method to execute when the output is not
newline terminated.

newline_only_method An optional alternate method to execute when the output is a single
newline.

initialization_stateme An optional SQL statement that is executed once per Java session

nt prior to the first time the methods that receive output are executed.
This statement is executed in same Java VM context as the output
methods are executed. Typically such a statement is used to run a
Java stored procedure that initializes conditions in the separate VM
context so that the methods that receive output can function as
intended. For example, such a procedure might open a stream that
the output methods write to.

finalization_statement An optional SQL statement that is executed once when the output
specification is about to be removed or the session is ending. Like the
initialization_statenent, thisrunsin the same JVM context
as the methods that receive output. It runs only if the initialization
method has run, or if there is no initialization method.

3-16 Oracle Database Java Developer's Guide

About Redirecting Output on the Server

remove_output_to_java

renpve_out put _t o_j ava deletes a specification created by
set _out put _t o_j ava. If no such specification exists, an error message is returned

FUNCTI ON renove_output _to_java (id VARCHAR2) return VARCHARZ;

enable_output_to_java

enabl e_out put _t o_j ava reenables a specification created by

set _out put _t o_j ava and subsequently disabled by di sabl e_out put _t o_j ava.
If no such specification exists, an error message is returned. If the specification is not
currently disabled, there is no change.

FUNCTI ON enabl e_out put _to_java (id VARCHAR2) return VARCHARZ;

disable_output_to_java

di sabl e_out put _t o_j ava disables a specification created by

set _out put _t o_j ava. The specification may be reenabled by

enabl e_out put _t o_j ava. While disabled, the SQL statement prescribed by the
specification is not executed. If no such specification exists, an error message is
returned. If the specification is already disabled, there is no change.

FUNCTI ON di sabl e_out put _to_java (id VARCHAR2) return VARCHAR?;

guery_output_to_java

query_out put _t o_j ava returns a message describing a specification created by
set _out put _t o_j ava. If no such specification exists, an error message is returned.
Passing nul | to this function causes all existing specifications to be displayed.

FUNCTI ON query_output _to_java (id VARCHAR2) return VARCHARZ;

set_output_to_file

set _out put _to_fil e defines a named output specification that constitutes an
instruction to capture any output sent to the default Syst em out and System err
streams and append it to a specified file. This is implemented using a special case of
set _output_to_java. The argumentfi | e_pat h specifies the path to the file to
which to append the output. The arguments al | ow_r epl ace, from stdout, and
from st derr are all analogous to the arguments having the same name as in

set _output _to_sql.

FUNCTI ON set _output _to file (id VARCHAR?Z,

file_path VARCHARZ,

al l ow_repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,
fromstderr NUMBER default 1) return VARCHARZ;

remove_output_to_file
This function is analogous to r enbve_out put _t o_j ava.

FUNCTI ON renmove_output _to_file (id VARCHAR2) return VARCHARZ;

enable_output_to_file
This function is analogous to enabl e_out put _t o_j ava.

FUNCTI ON enabl e_output _to_file (id VARCHAR2) return VARCHARZ;

Calling Java Methods in Oracle Database 3-17

About Redirecting Output on the Server

disable_output_to_file
This function is analogous to di sabl e_out put _t o_j ava.

FUNCTI ON di sabl e_output _to file (id VARCHAR2) return VARCHAR?;

guery_output_to_file
This function is analogous to quer y_out put _t o_j ava.

FUNCTI ON query_output _to_file (id VARCHAR2) return VARCHARZ;

The following DBM5_JAVA functions control whether Java output appearsinthe. trc
file:

e PROCEDURE enabl e output _to trc;
e PROCEDURE di sabl e_output_to_trc;

e FUNCTION query_output _to_trc return VARCHARZ;

Note:

Prior to 11g release 1 (11.1), the fact that Java output appeared in the . t r ¢ file
was not modifiable.

Redirecting the output to SQL*Plus Text Buffer

As in previous releases, you can use the DBMS_JAVA package procedure SET_OUTPUT
to redirect output to the SQL*Plus text buffer:

SQ> SET SERVEROUTPUT ON
SQL> CALL dbms_j ava. set _out put (2000);

The minimum and default buffer size is 2,000 bytes and the maximum size is 1,000,000
bytes. In the following example, the buffer size is increased to 5,000 bytes:

SQL> SET SERVERQUTPUT ON Sl ZE 5000
SQL> CALL dbms_j ava. set _out put (5000);

The output is displayed at the end of the call.

3-18 Oracle Database Java Developer's Guide

A

Java Installation and Configuration

This chapter describes how to install and configure Oracle JVM. It also describes how
to enable the Java client. This chapter covers the following topics:

* About Initializing a Java-Enabled Database (page 4-1)
¢ Configuring Oracle JVM (page 4-2)

e The DBMS_]JAVA Package (page 4-2)

* Enabling the Java Client (page 4-2)

e Two-Tier Duration for Java Session State (page 4-4)

® About Setting System Properties (page 4-4)

4.1 Initializing a Java-Enabled Database

If you install Oracle Database with Oracle JVM option, then the database is Java-
enabled. That is, it is ready to run Java stored procedures and Java Database
Connectivity (JDBC).

This section contains the following topics:

¢ Configuring the Oracle JVM Option within the Oracle Database Template
(page 4-1)

* Modifying an Existing Oracle Database to Include Oracle JVM (page 4-1)

4.1.1 Configuring the Oracle JVM Option within the Oracle Database Template

Configure Oracle JVM option within the database template. This is the recommended
method for Java installation.

The Database Configuration Assistant enables you to create database templates for
defining what each database instance installation will contain. Choose Oracle JVM
option to have the Java platform installed within your database.

4.1.2 Modifying an Existing Oracle Database to Include Oracle JVM

If you have already installed Oracle Database without Oracle JVM, then you can add
Java to your database through the modify mode of the Database Configuration
Assistant of Oracle Database 12c Release 1 (12.1). The modify mode enables you to
choose the features, such as Oracle JVM, that you would like to install on top of an
existing Oracle Database instance.

Java Installation and Configuration 4-1

Configuring Oracle JVM

4.2 Configuring Oracle JVM

Before you install Oracle JVM as part of your standard Oracle Database installation,
you must ensure that the configuration requirements for Oracle JVM are fulfilled. The
main configuration for Java classes within Oracle Database includes configuring the:

* Java memory requirements

You must have at least 50 MB of JAVA_POOL_SI ZE and 96 MB of
SHARED POOL_SI ZE.

Note:

Oracle recommends that you increase the JAVA_POCL_SI ZE and
SHARED POOL_SI ZE values when using large Java applications, or when a
large number of users are running Java in the database.

See Also:

"About Java Memory Usage (page 9-4)"

* Database processes

You must decide whether to use dedicated server processes or shared server
processes for your database server.

Note:

Oracle recommends that you use dedicated servers. Shared server incurs extra
Java states save in the database session, in SGA, at the end of the Java call.

4.3 The DBMS_JAVA Package

Installing Oracle JVM creates the DBMS_JAVA PL/SQL package. The DBM5_JAVA
package functions can be used by both Database server and Database clients. The
corresponding Java class, Dbirs Java, provides methods for accessing database
functionality from Java.

See Also:

DBMS_JAVA Package (page A-1)

4.4 Enabling the Java Client

To run Java between the client and server, your must perform the following activities:

1. Installing Java SE on the Client (page 4-3)

2. Setting Up Environment Variables (page 4-3)

4-2 Oracle Database Java Developer's Guide

Enabling the Java Client

4.4.1 Installing Java SE on the Client

The client requires Java Development Kit (JDK) 1.6 or later. To confirm the version of
JDK you are using, run the following commands on the command line:

$ which java
{usr/local /jdkl.6.0_26/bin/java

$ which javac
{usr/local /jdkl.6.0_26/bin/javac

$ java -version
java version "1.6.0_26"
4.4.2 Setting Up Environment Variables

After installing JDK on your client, add the directory path to the following
environment variables:

e S$JAVA HOME
This variable must be set to the top directory of the installed JDK base.

e $PATH
This variable must include $JAVA_HOVE/ bi n.

e $LD_LI BRARY_PATH
This variable must include $JAVA HOVE/ | i b.

JAR Files Necessary for Java Clients

To ensure that the Java client successfully communicates with the server, include the
following files in the CLASSPATH:

Note:

Specifics of CLASSPATHrequirements may vary for Oracle JVMs running on
different platforms. You must ensure that all elements of CLASSPATH, as
defined in the script for Oracle JVM utilities, are present.

e ForJDK 8, include $JAVA HOVE/ | i b/ dt . j ar
¢ For]JRE 8, include $JAVA HOVE/ lib/rt.jar

e For any interaction with JDBC, include $ORACLE_HOME/ j dbc/ | i b/
oj dbc8. j ar

e For any client that uses SSL, include $ORACLE_HOVE/ j | i b/jssl-1_2.j ar and
$ORACLE HOVE/ j I i b/javax-ssl-1 2.jar

e For any client that uses the Java Transaction API (JTA) functionality, include
$ORACLE HOVE/jlib/jta.jar

e For any client that uses the Java Naming and Directory Interface (JNDI)
functionality, include $ORACLE_HOVE/ j I i b/j ndi . j ar

Java Installation and Configuration 4-3

Two-Tier Duration for Java Session State

Server Application Development on the Client

If you develop and compile your server applications on the client and want to use the
same Java Archive (JAR) files that are loaded on the server, then include
$ORACLE_HOVE/ | i b/ aur or a. zi p in CLASSPATH. This is not required for running
Java clients.

4.5 Two-Tier Duration for Java Session State

Prior to 11g release 1 (11.1), Java session state was single-tier, which included all
values associated with running Java, such as System property values and static
variable values, the set of classes loaded during the session and so on. The duration of
this state used to start with the first invocation of a Java method in the RDBMS session
and it used to last till JVM exited, either due to a call to j ava. | ang. System exi t or
similar Or acl eRunt i me methods, an uncaught exception, a fatal error, or the end of
the RDBMS session. This required modifying Java code and also failed to fully
complete the termination of the session before the end of the RDBMS call. This made it
impossible to start a new Java session within the same call.

Starting with 11g release 1 (11.1), Java session state is split into two tiers. One tier has a
longer duration and it encompasses the duration of the other tier. The duration of the
shorter tier is the same as before, that is, it starts when a Java method is invoked and
ends when JVM exits. The duration of the longer tier starts when a Java method is
invoked in the RDBMS session for the first time. This session lasts until the RDBMS
session ends or the session is explicitly terminated by a call to the function

dbns_j ava. endsessi on_and_r el at ed_st at e. This is addressed by the addition
of the following two PL/SQL functions to the DBM5_JAVA package, which account for
the two kinds of Java session duration:

e FUNCTI ON endsessi on RETURN VARCHARZ?;

This function clears any Java session state remaining from previous execution of
Java in the current RDBMS session. The return value is a message indicating the
action taken.

e FUNCTI ON endsessi on_and_rel ated state RETURN VARCHARZ;

This function clears any Java session state remaining from previous execution of
Java in the current RDBMS session and all supporting data related to running
Java, such as property settings and output specifications. The return value is a
message indicating the action taken.

Most of the values associated with running Java remain in the shorter tier. The values
that can be useful for multiple invocations of JVM have been moved to the longer tier.
For example, the system property values established by dbns_j ava. set _property
and the output redirection specifications.

See Also:

"About Setting System Properties (page 4-4)" and "About Redirecting
Output on the Server (page 3-12)".

4.6 About Setting System Properties

Within an RDBMS session you can maintain a set of values that are added to the
system properties whenever a Java session is started in the RDBMS session. This set of

4-4 Oracle Database Java Developer's Guide

About Setting System Properties

values remains valid for the duration of the longer tier of Java session state, which is
typically the same as the duration of the RDBMS session.

See Also:

"Two-Tier Duration for Java Session State (page 4-4)"

There is a set of PL/SQL functions in the DBMS_JAVA package for setting, retrieving,
removing and displaying key value pairs in an internal, RDBMS session duration
table, where both elements of a pair are strings (VARCHAR2) and there is at most one
pair for a given key. These functions are as follows:

* set_property (page 4-5)

e get property (page 4-5)

* remove_property (page 4-5)
¢ show_property (page 4-5)
set_property

This function establishes a value for a system property that is then used for the
duration of the current RDBMS session, whenever a Java session is initialized. The first
argument is the name of the property and the second is the value to be established for
it. The return value for set _pr operty is null unless there is some error. For example,
if an attempt is made to set a value for a prescribed property, then an error message is
returned.

FUNCTI ON set _property(nane VARCHAR2, val ue VARCHAR2) RETURN VARCHARZ;

get_property

This function returns any value previously established by set _pr operty. Itreturns
null if there is no such value.

FUNCTI ON get _property(name VARCHAR2) RETURN VARCHARZ;

remove_property

This function removes any value previously established by set _property. The
return value is null unless an error occurred, in which case an error message is
returned.

FUNCTI ON renove_property(name VARCHAR2) RETURN VARCHARZ;

show_property

This function displays a message of the form name = val ue for the input name, or
for all established property bindings, if name is null. The return value for this function
is null on successful completion, otherwise it is an error message. The output is
displayed to wherever you have currently directed your Java output.

FUNCTI ON show_pr operty(name VARCHAR2) RETURN VARCHARZ;
Before initializing the Java session, the values from this table are added to the set of
default system property values already maintained by Oracle JVM. When you run a

Java method by using the command-line interface, the values determined by the - D
option, if present, override the values set in the table. As soon as you terminate the

Java Installation and Configuration 4-5

About Setting System Properties

Java session, the values established by the - D option become obsolete and the keys are
set to the original values as present in the table.

4-6 Oracle Database Java Developer's Guide

5

Developing Java Stored Procedures

Oracle JVM has all the features you must build a new generation of enterprise-wide
applications at a low cost. The most important feature is the support for stored
procedures. Using stored procedures, you can implement business logic at the server
level, thereby improving application performance, scalability, and security.

This chapter contains the following sections:

e Stored Procedures and Run-Time Contexts (page 5-1)
* Advantages of Stored Procedures (page 5-3)

* Running Java Stored Procedures (page 5-5)

* Debugging Java Stored Procedures (page 5-7)

5.1 Stored Procedures and Run-Time Contexts

Stored procedures are Java methods published to SQL and stored in the database for
general use. To publish Java methods, you write call specifications, which map Java
method names, parameter types, and return types to their SQL counterparts.

Unlike a wrapper, which adds another layer of execution, a call specification publishes
the existence of a Java method. As a result, when you call the method through its call
specification, the run-time system dispatches the call with minimal overhead.

When called by client applications, a stored procedure can accept arguments, reference
Java classes, and return Java result values.

Figure 5-1 (page 5-1) shows a stored procedure being called by various applications.

Figure 5-1 Calling a Stored Procedure

Applications

hire_emp(...);

@

Stored Procedure

—/

hire_emp(...); hire_emp(...)

V#V

~—

hire_emp(...);

S~

Developing Java Stored Procedures 5-1

Stored Procedures and Run-Time Contexts

Except for graphical user interface (GUI) methods, Oracle JVM can run any Java
method as a stored procedure. The run-time contexts are:

¢ Functions and Procedures (page 5-2)
e Database Triggers (page 5-2)

* Object-Relational Methods (page 5-2)

5.1.1 Functions and Procedures

Functions and procedures are named blocks that encapsulate a sequence of
statements. They are building blocks that you can use to construct modular,
maintainable applications.

Generally, you use a procedure to perform an action and a function to compute a
value. Therefore, you use procedure call specifications for voi d Java methods and
function call specifications for value-returning methods.

Only top-level and package-level PL/SQL functions and procedures can be used as
call specifications. When you define them using the SQL CREATE FUNCTI ON, CREATE
PROCEDURE, or CREATE PACKACE statement, they are stored in the database, where
they are available for general use.

Java methods published as functions and procedures must be invoked explicitly. They
can accept arguments and are callable from:

* SQL data manipulation language (DML) statements
e SQL CALL statements

e PL/SQL blocks, subprograms, and packages

5.1.2 Database Triggers

A database trigger is a stored procedure that is associated with a specific table or view.
Oracle Database calls the trigger automatically whenever a given DML operation
modifies the table or view.

A trigger has the following parts:
¢ A triggering event, which is generally a DML operation
* An optional trigger constraint

e A trigger action

When the event occurs, the trigger is called. A CALL statement in the trigger calls a
Java method through the call specification of the method, to perform the action.

Database triggers are used to enforce complex business rules, derive column values
automatically, prevent invalid transactions, log events transparently, audit
transactions, and gather statistics.

5.1.3 Object-Relational Methods

A SQL object type is a user-defined composite data type that encapsulates a set of
variables, called attributes, with a set of operations, called methods, which can be
written in Java. The data structure formed by the set of attributes is publ i c. However,

5-2 Oracle Database Java Developer's Guide

Advantages of Stored Procedures

as a good programming practice, you must ensure that your application does not
manipulate these attributes directly and uses the set of methods provided.

You can create an abstract template for some real-world object as a SQL object type.
The template specifies only those attributes and methods that the object will need in
the application environment. At run time, when you fill the data structure with values,
you create an instance of the object type. You can create as many instances as required.

Typically, an object type corresponds to some business entity, such as a purchase
order. To accommodate a variable number of items, object types can use a VARRAY, a
nested table, or both.

For example, the purchase order object type can contain a variable number of line
items.

5.2 Advantages of Stored Procedures

Stored procedures offer several advantages. The following advantages are covered in
this section:

* Performance (page 5-3)

® Productivity and Ease of Use (page 5-3)
¢ Scalability (page 5-4)

* Maintainability (page 5-4)

¢ Interoperability (page 5-4)

* Replication (page 5-4)

¢ Security (page 5-4)

5.2.1 Performance

Stored procedures are compiled once and stored in an executable form. As a result,
procedure calls are quick and efficient. Executable code is automatically cached and
shared among users. This lowers memory requirements and invocation overhead.

By grouping SQL statements, a stored procedure allows the statements to be processed
with a single call. This reduces network traffic and improves round-trip response time.

Additionally, stored procedures enable you to take advantage of the computing
resources of the server. For example, you can move computation-bound procedures
from client to server, where they will run faster. Stored functions enhance
performance by running application logic within the server.

5.2.2 Productivity and Ease of Use

By designing applications around a common set of stored procedures, you can avoid
redundant coding and increase the productivity. Moreover, stored procedures let you
extend the functionality of the database.

You can use the Java integrated development environment (IDE) of your choice to
create stored procedures. They can be called by standard Java interfaces, such as Java
Database Connectivity (JDBC), and by programmatic interfaces and development
tools, such as SQLJ, Oracle Call Interface (OCI), Pro*C/C++, and JDeveloper.

Developing Java Stored Procedures 5-3

Advantages of Stored Procedures

This broad access to stored procedures lets you share business logic across
applications. For example, a stored procedure that implements a business rule can be
called from various client-side applications, all of which can share that business rule.
In addition, you can leverage the Java facilities of the server while continuing to write
applications for a preferred programmatic interface.

5.2.3 Scalability

Java in the database inherits the scalable session model of Oracle Database. Stored
procedures increase scalability by isolating application processing on the server. In
addition, automatic dependency tracking for stored procedures helps in developing
scalable applications.

5.2.4 Maintainability

After a stored procedure is validated, you can use it with confidence in any number of
applications. If its definition changes, then only the procedure is affected, not the
applications that call it. This simplifies maintenance and enhancement. Also,
maintaining a procedure on the server is easier than maintaining copies on different
client computers.

5.2.5 Interoperability

Java in Oracle Database fully conforms to the Java Language Specification (JLS) and
furnishes all the advantages of a general-purpose, object-oriented programming
language. Also, as with PL/SQL, Java provides full access to Oracle data. As a result,
any procedure that is written in PL/SQL can also be written in Java.

PL/SQL stored procedures complement Java stored procedures. Typically, SQL
programmers who want procedural extensions favor PL/SQL, and Java programmers
who want easy access to Oracle data favor Java.

Oracle Database allows a high degree of interoperability between Java and PL/SQL.
Java applications can call PL/SQL stored procedures using an embedded JDBC driver.
Conversely, PL/SQL applications can call Java stored procedures directly.

5.2.6 Replication

5.2.7 Security

With Oracle Advanced Replication, you can replicate stored procedures from one
Oracle Database instance to another. This enables you to use stored procedures to
implement a central set of business rules. Once you write the procedures, you can
replicate and distribute them to work groups and branch offices throughout the
company. In this way, you can revise policies on a central server rather than on
individual servers.

Security is a large arena that includes:
* Network security for the connection

® Access and execution control of operating system resources or of JVM and user-
defined classes

* Bytecode verification of JAR files imported from an external source.

In Oracle Database, all classes are loaded into a secure database and, therefore, are
untrusted. A user requires the appropriate permissions to access classes and operating

5-4 Oracle Database Java Developer's Guide

Running Java Stored Procedures

system resources. Likewise, all stored procedures are secured against other users. You
can grant the EXECUTE database privilege to users who need to access the stored
procedures.

You can restrict access to Oracle data by allowing users to manipulate the data only
through stored procedures that run with their definer's privileges. For example, you
can allow access to a procedure that updates a database table, but deny access to the
table itself.

See Also:

Security for Oracle Database Java Applications (page 10-1)

5.3 Running Java Stored Procedures

You can run Java stored procedures in the same way as PL/SQL stored procedures.
Usually, a call to a Java stored procedure is a result of database manipulation, because
it is usually the result of a trigger or SQL DML call. To call a Java stored procedure,
you must publish it through a call specification.

Before you can call Java stored procedures, you must load them into Oracle Database
instance and publish them to SQL. Loading and publishing are separate tasks. Many
Java classes, which are referenced only by other Java classes, are never published.

To load Java stored procedures automatically, you can use the | oadj ava tool. It loads
Java source, class, and resource files into a system-generated database table, and then
uses the SQL CREATE JAVA { SOURCE | CLASS | RESOURCE} statement to load
the Java files into Oracle Database instance. You can upload Java files from file
systems, popular Java IDEs, intranets, or the Internet.

You must perform the following steps for creating, loading, and calling Java stored
procedures:

* Creating or Reusing the Java Classes (page 5-6)
* Loading and Resolving the Java Classes (page 5-6)
® Publishing the Java Classes (page 5-6)

e Calling the Stored Procedures (page 5-7)

Note:

To load Java stored procedures manually, you can use the CREATE JAVA
statements. For example, in SQL*Plus, you can use the CREATE JAVA CLASS
statement to load Java class files from local BFI LE and LOB columns into
Oracle Database.

See Also:

Chapter 8, "Java Stored Procedures Application Example"

Developing Java Stored Procedures 5-5

Running Java Stored Procedures

5.3.1 Creating or Reusing the Java Classes

Use a preferred Java IDE to create classes, or reuse existing classes that meet your
requirements. Oracle Database supports many Java development tools and client-side
programmatic interfaces. For example, Oracle JVM accepts programs developed in
popular Java IDEs, such as Oracle JDeveloper, Symantec Visual Cafe, and Borland
JBuilder.

In the following example, you create the publ i ¢ class Cscar . It has a single method
named quot e() , which returns a quotation from Oscar Wilde.

public class Oscar

{

Il return a quotation from Gscar Wlde
public static String quote()
{

return "I can resist everything except tenptation.";

}
}

Save the class as Oscar . j ava. Using a Java compiler, compile the . j ava file on your
client system, as follows:

javac Oscar.java

The compiler outputs a Java binary file, in this case, Oscar . cl ass.

5.3.2 Loading and Resolving the Java Classes

Using the | oadj ava tool, you can load Java source, class, and resource files into
Oracle Database instance, where they are stored as Java schema objects. You can run
the | oadj ava tool from the command line or from an application, and you can
specify several options including a resolver.

In the following example, the | oadj ava tool connects to the database using the
default JDBC OCI driver. You must specify the user name and password. By default,
the Gscar class is loaded into the schema of the user you log in as, in this case, HR.

$ loadj ava -user HR Gscar.cl ass
Password: password

When you call the quot e() method, the server uses a resolver to search for
supporting classes, such as St ri ng. In this case, the default resolver is used. The
default resolver first searches the current schema and then the SYS schema, where all
the core Java class libraries reside. If necessary, you can specify different resolvers.

5.3.3 Publishing the Java Classes

For each Java method that can be called from SQL or JDBC, you must write a call
specification, which exposes the top-level entry point of the method to Oracle
Database. Typically, only a few call specifications are needed. If preferred, you can
generate these call specifications using Oracle JDeveloper.

In the following example, from SQL*Plus, you connect to the database and then define
a top-level call specification for the quot e() method:

SQ.> connect HR
Enter password: password

5-6 Oracle Database Java Developer's Guide

Debugging Java Stored Procedures

SQL> CREATE FUNCTI ON oscar _quot e RETURN VARCHAR2
2 AS LANGUAGE JAVA
3 NAME 'GCscar.quote() return java.lang.String';

See Also:

Publishing Java Classes With Call Specifications (page 6-1)

5.3.4 Calling the Stored Procedures

You can call Java stored procedures from JDBC, SQLJ, and all third party languages
that can access the call specification. Using the SQL CALL statement, you can also call
the stored procedures from the top level, for example, from SQL*Plus. Stored
procedures can also be called from database triggers.

In the following example, you declare a SQL*Plus host variable:

SQ.> VARI ABLE t heQuot e VARCHAR2(50);

Then, you call the function oscar _quot e(), as follows:

SQ.> CALL oscar_quote() INTO :theQuote;

SQ> PRINT theQuote;

| can resist everything except tenptation.

See Also:

Calling Stored Procedures (page 7-1)

You can also call the Java class using the 0j vnj ava tool.

See Also:

"The ojvmjava Tool (page 12-22)"

5.4 Debugging Java Stored Procedures

Oracle Database provides the Java Debug Wire Protocol (JDWP) interface for

debugging Java stored procedures. JDWP is supported by Java Development Kit (JDK)
1.3 and later versions.

Following are a few features that the JDWP interface supports:

¢ Listening for connections

* Changing the values of variables while debugging

¢ Evaluating arbitrary Java expressions, including method evaluations

e Setting or clearing breakpoints on a line or in a method

Developing Java Stored Procedures 5-7

Debugging Java Stored Procedures

* Stepping through the code

® Setting or clearing field access or modification watchpoints

Note:

Oracle JDeveloper provides a user-friendly integration with these debugging
features. Other independent Integrated Development Environment (IDE)
vendors can also integrate their own debuggers with Oracle Database.

This section discusses the following topics:
® Prerequisites for Debugging Java Stored Procedures (page 5-8)
* Debugging Java Stored Procedures Using the jdb Debugger (page 5-9)

* Debugging Java Stored Procedures Using JDeveloper (page 5-10)

5.4.1 Prerequisites for Debugging Java Stored Procedures

Ensure that the following prerequisites are met before debugging a Java stored
procedure:

* The Java code must be deployed to the database and can be optionally compiled
with debug information.

* Your database user account must have the following privileges:
— The DEBUG CONNECT SESSI ON privilege
— The DEBUG CONNECT ANY privilege
— The DEBUG CONNECT ON USER <user > privilege
— The DEBUG object privilege on the stored procedure to be debugged

* Youmust add the j dwp privilege to the Access Control List (ACL) in the
following way:

SQ> begin
2 DBMS_NETWORK_ACL_ADM N. APPEND_HOST ACE(

3 host => <host _nane>,
4 ace => xs$ace_type(privilege_ list => xs$nanme_|ist('jdwp'),
5 princi pal _name => <user_name>,
6 principal _type => xs_acl.ptype_db));
7 end;
8 |/
See Also:

Oracle Database Security Guide for more information about adding privileges to
an Access Control List

5-8 Oracle Database Java Developer's Guide

Debugging Java Stored Procedures

5.4.2 Debugging Java Stored Procedures Using the jdb Debugger

A'j db session can be started with the - | i st en <por t > command. If you start the
session in this way, then j db waits for a running Virtual Machine (VM) to connect at
the specified port, using the standard connector.

Note:

While debugging a Java stored procedure, j db cannot launch a JVM session
and only waits for the VM to connect.

Perform the following steps to debug a Java program running in Oracle JVM:

1.

Run the following command in the debugging terminal:

jdb -listen 4000

The following image shows the debugging terminal starting the j db session:

kdnr-2l-d---_1ap:~% jdb -listen 4000
Listening at address: ..'--~-lap:40080

Use an Oracle client such as SQL*Plus to issue the command for connecting to the
debugger. You can connect in the following two ways:

Issue the debugger connection command from the same session that executes
your Java stored procedure. For example, if you are using SQL*Plus, then
issue the following command to open a TCP/IP connection to the designated
machine and port for the JDWP session:

EXEC DBMS_DEBUG JDWP. CONNECT TCP(<host _i p>, <port>)

The following image shows the client terminal running the command for
connecting to the debugging terminal:

17, Oracle. ALl rights res

ase 12c Enterprise Edition Release 12.2.8.2.0 - 64bit Beta

.193.183",4000) ;

After the debugger accepts the connection, issue the breakpoint in the
debugger session and invoke the Java stored procedure in the Oracle client.
The debugger will now halt at the first breakpoint that you specified.

Issue the debugger connection command in another session and specify two
additional parameters as shown in the following example:

Developing Java Stored Procedures 5-9

Debugging Java Stored Procedures

EXEC DBVS_DEBUG_JDWP. CONNECT_TCP(<host _i p>, <port>, <session_id>,
<session_seri al >)

In the preceding command, sessi on_i d and sessi on_seri al identify the
database session, where the Java stored procedure is executed, which the user
wants to connect to the debugger. To connect another session to the
debugger, the user must have either DEBUG CONNECT user privilege on the
logon user of that session, or the DEBUG CONNECT ANY system privilege.

3. Once connection is established successfully, you can add breakpoints in the
debugging terminal using the following syntax:

stop at <C assNanme>: <Li neNunber >

The following image shows how to add breakpoints to the debugging terminal:

fewed 27 -lap:~5§ jdb -listen 4000
Listening at address: ..--» lap:40080

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable
Initializing jdb ...

VM Started: "thread=main", SOracle.PackageBody.SYS.DBMS_DEBUG_JIDWP.<procedure$i>(), line=-1 bci=1

main[1] stop at Test:5
Deferring breakpoint Test:5.
It will be set after the class is loaded.

main[1] B

4. In the Oracle client used in step 2, call the SQL wrapper for the Java program in
the following way:

cal | <SQLW apper Name>. <Met hodName>

5. Following are a few j db commands that you can use to debug the code in the
debugging terminal:

¢ For Going one step at a time: St ep

¢ To check the value of a variable value:
print <C assNane>: <Vari abl eName>

e To continue: cont

* To clear break points: cl ear

5.4.3 Debugging Java Stored Procedures Using JDeveloper

You can debug Java stored procedures and PL/SQL programs seamlessly using
JDeveloper. When you debug PL/SQL programs and Java stored procedures locally,
then the call to initiate debugging is made directly from JDeveloper. JDeveloper
performs the following activities:

1. It automatically launches the program that you want to debug (also called
debuggee)

2. It attaches the debugger to that program.

The main difference between remote debugging and local debugging PL/SQL
programs and Java stored procedures is how you start the debugging session. For
remote debugging, you must manually launch the program that you want to debug
with an Oracle client such as SQL*Plus, jobs created using the DBM5_SCHEDULER
package, an OCI program, or a trigger firing. Then, you must establish the connection

5-10 Oracle Database Java Developer's Guide

Debugging Java Stored Procedures

from the database program that you want to debug (debuggee) to the JDeveloper
debugger. After the debuggee is launched and the JDeveloper debugger is attached to
it, remote debugging is very similar to local debugging.

Note:

You can optionally turn off JIT for better debugging experience.

See Also:

For more information about using JDeveloper for debugging Java stored
procedures, visit the following page

http://docs.oracle.com/cd /E16162_01/user.1112/e17455/
dev_stored_proc.htm#BEJEJIHD

Developing Java Stored Procedures 5-11

http://docs.oracle.com/cd/E16162_01/user.1112/e17455/dev_stored_proc.htm#BEJEJIHD
http://docs.oracle.com/cd/E16162_01/user.1112/e17455/dev_stored_proc.htm#BEJEJIHD

Debugging Java Stored Procedures

5-12 Java Developer's Guide

6

Publishing Java Classes With Call
Specifications

When you load a Java class into the database, its methods are not published
automatically, because Oracle Database does not know which methods are safe entry
points for calls from SQL. To publish the methods, you must write call specifications,
which map Java method names, parameter types, and return types to their SQL
counterparts. This chapter describes how to publish Java classes with call
specifications in the following sections:

¢ What Are Call Specifications (page 6-1)

¢ Defining Call Specifications (page 6-2)

e Writing Top-Level Call Specifications (page 6-7)

¢ Writing Packaged Call Specifications (page 6-11)

e Writing Object Type Call Specifications (page 6-13)

6.1 What Are Call Specifications?

To publish Java methods, you write call specifications. For a given Java method, you
declare a function or procedure call specification using the SQL CREATE FUNCTI ON
or CREATE PROCEDURE statement. Inside a PL/SQL package or SQL object type, you
use similar declarations.

You publish Java methods that return a value as functions and voi d Java methods as
procedures. The function or procedure body contains the LANGUAGE JAVA clause.
This clause records information about the Java method including its full name, its
parameter types, and its return type. Mismatches are detected only at run time.

Figure 6-1 (page 6-2) shows applications calling the Java method through its call
specification, that is, by referencing the name of the call specification. The run-time
system looks up the call specification definition in the Oracle data dictionary and runs
the corresponding Java method.

Publishing Java Classes With Call Specifications 6-1

Defining Call Specifications

Figure 6-1 Calling a Java Method

Oracle Database

method

| 1
1
Application —>E Call ,'_> —
1

Data
Dictionary

S~ -

As an alternative, you can use the native Java interface to directly call Java methods in
the database from a Java client.

See Also:

"Overview of Using the Client-Side Stub (page 3-10)"

6.2 Defining Call Specifications

A call specification and the Java method it publishes must reside in the same schema,
unless the Java method has a PUBLI Csynonym. You can declare the call specification
as a:

¢ Standalone PL/SQL function or procedure
e Packaged PL/SQL function or procedure
* Member method of a SQL object type

A call specification exposes the top-level entry point of a Java method to Oracle
Database. As a result, you can publish only publ i ¢ st at i ¢ methods. However, there
is an exception. You can publish instance methods as member methods of a SQL object

type.

Packaged call specifications perform as well as top-level call specifications. As a result,
to ease maintenance, you may want to place call specifications in a package body. This
will help you to modify call specifications without invalidating other schema objects.
Also, you can overload the call specifications.

This section covers the following topics:
* About Setting Parameter Modes (page 6-3)

* About Mapping Data Types (page 6-3)

6-2 Oracle Database Java Developer's Guide

Defining Call Specifications

¢ Using the Server-Side Internal JDBC Driver (page 6-5)

6.2.1 About Setting Parameter Modes

In Java and other object-oriented languages, a method cannot assign values to objects
passed as arguments. When calling a method from SQL or PL/SQL, to change the
value of an argument, you must declare it as an OUT or | N QUT parameter in the call
specification. The corresponding Java parameter must be an array with only one
element.

You can replace the element value with another Java object of the appropriate type, or
you can modify the value, if the Java type permits. Either way, the new value
propagates back to the caller. For example, you map a call specification QUT parameter
of the NUMBER type to a Java parameter declared as f | oat [] p, and then assign a new
value to p[0] .

Note:

A function that declares OUT or | N OUT parameters cannot be called from
SQL data manipulation language (DML) statements.

6.2.2 About Mapping Data Types

In a call specification, the corresponding SQL and Java parameters and function
results must have compatible data types.

Table 6-1 (page 6-3) lists the legal data type mappings. Oracle Database converts
between the SQL types and Java classes automatically.

Table 6-1 Legal Data Type Mappings

SQL Type Java Class

CHAR, VARCHARZ2, LONG java.lang. String
oracl e. sql . CHAR
oracl e.sql . ROND
byte[]

Publishing Java Classes With Call Specifications 6-3

Defining Call Specifications

Table 6-1 (Cont.) Legal Data Type Mappings

SQL Type

Java Class

NUMBER

Bl NARY_I NTEGER

Bl NARY_FLCOAT

Bl NARY_DOUBLE

DATE

RAW

BLOB
CLCB
BFI LE

ROW D

6-4 Oracle Database Java Developer's Guide

bool ean
char
byt e
byt e[]
short

i nt

| ong

f | oat
doubl e

java. |l ang.

java. | ang.
java. |l ang.

java. |l ang.
java. |l ang.

java. |l ang.
j ava. mat h.
oracl e. sql . NUMBER

bool ean
char
byt e
byt e[]
short
int

| ong
oracl e.
byte[]

oracl e.
byt e[]

oracl e.
byt e[]

oracl e.
byt e[]

oracl e.
oracl e.
oracl e.

oracl e.
byt e[]

sql

sql

sql

sql

sql .

sql
sql

sql

Byt e
Shor t

I nt eger
Long

FI oat
Doubl e

Bi gDeci nal

. BI NARY_FLOAT

. BI NARY_DOUBLE

. DATE

. RAW

BLCB
.CLCB
. BFI LE

. ROW D

Defining Call Specifications

Table 6-1 (Cont.) Legal Data Type Mappings

SQL Type Java Class

TI MESTAMP oracl e. sql . TI MESTAWP
byt e[]

TI MESTAMP W TH TI ME oracl e. sql . TI MESTAMPTZ

ZONE

TI MESTAMP WTH LOCAL oracle.sql. Tl MESTAVPLTZ

TI ME ZONE

ref cursor java. sql . Resul t Set

sqlj.runtine. ResultSetlterator

user defined named types, oracl e. sql . STRUCT
ADTs

opaque named types oracl e. sql . OPAQUE

nested tables and VARRAY or acl e. sql . ARRAY
named types

references to named types ~ oracl e. sql . REF

You also must consider the following:

® The last four SQL types are collectively referred to as named types.

e Al SQL types except BLOB, CLOB, BFI LE, REF CURSCR, and the named types can
be mapped to the Java type byt e[] , which is a Java byte array. In this case, the
argument conversion means copying the raw binary representation of the SQL
value to or from the Java byte array.

* Java classes that implement the ORADat a interface and related methods, or Java
classes that are subclasses of the or acl e. sql classes appearing in the table, can
be mapped from SQL types other than Bl NARY_| NTEGER and REF CURSOR.

¢ The UROW Dtype and the NUMBER subtypes, such as | NTEGERand REAL, are not
supported.

* A value larger than 32 KB cannot be retrieved from a LONGor LONG RAWcolumn
into a Java stored procedure.

6.2.3 Using the Server-Side Internal JDBC Driver

Java Database Connectivity (JDBC) enables you establish a connection to the database
using the Dri ver Manager class, which manages a set of JDBC drivers. You can use
the get Connecti on() method after loading the JDBC drivers. When the

get Connect i on() method finds the right driver, it returns a Connect i on object
that represents a database session. All SQL statements are run within the context of
that session.

However, the server-side internal JDBC driver runs within a default session and a
default transaction context. As a result, you are already connected to the database, and
all your SQL operations are part of the default transaction. You need not register the

Publishing Java Classes With Call Specifications 6-5

Defining Call Specifications

driver because it comes preregistered. To get a Connect i on object, run the following
line of code:

Connection conn = DriverManager. get Connection("j dbc: def aul t: connection:");

Use the St at erent class for SQL statements that do not take | N parameters and are
run only once. When called on a Connect i on object, the cr eat eSt at enment ()
method returns a new St at ement object, as follows:

String sql = "DROP " + object_type +" " + object_nanme;
Statement stnt = conn.createStatenent();
stnt. execut eUpdat e(sql);

Use the Pr epar edSt at ement class for SQL statements that take | N parameters or are
run more than once. The SQL statement, which can contain one or more parameter
placeholders, is precompiled. A question mark (?) serves as a placeholder. When
called on a Connect i on object, the pr epar eSt at ement () method returns a new

Pr epar edSt at enment object, which contains the precompiled SQL statement. For
example:

String sql = "DELETE FROM dept WHERE deptno = ?";
PreparedStat enment pstnt = conn. prepareStatenent(sql);
pstnt.setint(1, deptlD);

pstnt. execut eUpdat e();

A Resul t Set object contains SQL query results, that is, the rows that meet the search
condition. You can use the next () method to move to the next row, which then
becomes the current row. You can use the get XXX() methods to retrieve column
values from the current row. For example:

String sql = "SELECT COUNT(*) FROM " + tabNane;
int rows = 0;

Statenment stnt = conn.createStatenent();

Resul t Set rset = stnt.executeQuery(sql);

while (rset.next())

{
}

rows = rset.getint(1);

A Cal | abl eSt at erent object lets you call stored procedures. It contains the call
text, which can include a return parameter and any number of | N, OUT, and | N OUT
parameters. The call is written using an escape clause, which is delimited by braces
({})- As the following examples show, the escape syntax has three forms:

/| paraneterless stored procedure
Cal | abl eStatement cstnt = conn. prepareCal | ("{CALL proc}");

/] stored procedure
Cal | abl eSt at ement cstnt = conn. prepareCal | ("{CALL proc(?,?)}");

Il stored function
Cal | abl eStatement cstnt = conn. prepareCal | ("{? = CALL func(?,?)}");

Important Points

When developing JDBC applications that access stored procedures, you must consider
the following:

® Each Oracle JVM session has a single implicit native connection to the Database
session in which it exists. This connection is conceptual and is not a Java object. It

6-6 Oracle Database Java Developer's Guide

Writing Top-Level Call Specifications

is an inherent aspect of the session and cannot be opened or closed from within
the JVM.

e The server-side internal JDBC driver runs within a default transaction context.
You are already connected to the database, and all your SQL operations are part
of the default transaction. Note that this transaction is a local transaction and not
part of a global transaction, such as that implemented by Java Transaction API
(JTA) or Java Transaction Service (JTS).

* Statements and result sets persist across calls and their finalizers do not release
database cursors. To avoid running out of cursors, close all statements and result
sets after you have finished using them. Alternatively, you can ask your DBA to
raise the limit set by the initialization parameter, OPEN_CURSORS.

* The server-side internal JDBC driver does not support auto-commits. As a result,
your application must explicitly commit or roll back database changes.

* You cannot connect to a remote database using the server-side internal JDBC
driver. You can connect only to the server running your Java program. For server-
to-server connections, use the server-side JDBC Thin driver. For client/server
connections, use the client-side JDBC Thin or JDBC Oracle Call Interface (OCI)
driver.

e Typically, you should not close the default connection instance because it is a
single instance that can be stored in multiple places, and if you close the instance,
each would become unusable. If it is closed, a later call to the
Oracl eDri ver. def aul t Connect i on method gets a new, open instance. The
Oracl eDat aSour ce. get Connect i on method returns a new object every time
you call it, but, it does not create a new database connection every time. They all
utilize the same implicit native connection and share the same session state, in
particular, the local transaction.

See Also:

Oracle Database [DBC Developer’s Guide

6.3 Writing Top-Level Call Specifications

In SQL*Plus, you can define top-level call specifications interactively, using the
following syntax:

CREATE [OR REPLACE]

{ PROCEDURE procedure_nanme [(paran{, parani...)]

| FUNCTION function_nanme [(paran{, paranj...)] RETURN sql _type}

[AUTH D { DEFI NER | CURRENT_USER}]

[PARALLEL_ENABLE]

[DETERM NI STI C]

{I'S| AS} LANGUAGE JAVA

NAME ' net hod_ful | nane (j ava_type_ful I name[, java_type_fullnane]...)
[return java_type_fullnane]';

where par amis represented by the following syntax:

parameter_nanme [IN| OQUT | IN QUT] sql _type

The AUTHI D clause determines the following:

Publishing Java Classes With Call Specifications 6-7

Writing Top-Level Call Specifications

® Whether a stored procedure runs with the privileges of its definer (AUTHI D
DEFI NER) or invoker (AUTHI D CURRENT_USER)

* Whether its unqualified references to schema objects are resolved in the schema of
the definer or invoker

If you do not specify the AUTHI D, then the default behavior is DEFI NER, that is, the
stored procedure runs with the privileges of its definer. You can override the default
behavior by specifying the AUTHI Das CURRENT_USER. However, you cannot override
the | oadj ava option - def i ner by specifying CURRENT_USER

The PARALLEL_ENABLE option declares that a stored function can be used safely in
the slave sessions of parallel DML evaluations. The state of a main session is never
shared with slave sessions. Each slave session has its own state, which is initialized
when the session begins. The function result should not depend on the state of session
variables. Otherwise, results might vary across sessions.

The DETERM NI STI Coption helps the optimizer avoid redundant function calls. If a
stored function was called previously with the same arguments, then the optimizer
can decide to use the previous result. The function result should not depend on the
state of session variables or schema objects. Otherwise, results can vary across calls.
Only DETERM NI STI C functions can be called from a function-based index or a
materialized view that has query-rewrite enabled.

The string in the NAME clause uniquely identifies the Java method. The fully-qualified
Java names and the call specification parameters, which are mapped by position, must
correspond. However, this rule does not apply to the mai n() method. If the Java
method does not take any arguments, then write an empty parameter list for it, but not
for the function or procedure.

Write fully-qualified Java names using the dot notation. The following example shows
that the fully-qualified names can be broken across lines at dot boundaries:

artificiallntelligence.neural Networks. patternC assification.
Radar Si gnat ureC assi fi er. conput eRange()

6.3.1 Examples

This section provides the following examples:

* Example 6-1 (page 6-8)

e Example 6-2 (page 6-9)

e Example 6-3 (page 6-10)

e Example 6-4 (page 6-10)

Example 6-1 Publishing a Simple JDBC Stored Procedure

Assume that the executable for the following Java class has been loaded into the
database:

inmport java.sql.*;
inport java.io.*;
import oracle.jdbc.*;

public class GenericDrop

{
public static void droplt(String object_type, String object_nane)
throws SQLException

{

6-8 Oracle Database Java Developer's Guide

Writing Top-Level Call Specifications

/1 Connect to Oracle using JDBC driver

Connection conn = DriverManager. get Connection("jdbc: defaul t:connection:");
/1 Build SQ statement

String sql = "DROP " + object_type +" " + object_nanme;

try

{

Statenment stmt = conn.createStatenment();
stnt. execut eUpdat e(sql);
stnt.close();

catch (SQLException e)

{
Systemerr. println(e.getMssage());

}
}
}

The Gener i cDr op class has one method, dr opl t () , which drops any kind of schema
object. For example, if you pass the t abl e and enpl oyees arguments to dropl t (),
then the method drops the database table enpl oyees from your schema.

The call specification for the dr opl t () method is as follows:

CREATE OR REPLACE PROCEDURE drop_it (obj_type VARCHAR2, obj _nane VARCHAR?2)
AS LANGUAGE JAVA
NAME ' GenericDrop.droplt(java.lang.String, java.lang.String)';

Note that you must fully qualify the reference to St ri ng. The j ava. | ang package is
automatically available to Java programs, but must be named explicitly in the call
specifications.

Example 6-2 Publishing the main() Method

As a rule, Java names and call specification parameters must correspond. However,
that rule does not apply to the mai n() method. Its St ri ng[] parameter can be
mapped to multiple CHAR or VARCHARZ call specification parameters. Consider the
mai n() method in the following class, which displays its arguments:

public class Echol nput

{
public static void main (String[] args)
{
for (int i =0; i <args.length; i++)
Systemout. printin(args[i]);
}
}

To publish mai n() , write the following call specification:

CREATE OR REPLACE PROCEDURE echo_input (s1 VARCHAR2, s2 VARCHAR2, s3 VARCHAR?2)
AS LANGUAGE JAVA
NAME ' Echol nput . mai n(j ava. lang. String[])";

You cannot impose constraints, such as precision, size, and NOT NULL, on the call
specification parameters. As a result, you cannot specify a maximum size for the
VARCHAR? parameters. However, you must do so for VARCHAR2 variables, as in:

DECLARE | ast _nane VARCHAR2(20); -- size constraint required

Publishing Java Classes With Call Specifications 6-9

Writing Top-Level Call Specifications

Example 6-3 Publishing a Method That Returns an Integer Value

In the following example, the r owCount () method, which returns the number of
rows in a given database table, is published:

inport java.sql.*;

inport java.io.*;
inmport oracle.jdbc.*;

public class RowCounter

{
public static int rowCount (String tabName) throws SQLException
{
Connection conn = DriverManager. get Connection("jdbc: defaul t:connection:");
String sql = "SELECT COUNT(*) FROM " + tabNane;
int rows = 0;
try
{
Statenent stnt = conn.createStatenment();
Resul t Set rset = stnt.executeQuery(sql);
while (rset.next())
{
rows = rset.getlnt(1);
1
rset.close();
stnt.close();
}
catch (SQLException e)
{
Systemerr. println(e.getMessage());
}
return rows;
1
}

NUMBER subtypes, such as | NTEGER, REAL, and PCSI Tl VE, are not allowed in a call
specification. As a result, in the following call specification, the return type is NUMBER
and not | NTEGER:

CREATE FUNCTI ON row_count (tab_name VARCHAR2) RETURN NUMBER
AS LANGUAGE JAVA
NAME ' RowCount er . rowCount (j ava.lang. String) return int';

Example 6-4 Publishing a Method That Switches the Values of Its Arguments

Consider the swap() method in the following Swapper class, which switches the
values of its arguments:

public class Swapper
{
public static void swap (int[] x, int[] y)
{
int hold = x[0];
x[0] = y[0];
y[0] = hol d;
}
}

The call specification publishes the swap() method as a call specification, swap() .
The call specification declares | N OUT formal parameters, because values must be
passed in and out. All call specification OUT and | N QUT parameters must map to Java
array parameters.

6-10 Oracle Database Java Developer's Guide

Writing Packaged Call Specifications

CREATE PROCEDURE swap (x I'N OUT NUMBER y IN OQUT NUMBER)
AS LANGUAGE JAVA
NAME ' Swapper . swap(int[], int[])";

Note:

A Java method and its call specification can have the same name.

6.4 Writing Packaged Call Specifications

A PL/SQL package is a schema object that groups logically related types, items, and
subprograms. Usually, packages have two parts, a specification and a body. The
specification is the interface to your applications and declares the types, constants,
variables, exceptions, cursors, and subprograms available for use. The body defines
the cursors and subprograms.

In SQL*Plus, you can define PL/SQL packages interactively, using the following
syntax:

CREATE [OR REPLACE] PACKAGE package_name

[AUTH D { CURRENT_USER | DEFINER}] {IS | AS}

[type_definition [type_definition] ...]

[cursor_spec [cursor_spec] ...]

[itemdeclaration [itemdeclaration] ...]

[{subprogram spec | call_spec} [{subprogramspec | call_spec}]...]
END [package_nane] ;

[CREATE [OR REPLACE] PACKAGE BODY package_nane {IS | AS}
[type_definition [type_definition] ...]
[cursor_body [cursor_body] ...]
[itemdeclaration [itemdeclaration] ...]
[{subprogram spec | call_spec} [{subprogramspec | call_spec}]...]
[BEG N
sequence_of _st at enent s]
END [package_nane] ;]

The specification holds public declarations, which are visible to your application. The
body contains implementation details and private declarations, which are hidden from
your application. Following the declarative part of the package is the body, which is
the optional initialization part. It holds statements that initialize package variables. It
is run only once, the first time you reference the package.

A call specification declared in a package specification cannot have the same
signature, that is, the name and parameter list, as a subprogram in the package body.
If you declare all the subprograms in a package specification as call specifications, then
the package body is not required, unless you want to define a cursor or use the
initialization part.

The AUTHI D clause determines whether all the packaged subprograms run with the
privileges of their definer (AUTHI D DEFI NER), which is the default, or invoker
(AUTHI D CURRENT_USER). It also determines whether unqualified references to
schema objects are resolved in the schema of the definer or invoker.

Example 6-5 (page 6-11) provides an example of packaged call specification.
Example 6-5 Packaged Call Specification

Consider a Java class, Dept Manager , which consists of methods for adding a new
department, dropping a department, and changing the location of a department. Note

Publishing Java Classes With Call Specifications 6-11

Writing Packaged Call Specifications

that the addDept () method uses a database sequence to get the next department
number. The three methods are logically related, and therefore, you may want to
group their call specifications in a PL/SQL package.

inport java.sql.*;
inport java.io.*;
inmport oracle.jdbc.*;

public class Dept Manager

{

public static void addDept (String deptNane, String deptLoc) throws SQLException

{

}

Connection conn = DriverManager. get Connection("jdbc: defaul t:connection:");
String sql = "SELECT deptnos. NEXTVAL FROM dual ";
String sql2 = "INSERT I NTO dept VALUES (?, ?, ?2)";
int deptID = 0;
try
{
PreparedSt at ement pstnt = conn. prepareStatenent (sql);
Resul t Set rset = pstnt.executeQuery();
while (rset.next())
{
deptID = rset.getlnt(1);
1
pstm = conn. prepareSt at enent (sql 2);
pstnt.setint(1, deptlD);
pstnt.setString(2, deptNane);
pstnt.setString(3, deptloc);
pstnt. execut eUpdate();
rset.close();
pstnt.close();

catch (SQLException e)

{
Systemerr. println(e.getMssage());

}

public static void dropDept (int deptID) throws SQLException

{

}

Connection conn = DriverManager. get Connection("jdbc: defaul t:connection:");
String sql = "DELETE FROM dept WHERE deptno = ?";
try
{
PreparedSt at ement pstnt = conn. prepareStatenent(sql);
pstnt.setint(1, deptlD);
pstnt. execut eUpdate();
pstnt.close();

catch (SQLException e)

{
Systemerr. println(e.getMssage());

}

public static void changeLoc (int deptlD, String newLoc) throws SQLException

{

Connection conn = DriverManager. get Connection("jdbc: defaul t:connection:");
String sql = "UPDATE dept SET loc = ? WHERE deptno = ?";

try

{

6-12 Oracle Database Java Developer's Guide

Writing Object Type Call Specifications

Prepar edSt at ement pstnt = conn. prepareStatenent(sql);
pstnt.setString(l, newLoc);

pstnt.setint(2, deptlD);

pstnt. execut eUpdate();

pstnt.close();

catch (SQLException e)

{
Systemerr. println(e.getMssage());

}
}
}

Suppose you want to package the methods addDept (), dr opDept (), and
changeloc() . First, you must create the package specification, as follows:

CREATE OR REPLACE PACKAGE dept ngmt AS

PROCEDURE add_dept (dept _name VARCHAR2, dept | oc VARCHAR?);
PROCEDURE dr op_dept (dept _i d NUMBER);

PROCEDURE change_| oc (dept _id NUMBER new | oc VARCHAR2);
END dept _ngnt ;

Then, you must create the package body by writing the call specifications for the Java
methods, as follows:

CREATE OR REPLACE PACKAGE BCDY dept ngm AS

PROCEDURE add_dept (dept_name VARCHAR2, dept_| oc VARCHAR2)

AS LANGUAGE JAVA

NAME ' Dept Manager . addDept (j ava. |l ang. String, java.lang.String)';

PROCEDURE dr op_dept (dept _i d NUMBER)
AS LANGUAGE JAVA
NAME ' Dept Manager . dropDept (i nt)";

PROCEDURE change_| oc (dept _id NUMBER, new | oc VARCHAR2)
AS LANGUAGE JAVA

NAME ' Dept Manager . changeLoc(int, java.lang.String)';
END dept _ngnt ;

To reference the stored procedures in the dept _ngnt package, use the dot notation,
as follows:

CALL dept _ngnt.add_dept (' PUBLICITY', ' DALLAS);

6.5 Writing Object Type Call Specifications

In SQL, object-oriented programming is based on object types, which are user-defined
composite data types that encapsulate a data structure along with the functions and
procedures required to manipulate the data. The variables that form the data structure
are known as attributes. The functions and procedures that characterize the behavior
of the object type are known as methods, which can be written in Java.

As with a package, an object type has two parts: a specification and a body. The
specification is the interface to your applications and declares a data structure, which
is a set of attributes, along with the operations or methods required to manipulate the
data. The body implements the specification by defining PL/SQL subprogram bodies
or call specifications.

If the specification declares only attributes or call specifications, then the body is not
required. If you implement all your methods in Java, then you can place their call
specifications in the specification part of the object type and omit the body part.

Publishing Java Classes With Call Specifications 6-13

Writing Object Type Call Specifications

In SQL*Plus, you can define SQL object types interactively, using the following syntax:

CREATE [OR REPLACE] TYPE type_nane
[AUTH D { CURRENT USER | DEFINER}] {IS | AS} OBJECT (
attribute_name data_type[, attribute_name data_type]...
[{MAP | ORDER} MEMBER {function_spec | call_spec},]
[{MEMBER | STATIC} {subprogramspec | call_spec}
[, {MEMBER | STATIC} {subprogramspec | call_spec}]...]
);

[CREATE [OR REPLACE] TYPE BODY type name {IS | AS}
{ {MAP | ORDER} MEMBER function_body;
| {MEMBER | STATIC} {subprogram body | call _spec};}
[{MEMBER | STATIC} {subprogrambody | call_spec};]...
END; |

The AUTHI D clause determines whether all member methods of the type run with the
privileges of their definer (AUTHI D DEFI NER), which is the default, or invoker
(AUTHI D CURRENT_USER). It also determines whether unqualified references to
schema objects are resolved in the schema of the definer or invoker.

This section covers the following topics:
¢ About Attributes (page 6-14)

® Declaring Methods (page 6-14)

6.5.1 About Attributes

In an object type specification, all attributes must be declared before any methods are.
In addition, you must declare at least one attribute. The maximum number of
attributes that can be declared is 1000. Methods are optional.

As with a Java variable, you declare an attribute with a name and data type. The name
must be unique within the object type, but can be reused in other object types. The
data type can be any SQL type, except LONG, LONG RAW NCHAR, NVARCHAR2, NCL OB,
ROW D, and UROW D.

You cannot initialize an attribute in its declaration using the assignment operator or
DEFAULT clause. Furthermore, you cannot impose the NOT NULL constraint on an
attribute. However, objects can be stored in database tables on which you can impose
constraints.

6.5.2 Declaring Methods

After declaring attributes, you can declare methods. MEMBER methods accept a built-in
parameter known as SELF, which is an instance of the object type. Whether declared
implicitly or explicitly, it is always the first parameter passed to a MEMBER method. In
the method body, SELF denotes the object whose method was called. MEMBER
methods are called on instances, as follows:

i nstance_expr essi on. net hod()

STATI Cmethods, which cannot accept or reference SELF, are invoked on the object
type and not its instances, as follows:

obj ect _type_nane. net hod()

6-14 Oracle Database Java Developer's Guide

Writing Object Type Call Specifications

If you want to call a Java method that is not st at i ¢, then you must specify the
keyword MEMBERin its call specification. Similarly, if you want to calla st at i ¢ Java
method, then you must specify the keyword STATI Cin its call specification.

This section contains the following topics:
* Map and Order Methods (page 6-15)
e Constructor Methods (page 6-15)

* Examples (page 6-16)

6.5.2.1 Map and Order Methods

The values of a SQL scalar data type, such as CHAR, have a predefined order and,
therefore, can be compared with other values. However, instances of an object type
have no predefined order. To put them in order, SQL calls a user-defined map method.

SQL uses the ordering to evaluate boolean expressions, such as X > Yy, and to make
comparisons implied by the DI STI NCT, GROUP BY, and ORDER BY clauses. A map
method returns the relative position of an object in the ordering of all such objects. An
object type can contain only one map method, which must be a function without any
parameters and with one of the following return types: DATE, NUMBER, or VARCHAR2.

Alternatively, you can supply SQL with an or der method, which compares two
objects. An or der method takes only two parameters: the built-in parameter, SELF,
and another object of the same type. If 01 and 02 are objects, then a comparison, such
as0l > 02, calls the or der method automatically. The method returns a negative
number, zero, or a positive number signifying that SELF is less than, equal to, or
greater than the other parameter, respectively. An object type can contain only one

or der method, which must be a function that returns a numeric result.

You can declare a map method or an or der method, but not both. If you declare either
of these methods, then you can compare objects in SQL and PL/SQL. However, if you
do not declare both methods, then you can compare objects only in SQL and solely for
equality or inequality.

Note:

Two objects of the same type are equal if the values of their corresponding
attributes are equal.

6.5.2.2 Constructor Methods

Every object type has a constructor, which is a system-defined function with the same
name as the object type. The constructor initializes and returns an instance of that
object type.

Oracle Database generates a default constructor for every object type. The formal
parameters of the constructor match the attributes of the object type. That is, the
parameters and attributes are declared in the same order and have the same names
and data types. SQL never calls a constructor implicitly. As a result, you must call it
explicitly. Constructor calls are allowed wherever function calls are allowed.

Publishing Java Classes With Call Specifications 6-15

Writing Object Type Call Specifications

Note:

To invoke a Java constructor from SQL, you must wrap calls toitinastati c
method and declare the corresponding call specification as a STATI C member
of the object type.

6.5.2.3 Examples

In this section, each example builds on the previous one. To begin, you create two SQL
object types to represent departments and employees. First, you write the specification
for the object type Depar t ment . The body is not required, because the specification
declares only attributes. The specification is as follows:

CREATE TYPE Departnent AS OBJECT (
dept no NUMBER(2),

dname VARCHAR2(14),

| oc VARCHAR2(13)

K

Then, you create the object type Enpl oyee. The dept no attribute stores a handle,
called a REF, to objects of the type Depar t ment . A REF indicates the location of an
object in an object table, which is a database table that stores instances of an object
type. The REF does not point to a specific instance copy in memory. To declare a REF,
you specify the data type REF and the object type that REF targets. The Enpl oyee
type is created as follows:

CREATE TYPE Enpl oyee AS OBJECT (
enpno NUVBER(4),

ename VARCHAR2(10),

j ob VARCHAR2(9),

mgr NUVBER(4),

hi redat e DATE,

sal NUMBER(7, 2),

comm NUMBER(7, 2) ,

dept no REF Depart ment

K

Next, you create the SQL object tables to hold objects of type Depart ment and

Enpl oyee. Create the dept s object table, which will hold objects of the Depar t ment
type. Populate the object table by selecting data from the dept relational table and
passing it to a constructor, which is a system-defined function with the same name as
the object type. Use the constructor to initialize and return an instance of that object
type. The dept s table is created as follows:

CREATE TABLE depts OF Departnent AS
SELECT Depart ment (deptno, dname, |oc) FROM dept;

Create the enps object table, which will hold objects of type Enpl oyee. The last
column in the enps object table, which corresponds to the last attribute of the

Enpl oyee object type, holds references to objects of type Depar t nent . To fetch the
references into this column, use the operator REF, which takes a table alias associated
with a row in an object table as its argument. The enps table is created as follows:

CREATE TABLE enps OF Enpl oyee AS

SELECT Enpl oyee(e. enployee_id, e.first_name, e.job_id, e.manager_id, e.hire_date,
e.salary, e.commission_pct,

(SELECT REF(d) FROM departments d WHERE d. departnment _id = e.departnent _id))

FROM enpl oyees e;

6-16 Oracle Database Java Developer's Guide

Writing Object Type Call Specifications

Selecting a REF returns a handle to an object. It does not materialize the object itself.
To do that, you can use methods in the or acl e. sql . REF class, which supports
Oracle object references. This class, which is a subclass of or acl e. sql . Dat um
extends the standard JDBC interface, or acl e. j dbc2. Ref.

Using Class oracle.sql.STRUCT

To continue, you write a Java stored procedure. The Paymast er class has one
method, which computes an employee's wages. The get At t ri but es() method
defined in the or acl e. sql . STRUCT class uses the default JDBC mappings for the
attribute types. For example, NUMBER maps to Bi gDeci nmal . The Paynast er class is
created as follows:

inmport java.sql.*;
inport java.io.*;

import oracle.sql.*;
import oracle.jdbc.*;
import oracle.oracore. *;
import oracle.jdbc2.*;
import java.math.*;

public class Paymaster

{
public static BigDeciml wages(STRUCT e) throws java.sql.SQLException

{
/1 Get the attributes of the Enpl oyee object.

(oject[] attribs = e.getAttributes();
/1 Mist use nuneric indexes into the array of attributes.
Bi gDeci mal sal = (BigDecimal)(attribs[5]); // [5] = sal
Bi gDeci mal comm = (BigDecinal)(attribs[6]); // [6] = comm
Bi gDeci mal pay = sal;
if (coom!=null)
pay = pay.add(com;
return pay;
}
}

Because the wages() method returns a value, you write a function call specification
for it, as follows:

CREATE OR REPLACE FUNCTI ON wages (e Enpl oyee) RETURN NUMBER AS
LANGUAGE JAVA
NAME ' Paynast er. wages(oracl e. sql . STRUCT) return BigDecinal';

This is a top-level call specification, because it is not defined inside a package or object
type.

Implementing the SQLData Interface

To make access to object attributes more natural, create a Java class that implements
the SQLDat a interface. To do so, you must provide the r eadSQL() and wri t eSQL()
methods as defined by the SQLDat a interface. The JDBC driver calls the r eadSQL()
method to read a stream of database values and populate an instance of your Java
class. In the following example, you revise Paymast er by adding a second method,
rai seSal ():

inport java.sql.*;
inport java.io.*;
import oracle.sql.*;
inmport oracle.jdbc.*;

Publishing Java Classes With Call Specifications 6-17

Writing Object Type Call Specifications

i mport oracle.oracore. *;
import oracle.jdbc2. *;
inport java.math.*;

public class Paymaster inplements SQLData
{

/1 I'nplement the attributes and operations for this type.

private BigDecimal enpno;

private String enane;

private String job;

private BigDecimal nyr;

private Date hiredate;

private BigDecinmal sal;

private BigDecimal comm

private Ref dept;

public static BigDeci ml wages(Paymaster e)
{
Bi gDeci mal pay = e.sal;
if (e.coom!= null)
pay = pay.add(e.comj;
return pay;

1
public static void raiseSal (Paymaster[] e, BigDecinmal anmount)
{
e[0].sal =// IN OQUT passes [0]
e[0].sal.add(amount); // increase salary by given anount
1
I/ 1nplenent SQLData interface.
private String sql _type;

public String get SQLTypeName() throws SQLException

{
return sql _type;
1
public void readSQ(SQInput stream String typeNane) throws SQLException
{

sql _type = typeNang;

enpno = stream readBi gDeci mal ();
enane = streamreadString();
job = streamreadString();
myr = stream readBi gDeci mal ()
hiredate = streamreadDate();
sal = stream readBi gDeci mal ()
conm = stream readBi gDeci mal ();
dept = streamreadRef();

}

public void witeSQ(SQQutput strean) throws SQLException
{

stream w it eBi gDeci mal (enpno);

streamwiteString(enane);

streamwiteString(job);

stream writeBi gDeci mal (ngr);

streamwriteDate(hiredate);

stream writeBi gDeci mal (sal);

stream w it eBi gDeci mal (com;

6-18 Oracle Database Java Developer's Guide

Writing Object Type Call Specifications

streamwr it eRef (dept);

}
}

You must revise the call specification for wages(), as follows, because its parameter
has changed from or acl e. sql . STRUCT to Paynast er :

CREATE OR REPLACE FUNCTI ON wages (e Enpl oyee) RETURN NUMBER AS
LANGUAGE JAVA
NAME ' Paynast er. wages(Paymaster) return BigDecimal';

Because the new method, r ai seSal (), is voi d, write a procedure call specification
for it, as follows:

CREATE OR REPLACE PROCEDURE raise_sal (e IN OJT Enpl oyee, r NUMBER)
AS LANGUAGE JAVA
NAME ' Paynast er. rai seSal (Paymaster[], java.math.BigDecinal)';

Again, this is a top-level call specification.

Implementing Object Type Methods

Assume you decide to drop the top-level call specifications wages and r ai se_sal
and redeclare them as methods of the object type Enpl oyee. In an object type
specification, all methods must be declared after the attributes. The body of the object
type is not required, because the specification declares only attributes and call
specifications. The Enpl oyee object type can be re-created as follows:

CREATE TYPE Enpl oyee AS OBJECT (

enpno NUVBER(4),

ename VARCHAR2(10),

j ob VARCHAR2(9),

mgr NUVBER(4),

hi redat e DATE,

sal NUMBER(7, 2),

comm NUMBER(7, 2) ,

dept no REF Depart ment

MEMBER FUNCTI ON wages RETURN NUMBER

AS LANGUAGE JAVA

NAME ' Paymast er.wages() return java. math. Bi gDeci mal ',
MEMBER PROCEDURE rai se_sal (r NUMBER)

AS LANGUAGE JAVA

NAME ' Paynast er. rai seSal (j ava. mat h. Bi gDeci nal)'

)s

Then, you revise Paymast er accordingly. You need not pass an array to

rai seSal (), because the SQL parameter SELF corresponds directly to the Java
parameter t hi s, even when SELF is declared as | N OUT, which is the default for
procedures.

inmport java.sql.*;
inport java.io.*;

import oracle.sql.*;
import oracle.jdbc.*;

i mport oracle.oracore. *;
import oracle.jdbc2.*;
import java.math.*;

public class Paymaster inplenents SQ.Data
{

Publishing Java Classes With Call Specifications 6-19

Writing Object Type Call Specifications

/1 I'nplement the attributes and operations for this type.
private BigDeci mal enpno;

private String enane;

private String job;

private BigDecimal nyr;

private Date hiredate;

private BigDecinmal sal;

private BigDecimal comm

private Ref dept;

public BigDecimal wages()

{
Bi gDeci mal pay = sal;
if (coom!=null)

pay = pay.add(com;
return pay;

}
public void raiseSal (Bi gDeci mal anount)

{
/1 For SELF/this, even when IN QUT, no array is needed.

sal = sal.add(anmount);

}

/1 1nplenment SQLData interface.
String sql _type;

public String get SQLTypeName() throws SQLException

{
return sql _type;
1
public void readSQ(SQInput stream String typeNane) throws SQLException
{

sql _type = typeNang;

enpno = stream readBi gDeci mal ();
enane = streamreadString();
job = streamreadString();
myr = stream readBi gDeci mal ()
hiredate = streamreadDate();
sal = stream readBi gDeci mal ()
conm = stream readBi gDeci mal ();
dept = streamreadRef();

}

public void witeSQ(SQQutput strean) throws SQLException
{

stream w it eBi gDeci mal (enpno);

streamwriteString(enane);

streamwiteString(job);

stream writeBi gDeci mal (ngr);

streamwriteDate(hiredate);

stream writeBi gDeci mal (sal);

stream w i teBi gDeci mal (com);

streamwriteRef (dept);

6-20 Oracle Database Java Developer's Guide

v

Calling Stored Procedures

After you load and publish a Java stored procedure, you can call it. This chapter
describes the procedure for calling Java stored procedures in various contexts. It also
describes how Oracle JVM handles SQL exceptions.

This chapter contains the following sections:

¢ (Calling Java from the Top Level (page 7-1)

¢ (Calling Java from Database Triggers (page 7-4)
¢ Calling Java from SQL DML (page 7-7)

¢ (Calling Java from PL/SQL (page 7-8)

e Calling PL/SQL from Java (page 7-10)

* How Oracle JVM Handles Exceptions (page 7-10)

7.1 Calling Java from the Top Level

The SQL CALL statement lets you call Java methods, which are published at the top
level, in PL/SQL packages, or in SQL object types. In SQL*Plus, you can run the CALL
statement interactively using the following syntax:

CALL [schenma_nane.][{package_name | object _type_nane}][@bl ink_name]
{ procedure_nane ([paranf, paranm...])
| function_name ([paran{, paranj...]) INTO :host_variable};

where par amis represented by the following syntax:

{literal | :host_variabl e}

Host variables are variables that are declared in a host environment. They must be
prefixed with a colon. The following examples show that a host variable cannot appear
twice in the same CALL statement and that a subprogram without parameters must be
called with an empty parameter list:

CALL swap(:x, :x); -- illegal, duplicate host variables
CALL bal ance() INTO :current_balance; -- () required

This section covers the following topics:
¢ Redirecting the Output (page 7-2)

* Examples of Calling Java Stored Procedures From the Top Level (page 7-2)

Calling Stored Procedures 7-1

Calling Java from the Top Level

7.1.1 Redirecting the Output

On the server, the default output device is a trace file and not the user screen. As a
result, Syst em out and Syst em er r print output to the current trace files. To
redirect output to the SQL*Plus text buffer, you must call the set _out put ()
procedure in the DBM5_JAVA package, as follows:

SQ> SET SERVEROUTPUT ON
SQ> CALL dbns_j ava. set _out put (2000) ;

The minimum buffer size is 2,000 bytes, which is also the default size, and the
maximum buffer size is 1,000,000 bytes. In the following example, the buffer size is
increased to 5,000 bytes:

SQ.> SET SERVERQUTPUT ON Sl ZE 5000
SQ> CALL dbns_j ava. set _out put (5000);

The output is displayed when the stored procedure exits.

7.1.2 Examples of Calling Java Stored Procedures From the Top Level

This section provides the following examples

¢ Example 7-1 (page 7-2)

e Example 7-2 (page 7-3)

Example 7-1 A Simple JDBC Stored Procedure

In the following example, the mai n() method accepts the name of a database table,
such as enpl oyees, and an optional WHERE clause specifying a condition, such as

sal ary > 1500. If you omit the condition, then the method deletes all rows from the
table, else it deletes only those rows that meet the condition.

import java.sql.*;
i mport oracle.jdbc.*;

public class Deleter

{
public static void main (String[] args) throws SQLException
{
Connection conn = DriverManager. get Connection("j dbc: def aul t: connection:");
String sql = "DELETE FROM" + args[0];
if (args.length > 1)
sql += " WHERE " + args[1];
try
{
Statenent stnmt = conn.createStatenment();
stnt. execut eUpdat e(sql);
stnt.close();
}
catch (SQLException e)
{
Systemerr.println(e.get Message());
}
}
}

The mai n() method can take either one or two arguments. Usually, the DEFAULT
clause is used to vary the number of arguments passed to a PL/SQL subprogram.

7-2 Oracle Database Java Developer's Guide

Calling Java from the Top Level

However, this clause is not allowed in a call specification. As a result, you must
overload two packaged procedures, as follows:

CREATE OR REPLACE PACKAGE pkg AS

PROCEDURE del ete_rows (tabl e_name VARCHAR?);

PROCEDURE del ete_rows (tabl e_name VARCHAR2, condition VARCHAR2);
END;

CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE del ete_rows (tabl e_name VARCHAR?)
AS LANGUAGE JAVA

NAME ' Del eter.main(java.lang. String[])";

PROCEDURE del ete_rows (table_name VARCHAR2, condition VARCHAR2)
AS LANGUAGE JAVA

NAME ' Del eter.main(java.lang. String[])";
END,

Now, you can call the del et e_r ows procedure, as follows:

SQ> CALL pkg.del ete_rows(' enpl oyees', 'salary > 1500');
Cal | conpl et ed.
SQL> SELECT first_nane, salary FROM enpl oyees;

FI RST_NAME SALARY

SMTH 800
WARD 1250
MARTI N 1250
TURNER 1500
ADAMS 1100
JAMES 950
M LLER 1300

7 rows sel ected.

Note:

You cannot overload top-level procedures.

Example 7-2 Fibonacci Sequence
Assume that the executable for the following Java class is stored in Oracle Database:

public class Fibonacci

{
public static int fib (int n)

if (n==1]] n==2)
return 1;
el se
return fib(n - 1) + fib(n - 2);
1
}

The Fi bonacci class has a method, f i b() , which returns the nth Fibonacci number.
The Fibonacci sequence, 1, 1, 2, 3,5, 8, 13, 21, . . ., is recursive. Each term in the

Calling Stored Procedures 7-3

Calling Java from Database Triggers

sequence, after the second term, is the sum of the two terms that immediately precede
it. Because f i b() returns a value, you must publish it as a function, as follows:

CREATE OR REPLACE FUNCTION fib (n NUMBER) RETURN NUMBER

AS LANGUAGE JAVA

NAME ' Fi bonacci.fib(int) returnint';

Next, you declare two SQL*Plus host variables and initialize the first one:

SQL> VARI ABLE n NUMBER
SQ> VARI ABLE f NUMBER
SQL> EXECUTE :n = T,

PL/ SQL procedure successfully conpl eted.

Now, you can call the f i b() function. In a CALL statement, host variables must be
prefixed with a colon. The function can be called, as follows:

SQ> CALL fib(:n) INTO:f;

Cal | conpl et ed.
SQL> PRINT f

F

3

7.2 Calling Java from Database Triggers

A database trigger is a stored program that is associated with a specific table or view.
Oracle Database runs the trigger automatically whenever a data manipulation
language (DML) operation affects the table or view.

When a triggering event occurs, the trigger runs and either a PL/SQL block or a CALL
statement performs the action. A statement trigger runs once, before or after the
triggering event. A row trigger runs once for each row affected by the triggering event.

In a database trigger, you can reference the new and old values of changing rows by
using the correlation names newand ol d. In the trigger-action block or CALL
statement, column names must be prefixed with : newor : ol d.

The following are examples of calling Java stored procedures from a database trigger:
¢ Example 7-3 (page 7-4)

e Example 7-4 (page 7-6)

Example 7-3 Calling Java Stored Procedure from Database Trigger - |

Assume you want to create a database trigger that uses the following Java class to log
out-of-range salary increases:

import java.sql.*;
import java.io.*;
i mport oracle.jdbc.*;

public class DBTrigger

{
public static void logSal (int enplD, float oldSal, float newSal)

throws SQLException
{

7-4 Oracle Database Java Developer's Guide

Calling Java from Database Triggers

Connection conn = DriverManager. get Connection("jdbc: defaul t:connection:");
String sql = "INSERT INTO sal _audit VALUES (?, ?, ?)";
try
{
Prepar edSt at ement pstnt = conn. prepareStatenent(sql);
pstnt.setint(1, enplD);
pstnt.setFloat (2, oldSal);
pstnt.setFloat (3, newSal);
pstnt. execut eUpdate();
pstnt.close();

catch (SQLException e)
{

}
}
}

Systemerr. println(e.getMessage());

The DBTr i gger class has one method, | ogSal (), which inserts a row into the
sal _audi t table. Because | ogSal () is a voi d method, you must publish it as a
procedure:

CREATE OR REPLACE PROCEDURE |o0g_sal (
enp_i d NUMBER,
ol d_sal NUMBER,
new_sal NUMBER

)
AS LANGUAGE JAVA

NAME ' DBTri gger.logSal (int, float, float)";

Next, create the sal _audi t table, as follows:

CREATE TABLE sal _audit (
enpno NUMBER,
ol dsal NUMBER,
newsal NUMVBER

)i
Finally, create the database trigger, which fires when a salary increase exceeds 20

percent:

CREATE OR REPLACE TRI GGER sal _trig

AFTER UPDATE OF sal ary ON enpl oyees

FOR EACH RON

WHEN (new.salary > 1.2 * ol d.sal ary)

CALL 1 og_sal (:new. enployee_id, :old.salary, :newsalary);

When you run the following UPDATE statement, it updates all rows in the enpl oyees
table:

SQL> UPDATE enpl oyee SET salary = salary + 300;

For each row that meets the condition set in the WHEN clause of the trigger, the trigger
runs and the Java method inserts a row into the sal _audi t table.

SQ> SELECT * FROM sal _audit;

7369 800 1100
7521 1250 1550
7654 1250 1550

Calling Stored Procedures 7-5

Calling Java from Database Triggers

7876 1100 1400
7900 950 1250
7934 1300 1600

6 rows selected.

Example 7-4 Calling Java Stored Procedure from Database Trigger - Il

Assume you want to create a trigger that inserts rows into a database view, which is
defined as follows:

CREATE VI EW enps AS

SELECT enpno, enane, 'Sales' AS dname FROM sal es
UNION ALL

SELECT enpno, ename, 'Marketing' AS dname FROM nktg;

The sal es and nkt g database tables are defined as:

CREATE TABLE sal es (enpno NUMBER(4), enane VARCHAR2(10));
CREATE TABLE nktg (enpno NUMBER(4), ename VARCHAR2(10));

You must write an | NSTEAD OF trigger because rows cannot be inserted into a view
that uses set operators, such as UNI ON ALL. Instead, the trigger will insert rows into
the base tables.

First, add the following Java method to the DBTr i gger class, which is defined in
Example 7-3 (page 7-4):

public static void addEnp (int enpNo, String enpNane, String deptNane)
throws SQLException

{
Connection conn = DriverMnager. get Connection("jdbc: defaul t: connection:");
String tabName = (dept Nane. equal s("Sal es") ? "sales" : "nktg");
String sql = "INSERT INTO " + tabName + " VALUES (?, ?)";
try
{
PreparedStatenment pstnt = conn. prepareStatenent(sql);
pstnt.setInt(1, enmpNo);
pstnt.setString(2, enpNane);
pst nt. execut eUpdat e();
pstnt.close();
1
catch (SQ.Exception e)
{
Systemerr.println(e.getMssage());
1
}

The addEnmp() method inserts a row into the sal es or nkt g table depending on the
value of the dept Nanme parameter. Write the call specification for this method, as
follows:

CREATE OR REPLACE PROCEDURE add_enp (

enp_no NUMBER,

enp_nane VARCHAR?,

dept _nane VARCHAR2

)

AS LANGUAGE JAVA

NAME ' DBTri gger. addEnp(int, java.lang.String, java.lang.String)';

Next, create the | NSTEAD OF trigger, as follows:

7-6 Oracle Database Java Developer's Guide

Calling Java from SQL DML

CREATE OR REPLACE TRI GGER enps_trig
I NSTEAD OF | NSERT ON enps

FOR
CALL

EACH ROV
add_enp(: new. enpno, :new. enane, :new. dnane);

When you run each of the following | NSERT statements, the trigger runs and the Java
method inserts a row into the appropriate base table:

sQL>
sQL>
sQL>
sQL>
sQL>
sQL>

sQL>

I NSERT | NTO enps VALUES
I NSERT | NTO enps VALUES
I NSERT | NTO enps VALUES
I NSERT | NTO enps VALUES
I NSERT | NTO enps VALUES
I NSERT | NTO enps VALUES

8001, 'Chand', 'Sales');

8002, 'Van Horn', 'Sales');
8003, '\Waters', 'Sales');

8004, 'Bellock', 'Mrketing');
8005, 'Perez', 'Marketing');
8006, 'Foucault', 'Marketing');

—~ o~~~ o~ —~

SELECT * FROM sal es;

EMPNO ENAME
8001 Chand
8002 Van Horn
8003 Waters

SELECT * FROM nkt g;

EMPNO ENAME
8004 Bel | ock
8005 Perez
8006 Foucaul t

SELECT * FROM enps;
EMPNO ENAVE DNAME
8001 Chand Sal es

8002 Van Horn Sal es
8003 Waters Sal es
8004 Bel | ock Mar ket i ng
8005 Perez Mar ket i ng
8006 Foucault Marketing

7.3 Calling Java from SQL DML

If you publish Java methods as functions, then you can call them from SQL SELECT,
| NSERT, UPDATE, DELETE, CALL, EXPLAI N PLAN, LOCK TABLE, and MERGE
statements. For example, assume that the executable for the following Java class is
stored in Oracle Database:

publ
{
pu
{

ic class Formatter
blic static String formatEnp (String enpNane, String jobTitle)

enpNane = enpNane. substring(0, 1).toUpper Case() +
enpNane. substring(1).tolLowerCase();
jobTitle = jobTitle.toLowerCase();
if (jobTitle.equals("analyst"))
return (new String(enpNane + " is an exenpt analyst"));
el se
return (new String(enpNane + " is a non-exenpt " + jobTitle));

Calling Stored Procedures 7-7

Calling Java from PL/SQL

}
}

The For mat t er class has the f or mat Enp() method, which returns a formatted
string containing a staffer's name and job status. Write the call specification for this
method, as follows:

CREATE OR REPLACE FUNCTI ON format _enp (ename VARCHAR2, job VARCHAR2)
RETURN VARCHAR2

AS LANGUAGE JAVA

NAME ' Formatter.formatEnp (java.lang. String, java.lang. String)
return java.lang. String';

Now, call the f or mat _enp function to format a list of employees:

SQ.> SELECT format _enp(first_nane, job_id) AS "Enployees" FROM enpl oyees
2 WHERE job_id NOT IN ('AC MR, 'AD PRES') ORDER BY first_nane;

Enpl oyees

Adans is a non-exenpt clerk
Allen is a non-exenpt sal esman
Ford is an exenpt anal yst

Janes is a non-exenpt clerk
Martin is a non-exenpt sal esman
MIler is a non-exenpt clerk
Scott is an exenpt anal yst
Smith is a non-exenpt clerk
Turner is a non-exenpt sal esman
Ward is a non-exenpt sal esman

Restrictions

A Java method must adhere to the following rules, which are meant to control side
effects:

e When you call a method from a SELECT statement or parallel | NSERT, UPDATE,
or DELETE statements, the method cannot modify any database tables.

¢ When you call a method from an | NSERT, UPDATE, or DELETE statement, the
method cannot query or modify any database tables modified by that statement.

* When you call a method from a SELECT, | NSERT, UPDATE, or DELETE statement,
the method cannot run SQL transaction control statements, such as COVM T,
session control statements, such as SET ROLE, or system control statements, such
as ALTER SYSTEM In addition, the method cannot run data definition language
(DDL) statements, such as CREATE, because they are followed by an automatic
commit.

If any SQL statement inside the method violates any of the preceding rules, then you
get an error at run time.

7.4 Calling Java from PL/SQL

You can call Java stored procedures from any PL/SQL block, subprogram, or package.
For example, assume that the executable for the following Java class is stored in Oracle
Database:

import java.sql.*;
i mport oracle.jdbc.*;

7-8 Oracle Database Java Developer's Guide

Calling Java from PL/SQL

public class Adjuster

{
public static void raiseSalary (int enpNo, float percent) throws SQLException

{
Connection conn = DriverManager. get Connection("jdbc: defaul t:connection:");
String sql = "UPDATE enpl oyees SET salary = salary * ? WHERE enpl oyee_id = ?";
try
{
Prepar edSt at enent pstnt = conn. prepareStatenent(sql);
pstnt.setFloat(1, (1 + percent / 100));
pstnt.setint(2, enpNo);
pstnt. execut eUpdat e();
pstnt.close();

catch (SQLException e)

{
Systemerr. println(e.getMessage());

}
}
}

The Adj ust er class has one method, which raises the salary of an employee by a
given percentage. Because r ai seSal ary() is a voi d method, you must publish it as
a procedure, as follows:

CREATE OR REPLACE PROCEDURE rai se_sal ary (enpno NUMBER pct NUMBER)
AS LANGUAGE JAVA
NAME ' Adj uster.raiseSalary(int, float)';

In the following example, you call the r ai se_sal ar y procedure from an anonymous
PL/SQL block:

DECLARE

enp_i d NUMBER,

percent NUMBER

BEG N

- get values for enp_id and percent
rai se_salary(enp_id, percent);

END
In the following example, you call the r ow_count function, which defined in
Example 6-3 (page 6-10), from a standalone PL/SQL stored procedure:

CREATE PROCEDURE cal ¢_bonus (emp_id NUMBER bonus OUT NUMBER) AS
emp_count NUVBER,

BEG N
enp_count := row_count (' enpl oyees');
END;

In the following example, you call the r ai se_sal method of the Enpl oyee object
type, which is defined in "Implementing Object Type Methods (page 6-19)", from an
anonymous PL/SQL block:

DECLARE
enp_i d NUVBER(4);

v enp_type;
BEG N

Calling Stored Procedures 7-9

Calling PL/SQL from Java

- assign a value to enp_id

SELECT VALUE(e) INTO v FROM enps e WHERE enpno = enp_i d;
v.raise_sal (500);

UPDATE enps e SET e = v WWHERE enpno = enp_i d;

END;

7.5 Calling PL/SQL from Java

Java Database Connectivity (JDBC) enable you to call PL/SQL stored functions and
procedures. For example, you want to call the following stored function, which returns
the balance of a specified bank account:

FUNCTI ON bal ance (acct _id NUVBER) RETURN NUMBER | S
acct _bal NUMBER;

BEG N

SELECT bal INTO acct_bal FROM accts

WHERE acct _no = acct _id,;

RETURN acct _bal ;

END;

In a JDBC program, a call to the bal ance function can be written as follows:

Cal | abl eSt at ement cstnt = conn. prepareCal | ("{? = CALL bal ance(?)}");
cstnt.registerQutParaneter(1, Types.FLOAT);

cstnt.setlnt(2, acctNo);

cstnt. execut eUpdat e();

float acctBal = cstnt.getFloat(1);

7.6 How Oracle JVM Handles Exceptions

Java exceptions are objects and have a naming and inheritance hierarchy. As a result,
you can substitute a subexception, that is, a subclass of an exception class, for its
superexception, that is, the superclass of an exception class.

All Java exception objects support the t 0St ri ng() method, which returns the fully
qualified name of the exception class concatenated to an optional string. Typically, the
string contains data-dependent information about the exceptional condition. Usually,
the code that constructs the exception associates the string with it.

When a Java stored procedure runs a SQL statement, any exception thrown is
materialized to the procedure as a subclass of j ava. sql . SQLExcept i on. This class
has the get Err or Code() and get Message() methods, which return the Oracle
error code and message, respectively.

If a stored procedure called from SQL or PL/SQL throws an exception and is not
caught by Java, then the following error message appears:

ORA- 29532 Java call terminated by uncaught Java exception

This is how all uncaught exceptions, including non-SQL exceptions, are reported.

7-10 Oracle Database Java Developer's Guide

8

Java Stored Procedures Application
Example

This chapter describes how to build a Java application with stored procedures.

This chapter contains the followings steps, from the design phase to the actual
implementation, to develop a sample application:

¢ About Planning the Database Schema (page 8-1)
¢ Creating the Database Tables (page 8-2)

e Writing the Java Classes (page 8-3)

¢ Loading the Java Classes (page 8-7)

® Publishing the Java Classes (page 8-7)

¢ Calling the Java Stored Procedures (page 8-9)

8.1 About Planning the Database Schema

The objective of this example is to develop a simple system for managing customer
purchase orders. To do this, you must devise a database schema plan. First, identify
the business entities involved and their relationships. In this example, the basic entities
are customers, purchase orders, line items, and stock items. So, you can have the
following tables in the schema:

e Custoners
e (Oders
e Lineltens

e Stockltens

The Cust orrer s table has a one-to-many relationship with the Or der s table because a
customer can place one or many orders, but a given purchase order can be placed by
only one customer. The relationship is optional because zero customers may place a
given order. For example, an order may be placed by someone previously not defined
as a customer.

The Or der s table has a many-to-many relationship with the St ockl t ens table
because a purchase order can refer to many stock items, and a stock item can be
referred to by many purchase orders. However, you do not know which purchase
orders refer to which stock items. As a result, you introduce the notion of a line item.
The O der s table has a one-to-many relationship with the Li nel t ens table because a
purchase order can list many line items, but a given line item can be listed by only one
purchase order.

Java Stored Procedures Application Example 8-1

Creating the Database Tables

The Li nel t ers table has a many-to-one relationship with the St ockl t ens table
because a line item can refer to only one stock item, but a given stock item can be
referred to by many line items. The relationship is optional because zero line items
may refer to a given stock item.

Figure 8-1 (page 8-2) depicts the relationships between tables. In the schema plan,
you establish these relationships using primary and foreign keys.

A primary key is a column or combination of columns whose values uniquely identify
each row in a table. A foreign key is a column or combination of columns whose
values match the primary key in some other table. For example, the PONo column in
the Li nel t ens table is a foreign key matching the primary key in the Or der s table.
Every purchase order number in the Li nel t ens. PONo column must also appear in
the Or der s. PONo column.

Figure 8-1 Schema Plan for Purchase Order Application

. Column Name
Lineltems
Datatype
LineNo PONo StockNo Quantity Discount | Primary Key and/or Foreign Key
NUMBER NUMBER NUMBER NUMBER NUMBER
PK PK, FK PK
Stockltems
StockNo Description Price
NUMBER | VARCHAR2 | NUMBER
FK
Orders
PONo CustNo OrderDate ShipDate ToStreet ToCity ToState ToZip
NUMBER NUMBER DATE DATE VARCHAR2 | VARCHAR2 CHAR VARCHAR2
PK FK
Customers
CustNo CustName Street City State Zip Phone
NUMBER VARCHAR2 | VARCHAR2 | VARCHAR2 CHAR VARCHAR2 | VARCHAR2
PK

8.2 Creating the Database Tables

After planning the database schema, create the database tables for the schema plan.
Define the Cust oner s table as follows:

CREATE TABLE Customers (
Cust No NUMBER(3) NOT NULL,

Cust Name VARCHAR2('30) NOT NULL,
Street VARCHAR2(20) NOT NULL,
Gty VARCHAR2(20) NOT NULL,
State CHAR(2) NOT NULL,

Zip VARCHAR2(10) NOT NULL,
Phone VARCHAR2(12),

PRI MARY KEY (Cust No)

K

The Cust orrer s table stores information about customers. Essential information is
defined as NOT NULL. For example, every customer must have a shipping address.
However, the Cust oner s table does not manage the relationship between a customer
and his or her purchase order. As a result, this relationship must be managed by the
Or der s table, which you can define as follows:

8-2 Oracle Database Java Developer's Guide

Writing the Java Classes

CREATE TABLE Orders (

PONo NUMBER(5) ,

Custno NUMBER(3) REFERENCES Custoners,
O der Dat e DATE,

Shi pDat e DATE,

ToStreet VARCHAR2(20),

ToCity VARCHAR2(20),

ToState CHAR(2),

ToZi p VARCHAR2(10),

PRI MARY KEY (PONo)

)s

The line items have a relationship with purchase orders and stock items. The

Li nel t ens table manages these relationships using foreign keys. For example, the
St ockNo foreign key column in the Li nel t ens table references the St ockNo
primary key column in the St ockl t ens table, which you can define as follows:

CREATE TABLE Stockltems (

St ockNo NUVBER(4) PRI MARY KEY,
Descri ption VARCHAR2(20),
Price NUMBER(6, 2))

)s

The Or der s table manages the relationship between a customer and purchase order
using the Cust No foreign key column, which references the Cust No primary key
column in the Cust oner s table. However, the Or der s table does not manage the
relationship between a purchase order and its line items. As a result, this relationship
must be managed by the Li nel t errs table, which you can define as follows:

CREATE TABLE Lineltens (

Li neNo NUVBER(2),

PONo NUMBER(5) REFERENCES Orders,

St ockNo NUVBER(4) REFERENCES Stockltens,
Quantity NUMBER(2),

Di scount NUVBER(4, 2),

PRI MARY KEY (LineNo, PONo)

)s

8.3 Writing the Java Classes

After creating the database tables, you consider the operations required in a purchase
order system and write the appropriate Java methods. In a simple system based on the
tables defined in the preceding examples, you need methods for registering customers,
stocking parts, entering orders, and so on. You can implement these methods in a Java
class, POVanager , as follows:

inport java.sql.*;
inport java.io.*;
inmport oracle.jdbc.*;

public class POvanager
{
public static void addCustomer (int custNo, String custName, String street,
String city, String state, String zipCode, String phoneNo) throws SQLException
{
String sql = "INSERT INTO Custoners VALUES (?,?2,?,2,2,2,7)";
try
{

Connection conn = DriverMnager. get Connection("jdbc: defaul t:connection:");
PreparedSt at ement pstnt = conn. prepareStatenent(sql);

Java Stored Procedures Application Example 8-3

Writing the Java Classes

pstnt.setInt(1, custNo);
pstnt.setString(2, custNane);
pstnt.setString(3, street);
pstnt.setString(4, city);
pstnt.setString(5, state);
pstnt.setString(6, zipCode);
pstnt.setString(7, phoneNo);
pstnt. execut eUpdate();
pstnt.close();

catch (SQLException e)
{
Systemerr. println(e.getMssage());
}
1

public static void addStockltem (int stockNo, String description, float price)
throws SQLException
{
String sql = "INSERT INTO Stockltenms VALUES (?,?,?)";
try
{
Connection conn = DriverMnager. get Connection("jdbc: defaul t:connection:");
Prepar edSt at ement pstnt = conn. prepareStatenent(sql);
pstnt.setInt(1, stockNo);
pstnt.setString(2, description);
pstnt.setFloat (3, price);
pstnt. execut eUpdate();
pstnt.close();

catch (SQLException e)
{
Systemerr. println(e.getMssage());
}
1

public static void enterOrder (int orderNo, int custNo, String orderDate,
String shipDate, String toStreet, String toCity, String toState,
String toZipCode) throws SQLException
{
String sql = "INSERT INTO Orders VALUES (?,?2,?,2,2,2,?2,?)";
try
{
Connection conn = DriverMnager. get Connection("jdbc: defaul t:connection:");
Prepar edSt at enent pstnt = conn. prepareStatenent(sql);
pstnt.setint(1, orderNo);
pstnt.setInt(2, custNo);
pstnt.setString(3, orderDate);
pstnt.setString(4, shipDate);
pstnt.setString(5, toStreet);
pstnt.setString(6, toCty);
pstnt.setString(7, toState);
pstnt.setString(8, toZ pCode);
pstnt. execut eUpdat e();
pstnt.close();

catch (SQ.Exception e)

{
Systemerr. println(e.getMssage());

}
}

8-4 Oracle Database Java Developer's Guide

Writing the Java Classes

public static void addLineltem (int lineNo, int orderNo, int stockNo,
int quantity, float discount) throws SQLException
{
String sql = "INSERT INTO Lineltems VALUES (?,?2,72,2,7)";
try
{
Connection conn = DriverMnager. get Connection("jdbc: defaul t:connection:");
PreparedSt at enent pstnt = conn. prepareStatenent(sql);
pstnt.setint(1, lineNo);
pstnt.setInt(2, orderNo);
pstnt.setlInt(3, stockNo);
pstnt.setInt(4, quantity);
pstnt.setFloat (5, discount);
pstnt. execut eUpdate();
pstnt.close();

catch (SQ.Exception e)
{
Systemerr. println(e.getMessage());
}
1

public static void total Orders () throws SQLException
{
String sql = "SELECT O PONo, ROUND(SUMS.Price * L.Quantity)) AS TOTAL " +
"FROM Orders O Lineltens L, Stockltems S " +
"WHERE O. PONo = L.PONo AND L. StockNo = S.StockNo " +
"GROUP BY O PONo";
try
{
Connection conn = DriverMnager. get Connection("jdbc: defaul t: connection:");
PreparedSt at ement pstnmt = conn. prepareStatenent(sql);
Resul t Set rset = pstnt.executeQuery();
printResults(rset);
rset.close();
pstnt.close();

catch (SQLException e)
{

}
}

static void printResults (ResultSet rset) throws SQLException

Systemerr. println(e.getMssage());

String buffer = ""
try
{
Resul t Set Met aData meta = rset. get MetaData();
int cols = neta. get Col umCount (), rows = 0;
for (int i =1; i <=cols; i++)
{
int size = neta.getPrecision(i);
String |abel = neta.get Col unmLabel (i);
if (label.length() > size)
size = label.length();
while (label.length() < size)
[abel +="";
buffer = buffer + label + " "

Java Stored Procedures Application Example 8-5

Writing the Java Classes

buffer = buffer + "\n";
while (rset.next())
{
I OWS++;
for (int i =1; i <=cols; i+4)
{
int size = neta.getPrecision(i);
String | abel = neta.get Col umLabel (i);
String value = rset.getString(i);
if (label.length() > size)
size = label.length();
while (value.length() < size)
value += " "
buffer = buffer + value + " "

buffer = buffer + "\n";
1
if (rows == 0)

buffer = "No data found!\n";
Systemout. printlin(buffer);

catch (SQLException e)
{
Systemerr. println(e.getMssage());
}
1

public static void checkStockltem (int stockNo) throws SQLException
{
String sql = "SELECT O PONo, O CustNo, L.StockNo, " +
"L.LineNo, L.Quantity, L.Discount " +
"FROM Orders O Lineltens L " +
"WHERE O. PONo = L.PONo AND L. StockNo = ?";
try
{
Connection conn = DriverMnager. get Connection("jdbc: defaul t: connection:");
Prepar edSt at ement pstnt = conn. prepareStatenent(sql);
pstnt.setInt(1, stockNo);
Resul t Set rset = pstnt.executeQuery();
printResults(rset);
rset.close();
pstnt.close();

catch (SQ.Exception e)
{
Systemerr. println(e.getMssage());
}
1

public static void changeQuantity (int new@y, int orderNo, int stockNo)
throws SQLException
{

String sql = "UPDATE Lineltems SET Quantity = ? " +
"WHERE PONo = ? AND StockNo = ?";
try
{
Connection conn = DriverMnager. get Connection("jdbc: defaul t: connection:");
PreparedSt at ement pstnt = conn. prepareStatenent(sql);
pstnt.setint(1l, newQy);
pstnt.setInt(2, orderNo);
pstnt.setlInt(3, stockNo);

8-6 Oracle Database Java Developer's Guide

Loading the Java Classes

pstnt. execut eUpdate();
pstnt.close();

catch (SQLException e)

{
Systemerr. println(e.getMessage());

}
}

public static void del eteCrder (int orderNo) throws SQLException

{
String sql = "DELETE FROM Lineltenms WHERE PONo = ?";

try
{

Connection conn = DriverMnager. get Connection("jdbc: defaul t:connection:");
PreparedSt at enent pstnt = conn. prepareStatenent(sql);

pstnt.setInt(1, orderNo);

pstnt . execut eUpdat e();

sql = "DELETE FROM Orders WHERE PONo = ?";

pstm = conn. prepareSt at enent (sql);

pstnt.setint(1, orderNo);

pstnt. execut eUpdate();

pstnt.close();

catch (SQLException e)

{
Systemerr. println(e.getMssage());

}
}
}

8.4 Loading the Java Classes

After writing the Java classes, use the | oadj ava tool to upload your Java stored
procedures into Oracle Database, as follows:

> | oadj ava -u HR@wyPC: 1521: orcl -v -r -t POManager.java
Password: password

initialization conplete

| oading : POwanager

creating : POvanager

resolver : resolver (("*" HR) ("*" public) ("*" -))
resol ving: POvanager

The - v option enables the verbose mode, the - r option compiles uploaded Java source
files and resolves external references in the classes, and the - t option tells the
| oadj ava tool to connect to the database using the client-side JDBC Thin driver.

8.5 Publishing the Java Classes

After loading the Java classes, publish your Java stored procedures in the Oracle data
dictionary. To do this, you must write call specifications that map Java method names,
parameter types, and return types to their SQL counterparts.

The methods in the POVainager Java class are logically related. You can group their
call specifications in a PL/SQL package. To do this, first, create the package
specification, as follows:

CREATE OR REPLACE PACKAGE po_ngr AS
PROCEDURE add_customer (cust_no NUMBER, cust_nanme VARCHAR?,

Java Stored Procedures Application Example 8-7

Publishing the Java Classes

street VARCHAR2, city VARCHAR2, state CHAR zip_code VARCHARZ,
phone_no VARCHAR?) ;

PROCEDURE add_st ock_item (stock_no NUMBER, description VARCHARZ,
price NUMBER);

PROCEDURE enter_order (order_no NUMBER, cust_no NUVBER
order_date VARCHAR2, ship_date VARCHAR2, to_street VARCHAR?,
to_city VARCHAR2, to_state CHAR to_zip_code VARCHAR?);
PROCEDURE add_|ine_item (line_no NUMBER, order_no NUMBER,
stock_no NUMBER, quantity NUMBER, discount NUMBER);

PROCEDURE total _orders;

PROCEDURE check_stock_item (stock_no NUVBER);

PROCEDURE change_quantity (new_qgty NUMBER, order_no NUVBER
stock_no NUMBER);

PROCEDURE del ete_order (order_no NUMBER);

END po_nyr;

Then, create the package body by writing call specifications for the Java methods, as
follows:

CREATE OR REPLACE PACKAGE BODY po_ngr AS

PROCEDURE add_customer (cust_no NUMBER, cust_nanme VARCHAR?,
street VARCHAR2, city VARCHAR2, state CHAR zip_code VARCHARZ,
phone_no VARCHAR2) AS LANGUAGE JAVA

NAME ' POvanager . addCust oner (int, java.lang. String,

java.lang. String, java.lang.String, java.lang.String,
java.lang. String, java.lang. String)';

PROCEDURE add_st ock_item (stock_no NUMBER, description VARCHARZ,
price NUVBER) AS LANGUAGE JAVA
NAME ' POvanager . addSt ockl ten(int, java.lang.String, float)';

PROCEDURE enter_order (order_no NUMBER, cust_no NUVBER
order_date VARCHAR2, ship_date VARCHAR2, to_street VARCHAR?,
to_city VARCHAR2, to_state CHAR to_zip_code VARCHAR?)

AS LANGUAGE JAVA

NAME ' POvanager . enterOrder(int, int, java.lang.String,
java.lang. String, java.lang.String, java.lang.String,
java.lang. String, java.lang.String)';

PROCEDURE add_|ine_item (line_no NUMBER, order_no NUMBER,
stock_no NUMBER, quantity NUMBER, discount NUMBER)

AS LANGUAGE JAVA

NAME ' POvanager . addLi nelten(int, int, int, int, float)";

PROCEDURE total _orders
AS LANGUAGE JAVA
NAME ' POvanager.total Orders()';

PROCEDURE check_stock_item (stock_no NUVBER)
AS LANGUAGE JAVA
NAME ' POvanager . checkSt ocklten(int)";

PROCEDURE change_quantity (new gty NUMBER, order_no NUMBER,
stock_no NUMBER) AS LANGUAGE JAVA
NAME ' POvenager . changeQuantity(int, int, int)";

PROCEDURE del et e_order (order_no NUMVBER)
AS LANGUAGE JAVA

NAME ' POvanager . del eteOrder (int)";

END po_ngr;

8-8 Oracle Database Java Developer's Guide

Calling the Java Stored Procedures

8.6 Calling the Java Stored Procedures

After publishing the Java classes, call your Java stored procedures from the top level
and from database triggers, SQL data manipulation language (DML) statements, and
PL/SQL blocks. Use the dot notation to reference these stored procedures in the

po_ngr package.

From an anonymous PL/SQL block, you may start the new purchase order system by

stocking parts, as follows:

BEG N
po_mgr. add_st ock_i tem(2010, 'canshaft', 245.00);
po_mgr. add_st ock_i tem(2011, 'connecting rod', 122.50);
po_mgr. add_st ock_i tem(2012, 'crankshaft', 388.25);
po_mgr. add_stock_i tem(2013, 'cylinder head', 201.75);
po_mgr. add_st ock_i tem(2014, 'cylinder sleeve', 73.50);
po_ngr.add_stock_item(2015, 'engine bearning', 43.85);
po_mgr. add_stock_i tem(2016, 'flywheel', 155.00);
po_mgr. add_st ock_i tem(2017, 'freeze plug', 17.95);
po_mgr. add_st ock_i tem(2018, 'head gasket', 36.75);
po_mgr. add_stock_item(2019, "lifter', 96.25);
po_ngr.add_stock_iten(2020, 'oil punmp', 207.95);
po_mgr. add_stock_i tem(2021, 'piston', 137.75);
po_mgr. add_st ock_i tem(2022, 'piston ring', 21.35);
po_ngr.add_stock_iten(2023, 'pushrod', 110.00);
po_mgr. add_st ock_i tem(2024, 'rocker arm, 186.50);
po_mgr. add_st ock_i ten(2025, 'valve', 68.50);
po_ngr. add_st ock_i ten(2026, 'valve spring', 13.25);
po_ngr.add_stock_iten(2027, 'water punp', 144.50);
COWM T;

END,

Register your customers, as follows:

add_custoner (101, 'A-1 Autonotive', '4490 Stevens Blvd',

BEG N
po_ngr.
"San Jose', 'CA', '95129', '408-555-1212");
po_ngr.add_cust oner (102, ' AutoQuest', '2032 Anerica Ave',

"Hayward', 'CA", '94545', '510-555-1212");

po_nyr.

add_custoner (103, 'Bell Auto Supply', '305 Cheyenne Ave',

"Richardson', 'TX, '75080', '972-555-1212");

po_nmyr.

" Dal |

COWM T,
END;

add_custoner (104, ' CarTech Auto Parts', '910 LBJ Freeway',
as', 'TX', '75234', '214-555-1212");

Enter the purchase orders placed by various customers, as follows:

enter_order (30501, 103, '14-SEP-1998', '21-SEP-1998',

BEG N
po_ngr.

' 305 Cheyenne Ave', 'Richardson', 'TX, '75080");
po_ngr.add_line_item 01, 30501, 2011, 5, 0.02);
po_mgr.add_| i ne_iten(02, 30501, 2018, 25, 0.10);
po_mgr.add_| i ne_i ten(03, 30501, 2026, 10, 0.05);
po_ngr.

enter_order (30502, 102, '15-SEP-1998', '22- SEP-1998',

'2032 Anerica Ave', 'Hayward', 'CA", '94545');

po_ngr.
po_ngr.

add_line_iten{01, 30502, 2013, 1, 0.00):
add_line_iten{02, 30502, 2014, 1, 0.00):

Java Stored Procedures Application Example 8-9

Calling the Java Stored Procedures

po_mgr. enter_order (30503, 104, '15-SEP-1998', '23- SEP-1998',
'910 LBJ Freeway', 'Dallas', 'TX, '75234');
po_ngr.add_line_item 01, 30503, 2020, 5, 0.02);
po_ngr.add_line_item 02, 30503, 2027, 5, 0.02);
po_mgr.add_| i ne_iten(03, 30503, 2021, 15, 0.05);
po_mgr.add_| i ne_i ten(04, 30503, 2022, 15, 0.05);

po_mgr. enter_order (30504, 101, '16-SEP-1998', '23- SEP-1998',
"4490 Stevens Blvd', 'San Jose', 'CA', '95129');
po_mgr.add_| i ne_item(01, 30504, 2025, 20, 0.10);
po_mgr.add_| i ne_iten(02, 30504, 2026, 20, 0.10);
COWM T;
END,

In SQL*Plus, after redirecting output to the SQL*Plus text buffer, you can call the
t ot al Order s() method, as follows:

SQL> SET SERVEROUTPUT ON
SQ.> CALL dbns_j ava. set _out put (2000) ;

SQ> CALL po_ngr.total orders();
PONO TOTAL

30501 1664

30502 275

30503 4149

30504 1635

Cal | conpl et ed.

8-10 Oracle Database Java Developer's Guide

9

Oracle Database Java Application
Performance

You can enhance the performance of your Java application using the following:
® Oracle JVM Just-in-Time Compiler (JIT) (page 9-1)

¢ About Java Memory Usage (page 9-4)

9.1 Oracle JVM Just-in-Time Compiler (JIT)

This section describes the just-in-time (JIT) compiler that has been introduced since
Oracle Database 11g release 1 (11.1). This section covers the following topics:

e Overview of Oracle JVM JIT (page 9-1)
* Advantages of JIT Compilation (page 9-2)

® Methods Introduced in Oracle Database 11g (page 9-2)

Note:

The JIT compiler is a replacement of the compilers that were used in the
earlier versions of Oracle Database.

9.1.1 Overview of Oracle JVM JIT

Starting with Oracle 11g release 1 (11.1), there is a JIT compiler for Oracle JVM
environment. A JIT compiler for Oracle JVM enables much faster execution because, it
manages the invalidation, recompilation, and storage of code without an external
mechanism. Based on dynamically gathered profiling data, this compiler transparently
selects Java methods to compile the native machine code and dynamically makes them
available to running Java sessions. Additionally, the compiler can take advantage of
the class resolution model of Oracle JVM to optionally persist compiled Java methods
across database calls, sessions, or instances. Such persistence avoids the overhead of
unnecessary recompilations across sessions or instances, when it is known that
semantically the Java code has not changed.

The JIT compiler is controlled by a new boolean-valued initialization parameter called
java_jit_enabl ed. When running heavily used Java methods with
java_jit_enabl ed parameter value as t r ue, the Java methods are automatically
compiled to native code by the JIT compiler and made available for use by all sessions
in the instance. Setting the j ava_j i t _enabl ed parameter to t r ue also causes
further JIT compilation to cease, and reverts any already compiled methods to be
interpreted. The VM automatically recompiles native code for Java methods when
necessary, such as following reresolution of the containing Java class.

Oracle Database Java Application Performance 9-1

Oracle JVM Just-in-Time Compiler (JIT)

Note:

On Linux, Oracle JVM JIT uses POSIX shared memory that requires access to
the / dev/ shmdirectory. The / dev/ shmdirectory should be of type t npf s
and you must mount this directory as follows:

e With r wand execut e permissions set on it

e Without noexec or nosui d set on it

If the correct mount options are not used, then the following failure may occur
during installation of the database:

ORA-29516: Aurora assertion failure: Assertion failure at joez.c:
Bul k 1 oad of method javal/lang/ Cbject.<init> failed; insufficient shm object
space

The JIT compiler runs as an MMON slave, in a single background process for the
instance. So, while the JIT compiler is running and actively compiling methods, you
may see this background process consuming CPU and memory resources equivalent
to an active user Java session.

9.1.2 Advantages of JIT Compilation

The following are the advantages of using JIT compilation over the compilation
techniques used in earlier versions of Oracle database:

JIT compilation works transparently
JIT compilation speeds up the performance of Java classes

JIT stored compiled code avoids recompilation of Java programs across sessions
or instances when it is known that semantically the Java code has not changed.

JIT compilation does not require a C compiler

JIT compilation eliminates some of the array bounds checking

JIT compilation eliminates common sub-expressions within blocks

JIT compilation eliminates empty methods

JIT compilation defines the region for register allocation of local variables
JIT compilation eliminates the need of flow analysis

JIT compilation limits inline code

9.1.3 Methods Introduced in Oracle Database 11g

Since 11g release 1 (11.1), the DBMS_JAVA package has been enhanced with the
following new public methods to provide Java entry points for controlling
synchronous method compilation and reverting to interpreted method execution:

9-2 Oracle Database Java Developer's Guide

Oracle JVM Just-in-Time Compiler (JIT)

set_native_compiler_option

This procedure sets a native-compiler option to the specified value for the current
schema. If the option given by optionName is not allowed to have duplicate values,
then the value is ignored.

PROCEDURE set _native_conpil er_option(optionName VARCHARZ,
val ue VARCHAR?);

unset_native_compiler_option

This procedure unsets a native-compiler option/value pair for the current schema. If
the option given by optionName is not allowed to have duplicate values, then the value
is ignored.

PROCEDURE unset _native_conpi |l er _option(optionName VARCHAR2,
val ue VARCHAR?);

compile_class

This function compiles all methods defined by the class that is identified by classname
in the current schema. It returns the number of methods successfully compiled. If the
class does not exist, then an ORA- 29532 (Uncaught Java excepti on) occurs.

FUNCTI ON conpi | e_cl ass(cl assnanme VARCHAR2) return NUMBER;

uncompile_class

This function uncompiles all methods defined by the class that is identified by
classname in the current schema. It returns the number of methods successfully
uncompiled. If the value of the argument permanentp is nonzero, then mark these
methods as permanently dynamically uncompilable. Otherwise, they are eligible for
future dynamic recompilation. If the class does not exist, then an ORA- 29532
(Uncaught Java excepti on) occurs.

FUNCTI ON unconpi | e_cl ass(cl assname VARCHAR2,
permanent p NUMBER default 0) return NUVBER

compile_method

This function compiles the method specified by name and Java type signatures defined
by the class, which is identified by classname in the current schema. It returns the
number of methods successfully compiled. If the class does not exist, then an
ORA-29532 (Uncaught Java exception) occurs.

FUNCTI ON conpi | e_net hod(cl assname VARCHAR2,
met hodname VARCHAR2,
met hodsi g VARCHAR2) return NUMBER

uncompile_method

This function uncompiles the method specified by the name and Java type signatures
defined by the class that is identified by classname in the current schema. It returns the
number of methods successfully uncompiled. If the value of the argument permanentp
is nonzero, then mark the method as permanently dynamically uncompilable.
Otherwise, it is eligible for future dynamic recompilation. If the class does not exist,
then an ORA- 29532 (Uncaught Java excepti on) occurs.

FUNCTI ON unconpi | e_net hod(cl assnane VARCHAR?,
met hodnane VARCHAR?,

Oracle Database Java Application Performance 9-3

About Java Memory Usage

met hodsi g VARCHAR?,
permanent p NUMBER default 0) return NUVBER

9.2 About Java Memory Usage

The typical and custom database installation process furnishes a database that has
been configured for reasonable Java usage during development. However, run-time
use of Java should be determined by the usage of system resources for a given
deployed application. Resources you use during development can vary widely,
depending on your activity. The following sections describe how you can configure
memory, how to tell how much System Global Area (SGA) memory you are using,
and what errors denote a Java memory issue:

Configuring Memory Initialization Parameters (page 9-4)
About Java Pool Memory (page 9-6)

Displaying Used Amounts of Java Pool Memory (page 9-7)
Correcting Out of Memory Errors (page 9-8)

Displaying Java Call and Session Heap Statistics (page 9-8)

9.2.1 Configuring Memory Initialization Parameters

You can modify the following database initialization parameters to tune your memory
usage to reflect your application needs more accurately:

SHARED POOL_SI ZE

Shared pool memory is used by the class loader within the JVM. The class loader,
on an average, uses about 8 KB of memory for each loaded class. Shared pool
memory is used when loading and resolving classes into the database. It is also
used when compiling the source in the database or when using Java resource
objects in the database.

The memory specified in SHARED_POOL_SI ZE is consumed transiently when you
use the | oadj ava tool. The database initialization process requires

SHARED POOL_SI ZE to be set to 96 MB because it loads the Java binaries for
approximately 8,000 classes and resolves them. The SHARED POCL_SI ZE
resource is also consumed when you create call specifications and as the system
tracks dynamically loaded Java classes at run time.

JAVA_POOL_SI ZE

Oracle JVM memory manager uses JAVA_POOL_S| ZE mainly for in-memory
representation of Java method and class definitions, and static Java states that are
migrated to session space at end-of-call in shared server mode. In the first case,
you will be sharing the memory cost with all Java users. In the second case, the
value of JAVA_PQOCOL_SI ZE varies according to the actual amount of state held in
static variables for each session. But, Oracle recommends the minimum value as
50 MB.

JAVA _SOFT_SESSI ONSPACE LIM T

This parameter lets you specify a soft limit on Java memory usage in a session,
which will warn you if you must increase your Java memory limits. Every time
memory is allocated, the total memory allocated is checked against this limit.

9-4 Oracle Database Java Developer's Guide

About Java Memory Usage

When a user's session Java state exceeds this size, Oracle JVM generates a warning
that is written into the trace files. Although this warning is an informational
message and has no impact on your application, you should understand and
manage the memory requirements of your deployed classes, especially as they
relate to usage of session space.

Note:

This parameter is applicable only to a shared-server environment.

e JAVA NMAX_SESSI ONSPACE_SI ZE

If a Java program, which can be called by a user, running in the server can be used
in a way that is not self-limiting in its memory usage, then this setting may be
useful to place a hard limit on the amount of session space made available to it.
The default is 4 GB. This limit is purposely set extremely high to be usually
invisible.

When a user's session Java state attempts to exceeds this size, the application can
receive an out-of-memory failure.

Note:

This parameter is applicable only to a shared-server environment.

9.2.1.1 Initializing Pool Sizes within Database Templates

You can set the defaults for the following parameters in the database installation
template:

e JAVA POOL_SI ZE

e SHARED POOL_SI ZE

Figure 9-1 (page 9-6) illustrates how the Database Configuration Assistant enables
you to modify these values in the Memory section.

Oracle Database Java Application Performance 9-5

About Java Memory Usage

Figure 9-1 Configuring Oracle JVM Memory Parameters

ﬁ Database Configuration Assistant, Step 10 of 14 : Initialization Parameters

Mernory l Sizing Character Sets Connection Mode
T Typical
Memaony Size (SGA and PGAY 818 mE | -] -
Fercentage: Al % 250 WE 2047 MB
¥ lUse Automatic Memory Management Shovw Memory Distribution. ..
® Custom
Memaorny Management |ru1anual Shared Memory Management v|
Shared Pool: |36 = [MBytes -
Buffer Cache: |1 8 * IMBytes -
Java Pool: |SD = |MBytes
Large Pool: |1 : MEytes *
PGA Size: |204 2 [MEes -
Total Memory for Oracle: 283 M Bytes

All Initialization Parameters...)I

Cancel)I Help)I & Back Next = Finish)I

9.2.2 About Java Pool Memory

Java pool memory is a subset of SGA, which is used exclusively by Java for memory
that must be aligned pagewise. This includes the majority, but, not all of the memory
used for the shared definitions of Java classes. Other uses of Java pool memory
depend on the mode in which the Oracle Database server runs.

Java Pool Memory Used within a Dedicated Server

The following is what constitutes the Java pool memory used within a dedicated
server:

® Most of the shared part of each Java class in use.

This includes read-only memory, such as code vectors, and methods. In total, this
can average about 4 KB to 8 KB for each class.

* None of the per-session Java state of each session.

For a dedicated server, this is stored in the User Global Area (UGA) within the
Program Global Area (PGA), and not within the SGA.

Under dedicated servers, the total required Java pool memory depends on the

applications running and usually ranges between 10 and 50 MB.

Java Pool Memory Used within a Shared Server

The following constitutes the Java pool memory used within a shared server:

® Most of the shared part of each Java class in use

This includes read-only memory, such as vectors and methods. In total, this
memory usually averages to be about 4 KB to 8 KB for each class.

9-6 Oracle Database Java Developer's Guide

About Java Memory Usage

¢ Some of the UGA for per session memory

In particular, the memory for objects that remain in use across Database calls is
always allocated from Java pool.

Because the Java pool memory size is limited, you must estimate the total
requirement for your applications and multiply by the number of concurrent
sessions the applications want to create, to calculate the total amount of necessary
Java pool memory. Each UGA grows and shrinks as necessary. However, all
UGAs combined must be able to fit within the entire fixed Java pool space.

Under shared servers, Java pool could be large. Java-intensive, multiuser applications
could require more than 100 MB.

Note:

If you are compiling code on the server, rather than compiling on the client
and loading to the server, then you might need a bigger JAVA_POOL_SI ZE
than the default 20 MB.

Reducing the Number of Java-Enabled Sessions

The top-level invocation of Java in the database is issued by a client-side application or
utility. If each client has a dedicated server, then large-scale deployment involves
significant consumption of resources on the database server and also leads to resource
wastage. You can use Client-side connection pools or Database Resident Connection
Pool (DRCP) to reduce the number of database processes and sessions.

See Also:

Oracle Database JDBC Developer’s Guide for more information about DRCP

9.2.3 Displaying Used Amounts of Java Pool Memory

You can find out how much of Java pool memory is being used by viewing the V
$SGASTAT table. Its rows include pool, name, and bytes. Specifically, the last two rows
show the amount of Java pool memory used and how much is free. The total of these
two items equals the number of bytes that you configured in the database initialization
file.

SVRMER> sel ect * from v$sgastat;

POOL NAMVE BYTES

fixed_sga 69424

db_bl ock_buffers 2048000

| og_buf fer 524288
shared pool free menory 22887532
shared pool miscellaneous 559420
shared pool character set object 64080
shared pool State objects 98504
shared pool message pool freequeue 231152
shared pool PL/SQL DI ANA 2275264
shared pool db_files 72496
shared pool session heap 59492
shared pool joxlod: init P 7108
shared pool PLS non-lib hp 2096

Oracle Database Java Application Performance 9-7

About Java Memory Usage

shared pool joxlod: in ehe 4367524
shared pool VIRTUAL CIRCU TS 162576
shared pool joxlod: in phe 2726452
shared pool long op statistics array 44000
shared pool table definiti 160
shared pool K&K heap 4372
shared pool table col ums 148336
shared pool db_bl ock_hash_buckets 48792
shared pool dictionary cache 1948756
shared pool fixed allocation callback 320
shared pool SYSTEM PARAMETERS 63392
shared pool joxlod: init s 7020
shared pool KQLS heap 1570992
shared pool library cache 6201988
shared pool trigger inform 32876
shared pool sql area 7015432
shared pool sessions 211200
shared pool KGFF heap 1320
shared pool joxs heap init 4248
shared pool PL/SQ MPCODE 405388
shared pool event statistics per sess 339200
shared pool db_block_buffers 136000
java pool free menory 30261248
j ava pool menory in use 19742720

37 rows sel ected.

9.2.4 Correcting Out of Memory Errors

If you run out of memory while loading classes, then it can fail silently, leaving invalid
classes in the database. Later, if you try to call or resolve any invalid classes, then a

Cl assNot FoundExcept i on or NoCl assDef FoundExcept i on instance will be
thrown at run time. You would get the same exceptions if you were to load corrupted
class files. You should perform the following;:

® Verify that the class was actually included in the set you are loading to the server.

¢ Usethel oadj ava -force option to force the new class being loaded to replace
the class already resident in the server.

e Usethel oadj ava -resol ve option to attempt resolution of a class during the
load process. This enables you to catch missing classes at load time, rather than at
run time.

¢ Double check the status of the newly loaded class by connecting to the database in
the schema containing the class, and run the following:

SELECT * FROM user_obj ects WHERE obj ect _name = dbns_j ava. shortname('');
The STATUS field should be VALI D. If the | oadj ava tool complains about

memory problems or failures, such as lost connection, then increase
SHARED_POOL_SI ZE and JAVA_POCL_SI ZE, and try again.

9.2.5 Displaying Java Call and Session Heap Statistics

Database performance view v$sesst at records a number of Java memory usage
statistics. These statistics are updated often during Java calls. The following example
shows the Java call return and session heap statistics for the database session with
SID=102.

9-8 Oracle Database Java Developer's Guide

About Java Memory Usage

SQ> select s.sid, n.nane p_name, st.value fromv$session s, v$sesstat st, v
$statname n where s.sid=102
and s.sid=st.sid and n.statistic# = st.statistic# and n.nane like 'java%;

SID P_NAME VALUE
102 java call heap total size 6815744
102 java call heap total size max 6815744
102 java call heap used size 668904
102 java call heap used size max 846920
102 java call heap live size 667112
102 java call heap live size max 704312
102 java cal |l heap object count 13959
102 java cal|l heap object count nmax 17173
102 java call heap live object count 13907
102 java call heap live object count max 14916
102 java call heap gc count 432433
102 java call heap collected count 123196423
102 java cal|l heap collected bytes 5425972216
102 java session heap used size 444416
102 java session heap used size max 444416
102 java session heap live size 444416
102 java session heap |ive size max 444416
102 java session heap object count 0

102 java session heap object count max

102 java session heap |ive object count

102 java session heap live object count max
102 java session heap gc count

102 java session heap col | ected count

102 java session heap col | ected bytes

O OO o oo

24 rows selected

Oracle Database Java Application Performance 9-9

About Java Memory Usage

9-10 Java Developer's Guide

10

Security for Oracle Database Java
Applications

Security is a large arena that includes network security for the connection, access, and
execution control of operating system resources or of Java virtual machine (JVM)-
defined and user-defined classes. Security also includes bytecode verification of Java
Archive (JAR) files imported from an external source. This chapter describes the
various security support available for Java applications within Oracle Database:

* Network Connection Security (page 10-1)
¢ Database Contents and Oracle JVM Security (page 10-2)
¢ Database Authentication Mechanisms Available with Oracle JVM (page 10-23)

® Secure Use of Runtime.exec Functionality in Oracle Database (page 10-23)

10.1 Network Connection Security

The two major aspects to network security are authentication and data confidentiality.
The type of authentication and data confidentiality is dependent on how you connect
to the database, either through Oracle Net or Java Database Connectivity (JDBC)
connection. The following table provides the security description for Oracle Net and
JDBC connections:

Connection Security Description

Oracle Net The database can require both authentication and authorization
before allowing a user to connect to it. Oracle Net database
connection security can require one or more of the following:

* A user name and password for client verification. For each
connection request, a user name and password configured
within Oracle Net has to be provided.

e Advanced Networking Option for encryption, kerberos, or
secureld.

e SSL for certificate authentication.

JDBC The JDBC connection security that is required is similar to the
constraints required on an Oracle Net database connection.

Security for Oracle Database Java Applications 10-1

Database Contents and Oracle JVM Security

See Also:
e Oracle Database Net Services Administrator’s Guide
e Oracle Database Security Guide

® Oracle Database [DBC Developer’s Guide

10.2 Database Contents and Oracle JVM Security

Once you are connected to the database, you must have the appropriate Java 2 security
permissions and database privileges to access the resources stored within the
database. These resources include:

e Database resources, such as tables and PL/SQL packages
* Operating system resources, such as files and sockets
e Oracle JVM classes

e User-loaded classes

These resources can be protected by the following methods:

Resource Security Description

Database Resource Authorization for database resources requires that database privileges,

Security which are not the same as the Java 2 security permissions, are granted
to resources. For example, database resources include tables, classes,
and PL/SQL packages.

All user-defined classes are secured against users from other schemas.
You can grant execution permission to other users or schemas through
an option on the | oadj ava tool.

JVM Security Oracle JVM uses Java 2 security, which uses Per i ssi on objects to
protect operating system resources. Java 2 security is automatically
installed upon startup and protects all operating system resources and
Oracle JVM classes from all users, except JAVA_ADM N. The
JAVA_ADM Nuser can grant permission to other users to access these
classes.

Note:

¢ The Oracle JVM is shipped with strong but limited encryption as included
in JDK1.5 and JDK 6. If you want to have unlimited encryption strength in
your application, then you must download and install the appropriate
version-specific files from the following Web site

http://ww. oracl e. conl t echnet wor k/ i ndexes/ downl oads/
i ndex. htm

® The Oracle JVM classes used for granting or revoking permissions can run
only on a server.

This section covers the following topics:

10-2 Oracle Database Java Developer's Guide

http://www.oracle.com/technetwork/indexes/downloads/index.html
http://www.oracle.com/technetwork/indexes/downloads/index.html

Database Contents and Oracle JVM Security

* Overview of Java 2 Security Features (page 10-3)
* Overview of Setting Permissions (page 10-4)

¢ Debugging Permissions (page 10-20)

® Permission for Loading Classes (page 10-21)

¢ Customizing the Default java.security Resource (page 10-21)

See Also:

Oracle Database Development Guide

10.2.1 Overview of Java 2 Security Features

Each user or schema must be assigned the proper permissions to access operating
system resources, such as sockets, files, and system properties.

Java 2 security provides a flexible and configurable security for Java applications. With
Java 2 security, you can define exactly what permissions on each loaded object that a
schema or role will have. In Oracle8i Database release 8.1.5, the following secure roles
are available:

¢ JAVAUSERPRI V
Few permissions, including examining properties

¢ JAVASYSPRI V
Major permissions, including updating Oracle JVM-protected packages

Note:

Both roles still exist within this release for backward compatibility. However,
Oracle recommends that you specify each permission explicitly, rather than
utilize these roles.

Because Oracle JVM security is based on Java 2 security, you assign permissions on a
class-by-class basis. These permissions are assigned through database management
tools. Each permission is encapsulated in a Per mi ssi on object and is stored within a
Per m ssi on table. Per m ssi on contains the t ar get and act i on attributes, which
take St ri ng values.

Java 2 security was created for the non-database world. When you apply the Java 2
security model within the database, certain differences manifest themselves. For
example, Java 2 security defines that all applets are implicitly untrusted and all classes
within the CLASSPATH are trusted. In Oracle Database, all classes are loaded within a
secure database. As a result, no classes are trusted.

The following table describes the differences between the standard Java 2 security and
Oracle Database security implementation:

Security for Oracle Database Java Applications 10-3

Database Contents and Oracle JVM Security

Java 2 Security Standard

Oracle Database Security Implementation

Java classes located within the CLASSPATH

are trusted.

You can specify the policy using the -
usepol i cy flag on the j ava command.

You can write your own

Securi t yManager or use the Launcher.

Securi t yManager is not initialized by

default. You must initialize
SecurityManager.

Permissions are determined by the location
or the URL, where the application or applet
is loaded, or keycode, that is, signed code.

The security policy is defined in a file.

You can update the security policy file
using a text editor or a tool, if you have the

appropriate permissions.

Permissions are assigned to a protection
domain, which classes can belong to.

You can use the CodeSour ce class for

identifying code.

e Theequal s() method returnst r ue if

All Java classes are loaded within the database.
Classes are trusted on a class-by-class basis
according to the permission granted.

You must specify the policy within
Pol i cyTabl e.

You can write your own Securi t yManager .
However, Oracle recommends that you use
only Oracle Database Securi t yManager or
that you extend it. If you want to modify the
behavior, then you should not define a

Securi t yManager . Instead, you should
extend or acl e. aur ora. rdbns.

Securi t yManager | npl and override specific
methods.

Oracle JVM always initializes
Securi t yManager at startup.

Permissions are determined by the schema in
which the class is loaded. Oracle Database does
not support signed code.

The Pol i cyTabl e definition is contained in a
secure database table.

You can update Pol i cyTabl e through
DBMS_JAVA procedures. After initialization,
only JAVA_ADM Nhas permission to modify
Pol i cyTabl e. JAVA_ADM Nmust grant you
the right to modify Pol i cyTabl e so that you
can grant permissions to others.

All classes within the same schema are in the
same protection domain.

You can use the CodeSour ce class for

identifying schema.

e Theequal s() method returns t r ue if
the schemas are the same.

the URL and certificates are equal.
e Theinplies() methodreturnstrue e Theinplies() method returnstrue if

if the first CodeSour ce is a generic the schemas are the same.

representation that includes the

specific CodeSour ce object.

Supports positive permissions only, thatis, Supports both positive and limitation
grant. permissions, thatis, grant andrestrict.

10.2.2 Overview of Setting Permissions

As with Java 2 security, Oracle Database supports the security classes. Typically, you
set the permissions for the code base either using a tool or by editing the security
policy file. In Oracle Database, you set the permissions dynamically using DBM5_JAVA
procedures, which modify a policy table in the database.

10-4 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

Two views have been created for you to view the policy table, USER_JAVA POLI CY
and DBA_JAVA_PCLI CY. Both views contain information about granted and limitation
permissions. The DBA JAVA POLI CY view can see all rows within the policy table.
The USER_JAVA_POLI CY view can see only permissions relevant to the current user.
The following is a description of the rows within each view:

Table Column

Description

Kind

Grantee

Permission_schema

Permission_type

Permission_name

Permission_action

Status

Key

GRANT or RESTRI CT. Shows whether this permission is a positive or a
limitation permission.

The name of the user, schema, or role to which the Per m ssi on
object is assigned.

The schema in which the Per mi ssi on object is loaded.

The Per mi ssi on class type, which is designated by a string
containing the full class name, such as, j ava. i 0. Fi | ePer mi ssi on.

The t ar get attribute of the Per mi ssi on object. You use this when
defining the permission. When defining the target for a Per mi ssi on
object of type Pol i cyTabl ePer ni ssi on, the name can become quite
complicated.

The act i on attribute of the Per m ssi on object. Many permissions
expect a null value if no action is appropriate for the permission.

ENABLED and DI SABLED. After creating a row for a Per i ssi on
object, you can disable or reenable it. This column shows whether the
permission is enabled or disabled.

Sequence number you use to identify this row. This number should be
supplied when disabling, enabling, or deleting a permission.

There are two ways to set permissions:

® Fine-Grain Definition for Each Permission (page 10-5)

* Assigning General Permission Definition to Roles (page 10-20)

Note:

For absolute certainty about the security settings, implement the fine-grain
definition. The general definition is easy to implement, but you may not get
the exact security settings you require.

10.2.2.1 Fine-Grain Definition for Each Permission

Using fine-grain definition, you can grant each permission individually to specific
users or roles. If you do not grant a permission for access, then the schema will be
denied access. To set individual permissions within the policy table, you must provide
the following information:

Security for Oracle Database Java Applications 10-5

Database Contents and Oracle JVM Security

Parameter Description

Grantee The name of the user, schema, or role to which you want the grant to
apply. PUBLI Cspecifies that the row applies to all users.

Permission type The Per mi ssi on class on which you are granting permission. For
example, if you were defining access to a file, the permission type
would be Fi | ePer i ssi on. This parameter requires a fully-qualified
name of a class that extends j ava. | ang. security. Perni ssi on.If
the class is not within SYS, then the name should be prefixed by
schema: . For example, mySchema: myPackage. MyPer i ssi onis a
valid name for a user-generated permission.

Permission name The meaning of the target attribute as defined by the Per ni ssi on
class. Examine the appropriate Per m ssi on class for the relevant
name.

Permission action The type of action that you can specify. This can vary according to the

permission type. For example, Fi | ePer i ssi on can have the action,
read or write.

Key Number returned from grant or limit to use on enable, disable, or
delete methods.

10.2.2.1.1 Granting and Limiting Permissions

You can grant permissions using either SQL or Java. Each version returns a row key
identifier that identifies the row within the permission table. In the Java version of
DBMS_JAVA, each method returns the row key identifier, either as a returned
parameter or as an OQUT variable in the parameter list. In the PL/SQL DBVM5_JAVA
package, the row key is returned only in the procedure that defines the key OUT
parameter. This key is used to enable and disable specific permissions.

After running the grant, if a row already exists for the exact permission, then no
update occurs, but the key for that row is returned. If the row was disabled, then
running the grant enables the existing row.

Note:

If you are granting Fi | ePer mi ssi on, then you must provide the physical
name of the directory or file, such as / pri vat e/ or acl e. You cannot provide
either an environment variable, such as $ORACLE_HOME, or a symbolic link.
To denote all files within a directory, provide the * symbol, as follows:

[privateloraclel*

To denote all directories and files within a directory, provide the - symbol, as
follows:

[privateloracle/-

You can grant permissions using the DBMS_J AVA package, as follows:

procedure grant_pernission (grantee varchar2, pernission_type varchar?2,
per m ssi on_name varchar 2,
permi ssion_action varchar2)

10-6 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

procedure grant_pernission (grantee varchar2, pernission_type varchar?2,
per m ssion_name varchar 2,
perm ssion_action varchar2, key OUT nunber)

You can grant permissions using Java, as follows:

I ong oracl e.aurora.rdbns. security. PolicyTabl eManager.grant (java.lang.String

grant ee,

java.lang. String permission_type, java.lang. String pernission_nane, java.lang.String
perni ssion_action);

voi d oracle.aurora.rdbns. security. Pol i cyTabl eManager.grant (java.lang. String

grant ee,

java.lang. String permission_type, java.lang. String pernission_nane, java.lang.String
permssion_action, long[] key);

You can limit permissions using the DBM5_JAVA package, as follows:

procedure restrict_permssion (grantee varchar2, pernission_type varchar2,
per m ssion_name varchar 2,
permission_action varchar?2)

procedure restrict_permssion (grantee varchar2, pernission_type varchar2,
per m ssi on_name varchar 2,
perm ssion_action varchar2, key OUT nunber)

You can limit permissions using Java, as follows:

I ong oracl e.aurora.rdbns. security. PolicyTabl eManager.restrict (java.lang.String
grant ee,

java.lang. String permission_type, java.lang. String pernission_nanme, java.lang.String
perni ssion_action);

voi d oracle.aurora.rdbns. security. Pol i cyTabl eManager.restrict (java.lang.String
grant ee,

java.lang. String permission_type, java.lang.String pernission_nane, java.lang.String
permssion_action, long[] key);

Example 10-1 (page 10-7) shows how to use the gr ant _per mi ssi on() method to
grant permissions. Example 10-2 (page 10-8) shows how to limit permissions using
therestrict () method.

The following examples perform the following actions:
1. Grants everyone read and write permission to all files in / t np.
2. Limits everyone from reading or writing only the passwor d filein / t np.

3. Grants only Lar ry explicit permission to read and write the passwor d file.
Example 10-1 Granting Permissions

Assuming that you have appropriate permissions to modify the policy table, you can
use the gr ant _per mi ssi on() method, which is in the DBM5_JAVA package, to
modify Pol i cyTabl e to allow user access to the indicated file. In this example, the
user, Lar ry, has modification permission on Pol i cy Tabl e. Within a SQL package,
Lar ry can grant permission to Dave to read and write a file, as follows:

connect larry
Enter password: password

REM Grant DAVE permission to read and wite the Testl file.
call dbns_java. grant_permission(' DAVE', 'java.io.FilePernission', '/test/Testl',

Security for Oracle Database Java Applications 10-7

Database Contents and Oracle JVM Security

"read,wite');

REM commit the changes to PolicyTabl e
comit;

Example 10-2 Limiting Permissions

You can use therestri ct () method to specify a limitation or exception to general
rules. A general rule is a rule where, in most cases, the permission is true or granted.
However, there may be exceptions to this rule. For these exceptions, you specify a
limitation permission.

If you have defined a general rule that no one can read or write an entire directory,
then you can define a limitation on an aspect of this rule through therestri ct ()
method. For example, if you want to allow access to all files within the / t np directory,
except for your password file that exists in that directory, then you would grant
permission for read and write to all files within / t np and limit read and write access
to the password file.

If you want to specify an exception to the limitation, then you must create an explicit
grant permission to override the limitation permission. In the previously mentioned
scenario, if you want the file owner to still be able to modify the password file, then
you can grant a more explicit permission to allow access to one user, which will
override the limitation. Oracle JVM security combines all rules to understand who
really has access to the password file. This is demonstrated in the following diagram:

Figure 10-1 The List of Files in the /tmp Directory

Grant PUBLIC permission to /tmp/*

/tmp % Is -al

password limitation permission to PUBLIC

test] grant permission assigned to owner that
myCode.java overrides the above limitation
myCode.class

updSQL.sqlj

Makefile

The explicit rule is as follows:

If the limitation permission implies the request, then for a grant permission to be
effective, the limitation permission must also imply the grant.

The following code implements this example:

connect larry
Enter password: password

REM Grant permssion to all users (PUBLIC) to be able to read and wite

REM al | files in /tnp.

call dbms_java. grant_permission(' PUBLIC , 'java.io.FilePermssion', "/tnp/*",
"read,wite');

REM Limt permssion to all users (PUBLIC) fromreading or witing the

REM password file in /tnp.

call dbms_java.restrict_permssion(' PUBLIC, 'java.io.FilePermssion', '/tnp/
password', 'read,wite');

REM By providing a nore specific rule that overrides the linitation,

REM Larry can read and wite /tnp/password.

call dbns_java. grant_permission(' LARRY', 'java.io.FilePernmission', '/tnp/password',
"read,wite');

10-8 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

comit;

10.2.2.1.2 Acquiring Administrative Permission to Update Policy Table

All permissions are rows in Pol i cyTabl e. Because it is a table in the database, you
need appropriate permissions to modify it. Specifically, the

Pol i cyTabl ePer mi ssi on object is required to modify the table. After initializing
Oracle JVM, only a single role, JAVA_ADM N is granted Pol i cyTabl ePer mi ssi on
to modify Pol i cyTabl e. The JAVA_ADM Nrole is immediately assigned to the
database administrator (DBA). Therefore, if you are assigned to the DBA group, then
you will automatically take on all JAVA_ADM N permissions.

If you need to add permissions as rows to this table, JAVA_ADM Nmust grant your
schema update rights using Pol i cyTabl ePer mi ssi on. This permission defines that
your schema can add rows to the table. Each Pol i cy Tabl ePer i ssi on is for a
specific type of permission. For example, to add a permission that controls access to a
file, you must have Pol i cyTabl ePer i ssi on that lets you grant or limit a
permission on Fi | ePer mi ssi on. Once this occurs, you have administrative
permission for Fi | ePer ii ssi on.

An administrator can grant and limit Pol i cy Tabl ePer i ssi on in the same manner
as other permissions, but the syntax is complicated. For ease of use, you can use the
grant _pol i cy_perm ssion() orgrantPolicyPermn ssion() method to grant
administrative permissions.

You can grant policy table administrative permission using DBMS_JAVA, as follows:

procedure grant_policy_permssion (grantee varchar2, pernission_schema varchar2,
perm ssion_type varchar2, permssion_name varchar2)

procedure grant_policy_permssion (grantee varchar2, pernission_schema varchar2,
perm ssion_type varchar2, permssion_name varchar2, key OUT nunber)

You can grant policy table administrative permission using Java, as follows:

I ong oracl e.aurora.rdbnms. security. PolicyTabl eManager. grant Pol i cyPer mi ssi on
(java.lang. String grantee, java.lang. String pernission_schens,
java.lang. String permssion_type, java.lang.String perm ssion_nane);

voi d oracle.aurora.rdbns. security. PolicyTabl eManager. grant Pol i cyPer mi ssi on
(java.lang. String grantee, java.lang. String pernission_schens,
java.lang. String pernission_type, java.lang.String pernission_nane, long[] key);

Parameter Description

Grantee The name of the user, schema, or role to which you want the grant to
apply. PUBLI Cspecifies that the row applies to all users.

Permission_schema The schema where the Per mi ssi on class is loaded.

Permission_type The Per mi ssi on class on which you are granting permission. For
example, if you were defining access to a file, the permission type
would be Fi | ePer ni ssi on. This parameter requires a fully-qualified
name of a class that extends j ava. | ang. security. Perm ssi on.If
the class is not within SYS, the name should be prefixed by schema: .
For example, nySchema: nyPackage. MyPer ni ssi on is a valid name
for a user-generated permission.

Security for Oracle Database Java Applications 10-9

Database Contents and Oracle JVM Security

Parameter Description

Permission_name The meaning of the t ar get attribute as defined by the Per mi ssi on
class. Examine the appropriate Per ni ssi on class for the relevant
name.

Row_ number Number returned from grant or limitation to use on enable, disable, or
delete methods.

Note:

When looking at the policy table, the name in the Pol i cyTabl ePer mi ssi on
rows contains both the permission type and the permission name, which are
separated by a #. For example, to grant a user administrative rights for
reading a file, the name in the row contains

java.io. Fil ePerm ssi on#r ead. The # separates the Per m ssi on class
from the permission name.

Example 10-3 (page 10-10) shows how you can modify Pol i cyTabl e.
Example 10-3 Granting PolicyTable Permission

This example shows SYS, which has the JAVA_ADM Nrole assigned, giving Lar ry
permission to update Pol i cyTabl e for Fi | ePer mi ssi on. Once this permission is
granted, Lar r y can grant permissions to other users for reading, writing, and deleting
files.

REM Connect as SYS, which is assigned JAVA ADMN role, to give Larry permssion
REMto nodify the PolicyTable

connect SYS as SYSDBA

Enter password: password

REM SYS grants Larry the right to administer pernissions for
REM Fi | ePer mi ssi on
call dbns_j ava. grant _policy_permnission(' LARRY', 'SYS', 'java.io.FilePernission',

e

10.2.2.1.3 Creating Permissions

You can create your own permission type by performing the following steps:

1. Create and load the user permission

Create your own permission by extending the j ava. security. Perm ssi on
class. Any user-defined permission must extend Per ni ssi on. The following
example creates MyPer m ssi on, which extends Basi cPer mi ssi on, which, in
turn, extends Per mi ssi on.

package test.larry;
import java.security. Pernission;
import java.security.Basi cPerm ssion;

public class MyPerni ssion extends Basi cPerm ssion

{

public MyPerm ssion(String nane)

{

10-10 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

super (nane) ;

}

public bool ean inplies(Permnssion p)

{
bool ean result = super.inplies(p);
return result;

}
}

2. Grant administrative and action permissions to specified users

When you create a permission, you are designated as the owner of that permission.
The owner is implicitly granted administrative permission. This means that the
owner can be an administrator for this permission and can run

grant _pol i cy_per m ssi on() . Administrative permission enable the user to
update the policy table for the user-defined permission.

For example, if LARRY creates a permission, MyPer i ssi on, then only he can call
grant _pol i cy_per m ssion() for himself or another user. This method updates
Pol i cyTabl e on who can grant rights to MyPer ni ssi on. The following code
demonstrates this:

REM Since Larry is the user that owns MyPermssion, Larry connects to
REWt he database to assign permssions for MPermn ssion.

connect larry
Enter password: password

REM As the owner of MyPermission, Larry grants himself the right to
REM admi ni ster permissions for test.larry. MyPermission within the JVM
REM security PolicyTable. Only the owner of the user-defined permssion
REM can grant adninistrative rights.

call dbns_j ava. grant _policy_permission ('LARRY', 'LARRY',

"test.larry. MyPermssion', '*');

REM commit the changes to PolicyTabl e
comit;

Once you have granted administrative rights, you can grant action permissions for
the created permission. For example, the following SQL statements grant LARRY
the permission to run anything within MyPer ni ssi on and DAVE the permission to
run only actions that start with "act . ".

REM Since Larry is the user that creates MyPernission, Larry connects to
REWt he database to assign permssions for MPermn ssion.

connect larry
Enter password: password

REM Once able to nodify PolicyTable for MyPernission, Larry grants hinself
REM ful | permission for M/Permission. Notice that the Permssion is prefixed
REMwi th its owner schenma.

call dbns_java. grant_permission('LARRY', 'LARRY:test.larry. M/Pernission', '*'
null);

REM Larry grants Dave pernission to do any actions that start with "act.*'.
call dbns_j ava. grant _permi ssion
("DAVE , 'LARRY:test.larry. MPernmission', "act.*', null);

Security for Oracle Database Java Applications 10-11

Database Contents and Oracle JVM Security

REM commit the changes to PolicyTabl e
comit;

3. Implement security checks using the permission

Once you have created, loaded, and assigned permissions for MyPer i ssi on, you
must implement the call to Secur i t yManager to have the permission checked.
There are four methods in the following example: sensi ti ve(),act (),
print(),and hel | o().Because of the permissions granted using SQL in the
preceding steps, the following users can run methods within the example class:

* LARRY can run any of the methods.
¢ DAVEis given permission to run only the act () method.

* Anyone canrun the print () and hel | o() methods. The pri nt () method
does not check any permissions. As a result, anyone can run it. The hel | o()
method runs AccessControl | er. doPri vi | eged(), which means that the
method runs with the permissions assigned to LARRY. This is referred to as the
definer's rights.

package test.larry;

inport java.security.AccessController;
inport java.security. Pernission;
inport java.security.PrivilegedAction;

inport java.sql.Connection;
inport java.sql.SQ.Exception;

/**

* MyActions is a class with a variety of public nethods that
* have sone security risks associated with them Ve will rely
* on the Java security nechanisns to ensure that they are

* performed only by code that is authorized to do so.

*|

public class Larry {

private static String secret = "Larry's secret"”;
MyPer mi ssi on sensitivePermn ssion = new MyPerm ssion("sensitive");

/**
* This is a security sensitive operation. That is it can
* conpromise our security if it is executed by a "bad guy".
* Only larry has permission to execute sensitive.
*|
public void sensitive()
{
checkPer mi ssi on(sensitivePerni ssion);
print();
1

/**
* WIl display a nmessage fromLarry. You nust be
* careful about who is allowed to do this
* because nessages fromLarry may have extra inpact.
* Both larry and dave have pernmission to execute act.
*|

public void act(String nmessage)

{

MyPermi ssion p = new MyPermi ssion("act." + nessage);

10-12 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

checkPer mi ssion(p);
Systemout.printIn("Larry says: " + nessage);

}

/**
* display secret key
* No pernission check is made; anyone can execute print.
*|
private void print()
{
Systemout. println(secret);

}

/**
* Display "Hello"
* This method invokes doPrivileged, which makes the nethod run
* under definer's rights. So, this nethod runs under Larry's
* rights, so anyone can execute hello. Only Larry can execute hello
*|

public void hello()

{

AccessControl | er. doPrivileged(new PrivilegedAction() {

public Qbject run() { act("hello"); return null; }

b
1

/**
* |f a security manager is installed ask it to check permssion
* otherwi se use the AccessController directly
*|
voi d checkPerni ssi on(Permi ssion pernission)
{
SecurityManager sm = System get SecurityManager ();
sm checkPer i ssi on(perm ssi on);
1
}

10.2.2.1.4 Enabling or Disabling Permissions

Once you have created a row that defines a permission, you can disable it so that it no
longer applies. However, if you decide that you want the row action again, then you
can enable the row. You can delete the row from the table if you believe that it will
never be used again. To delete, you must first disable the row. If you do not disable
the row, then the deletion will not occur.

To disable rows, you can use either of the following methods:

revoke_perni ssion()

This method accepts parameters similar to the grant () andrestrict()
methods. It searches the entire policy table for all rows that match the parameters
provided.

di sabl e_perni ssi on()

This method disables only a single row within the policy table. To do this, it
accepts the policy table key as parameter. This key is also necessary to enable or
delete a permission. To retrieve the permission key number, perform one of the
following:

Security for Oracle Database Java Applications 10-13

Database Contents and Oracle JVM Security

— Save the key when it is returned on the grant or limit calls. If you do not
foresee a need to ever enable or disable the permission, then you can use the
grant and limit calls that do not return the permission number.

— Look up DBA_JAVA_PCLI CY or USER_JAVA_POLI CY for the appropriate
permission key number.

You can disable permissions using DBM5_JAVA, as follows:

procedure revoke_permission (grantee varchar2, pernission_type varchar?2,
per m ssion_name varchar2, perm ssion_action varchar?2)

procedur e di sabl e_perm ssion (key nunber)

You can disable permissions using Java, as follows:

voi d oracl e.aurora.rdbns. security. Pol i cyTabl eManager.revoke (java.lang. String
grantee, java.lang.String perm ssion_type,

java.lang. String pernission_nane, java.lang.String pernission_action_type);
voi d oracl e. aurora. rdbns. security. Pol i cyTabl eManager . di sabl e (I ong key);

You can enable permissions using DBMS_JAVA, as follows:

procedure enabl e_perm ssion (key nunber)

You can enable permissions using Java, as follows:

voi d oracl e.aurora.rdbns. security. Pol i cyTabl eManager. enabl e (long key);

You can delete permissions using DBMS_JAVA, as follows:

procedure del ete_perm ssion (key nunber)

You can delete permissions using Java, as follows:

voi d oracl e.aurora.rdbns. security. PolicyTabl eManager. del ete (long key);

10.2.2.1.5 About Permission Types

Whenever you want to grant or limit a permission, you must provide the permission
type. The permission types with which you control access are the following:

* Java 2 permission types
® Oracle-specific permission types
e User-defined permission types that extend j ava. security. Permi ssi on

Table 10-1 (page 10-15) lists the installed permission types.

10-14 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

Table 10-1 Predefined Permissions
- - - -

Type Permissions

Java 2 e java.util.PropertyPerm ssion
e java.io.Serializabl ePerm ssion
e java.io.FilePernission

e java.net.Net Pernission

e java.net. Socket Perm ssion

e java.lang. Runti mePerm ssion

e java.lang.reflect.Refl ectPerm ssion
e java.security. SecurityPern ssion

Oracle specific e oracle.aurora.rdbns. security. PolicyTabl ePerni ssion

e oracle.aurora.security.JServerPerni ssion

Note:

SYSis granted permission to load libraries that come with Oracle Database.
However, Oracle JVM does not support other users loading libraries, because
loading C libraries within the database is insecure. As a result, you are not
allowed to grant Runt i mePer mi ssi on for | oadLi brary. *.

The Oracle-specific permissions are:

oracl e. aurora. rdbns. security. PolicyTabl ePerm ssion

This permission controls who can update the policy table. Once granted the right
to update the policy table for a certain permission type, you can control the access
to few resources.

After the initialization of Oracle JVM, only the JAVA_ADM Nrole can grant
administrative rights for the policy table through Pol i cyTabl ePer ni ssi on.
Once it grants this right to other users, these users can, in turn, update the policy
table with their own grant and limitation permissions.

To grant policy table updates, you can use the gr ant _pol i cy_per m ssi on()
method, which is in the DBMS_JAVA package. Once you have updated the table,
you can view either the DBA JAVA POL| CY or USER_JAVA PCLI CY view to see
who has been granted permissions.

oracl e. aurora. security.JServerPerm ssion

This permission is used to grant and limit access to Oracle JVM resources. The
JSer ver Per mi ssi on extends Basi cPer mi ssi on. The following table lists the
permission names for which JSer ver Per mi ssi on grants access:

Permission Name Description

LoadCl assl nPackage. package_n Grants the ability to load a class within the

ane specified package
Verifier Grants the ability to turn the bytecode verifier
on or off

Security for Oracle Database Java Applications 10-15

Database Contents and Oracle JVM Security

Permission Name Description

Debug Grants the ability for debuggers to connect to a
session

JRI Ext ensi ons Grants the use of MEMSTAT

Merory. Cal | Grants rights to call certain methods in
oracl e. aurora.vm Oracl eRunt i me on call
settings

Menory. St ack Grants rights to call certain methods in

oracl e.aurora.vm Oracl eRunti e on
stack settings

Menmory. SGAI nt ern Grants rights to call certain methods in
oracl e. aurora.vm Oracl eRunti me on
SGA settings

Menory. GC Grants rights to call certain methods in

oracl e.aurora.vm O acl eRunti me on
garbage collector settings

Table 10-2 JServerPermission Description
. __|

Grantee Permission Type Permission Name Permission Action
Granted or
Restricted

JAVADEBUGPRI SYS: oracl e. aurora. security.JServe Debug Granted null

\% r Perm ssi on

SYS SYS: oracl e. aurora. security.JServe * Granted null

r Per mi ssi on

SYS SYS: oracl e. aurora. security.JServe Loadd asslnPackag Granted null
rPerm ssi on e.java.*

SYS SYS: oracl e. aurora. security.JServe LoadC asslnPackag Granted null
r Perm ssi on e.oracle.aurora.*

SYS SYS: oracl e. aurora. security.JServe Loadd asslnPackag Granted null
r Per mi ssi on e.oracl e.jdbc. *

PUBLI C SYS: oracl e. aurora. security.JServe Loadd asslnPackag Granted null
r Per mi ssi on e.*

PUBLI C SYS: oracl e. aurora. security.JServe LoadC asslnPackag Restricted null
r Perm ssi on e.java.*

PUBLI C SYS: oracl e. aurora. security.JServe Loadd asslnPackag Restricted null
r Per mi ssi on e.oracl e.aurora.*

PUBLI C SYS: oracl e. aurora. security.JServe Loadd asslnPackag Restricted null
rPerm ssi on e.oracle.jdbc.*

10-16 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

Table 10-2 (Cont.) JServerPermission Description
. ___|

Grantee Permission Type Permission Name Permission Action
Granted or
Restricted

JAVA DEPLOY SYS: oracl e. aurora. security.JServe Loadd asslnPackag Granted null

r Per mi ssi on e.oracle.aurora.d
epl oy. *
JAVA DEPLOY SYS: oracl e. aurora. security.JServe Depl oy Granted null

r Per mi ssi on

10.2.2.1.6 About Initial Permission Grants

When you first initialize Oracle JVM, several roles are populated with certain
permission grants. The following tables show these roles and their initial Permissions:

e Table 10-3 (page 10-17)
e Table 10-4 (page 10-18)
e Table 10-5 (page 10-19)
¢ Table 10-6 (page 10-19)
e Table 10-7 (page 10-20)

The JAVA_ADM Nrole is given access to modify the policy table for all permissions.
All DBAs, including SYS, are granted JAVA_ADM N. Full administrative rights to
update the policy table are granted for the permissions listed in Table 10-1

(page 10-15). In addition to the JAVA_ADM N permissions, SYS is granted some
additional permissions that are needed to support the standard JDK functionality and
Oracle JVM specifics.

Table 10-3 (page 10-17) lists some of the additional permissions granted to SYS.

Table 10-3 SYS Initial Permissions
- - - - - "~]

Permission Type Permission Name Action
oracl e. aurora. rdbmns. security. oracl e. aurora. rdbns. se null
Pol i cyTabl ePer mi ssi on curity. PolicyTabl ePerm

i ssi on#*
oracl e.aurora.security.JServerPermissio * null
n
j ava. net. Net Per nmi ssi on * null
java.security. SecurityPerni ssion * null
java. util.PropertyPern ssion * write
java.lang.refl ect. Refl ect Perm ssi on * null
java. |l ang. Runti mePer m ssi on * null
java. |l ang. Runti mePer m ssi on | oadLi brary. xaNati ve null

Security for Oracle Database Java Applications 10-17

Database Contents and Oracle JVM Security

Table 10-3 (Cont.) SYS Initial Permissions
. __|

Permission Type Permission Name Action
java. |l ang. Runti nePer m ssi on | oadLi brary. corej ava null
java. |l ang. Runti mePer m ssi on | oadLi brary. corejava_d null

Table 10-4 (page 10-18) lists permissions initially granted or restricted to all users.

Table 10-4 PUBLIC Default Permissions
]

Permission Type Permission Name Permission Action
Granted or
Restricted

oracl e.aurora. rdbns. sec java.lang. Runti mePernm ssi on#l oadLi brary. Restricted null

urity. *

Pol i cyTabl ePer m ssi on

java. util . PropertyPern * Granted read
ssion

java.util.PropertyPerm user. | anguage Granted write
ssion

java.util.PropertyPerm oracle.net.tns_adnin Granted write
ssi on

java.lang. RuntinePerms exitVM Granted null

sion

java.lang. Runti nePerm s createSecurityManager Granted null

si on

java.lang. RuntinePermis nodifyThread Granted null

si on

java.lang. Runti nePerm s nodi fyThreadG oup Granted null

sion

java.lang. Runti mePerm s getenv. ORACLE_HOVE Granted null

si on

java.lang. RuntinePermis getenv. TNS_ADM N Granted null

si on

java.lang. Runti nePerm s preferences Granted null

sion

java.lang. Runti mePermis | oadLi brary.* Restricted null

si on

oracl e. aurora. security. LoadC assl nPackage. * except for Granted null

JServer Perm ssi on Loadd assl nPackage. j ava. *,

Loadd assl nPackage. or acl e. aurora. *, and
Loadd assl nPackage. oracl e. j dbc. *

Table 10-5 (page 10-19) lists permissions initially granted to the JAVAUSERPRI V role.

10-18 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

Table 10-5 JAVAUSERPRIV Permissions
- - - -~ -]

Permission Type Permission Name Action

j ava. net. Socket Perm ssi on * connect,
resolve

java.io. FilePerm ssion <<ALL FI LES>> read

java.l ang. Runti mePerm ssio stopThread null

n

java.l ang. Runti mnePerm ssio getProtectionDonain null

n

java.l ang. Runti mePerm ssio accessd assl nPackage. * null

n

java.l ang. Runti mePerm ssio defined assl nPackage. * null

n

Table 10-6 (page 10-19) lists permissions initially granted to the JAVASYSPRI V role.

Table 10-6 JAVASYSPRIV Permissions
- - - - -~~~]

Permission Type

Permission Name

Action

java.io. Serializabl ePermssio *

n
j ava
j ava
j ava
j ava
j ava
j ava
j ava
j ava
j ava
j ava

j ava

.i0.FilePermssion

. net. Socket Perm ssi on

.sql . SQLPer ni ssi on

. lang.
.l ang.
.l ang.
.l ang.
.l ang.
.l ang.
. lang.

.l ang.

Runt i mePer mi ssi

Runt i nePer m ssi

Runt i mePer m ssi

Runt i mePer mi ssi

Runt i nePer m ssi

Runt i mePer m ssi

Runt i mePer mi ssi

Runt i nePer m ssi

on

on

on

on

on

on

on

on

<<ALL FI LES>>

*

set Log

creat eCl assLoader

get Cl assLoader

set Cont ext Cl assLoader
set Factory

setl O

set Fi | eDescri ptor
readFi | eDescri pt or

writeFil eDescriptor

no applicable action

read, write, execute, delete

accept, connect, listen, resolve

null

null

null

null

null

null

null

null

null

Table 10-7 (page 10-20) lists permissions initially granted to the JAVADEBUGPRI V

role.

Security for Oracle Database Java Applications 10-19

Database Contents and Oracle JVM Security

Table 10-7 JAVADEBUGPRIV Permissions
- - - - -]

Permission Type Permission Name Action

oracl e. aurora. security. JServer Perm ssion Debug null

10.2.2.2 Assigning General Permission Definition to Roles

In Oracle8i Database release 8.1.5, Oracle JVM security was controlled by granting the
JAVASYSPRI V, JAVAUSERPRI V, or JAVADEBUGPRI V role to schemas. In Oracle
Database 12c Release 1 (12.1), these roles still exist as permission groups. You can set
up and define your own collection of permissions. Once defined, you can grant any
collection of permissions to any user or role. That user will then have the same
permissions that exist within the role. In addition, if you need additional permissions,
then you can add individual permissions to either your specified user or role.
Permissions defined within the policy table have a cumulative effect.

Note:

The ability to write to properties, granted through the write action on
Propert yPer m ssi on, is no longer granted to all users. Instead, you must
have either JAVA_ADM N grant this permission to you or you can receive it by
being granted the JAVASYSPRI V role.

The following example gives Larry and Dave the following permissions:

e Larry receives JAVASYSPRI V permissions.

¢ Dave receives JAVADEBUGPRI V permissions and the ability to read and write all
files on the system.

REM Granting Larry the sanme permissions as those existing wthin JAVASYSPRIV
grant javasyspriv to larry;

REM Granting Dave the ability to debug
grant javadebugpriv to dave;

commt;
REM | al so want Dave to be able to read and wite all files on the system

call dbns_j ava. grant _pernission(' DAVE', 'SYS:java.io.FilePernission',
'<<ALL FILES>>', 'read,wite', null);

See Also:

"Fine-Grain Definition for Each Permission (page 10-5)".

10.2.3 Debugging Permissions

A debug role, JAVADEBUGPRI V, was created to grant permissions for running the
debugger. The permissions assigned to this role are listed in Table 10-7 (page 10-20).
To receive permission to call the debug agent, the caller must have been granted
JAVADEBUGPRI V or the debug JSer ver Per ni ssi on as follows:

10-20 Oracle Database Java Developer's Guide

Database Contents and Oracle JVM Security

REM Granting Dave the ability to debug
grant javadebugpriv to dave;

REM Larry grants hinself permission to start the debug agent.
call dbns_j ava. grant _permi ssi on(
"LARRY', 'oracle.aurora.security.JServerPermssion', 'Debug', null);

Although a debugger provides extensive access to both code and data on the server, its
use should be limited to development environments.

10.2.4 Permission for Loading Classes
To load classes, you must have the following permission:

JServer Per mi ssi on("Loadd assl nPackage." + cl ass_nane)

where, cl ass_nare is the fully qualified name of the class that you are loading.

This excludes loading into System packages or replacing any System classes. Even if
you are granted permission to load a System class, Oracle Database prevents you from
performing the load. System classes are classes that are installed by Oracle Database
using the CREATE JAVA SYSTEMstatement. The following error is thrown if you try
to replace a System class:

ORA- 01031 "Insufficient privileges"
The following describes what each user can do after database installation:

® SYScan load any class except for System classes.

* Any user can load classes in its own schema that do not start with the following
patterns: j ava. *, oracl e. aurora. *,and or acl e. j dbc. *. If the user wants to
load such classes into another schema, then it must be granted the
JServer Pernmi ssi on(LoadC assl| nPackage. cl ass) permission.

The following example shows how to grant HR permission to load classes into the
oracl e. aurora.tool s.* package:

dbnms_j ava. grant _pernission(' HR ,' SYS: oracl e. aurora. security.JServerPernission','L
oadd assl nPackage. oracl e. aurora.tool s.*' , null);
10.2.5 Customizing the Default java.security Resource

If you want to add a security provider or change the order of the security providers
listed in the defaultj ava. securi t y resource, then you can create an alternate
resource and add it to the Database. This change affects all new Oracle JVM sessions
that start after the resource is loaded. Perform the following steps to configure the
defaultj ava. securi ty resource:

1. Create the following file:
$ORACLE_HOVE/ j avavni | i b/ security/java.security.alt

2. Use the following command to copy the contents of the file $ORACLE_HOME/
javavm |i b/ security/java. security into the file created in step 1:

cp $ORACLE_HOWE/ j avavni | i b/ security/java.security $ORACLE_HOVE/ j avavni | i b/
security/java.security.alt

3. Edit the $ORACLE_HOME/ j avavni | i b/ security/java. security. alt file
and make the necessary changes as necessary.

Security for Oracle Database Java Applications 10-21

Database Contents and Oracle JVM Security

Caution:

If you make a mistake in specifying the order of the service providers or
defined devices, then some features may become unusable.

4. Use the following commands to load the j ava. security. al t file:

Note:

You must be able to login as SYS to load the | i b/ security/
java. security. alt file.

cd $ORACLE_HOVE/ j avavm
| oadj ava -u sys/<sys_pwd> -v -g public lib/security/java.security.alt

This security setting affects every future Oracle JVM session started from the
Database. However, the changes in the security settings are not in effect for the
loading session.

Caution:

You must have knowledge about the security parameters before configuring
them. Incorrect settings can lead to abnormal operations.

See Also:

http://docs. oracl e. conij avase/ 7/ docs/t echnot es/ gui des/
security/index. htm for more information about this security setting

Example 10-4 Creating or Replacing Java System

You must now perform a Create or Replace Java System, forj ava. security. al t to
provide a different set of security parameters to the OJVM. Before this, all system
sessions should be re-started using:

sqlplus / as sysdba
shut down

sqlplus / as sysdba
startup

Create Java System is performed in the following way:

sql plus / as sysdba
create or replace java system

For Linux.X64 databases, the Create Java System will not work. In that case, use the
following command:

sqlplus / as sysdba
call javavm sys.rehotload();

Example 10-5 Restoring the Security Settings

You can restore the original security settings in either of the two following ways:

10-22 Oracle Database Java Developer's Guide

http://docs.oracle.com/javase/7/docs/technotes/guides/security/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/index.html

Database Authentication Mechanisms Available with Oracle JVM

¢ Use the following commands:

cd $ORACLE_HOME/ j avavm
dropjava -u sys/<sys_pwd> -v lib/security/java.security.alt

¢ Use the following commands:

sql plus sys/<sys_pwd> as sysdba
SQL> drop java resource "lib/security/java.security.alt";

10.3 Database Authentication Mechanisms Available with Oracle JVM

The following database authentication mechanisms are available with Oracle JVM:
¢ Password authentication

¢ Strong authentication

* Proxy authentication

¢ Single sign-on

10.4 Secure Use of Runtime.exec Functionality in Oracle Database

This section is intended for DBAs and security administrators, and provides
guidelines for secure use of the Java SE functionality Runt i me. exec in Java
applications running inside Oracle Database. The j ava. | ang. Runt i me. exec
methods, found in Java SE libraries and supported by Java Virtual Machine (Java VM)
since release 9, span a new operating system (OS) process and execute the specified
command and arguments in the new process. If a Secur i t yManager is present,
which is always the case for Java VM running in the database, then a security check for
file execution permissions on relevant path names is performed before the new OS
process starts. If you are a DBA or a security administrator, then you are responsible
for granting the appropriate file read, write, and execute permissions selectively to the
database users, who are authorized to run server-side OS commands. In addition,
Oracle strongly recommends that the

dbns_j ava. set _runti me_exec_credenti al s procedure is used to control OS
user identities of spawned commands as described in the following sections.

By design, the Runt i me. exec and the related functionality of the

java. |l ang. ProcessBui | der andj ava. | ang. Process classes provide no
control over the identity of the user associated with the newly created process. In most
Java implementations, including the default behavior of Java VM, the forked process
runs with the identity of the parent process, which is the Oracle OS user in Oracle
Database. For security reasons, it is advisable to run the processes forked by the

Runt i me. exec functionality with OS identity granted lesser rights. The

dbns_j ava. set _runti me_exec_credenti al s procedure provides a mechanism
to bind a specified database user/schema to a specific OS account. If you are a DBA,
then you should bind database users issuing Runt i me. exec calls to OS accounts with
the least possible power. The following call associates database user/schema DBUSER
with an OS osuser account:

dbns_j ava. set _runtinme_exec_credential s(' DBUSER , 'osuser', 'ospass');
As a result, the OS process spawned to run the Runt i me. exec commands issued by

DBUSER runs with the identity of osuser . You must be the SYS user to use
set_runti me_exec_credenti al s procedure.

Security for Oracle Database Java Applications 10-23

Secure Use of Runtime.exec Functionality in Oracle Database

See Also:

"set_runtime_exec_credentials (page A-18)"

10-24 Oracle Database Java Developer's Guide

11

Native Oracle JVM Support for INDI

This chapter describes Oracle JVM support for Java Naming and Directory Interface
(JNDI). This chapter contains the following sections:

e Overview of Oracle JVM Support for JNDI (page 11-1)

¢ Requirements for Oracle JVM Support for JNDI (page 11-1)
¢ OJDS Command-Line Tools (page 11-6)

¢ OJDS APIs and Classes (page 11-14)

11.1 Overview of Oracle JVM Support for JNDI

Native Oracle JVM support for JNDI enables you to bind Oracle data source objects,
which contain specific database connection information, by a name in a directory
structure. You can use this name to retrieve the particular connection information to
establish a connection within an application. You can also change the database
connection properties and the actual source database without changing the application
by changing only the associated object to which a specific name is resolved. This
feature also provides a general purpose directory service for storing objects and object
references.

The Oracle Java Directory Service (OJDS) package, or acl e. aur or a. j ndi . oj ds
provides the APIs for implementing JNDI support. For more information about the
APIs present in the or acl e. aur or a. j ndi . oj ds package, refer to "OJDS APIs and
Classes (page 11-14)".

11.2 Requirements for Oracle JVM Support for JNDI

This section describes the implementation requirements for JNDI support in the Oracle
JVM. This section is divided into the following sections:

¢ Namespace (page 11-1)
® Oracle Java Directory Service JNDI Name Space Provider (page 11-3)

* Namespace Browser (page 11-5)

11.2.1 Namespace

The namespace is represented similarly as in the typical Unix File System structure.
The root directory and the directory separator are represented by the slash symbol (/).
The root directory is owned by SYS and only SYS can create new subdirectories under
it.

The following two directories (Di r Cont ext s) are created during the installation
process of OJDS:

Native Oracle JVM Support for INDI 11-1

Requirements for Oracle JVM Support for JNDI

e /publi c directory

The / publ i ¢ directory is a public area for testing and any user can bind, delete,
or lookup objects in this directory.

e /et c directory

The / et ¢ directory is an area for the deployment of all production type objects
that a client may need and is protected from any update or removal. The / et ¢
directory is writable only by the SYS user, but is readable by all users.

11.2.1.1 Object permissions

You can assign permissions to the objects stored in the directory structure. These
permissions are a union of the following permissions:

e Read
e Write

e Execute

The following table describes the permissions that you can assign to the objects stored
in the directory structure:

Action Parent Context Permissions Child (obj/ctx) Permissions
bi nd Write NA
unbi nd Write Write
cr eat eSubcont ext Write NA
getAttributes Read Read
r ebi nd Write Write
destroySub cont ext Write Write
list Read Read
|'i st Bi ndi ngs Read Read
| ookup Read Read
| ookupLi nk Read Read
renane (target) Write Write (if exists)
renane (source) Read Read

Note:

All parent contexts must have Execute permission for operations to succeed.

11.2.1.2 Persistent Storage Tables, Indexes, and Sequences
The database tables owned by QJVMSYS store the following details for each object:

11-2 Oracle Database Java Developer's Guide

Requirements for Oracle JVM Support for JNDI

* Namespace metadata

* Bound names

e Attributes

* Permissions

* Stored object representations

11.2.1.3 Initial Contexts and Permissions
The following table shows the contexts that are created by default at the time of

installation:

Name Owner Read Write Execute
/ SYS PUBLIC SYS PUBLIC
/public SYS PUBLIC PUBLIC PUBLIC
/etc SYS PUBLIC SYS PUBLIC

11.2.1.4 Object and Context Default Permissions

When a context is created or an object is bound to the OJDS, then the Read and
Execute permissions are granted to the user or schema that creates the context.

11.2.2 Oracle Java Directory Service JNDI Name Space Provider

This section describes the following Oracle Java Directory Service concepts:
¢ Directory Context (page 11-3)

¢ StateFactories (page 11-4)

* ObjectFactories (page 11-4)

¢ OJDS URL Support (page 11-4)

¢ C(lient classpath (page 11-5)
11.2.2.1 Directory Context

The Oracle Java Directory Service (OJDS) must implement the interface as specified by
the j avax. nami ng. di rect ory. Di r Cont ext context. The

j avax. nam ng. di rectory. Di r Cont ext context, the

oracl e.aurora.jndi.ojds. g dsServer Cont ext context, and the

oracl e. aurora.jndi.ojds. g dsC i ent Cont ext context provide the methods
for examining and updating attributes associated with the objects, and enables
searches of the directory for server-side and client-side executions respectively.

The following table describes the JNDI properties that you can use for creating a
context or using a context:

Native Oracle JVM Support for INDI 11-3

Requirements for Oracle JVM Support for JNDI

Package Name Description

java. naming.factory Specifies what class to use to create initial contexts for the

.initial application. The or acl e. aur or a. j ndi . 0oj ds package defines
the

oracl e.aurora.jndi.ojds. gdslnitial ContextFactor
y for use with this property to create | ni ti al Di r Cont ext .

java. nami ng. securit Specifies the user ID for creating a database connection. You
y. princi pal must specify the value for this property.

j ava. nami ng. securit Specifies the password for creating a database connection. You
y.credential s must specify the value for this property.

j ava. nami ng. provi de Specifies the connection URL for creating a database connection.
r.url This property is optional.

java.nam ng. factory Isa colon separated list of URL handlers for specific JNDI
.url . pkgs implementations. The
oracl e. aurora.jndi.ojds. g dsURLCont ext Fact ory
class returns a context based on an OJDS URL.

11.2.2.2 StateFactories

A St at eFact or y transforms a Java object into an object that can be stored in the
implementing JNDI provider. The OJDS converts all the objects to bind to a serialized
object. OJDS follows the specifications of the j ava. i 0. Seri al i zabl e interface and
the Java Object Serialization Specification for this conversion. Once serialized, the
object is stored in the OJDS persistent store. No external St at eFact or i es are
supported for OJDS.

11.2.2.3 ObjectFactories

An Qbj ect Fact or y takes objects stored in the implementing JNDI provider and
converts them to back into Java objects.The OJDS does not support external

Qbj ect Fact ori es. The serialized objects are created from their binary form that are
retrieved from the OJDS persistent store. After an object is deserialized, OJDS handles
the object in one of the following ways:

e If the object is a Cont ext , then the connect i on and the env fields are set and a
Di r Cont ext is returned.

¢ Ifthe objectis aj avax. nami ng. Ref er ence, then you can use the
Di rect or yManager . get Cbj ect | nst ance method to create the object.

e If the object is neither a Cont ext nor aj avax. nam ng. Ref er ence, then the
object is returned as it is to the user.

The retrieved bytes specifying an object must conform to the

java.io. Serializabl e interface standards. If the class implementing the object
changes on the client, then the deserialization of the object can fail. So, you must be
careful to maintain compatibility between the object bytes and the class or object
stream deserializing the object bytes.

11.2.2.4 OJDS URL Support
The OJDS supports a URL specified in the following format:

oj ds://jdbc_connection_url/path..lobject

11-4 Oracle Database Java Developer's Guide

Requirements for Oracle JVM Support for JNDI

In the preceding syntax:

¢ jdbc_connection_url isone of the supported JDBC connection URLs. You
must specify the j dbc_connecti on_ur| in the URL to connect to the directory.

Note:

The OJDS provider supports both the thin and OCI URLs for a JDK-based
external client. For example, you can use the following URLs for thin driver
and OCI driver respectively:

thin:local host: 5521: nysi d
ocCi: 22.133.242:5521: nysi d

However, OJDS URL support in the server is only for thin connection type.
You must set a value for Cont ext . SECURI TY_PRI NCI PAL and
Cont ext . SECURI TY_CREDENTI ALS to complete the URL connection.

e pat h is a slash!!-separated list similar to a Unix type file system. This represents
nodes in the Directory tree.

* obj ect is the actual terminal object name in the context. If the object is omitted,
then the path terminates in a slash (/). In such a case, a Di r Cont ext is returned
representing this path as the root.

Example

The following code snippet shows how to look up for the object nyobj of type MyQhj
in the directory / one/ t wo using the OCI driver connected as user HR:

i mport javax. naming.*;

Hasht abl e env = new Hasht abl e();

env. put (“j ava. nam ng. security.principal",“HR");

@env. put (“j ava. nam ng. security.credential s", "<password>");
M/Cbj obj = (M/Qoj)(new InitialDirContext(env)).lookup(ojds://
oci : host 1: 5521: nysi d/ one/ t wo/ nyobj ") ;

11.2.2.5 Client classpath

You must add the $ORACLE_HOVE/ j dbc/ | i b/ 0j dbc6. j ar and $SORACLE_HOVE/
javavm | i b/ auror a. zi p jar files to the classpath for a JDK client to use the OJDS.

11.2.3 Namespace Browser

The namespace browser enables browsing permissions and properties of objects
stored in the OJDS. The existing o0j vnj ava utility is enhanced to support the
operations as described in the following table:

1 The slash symbol (\)

Native Oracle JVM Support for INDI 11-5

0OJDS Command-Line Tools

See Also:

"The ojvmjava Tool (page 12-22)" for more information about the oj vnj ava

utility

Command Name Description

I's Lists the contents of a context similar to Unix | s command.

rm Removes the context or an object.

nkdi r Creates a context in the OJDS.

chown Changes the owner of the given context, object, and so on.

chnod Changes rights on objects or contexts.

cd Changes the working context.

pwd Lists the current working context.

I'n Refers to the same object by using different names, similar to a
symbolic link in Unix.

mv Changes or rebinds old names of a context (or object), to a new
name.

bi nd Binds an object reference or naming context into the JNDI
namespace.

bi ndds Binds a Data Source object to a given context.

bi ndur | Binds a URL object to the given context.

11.3 OJDS Command-Line Tools

The enhanced 0j vnj ava commands enable you to manipulate and browse the OJDS.
This section describes the following commands:

¢ Is Command (page 11-7)

¢ cd Command (page 11-7)

¢ pwd Command (page 11-7)

e chown Command (page 11-8)
¢ mkdir Command (page 11-8)

e rm Command (page 11-9)

¢ In Command (page 11-9)

e mv Command (page 11-10)

¢ chmod Command (page 11-10)
¢ bind Command (page 11-11)

11-6 Oracle Database Java Developer's Guide

0OJDS Command-Line Tools

¢ bindds Command (page 11-12)

¢ bindurl Command (page 11-13)

11.3.1 Is Command

The | s command displays the contents of a context.

Syntax

I's [options] [contextl1l] [context2] [obj|context]...

Options

The following table describes the | s command options:

Option Description

Cont ext obj Specifies the name of the context or object to be listed

-1 Shows contents in long format including name, creation time,
owner, rights, and so on. Shows the class of an object.

dir Shows only contexts, similar to the Unix | s —d command

Idir Shows contents in long format like the —-| command, but ignores
bound objects, similar to Unix -1d

R Recursively lists though child contexts

Example
The following command displays contents of the root Context in short format:

$1s/
etc/ public/

The following command displays contents of the root Context in long format:

$1s -l

Read Wite Exec Oaner Dat e Ti me Type Narre

PUBLI C SYS PUBLI C SYS Dec 14 14: 59 Cont ext etc

PUBLI C PUBLIC PUBLIC SYS Dec 14 14:59 Cont ext public
11.3.2 cd Command

The cd command changes the working context. This command is similar to the Unix
cd command to change directories.

Example
The following command changes the context to root Context

$cd/

11.3.3 pwd Command

The pwd command lists the current working context.

Native Oracle JVM Support for INDI 11-7

0OJDS Command-Line Tools

Example

If the current context is / t est / al pha, then the output of the pwd command is the
following:

$ pwd
/test/al pha/

11.3.4 chown Command

The chown command changes the ownership of the context or the object.

Note:

You can change ownership of a context or an object only if you are the SYS
user.

Syntax

chown [options] {user | role} <object nane>

Options

The following table describes the chown command options:

Option Description

User role Specifies the name of the user or role to become the owner
<obj ect nane> Specifies the name of the context or object to be changed
-R Recursively changes ownership of the following;:

e Context
e All the subcontexts in the context

e All the objects that are contained in the context and
subcontexts

Example

The following command makes HR the owner of the / al pha/ bet a/ gamma command:

$ chown HR /al pha/ bet a/ ganma

11.3.5 mkdir Command

The nkdi r command creates a context with the given name.

Note:

You must have the Write permission for the target context to create the new
context.

Options

The following table describes the mkdi r command options:

11-8 Oracle Database Java Developer's Guide

0OJDS Command-Line Tools

Option Description
<name> Specifies the name of the context to be created
-path | -p Creates intermediate contexts if they do not exist
Example

The following command creates a Context called / t est / al pha, where the/ t est
context exists already:

mkdir /test/al pha

The following command creates a Context called / t est / al pha/ bet a/ gamma, where
the/ t est/ al pha/ bet a context does not exist:

$ nkdir -path /test/al pha/ beta/ gamma

11.3.6 rm Command

The r mcommand is analogous to the r MUNIX shell command. This command
removes an object or a context, including its contents.

Note:

To remove an object, you must have the Write right for the context that
contains the object.

Options

The following table describes the r mcommand options:

Option Description
<(bj ect > Specifies the name of the context or the object to be removed
-recurse | -r Assumes a context and removes the context and its contents
recursively
Examples

The following command removes the object / t est / bank:

rm/test/bank

The following command removes the context/ t est / r el ease3 and its contents:

rm-r /test/rel ease3

11.3.7 In Command

The | n command is analogous to the UNIX | n command. A link is a synonym for a
context or an object. When you move a context or an object, the reference to the context
or object may become invalid. The | n command creates a link with the old name and
makes the object accessible by both the old and the new name.

Native Oracle JVM Support for INDI 11-9

0OJDS Command-Line Tools

Syntax

In [-synmbolic | -s] <object> <link>

Options

The following table describes the | n command options:

Option Description
-S Create a soft link of <obj ect > to <l i nk>
<obj ect > Specifies the name of a context or an object
<l'i nk> Specifies the name of the synonym to which you link a context
or an object
Example

The following command preserves access to the ol d object even after the name of the
object is changed to new:

$ mv old new
$ In newold
11.3.8 mv Command

The mv command changes the name (or rebinds old names) of a context or an object to
a new name.

Syntax

mv <ol d> <new>

Example
The following command changes the name of the context/t est/f oo to/test/ bar:

$ nv /test/foo /test/bar

11.3.9 chmod Command

The chmod command is analogous to the chmod UNIX shell command. This command
changes the rights of a user or a role on a context or an object.

Note:

You can change the rights on an object only if you are the SYS user or the
owner of the object.

See Also:

"Object permissions (page 11-2)" for more information about object
permissions

11-10 Oracle Database Java Developer's Guide

0OJDS Command-Line Tools

Syntax

chnod [options] {+]|-} {r|wx} {<user> | <role> ...}
<obj ect nane>

Options

The following table describes the chnmod command options:

Option Description
+/ -1 WX Add (+) or remove (-) read, write, or execute
<user> | <rol e> The user or role whose rights are added or removed
<obj ect nane> The context or object for which rights are changed
-R Changes rights recursively

Example

The following example changes rights for the / al pha/ bet a/ gamma context to HR
and NANCY:

$ chmod +x HR NANCY / al pha/ bet a/ gamma

Note:

The schemas are separated by only a comma.

The following example removes the Write rights of HR for the / al pha/ bet a/ gamm
context:

$ chrmod -w HR / al phal bet a/ gamma

11.3.10 bind Command

The bi nd command binds an object reference or context into the JNDI namespace.

Syntax

bi nd <obj ectnane> [options] [-context] [-rebind] {-class | -c
<cl assname>} [-factory | -f <factory>] [-location | -1 <URL>][-
string <type_nane>

<string_value> [-string <type_name> <string_value> ...]] [-

bi nary <type_nane> <string_val ue> [-binary <type_nane>
<string_value> ...]]

Options

The following table describes the bi nd command options:

Option Description

<obj ect nanme> Name object is to be bound to

Native Oracle JVM Support for INDI 11-11

0OJDS Command-Line Tools

Option Description
- cont ext The object to be bound is a Context or InitialContext
- rebind If the JNDI name already exists, replaces the object that it is bound

to with this object

-class Specifies the class name for the bound object
<cl assnane>

-factory Specifies the factory class name for creating the object. JNDI uses

<factory> this for creating the object.

-l ocation <URL> Specifies the factory location if the default location is not used. This
takes a JNDI URL.

-string Specifies a String reference attribute for the object by the type name

<t ype_nane> and value.

<string_val ue>

- bi nary Specifies a Binary reference attribute for the object by the type and a
<t ype_nane> binary value. The given Hexidecimal string value is converted into
<string_val ue> binary.

Example

The following binds an object reference into the name space. A string and binary
attribute is supplied to the reference.

bind /tnp/nyprinter -class gen.Inkjet -factory gen.InkjetFactory -string
PRI NTERNAME c02 -binary DPI 0X12C

11.3.11 bindds Command

This command binds a Dat aSour ce object in the JNDI namespace. This command
binds general, XA, or pooled data sources depending on specified options.

Note:

Oracle JVM supports only kprb drivers and thin drivers.

Syntax

bi ndds <obj ect _name> [options] [-help | -h] [-describe | -d] [-
version | -v] [-dstype <datasource>]

[-host <hostnane> -port <portnunt -sid <SID> -driver
<driver_type>] [-url <db_url>]

[-g | -grant {<user> | <role>} [,{<user>| <role>}]...] [-
recursive@ant | -rg {<user> | <rol e>}

[,{<user> | <role>}]...] [-rebind] [-user | -u <user>]
Options

The following table describes the bi ndds command options:

11-12 Oracle Database Java Developer's Guide

0OJDS Command-Line Tools

Option

Description

<obj ect nane>

-hel p
-descri be
-version

-dstype <type>

-host <host nanme>
-port <portnunk -
sid <SID> -driver
<drv_type>

-url <db_url>

-grant <user|

rol e>, <user|
rol e>...

-recursi veG ant
<user|rol e>,
<user|role>..

-rebind

-user <user>

Specifies the name to which the object is to be bound
Specifies the help message

Summarizes the tools operation

Specifies the version number

Specifies the data source type from one of the following types:

e None for Or acl eDat aDour ce
e xafor O acl eXADat asour ce
e pool for Oracl eConnecti onPool Dat aSour ce

Specify the location of the database and driver type for the
connection to the database. You can alternatively specify this
information in a URL format within the - ur | option. The default
value for the - si d option is ORCL. The - dri ver option can have
the following values: t hi n, oci, or kprb.

This JDBC URL specifies the location of the database.

Grants Read and Execute rights to the sequence of <user > and

<r ol e> names. When rebinding, replace the existing users or roles
that have read or execute rights with the <user > and <r ol e>
names.

Recursively grants Read and Execute permission to the designated
object and all the contexts in which the object exists. If the context
has a permission level of SYS, the grant for that context is ignored.

If the Dat aSour ce object already exists, then you must specify this
option to overwrite the existing data source with this new object.
Otherwise, no bind occurs for this option.

Specifies the user name for connecting to the database. Stores the
user name within the Dat aSour ce object. If you do not supply a
user name within the JNDI Context while creating the database
connection, then this user name is used.

Example

The following example binds the ds1 data source into the namespace:

bindds /test/dsl -host |ocal host -port 1522 -sid orcl -driver thin

bindds /test/dsl -url jdbc:oracle:thin: @ocal host: 1522: orcl

The example uses the JDBC thin driver with a general data source, that is,
Or acl eDat aSour ce.

11.3.12 bindurl Command

The bi ndur| command binds a URL object in the namespace.

Options

The following table describes the bi ndur | command options:

Native Oracle JVM Support for INDI 11-13

OJDS APIs and Classes

Option

Description

<obj ect nane>
-hel p
-descri be
-version

-rebind

-grant <user|
rol e>, <user|
role>...

-recursiveG ant
<user|rol e>,
<user|role>. ..

Specifies the name of the object to be bound
Specifies the help message

Summarizes the tools operations

Prints the version of the bi ndur| command

If the JNDI name already exists, then you must specify this option to
overwrite the existing JNDI name with this new object. Otherwise, no
bind occurs for this option.

Grants Read and Execute rights to the sequence of <user > and

<r ol e> names. When rebinding, you can replace the existing users
or roles that have read or execute rights with the <user > and

<r ol e>names.

Recursively grants Read and Execute permission to the designated
object and to all contexts within which the object exists. If the context
has a permission level of SYS, then the grant for that context is
ignored.

Example

The following example binds the URL string ht t p: / / www. or acl e. comto a URL
reference / t est / myURL within the namespace:

bi ndurl /test/nyURL http://www. oracl e.com -rebind

The - r ebi nd option is used to make sure that if the / t est / my URL reference
previously exists, then it is rebound with the string ht t p: / / www. or acl e. com

11.4 OJDS APIs and Classes

This section describes the following OJDS APIs and classes:

® oracle.aurora.jndi.ojds.OjdsClientContext (page 11-14)

e oracle.aurora.jndi.ojds.OjdsServerContext (page 11-15)

¢ oracle.aurora.jndi.ojds.OjdsInitial ContextFactory (page 11-15)

e oracle.aurora.jndi.ojds.OjdsURLContextFactory (page 11-16)

® oracle.aurora.jndi.ojds.OjdsURLContext (page 11-16)

11.4.1 oracle.aurora.jndi.ojds.OjdsClientContext

This class implements the j avax. nami ng. di rect ory. Di r Cont ext interface. It
establishes connection with the database and performs all functions required to
support the OJDS. It supports all the methods described in [Di r Cont ext] except the

following methods:

e get Schema

e get Schemad assDefintion

11-14 Oracle Database Java Developer's Guide

http://www.oracle.com
http://www.oracle.com

OJDS APIs and Classes

e nodifyAttributes

e search

This class is created automatically when an I ni ti al Di r Cont ext is created on a
JAVA JDK based client. It provides the communication and object transport between
the client application and the OJDS.

You must set the following JNDI properties to specific values to complete a
connection:

e java.nanmng.factory.initial to
oracl e.aurora.jndi.ojds. gdslntial ContextFactory

e java.nami ng.security.principal tothename of the connection schema
e java.nami ng.security.credential s to the schema password

e java. nam ng. provi der. url toa valid OJDS URL
You can set these properties as shown in the following code snippet:

Hasht abl e env = new Hashtabl e();

env. put ("j ava. naming. factory.initial",

"oracle. aurora.jndi.ojds.Qdslnitial ContextFactory");

env. put (Cont ext . SECURI TY_PRINCI PAL, "HR');

env. put (Cont ext . SECURI TY_CREDENTI ALS, "<password>");

env. put (Cont ext . PROVI DER_URL, "oj ds: //t hi n: | ocal host: 5521: 3");

11.4.2 oracle.aurora.jndi.ojds.OjdsServerContext

This class implements the j avax. nam ng. di rect ory. Di r Cont ext interface. It
uses the internal database connection to communicate with the OJDS persistent store.
It supports all the methods described in [Di r Cont ext] except for the following
methods:

e get Schema
e get Schemad assDefintion
e nodifyAttributes

e search

This class is created automatically when an I ni ti al Di r Cont ext is created in a
database resident application. It uses the database internal JDBC driver to
communicate with the OJDS persistent store.

The four environment properties for the § dsd i ent Cont ext are ignored for

G dsSer ver Cont ext because the application runs as the | 0ogi n schema. The
connection is made with the kprb [JDBC] internal driver. If the Java stored procedure
requires access outside the server, then you must use the OJDS URLCont ext
described in "oracle.aurora.jndi.ojds.OjdsInitial ContextFactory (page 11-15)" as the
value of the j ava. nanmi ng. provi der. url property.

11.4.3 oracle.aurora.jndi.ojds.OjdsInitialContextFactory

This class implements the j avax. nami ng. spi . I ni ti al Cont ext Factory
interface. The JNDI | ni ti al Cont ext orlniti al Dri Cont ext classes create either
an § dsd i ent Cont ext or an g dsSer ver Cont ext depending on the execution
environment.

Native Oracle JVM Support for INDI 11-15

OJDS APIs and Classes

11.4.4 oracle.aurora.jndi.ojds.OjdsURLContextFactory

This class supports OJDS style URLs. Depending on the method provided to the URL,
this method can return a Di r Cont ext or an instance of an object stored in the OJDS.

11.4.5 oracle.aurora.jndi.ojds.OjdsURLContext

This class is an extension of the

oracl e. aurora. jndi.ojds. G dsd i ent Cont ext. Itsupports extraction of
connection information from an OJDS URL and making a connection to the OJDS. It
supports the same interfaces as

oracl e. aurora.jndi.ojds. g dsC i ent Cont ext class.

You must set the following parameters to use the § dsURLCont ext class:
e javax.nam ng.security.principal tothe connection schema

e javax.nami ng.security.credential s to the password of the connection
schema

e javax.naming.factory.initial to
oracl e.aurora.jndi.ojds. gdslnitial ContextFactory

You can set these properties as shown in the following code snippet:

Hasht abl e env = new Hasht abl e();

env. put ("j ava. naming. factory.initial",

"oracle. aurora.jndi.ojds.Qdslnitial ContextFactory");

env. put (Cont ext . SECURI TY_PRINCI PAL, "HR');

env. put (Cont ext . SECURI TY_CREDENTI ALS, "<password>");

DirContext dir =

(new Initial Context(env)).lookup(“ojds://thin:local host:5521:j3/public./nydir");

11-16 Oracle Database Java Developer's Guide

12

Schema Objects and Oracle JVM Utilities

This chapter describes the schema objects that you use in Oracle Database Java
environment and Oracle JVM utilities. You run these utilities from a UNIX shell or
from the Microsoft Windows DOS prompt.

Note:

All names supplied to these tools are case-sensitive. As a result, the schema,
user name, and password should not be changed to uppercase.

This chapter contains the following sections:

¢ Overview of Schema Objects (page 12-1)

¢ What and When to Load (page 12-2)

¢ Resolution of Schema Objects (page 12-2)

¢ Compilation of Schema Objects (page 12-3)
¢ The ojvmtc Tool (page 12-4)

* Theloadjava Tool (page 12-6)

¢ The dropjava Tool (page 12-18)

* The ojvmjava Tool (page 12-22)

12.1 Overview of Schema Objects

Unlike conventional Java virtual machine (JVM), which compiles and loads Java files,
Oracle JVM compiles and loads schema objects. The following kinds of Java schema
objects are loaded:

* Java class schema objects, which correspond to Java class files.
* Java source schema objects, which correspond to Java source files.

® Java resource schema objects, which correspond to Java resource files.

To ensure that a class file can be run by Oracle JVM, you must use the | oadj ava tool
to create a Java class schema object from the class file or the source file and load it into
a schema. To make a resource file accessible to Oracle JVM, you must use the

| oadj ava tool to create and load a Java resource schema object from the resource file.

The dr opj ava tool deletes schema objects that correspond to Java files. You should
always use the dr opj ava tool to delete a Java schema object that was created with the
| oadj ava tool. Dropping schema objects using SQL data definition language (DDL)

Schema Objects and Oracle JVM Utilities 12-1

What and When to Load

commands will not update auxiliary data maintained by the | oadj ava tool and the
dr opj ava tool.

12.2 What and When to Load

You must load resource files using the | oadj ava tool. If you create . cl ass files
outside the database with a conventional compiler, then you must load them with the
| oadj ava tool. The alternative to loading class files is to load source files and let
Oracle Database compile and manage the resulting class schema objects. In Oracle
Database 12¢ Release 1 (12.1), the most productive approach is to compile and debug
most of your code outside the database, and then load the . cl ass files. For a
particular Java class, you can load either its . cl ass file or the corresponding . j ava
file, but not both.

The | oadj ava tool accepts Java Archive (JAR) files that contain either source and
resource files or class and resource files. When you pass a JAR or ZIP file to the
| oadj ava tool, by default, it opens the archive and loads its members individually.

Note:

When you load the contents of a JAR into the database, you have the option of
creating a database object representing the JAR itself. For more information,
refer to "Database Resident JARs (page 2-18)".

A file, whose content has not changed since the last time it was loaded, is not
reloaded. As a result, there is little performance penalty for loading JAR files. Loading
JAR files is a simple, fool-proof way to use the | oadj ava tool.

It is illegal for two schema objects in the same schema to define the same class. For
example, assume that a. j ava defines class x and you want to move the definition of
X tob.j ava.If a. j ava has already been loaded, then the | oadj ava tool will reject
an attempt to load b. j ava. Instead, do either of the following:

e Dropa.java,loadb. j ava, and then load the new a. j ava, which does not
define X.

e Load the new a. j ava, which does not define X, and then load b. j ava.

12.3 Resolution of Schema Objects

All Java classes contain references to other classes. A conventional JVM searches for
classes in the directories, ZIP files, and JAR files named in the CLASSPATH. In contrast,
Oracle JVM searches schemas for class schema objects. Each class in the database has a
resolver specification, which is Oracle Database counterpart to CLASSPATH. For
example, the resolver specification of a class, al pha, lists the schemas to search for
classes that al pha uses. Notice that resolver specifications are per-class, whereas in a
classic JVM, CLASSPATH s global to all classes.

In addition to a resolver specification, each class schema object has a list of interclass
reference bindings. Each reference list item contains a reference to another class and
one of the following:

e The name of the class schema object to call when the class uses the reference

* A code indicating whether the reference is unsatisfied, that is, whether the
referent schema object is known

12-2 Oracle Database Java Developer's Guide

Compilation of Schema Objects

Oracle Database facility known as resolver maintains reference lists. For each
interclass reference in a class, the resolver searches the schemas specified by the
resolver specification of the class for a valid class schema object that satisfies the
reference. If all references are resolved, then the resolver marks the class valid. A class
that has never been resolved, or has been resolved unsuccessfully, is marked invalid.
A class that depends on a schema object that becomes invalid is also marked invalid at
the time the first class is marked invalid. In other words, invalidation cascades
upward from a class to the classes that use it and the classes that use these classes, and
so on. When resolving a class that depends on an invalid class, the resolver first tries
to resolve the referenced class, because it may be marked invalid only because it has
never been resolved. The resolver does not resolve classes that are marked valid.

A developer can direct the | oadj ava tool to resolve classes or can defer resolution
until run time. The resolver runs automatically when a class tries to load a class that is
marked invalid. It is best to resolve before run time to learn of missing classes early.
Unsuccessful resolution at run time produces a O assNot Found exception.
Furthermore, run-time resolution can fail for the following reasons:

¢ Lack of database resources, if the tree of classes is very large

® Deadlocks due to circular dependencies

The | oadj ava tool has two resolution modes:

e Load-and-resolve

The - r esol ve option loads all classes you specify on the command line, marks
them invalid, and then resolves them. Use this mode when initially loading
classes that refer to each other, and, in general, when reloading isolated classes as
well. By loading all classes and then resolving them, this mode avoids the error
message that occurs if a class refers to a class that will be loaded later while the
command is being carried out.

e Load-then-resolve

This mode resolves each class at run time. The - r esol ve option is not specified.

Note:

As with a Java compiler, the | oadj ava tool resolves references to classes but
not to resources. Ensure that you correctly load the resource files that your
classes need.

If you can, defer resolution until all classes have been loaded. This avoids a situation
in which the resolver marks a class invalid because a class it uses has not yet been
loaded.

12.4 Compilation of Schema Objects

Loading a source file creates or updates a Java source schema object and invalidates
the class schema objects previously derived from the source. If the class schema objects
do not exist, then the | oadj ava tool creates them. The | oadj ava tool invalidates the
old class schema objects because they were not compiled from the newly loaded
source. Compilation of a newly loaded source, for example, class A, is automatically
triggered by any of the following conditions:

Schema Objects and Oracle JVM Utilities 12-3

The ojvmtc Tool

* The resolver, while working on class B, finds that class B refers to class A, but class
Ais invalid.

* The compiler, while compiling the source of class B, finds that class B refers to
class A but class Ais invalid.

¢ The class loader, while trying to load class A for running it, finds that class Ais
invalid.

To force compilation when you load a source file, use the | oadj ava -resol ve
option.

The compiler writes error messages to the predefined USER_ERRORS view. The
| oadj ava tool retrieves and displays the messages produced by its compiler
invocations.

The compiler recognizes some options. There are two ways to specify options to the
compiler. If you run the | oadj ava tool with the - r esol ve option, then you can
specify compiler options on the command line. You can additionally specify persistent
compiler options in a per-schema database table, JAVASOPTI ONS. You can use the
JAVASCOPTI ONS table for default compiler options, which you can override selectively
using a | oadj ava tool option.

Note:

A command-line option overrides and clears the matching entry in the JAVA
$OPTI ONS table.

A JAVASOPTI ONS row contains the names of source schema objects to which an
option setting applies. You can use multiple rows to set the options differently for
different source schema objects. The compiler looks up options in JAVASOPTI ONS
when it has been called by the class loader or when called from the command line
without specifying any options. When compiling a source schema object for which
there is neither a JAVASOPTI ONS entry nor a command-line value for an option, the
compiler assumes a default value, as follows:

e encoding = System getProperty("file.encoding");

e online = true

This applies only to Java sources that contain SQL]J constructs.

e debug = true

This option is equivalent to j avac -g.

12.5 The ojvmtc Tool

This section describes the following topics:
* About the ojvmtc Tool (page 12-4)
e Arguments of ojvmtc Command (page 12-5)

12.5.1 About the ojvmtc Tool

The 0j vnt ¢ tool enables you to resolve all external references, prior to running the
| oadj ava tool. The oj vt ¢ tool allows the specification of a classpath that specifies

12-4 Oracle Database Java Developer's Guide

The ojvmtc Tool

the JARSs, classes, or directories to be used to resolve class references. When an external
reference cannot be resolved, this tool either produces a list of unresolved references
or generated stub classes to allow resolution of the references, depending on the
options specified. Generated stub classes throw a

java. |l ang. C assNot f oundExcept i on if it is referenced at runtime.

The syntax is:

ojvmtc [-help] [-bootclasspath] [-server connect_string] [-jar jar_nanme] [-list] -
classpath jarl:path2:jar2
jars,...,classes

For example:

ojvmtc -bootclasspath $JAVA HOVE/ jre/lib/rt.jar -classpath classdir/
libl.jar:classdir/lib2.jar -jar set.jar app.jar

The preceding example usesrt . jar,classdir/libl.jar,andcl assdir/
i b2.jar toresolve references in app. j ar. All the classes examined are added to
set.jar, except for those foundinrt.j ar.

Another example is:

ojvntc -server thin:HR @ocal host:5521:0orcl -classpath jarl:jar2 -list app2.jar
Passwor d: passwor d

The preceding example uses classes found in the server specified by the connection

string as well asj ar 1 and j ar 2 to resolve app2. j ar. Any missing references are
displayed to st dout .

12.5.2 Arguments of ojymtc Command

Table 12-1 (page 12-5) summarizes the arguments of this command.

Table 12-1 ojvmtc Argument Summary

Argument Description
-classpath Uses the specified JARs and classes for the closure set.
-boot cl asspat h Uses the specified classes for closure, but does not include them

in the closure set.

-server Connects to the server using visible classes in the same manner
connect _string as - boot cl asspat h.

connect_string thin| Connects to the server using thin or Oracle Call Interface (OCI)
00 specific driver.

If you use thin driver, the syntax is as follows:

t hin: user/passwd@ost: port:sid

If you use OCI driver, the syntax is as follows:

oci : user/ passwd@ost : port:sid
oci : user/ passwd@ nsname
oci : user/passwd@connect descriptor)

-jar jar_nane Writes each class of the closure set to a JAR and generates stubs
for missing classes

Schema Objects and Oracle JVM Utilities 12-5

The loadjava Tool

Table 12-1 (Cont.) ojvmtc Argument Summary
__|

Argument Description

-1ist Lists the missing classes.

12.6 The loadjava Tool

The | oadj ava tool creates schema objects from files and loads them into a schema.
Schema objects can be created from Java source, class, and data files. The | oadj ava
tool can also create schema objects from SQLJ files.

You must have the following SQL database privileges to load classes:
¢ CREATE PROCEDURE and CREATE TABLE privileges to load into your schema.

e CREATE ANY PROCEDURE and CREATE ANY TABLE privileges to load into
another schema.

e oracle.aurora.security.JServerPerm ssion. | oadLi braryl nd ass.
cl assnane.

You can run the | oadj ava tool either from the command line or by using the
| oadj ava method contained in the DBMS_JAVA class. To run the tool from within
your Java application, do the following;:

call dbns_java.loadjava('... options...");

The options are the same as those that can be specified on the command line with the

| oadj ava tool. Separate each option with a space. Do not separate the options with a
comma. The only exception for this is the - r esol ver option, which contains spaces.

For - r esol ver, specify all other options in the first input parameter and the -

resol ver options in the second parameter, as follows:

call dbns_java.loadjava('..options..."', 'resolver_options');

Do not specify the -t hi n, - oci , - user, and - passwor d options, because they relate
to the database connection for the | oadj ava command-line tool. The output is
directed to st derr. Set ser ver out put on, and call dbns_j ava. set _out put, as
appropriate.

Note:
The | oadj ava tool is located in the bi n directory under $ORACLE_HOME.

Just before the | oadj ava tool exits, it checks whether the processing was successful.
All failures are summarized preceded by the following header:

The fol | owing operations failed

Some conditions, such as losing the connection to the database, cause the | oadj ava
tool to terminate prematurely. These errors are displayed with the following syntax:

exiting: error_reason

This section covers the following:

12-6 Oracle Database Java Developer's Guide

The loadjava Tool

* loadjava Tool Syntax (page 12-7)
¢ loadjava Tool Argument Summary (page 12-8)

* loadjava Tool Argument Details (page 12-13)

12.6.1 loadjava Tool Syntax

The syntax of the | oadj ava tool command is as follows:

Note:

e The(* -) option is the preferred option over the - genm ssi ng and -
genmi ssi ngj ar options for resolving class references.

® The the - genni ssi ng and - genmni ssi ngj ar options cannot be used in
an option file or an option table. These options are applicable to all the
classes to be loaded and cannot be used only for specific classes.

| oadj ava {-user | -u} user [@latabase] [options]

file.java | file.class | file.jar | file.zip |

file.sqglj | resourcefile | URL...
[-casesensitivepub]

[-cleargrants]

[- debug]

[-d | -definer]

[-dirprefix prefix]

[-e | -encoding encodi ng_schene]

[-fileout file]

[-f | -force]

[- genni ssi ng]

[-gennissingjar jar_file]

[-g | -grant user [, user]...]

[-help]

[-jarasresource]

[-noaction]

[-nosynonyni

[- nousage]

[-noverify]

[-0] -oci | oci8]

[-optionfile file]

[-optiontable table_nane]

[-publish package]

[- pubmai n number]

[-recursivejars]

[-r | -resolve]

[-R] -resolver "resol ver_spec"]

[-resol veonly]

[-S| -schema schems]

[-stdout]

[-stoponerror]

[-s | -synonynj

[-tabl eschema schems]

[-t | -thin]

[- unresol vedok]

[-v | -verbose]
[-] arsasdbobj ect s]

Schema Objects and Oracle JVM Utilities 12-7

The loadjava Tool

[- prependj ar nanmes]
[-nativeconpil e]

12.6.2 loadjava Tool Argument Summary

Table 12-2 (page 12-8) summarizes the | oadj ava tool command arguments. If you
run the | oadj ava tool multiple times specifying the same files and different options,
then the options specified in the most recent invocation hold. However, there are two
exceptions to this, as follows:

e Ifthel oadj ava tool does not load a file because it matches a digest table entry,
then most options on the command line have no effect on the schema object. The
exceptions are - gr ant and - r esol ve, which always take effect. You must use
the - f or ce option to direct the | oadj ava tool to skip the digest table lookup.

¢ The-grant option is cumulative. Every user specified in every invocation of the
| oadj ava tool for a given class in a given schema has the EXECUTE privilege.

Table 12-2 loadjava Argument Summary
- __

Argument

Description

fil enames

- proxy host: port

-casesensitivepub

-cleargrants

- debug

You can specify any number and combination
of.java,.class,.sqlj,.ser,.jar,.zip,and resource file
name arguments.

If you do not have physical access to the server host or the

| oadj ava client for loading classes, resources, and Java source,
then you can use an HTTP URL with the | oadj ava tool to specify
the JAR, class file, or resource and load the class from a remote
server. host is the host name or address and por t is the port the
proxy server is using. The URL implementation must be such that
the | oadj ava tool can determine the type of file to load, that is,
JAR, class, resource, or Java source. For example:

| oadjava —u HR -r —v —proxy proxy_server: 1020 http://
my.server.con this/is /the/path/ny.jar
Password: password

When the URL support is used inside the server, you should have
proper Java permissions to access to the remote source. The URL
support also includes f t p: and fi | e: URLs.

Publishing will create case-sensitive names. Unless the names are
already all uppercase, it will usually require quoting the names in
PL/SQL.

The - gr ant option causes the | oadj ava tool to grant EXECUTE
privileges to classes, sources, and resources. However, it does not
cause it to revoke any privileges. If - cl ear gr ant s is specified,
then the | oadj ava tool will revoke any existing grants of execute
privilege before it grants execute privilege to the users and roles
specified by the - gr ant operand. For example, if the intent is to
have execute privilege granted to only HR, then the proper options
are:

-grant HR -cleargrants

Turns on SQL logging.

12-8 Oracle Database Java Developer's Guide

The loadjava Tool

Table 12-2 (Cont.) loadjava Argument Summary
__|

Argument Description

-definer By default, class schema objects run with the privileges of their
invoker. This option confers definer privileges upon classes
instead. This option is conceptually similar to the UNIX set ui d
facility.

-dirprefix prefix Forany files or JAR entries that start with pr ef i x, this pr ef i x
will be deleted from the name before the name of the schema object
is determined. For classes and sources, the name of the schema
object is determined by their contents. Therefore, this option will
only have an effect for resources.

-encodi ng Identifies the source file encoding for the compiler, overriding the
matching value, if any, in the JAVASOPTI ONS table. Values are the
same as for thej avac - encodi ng option. If you do not specify
an encoding on the command line or in the JAVASOPTI ONS table,
then the encoding is assumed to be the value returned by:

System get Property("file.encoding");

This option is relevant only when loading a source file.

-fileout file Displays all message to the designated file.
-force Forces files to be loaded, even if they match digest table entries.
-genmi ssi ng Determines what classes and methods are referred to by the classes

that the | oadj ava tool is asked to process. Any classes not found
in the database or file arguments are called missing classes. This
option generates dummy definitions for missing classes containing
all the referred methods. It then loads the generated classes into the
database. This processing happens before the class resolution.

Because detecting references from source is more difficult than
detecting references from class files, and because source is not
generally used for distributing libraries, the | oadj ava tool will
not attempt to do this processing for source files.

The schema in which the missing classes are loaded will be the one
specified by the - user option, even when referring classes are
created in some other schema. The created classes will be flagged
so that tools can recognize them. In particular, this is needed, so
that the verifier can recognize the generated classes.

- genm ssi ngj ar This option performs the same actions as - genmi ssi ng. In

jar_file addition, it creates a JAR file, j ar _fi | e, that contains the
definitions of any generated classes.

Schema Objects and Oracle JVM Utilities 12-9

The loadjava Too

Table 12-2 (Cont.) loadjava Argument Summary

Argument

Description

- grant

-help

-jarasresource

-noaction

- nor ecursi vej ars

-nosynonym

- nousage

-noverify

-oci | -oci8

-optionfile file

-optiontabl e
t abl enane

Grants the EXECUTE privilege on loaded classes to the listed users.
Any number and combination of user names can be specified,
separated by commas, but not spaces.

Granting the EXECUTE privilege on an object in another schema
requires that the original CREATE PROCEDURE privilege was
granted with the W TH GRANT options.

Note:

e -grant isacumulative option. Users are added to the list of
those with the EXECUTE privilege. To remove privileges, use
the - cl ear gr ant s option.

¢ The schema name should be used in uppercase.

Displays usage message on how to use the | oadj ava tool and its
options.

Instead of unpacking the JAR file and loading each class within it,
loads the whole JAR file into the schema as a resource.!

Take no action on the files. Actions include creating the schema
objects, granting execute permissions, and so on. The typical use is
within an option file to suppress creation of specific classes in a
JAR. When used on the command line, unless overridden in the
option file, it will cause the | oadj ava tool to ignore all files.
Except that JAR files will still be examined to determine if they
contain a META- | NF/ | oadj ava- opti ons entry. If so, then the
option file is processed. The - act i on option in the option file will
override the - noact i on option specified on the command line.

Treat JAR files contained in other JAR files as resources. This is the
default behavior. This option is used to override the -
recursi vej ar s option.

Do not create a public synonym for the classes. This is the default
behavior. This overrides the - synonymoption.

Suppresses the usage message that is given if either no option is
specified or if the - hel p option is specified.

Causes the classes to be loaded without bytecode verification.
oracl e.aurora. security.JServerPerm ssion(Verifier
) nust be granted to use this option. To be effective, this
option must be used in conjunction with - r esol ve.

Directs the | oadj ava tool to communicate with the database using
the JDBC Oracle Call Interface (OCI) driver. - oci and -t hi n are
mutually exclusive. If neither is specified, then - oci is used by
default. Choosing - oci implies the syntax of the - user value. You
do not need to provide the URL.

A file can be provided with | oadj ava options.

This option works like - opt i onf i | e, except that the source for
the patterns and options is a SQL table rather than a file.

12-10 Oracle Database Java Developer's Guide

The loadjava Tool

Table 12-2 (Cont.) loadjava Argument Summary
__|

Argument Description

- publ i sh package The package is created or replaced by the | oadj ava tool.
Wrappers for the eligible methods will be defined in this package.
Through the use of option files, a single invocation of the
| oadj ava tool can be instructed to create more than one package.
Each package will undergo the same name transformations as the
methods.

- pubmai n number A special case applied to methods with a single argument, which is
of type j ava. | ang. Stri ng[] . Multiple variants of the SQL
procedure or function will be created, each of which takes a
different number of arguments of type VARCHAR. In particular,
variants are created taking all arguments up to and including
nunber . The default value is 3. This option applies to nai n, as
well as any method that has exactly one argument of type
java.lang. String[].

-recursivejars Usually, if the | oadj ava tool encounters an entry in a JAR with
a.] ar extension, it will load the entry as a resource. If this option
is specified, then the | oadj ava tool will process contained JAR
files as if they were top-level JAR files. That is, it will read their
entries and load classes, sources, and resources.

-resol ve Compiles, if necessary, and resolves external references in classes
after all classes on the command line have been loaded. If you do
not specify the - r esol ve option, the | oadj ava tool loads files,
but does not compile or resolve them.

-resol ver Specifies an explicit resolver specification, which is bound to the
newly loaded classes. If - r esol ver is not specified, then the
default resolver specification, which includes current user's schema
and PUBLI C, is used.

-resol veonly Causes the | oadj ava tool to skip the initial creation step. It will
still perform grants, resolves, create synonyms, and so on.

-schema Designates the schema where schema objects are created. If not
specified, then the - user schema is used. To create a schema object
in a schema that is not your own, you must have the following
privileges:

e CREATE TABLE or CREATE ANY TABLE

e CREATE | NDEX or CREATE ANY | NDEX

e SELECT ANY TABLE

e UPDATE ANY TABLE

e | NSERT ANY TABLE

e DELETE ANY TABLE

e CREATE PROCEDURE or CREATE ANY PROCEDURE
e ALTER ANY PROCEDURE

Finally, you must have the JSer ver Per i ssi on

| oadLi braryl nC ass for the class.

Note: The above-mentioned privileges allow the grantee to create
and manipulate tables in any schema except the SYS schema. For
security reasons, Oracle recommends that you use these settings
only with great caution.

Schema Objects and Oracle JVM Utilities 12-11

The loadjava Tool

Table 12-2 (Cont.) loadjava Argument Summary
__|

Argument Description

- st dout Causes the output to be directed to st dout , rather than to
stderr.

- st oponerror Usually, if an error occurs while the | oadj ava tool is processing

files, it will issue a message and continue to process other classes.
This option stops when an error occurs. In addition, it reports all
errors that apply to Java objects and are contained in the
USER_ERRCRtable of the schema in which classes are being
loaded. Except that is does not report ORA- 29524 errors. These are
errors that are generated when a class cannot be resolved, because
a referred class could not be resolved. Therefore, these errors are a
secondary effect of whatever caused a referred class to be
unresolved.

-synonym Creates a PUBLI Csynonym for loaded classes making them
accessible outside the schema into which they are loaded. To
specify this option, you must have the CREATE PUBLI C SYNONYM
privilege. If - synonymis specified for source files, then the classes
compiled from the source files are treated as if they had been
loaded with - synonym

-t abl eschena Creates the | oadj ava tool internal tables within the specified
schemn schema, rather than in the Java file destination schema.
-thin Directs the | oadj ava tool to communicate with the database using

the JDBC Thin driver. Choosing - t hi n implies the syntax of the -
user value. You do need to specify the appropriate URL through
the - user option.

- unr esol vedok When combined with - r esol ve, will ignore unresolved errors.

-user Specifies a user name, password, and database connection string.
The files will be loaded into this database instance.

-ver bose Directs the | oadj ava tool to display detailed status messages
while running. Use the - ver bose option to learn when the
| oadj ava tool does not load a file, because it matches a digest
table entry.

-j arsasdbobj ect s Indicates that JARs processed by the current | oadj ava tool
command are to be stored in the database as database resident
JARs.2

- pr ependj ar nanes Is used with the - j ar sasdbobj ect s option. This option enables
classes with the same names coming from different JARs to coexist
in the same schema. It does this by prefixing a version of the name
of the JAR to the class name to produce a unique name for the
database object.

1 If you load a JAR file in this manner, then you cannot use it for resolution or execution.
2 If you load a JAR file in this manner, then you can use it for resolution or execution.

12-12 Oracle Database Java Developer's Guide

The loadjava Tool

12.6.3 loadjava Tool Argument Details

This section describes the details of some of the | oadj ava tool arguments whose
behavior is more complex than the summary descriptions contained in Table 12-2
(page 12-8).

File Names

You can specify as many . cl ass, . j ava,.sqlj,.jar,. zi p, and resource files as
you want and in any order. If you specify a JAR or ZIP file, then the | oadj ava tool
processes the files in the JAR or ZIP. There is no JAR or ZIP schema object. If a JAR or
ZIP contains another JAR or ZIP, the | oadj ava tool does not process them.

The best way to load files is to put them in a JAR or ZIP and then load the archive.
Loading archives avoids the resource schema object naming complications. If you
have a JAR or ZIP that works with the Java Development Kit (JDK), then you can be
sure that loading it with the | oadj ava tool will also work, without having to learn
anything about resource schema object naming.

Schema object names are different from file names, and the | oadj ava tool names
different types of schema objects differently. Because class files are self-identifying, the
mapping of class file names to schema object names done by the | oadj ava tool is
invisible to developers. Source file name mapping is also invisible to developers. The

| oadj ava tool gives the schema object the fully qualified name of the first class
defined in the file. JAR and ZIP files also contain the names of their files.

However, resource files are not self identifying. The | oadj ava tool generates Java
resource schema object names from the literal names you supply as arguments.
Because classes use resource schema objects and the correct specification of resources
is not always intuitive, it is important that you specify resource file names correctly on
the command line.

The perfect way to load individual resource files correctly is to run the | oadj ava tool
from the top of the package tree and specify resource file names relative to that
directory.

Note:

The top of the package tree is the directory you would name in a CLASSPATH.

If you do not want to follow this rule, then observe the details of resource file naming
that follow. When you load a resource file, the | oadj ava tool generates the resource
schema object name from the resource file name, as literally specified on the command
line. For example, if you type:

% cd /home/ HR/ j avast uf f
% | oadj ava options al pha/ betal x. properties
% | oadj ava options /home/ HR j avast uf f/ al pha/ bet a/ x. properties

Although you have specified the same file with a relative and an absolute path name,
the | oadj ava tool creates two schema objects, al pha/ bet a/ x. properti es and
ROOT/ hone/ HR/ j avast uf f/ al pha/ bet a/ x. properti es. The name of the
resource schema object is generated from the file name as entered.

Classes can refer to resource files relatively or absolutely. To ensure that the
| oadj ava tool and the class loader use the same name for a schema object, enter the

Schema Objects and Oracle JVM Utilities 12-13

The loadjava Tool

name on the command line, which the class passes to get Resour ce() or
get Resour ceAsString().

Instead of remembering whether classes use relative or absolute resource names and
changing directories so that you can enter the correct name on the command line, you
can load resource files in a JAR, as follows:

% cd /home/ HR/ j avast uf f
%jar -cf al pharesources.jar al pha/*.properties
% | oadj ava options al pharesources.jar

To simplify the process further, place both the class and resource files in a JAR, which
makes the following invocations equivalent:

% | oadj ava options al pha.jar
% | oadj ava options /hone/ HR/ j avast uf f/ al pha. j ar

The preceding | oadj ava tool commands imply that you can use any path name to
load the contents of a JAR file. Even if you run the redundant commands, the

| oadj ava tool would realize from the digest table that it need not load the files twice.
This implies that reloading JAR files is not as time-consuming as it might seem, even
when few files have changed between the different invocations of the | oadj ava tool.

definer
{-definer | -d}

This option is identical to the definer rights in stored procedures and is conceptually
similar to the UNIX set ui d facility. However, you can apply the - def i ner option to
individual classes, in contrast to set ui d, which applies to a complete program.
Moreover, different definers may have different privileges. Because an application can
consist of many classes, you must apply - def i ner with care to achieve the desired
results. That is, classes run with the privileges they need, but no more.

See Also:

"Overview of Controlling the Current User (page 2-20)"

noverify

[-noverify]

This option causes the classes to be loaded without bytecode verification.
oracl e. aurora. security.JServerPerm ssion(Verifier) mustbe granted
to run this option. Also, this option must be used in conjunction with - r esol ve.

The verifier ensures that incorrectly formed Java binaries cannot be loaded for running
on the server. If you know that the JAR or classes you are loading are valid, then the
use of this option will speed up the process associated with the | oadj ava tool. Some
Oracle Database-specific optimizations for interpreted performance are put in place
during the verification process. Therefore, the interpreted performance of your
application may be adversely affected by using this option.

optionfile

[-optionfile <file>]

12-14 Oracle Database Java Developer's Guide

The loadjava Tool

This option enables you to specify a file with different options that you can specify
with the | oadj ava tool. This file is read and processed by the | oadj ava tool before
any other | oadj ava tool options are processed. The file can contain one or more lines,
each of which contains a pattern and a sequence of options. Each line must be
terminated by a newline character (\ n).

For each file or JAR entry that is processed by the | oadj ava tool, the long name of the
schema object that is going to be created is checked against the patterns. Patterns can
end in a wildcard (*) to indicate an arbitrary sequence of characters, or they must
match the name exactly.

Options to be applied to matching Java schema objects are supplied on the rest of the
line. Options are appended to the command-line options, they do not replace them. In
case more than one line matches a name, the matching rows are sorted by length of
pattern, with the shortest first, and the options from each row are appended. In
general, the | oadj ava tool options are not cumulative. Rather, later options override
earlier ones. This means that an option specified on a line with a longer pattern will
override a line with a shorter pattern.

This file is parsed by a j ava. i 0. St r eanTokeni zer .

You can use Java comments in this file. A line comment begins with a #. Empty lines
are ignored. The quote character is a double quote ("). That is, options containing
spaces should be surrounded by double quotes. Certain options, such as - user and -
ver bose, affect the overall processing of the | oadj ava tool and not the actions
performed for individual Java schema objects. Such options are ignored if they appear
in an option file.

To help package applications, the | oadj ava tool looks for the META- | NF/
| oadj ava- opt i ons entry in each JAR it processes. If it finds such an entry, then it
treats it as an options file that is applied for all other entries in the JAR file. However,

the | oadj ava tool does some processing on entries in the order in which they occur
in the JAR.

If the | oadj ava tool has partially processed entities before it processes META- | NF/

| oadj ava- opt i ons, then it attempts to patch up the schema object to conform to the
applicable options. For example, the | oadj ava tool alters classes that were created
with invoker rights when they should have been created with definer rights. The fix
for - noact i on is to drop the created schema object. This yields the correct effect,
except that if a schema object existed before the | oadj ava tool started, then it would
have been dropped.

optiontable

[-optiontable table_nane]

This option enables you to specify the properties of classes persistently. No
mechanism is provided for loading the table. The table name must contain three
character columns, PATTERN, OPTION, and VALUE. The value of PATTERN is
interpreted in the same way as a pattern in an option file. The other two columns are

the same as the corresponding command-line options and take an operand. Suppose,
you create a table FOO with the following command:

create table foo (pattern varchar2(2000), option_name varchar2(2000), value
var char 2(2000));

Then, you can use the opt i ont abl e option in the following way:

| oadj ava -optiontable foo nyjar.jar

Schema Objects and Oracle JVM Utilities 12-15

The loadjava Tool

For options that do not take an operand, the VALUE column should be NULL. The
rows are processed in the same way as the lines of an option file are processed. To
determine the options for a given schema object, the rows are examined and for any
match the option is appended to the list of options. If two rows have the same pattern
and contradictory options, such as -synonym and -nosynonym, then it is unspecified
which will prevail. If two rows have the same pattern and option columns, then it is
unspecified which VALUE will prevail.

publish

[-publish <package>]
[- pubmai n <nunber >]

The publishing options cause the | oadj ava tool to create PL/SQL wrappers for
methods contained in the processed classes. Typically, a user wants to publish
wrappers for only a few classes in a JAR. These options are most useful when specified
in an option file.

To be eligible for publication, the method must satisfy the following:

e It must be a member of a publ i ¢ class.

e It mustbe declared publ i c and stati c.

e The method signature should satisfy the following rules so that it can be mapped:

— Java arithmetic types for arguments and return values are mapped to
NUVBER

— char as an argument and return type is mapped to VARCHAR

- java.lang. String as an argument and return type is mapped to
VARCHAR

— If the only argument of the method has type j ava. | ang. Stri ng, special
rules apply, as listed in the - pubmai n option description.

— If the return type is voi d, then a procedure is created.

— If the return type is an arithmetic, char, or j ava. | ang. St ri ng type, then a
function is created.

Methods that take arguments or return types that are not covered by the preceding
rules are not eligible. No provision is made for OUT and | N OUT SQL arguments,
OBJECT types, and many other SQL features.

resolve
{-resolve | -r}
Use - r esol ve to force the | oadj ava tool to compile and resolve a class that has

previously been loaded. It is not necessary to specify - f or ce, because resolution is
performed after, and independent of, loading.

resolver

{-resolver | -R} resolver_specification

12-16 Oracle Database Java Developer's Guide

The loadjava Too

This option associates an explicit resolver specification with the class schema objects
that the | oadj ava tool creates or replaces.

A resolver specification consists of one or more items, each of which consists of a name
specification and a schema specification expressed in the following syntax:

"((nanme_spec schema_spec) [(name_spec schema_spec)] ...)"

A name specification is similar to a name in an i nport statement. It can be a fully
qualified Java class name or a package name whose final element is the wildcard
character asterisk (*) or simply an asterisk (*). However, the elements of a name
specification must be separated by slashes (/), not periods (.). For example, the name
specification a/ b/ * matches all classes whose names begin with a. b. The special
name * matches all class names.

A schema specification can be a schema name or the wildcard character dash (-). The
wildcard does not identify a schema, but directs the resolve operation not to mark a
class invalid, because a reference to a matching name cannot be resolved. Use dash (-)
when you must test a class that refers to a class you cannot or do not want to load. For
example, GUI classes that a class refers to but does not call, because when run in the
server there is no GUL

When looking for a schema object whose name matches the name specification, the
resolution operation looks in the schema named by the partner schema specification.

The resolution operation searches schemas in the order in which the resolver
specification lists them. For example,

-resolver '((* HR) (* PUBLIQ))'

This implies that search for any reference first in HR and then in PUBLI C. If a reference
is not resolved, then mark the referring class invalid and display an error message.
Consider the following example:

-resolver "((* HR) (* PUBLIC) (ny/gui/* -))"

This implies that search for any reference first in HR and then in PUBLI C. If the
reference is to a class in the package nmy. gui and is not found, then mark the referring
class valid and do not display an error. If the reference is not to a class in my. gui and
is not found, then mark the referring class invalid and produce an error message.

user

{-user | -u} user/password[@atabase_url]

By default, the | oadj ava tool loads into the logged in schema specified by the - user
option. You use the - schema option to specify a different schema to load into. This
does not require you to log in to that schema, but does require that you have sufficient
permissions to alter the schema.

The permissible forms of @at abase_ur| depend on whether you specify - oci or -
t hi n, as described:

e -oci: @latabase_url isoptional. If you do not specify, then the | oadj ava tool
uses the user's default database. If specified, dat abase_ur| can be a TNS name
or an Oracle Net Services name-value list.

e -thin: @atabase_url isrequired. The formatis host : | port: SI D.

where:

Schema Objects and Oracle JVM Utilities 12-17

The dropjava Tool

— host is the name of the computer running the database.

— | port is the listener port that has been configured to listen for Oracle Net
Services connections. In a default installation, it is 5521.

— Sl Dis the database instance identifier. In a default installation, it is ORCL.

The following are examples of the | oadj ava tool commands:

e Connect to the default database with the default OCI driver, load the files in a JAR
into the TEST schema, and then resolve them:

| oadjava -u joe -resolve -schema TEST ServerQbjects.jar
Password: password

¢ Connect with the JDBC Thin driver, load a class and a resource file, and resolve
each class:

| oadjava -thin -u HR@bhost:5521: orcl \
-resol ve al pha. cl ass beta. props
Passwor d: password

* Add Betty and Bob to the users who can run al pha. cl ass:

| oadj ava -thin -schema test -u HR@ocal host:5521: orcl \
-grant BETTY, BOB al pha. cl ass
Password: password

jarsasdbobjects

This option indicates that JARs processed by the current | oadj ava tool are to be
stored in the database along with the classes they contain, and knowledge of the
association between the classes and the JAR is to be retained in the database. In other
words, this argument indicates that the JARs processed by the current | oadj ava tool
are to be stored in the database as database resident JARs.

prependjarnames

This option is used with the - j ar sasdbobj ect s option. This option enables classes
with the same names coming from different JARs to coexist in the same schema.

12.7 The dropjava Tool

The dr opj ava tool is the converse of the | oadj ava tool. It transforms command-line
file names and JAR or ZIP file contents to schema object names, drops the schema
objects, and deletes their corresponding digest table rows. You can

enter . j ava,.cl ass,.sqlj,.ser,.zip,.jar,and resource file names on the
command line and in any order.

Alternatively, you can specify a schema object name directly to the dr opj ava tool. A
command-line argument that doesnotend in . j ar,. zi p,. cl ass, . j ava,or. sql j
is presumed to be a schema object name. If you specify a schema object name that
applies to multiple schema objects, then all will be removed.

Dropping a class invalidates classes that depend on it, recursively cascading upwards.
Dropping a source drops classes derived from it.

12-18 Oracle Database Java Developer's Guide

The dropjava Tool

Note:

You must remove Java schema objects in the same way that you first loaded
them. If you load a . sql j source file and translate it in the server, then you
must run the dr opj ava tool on the same source file. If you translate on a
client and load classes and resources directly, then run the dr opj ava tool on
the same classes and resources.

You can run the dr opj ava tool either from the command line or by using the
dr opj ava method in the DBMS_JAVA class. To run the dr opj ava tool from within
your Java application, use the following command:

call dbns_java.dropjava('... options...");

The options are the same as specified on the command line. Separate each option with
a space. Do not separate the options using commas. The only exception to this is the -
resol ver option. The connection is always made to the current session. Therefore,
you cannot specify another user name through the - user option.

For - r esol ver, you should specify all other options first, a comma (,), then the -
resol ver option with its definition. Do not specify the - t hi n, - oci , - user, and -
passwor d options, because they relate to the database connection for the | oadj ava
tool. The output is directed to st derr. Set ser ver out put on and call

dbns_j ava. set _out put, as appropriate.

This section covers the following topics:

® dropjava Tool Syntax (page 12-19)

e dropjava Tool Argument Summary (page 12-20)
* dropjava Tool Argument Details (page 12-21)

e List Based Deletion (page 12-22)

* About Dropping Resources Using dropjava Tool (page 12-22)

12.7.1 dropjava Tool Syntax
The syntax of the dr opj ava tool command is:

dropjava [options] {file.java | file.class | file.sqlj |
file.jar | file.zip | resourcefile} ...

-u | -user user/[password][@at abase]

[-gennissingjar JARfi| €]

[-jarasresource]

[-0] -oci | -oci8]

[-optionfile file]

[-optiontable table_nane]
[-S| -schema schems]
[
[
[

-stdout]
-s | -synonynj
-t | -thin]

[-v | -verbose]
[-list]
[-listfile]

Schema Objects and Oracle JVM Utilities 12-19

The dropjava Tool

12.7.2 dropjava Tool Argument Summary

Table 12-3 (page 12-20) summarizes the dr opj ava tool arguments.

Table 12-3 dropjava Argument Summary

Argument Description

-user Specifies a user name, password, and optional database connection
string. The files will be dropped from this database instance.

fil enanes Specifies any number and combination

- genm ssi ngj ar
JARfi | e

-j arasresource

-oci | -oci8

-optionfile file

-optiontable
tabl e_name

-schema schema

- st dout

- synonym

-thin

-verbose

—li st

-listfile

of.java,.class,.sqlj,.ser,.jar,.zip,and resource file
names.

Treats the operand of this option as a file to be processed.

Drops the whole JAR file, which was previously loaded as a
resource.

Directs the dr opj ava tool to connect with the database using the
OCI JDBC driver. The - oci and the - t hi n options are mutually
exclusive. If neither is specified, then the - oci option is used by
default. Choosing the - oci option implies the form of the - user
value.

Has the same usage as for the | oadj ava tool.

Has the same usage as for | oadj ava.

Designates the schema from which schema objects are dropped. If
not specified, then the logon schema is used. To drop a schema
object from a schema that is not your own, you need the DROP ANY
PROCEDURE and UPDATE ANY TABLE privileges.

Causes the output to be directed to st dout , rather than to
stderr.

Drops a PUBLI Csynonym that was created with the | oadj ava
tool.

Directs the dr opj ava tool to communicate with the database using
the JDBC Thin driver. Choosing the - t hi n option implies the form
of the - user value.

Directs the dr opj ava tool to emit detailed status messages while
running.

Drops the classes, Java source, or resources listed on the command
line without them being present on the client machine or server
machine.

Reads a file and drops the classes, Java source, or resources listed
in the file without them being present on the client machine or
server machine.The file contains the internal representation of the
complete class, Java source, or resource name one per line.

12-20 Oracle Database Java Developer's Guide

The dropjava Tool

12.7.3 dropjava Tool Argument Details

This section describes a few of the dr opj ava tool arguments, which are complex.

File Names

The dr opj ava tool interprets most file names as the | oadj ava tool does:

e .classfiles
Finds the class name in the file and drops the corresponding schema object.
e _.javaand.sqlj files
Finds the first class name in the file and drops the corresponding schema object.

e _jar and. zi p files

Processes the archived file names as if they had been entered on the command
line.

If a file name has another extension or no extension, then the dr opj ava tool interprets
the file name as a schema object name and drops all source, class, and resource objects
that match the name.

If the dr opj ava tool encounters a file name that does not match a schema object, then
it displays a message and processes the remaining file names.

user

{-user | -u} user/password] @atabase]
The permissible forms of @lat abase depend on whether you specify - oci or -t hi n:

* -oci: @lat abase is optional. If you do not specify, then the dr opj ava tool uses
the user's default database. If specified, then dat abase can be a TNS name or an
Oracle Net Services name-value list.

e -thin: @at abase is required. The format is host : | port: SI D.

where:
— host is the name of the computer running the database.

— | port is the listener port that has been configured to listen for Oracle Net
Services connections. In a default installation, it is 5521.

— Sl Dis the database instance identifier. In a default installation, it is ORCL.

The following are examples of the dr opj ava tool command:

* Drop all schema objects in the TEST schema in the default database that were
loaded from Ser ver Obj ects. jar:

dropjava -u HR -schema TEST ServerQbjects. | ar
Password: password

* Connect with the JDBC Thin driver, then drop a class and a resource file from the
user's schema:

dropjava -thin -u HR@bhost:5521: orcl al pha.class beta. props
Password: password

Schema Objects and Oracle JVM Utilities 12-21

The ojvmjava Tool

List Based Deletion

Earlier versions of the dr opj ava tool required that the classes, JARs, source, and
resources be present on the machine, where the client or server side utility is running.
The current version of dr opj ava has an option that enables you to drop classes,
resources, or sources based on a list of classes, which may not exist on the client
machine or the server machine. This list can be either on the command line or in a text
file. For example:

dropjava -list —u HR -v this.is.ny.class this.is.your.class
Password: password

The preceding command drops the classes t hi s. i s. ny. cl ass and
this.is.your.cl ass listed on the command line without them being present on
the client machine or server machine.

dropjava -listfile ny.list -u HR =s -v
Password: password

The preceding command drops classes, resources, or sources and their synonyms
based on a list of classes listed in my. | i st and displays verbosely.

Note:

The' -instal |’ flagignores the loading and dropping of system owned
schema objects that cannot be modified.

These schema objects are the runtime classes, and resources provided by the
CREATE JAVA COMVAND.

12.7.4 About Dropping Resources Using dropjava Tool

Care must be taken if you are removing a resource that was loaded directly into the
server. This includes profiles, if you translated them on the client without using the -
ser 2cl ass option. When dropping source or class schema objects or resource schema
objects that were generated by the server-side SQLJ translator, the schema objects will
be found according to the package specification in the applicable . sql j source file.
However, the fully qualified schema object name of a resource that was generated on
the client and loaded directly into the server depends on path information in the . j ar
file or that specified on the command line at the time you loaded it. If you use a . j ar
file to load resources and use the same . j ar file to remove resources, then there will
be no problem. However, if you use the command line to load resources, then you
must be careful to specify the same path information when you run the dr opj ava
tool to remove the resources.

12.8 The ojvmjava Tool

The oj vnj ava tool is an interactive interface to the session namespace of a database
instance. You specify database connection arguments when you start the oj vinj ava
tool. It then presents you with a prompt to indicate that it is ready for commands.

The shell can launch an executable, that is, a class with a st ati ¢ mai n() method.
This is done either by using the command-line interface or by calling a database
resident class. If you call a database resident class, the executable must be loaded with
the | oadj ava tool.

This section covers the following topics:

12-22 Oracle Database Java Developer's Guide

The ojvmjava Tool

ojvmjava Tool Syntax (page 12-23)
ojvmjava Tool Argument Summary (page 12-23)
ojvmjava Tool Example (page 12-24)

ojvmjava Tool Functionality (page 12-24)

12.8.1 ojvmjava Tool Syntax

The syntax of the 0j vnj ava tool command is:

ojvimj ava {-user user[/password@latabase] [options]
[@il enane]

[.
-Cc | -command conmmand ar gs]
- debug]

-d | -database conn_string]

[
[
[
[.
[
[
[

[.

bat ch]

fileout filenane]

-0 | -oci | -oci8]
-oschema schemg]
-t | -thin]

version | -v]

-runjava [server_file_systeni
-jdwp port [host]
-verbose

12.8.2 ojvmjava Tool Argument Summary

Table 12-4 (page 12-23) summarizes the 0j vnj ava tool arguments.

Table 12-4 ojvmjava Argument Summary

Argument Description

-user | -u Specifies user name for connecting to the database. This name is

not case-sensitive. The name will always be converted to
uppercase. If you provide the database information, then the
default syntax used is OCI. You can also specify the default

database.
-password | -p Specifies the password for connecting to the database.
@il enane Specifies a script file that contains the oj vinj ava tool

commands to be run.

-batch Disables all messages displayed to the screen. No help

messages or prompts will be displayed. Only responses to
commands entered are displayed.

- comand Runs the desired command. If you do not want to run the

0j vnj ava tool in interpretive mode, but only want to run a
single command, then run it with this option followed by a
string that contains the command and the arguments. Once the
command runs, the 0j vnj ava tool exits.

- debug Displays debugging information.

-d | -database Provides a database connection string.
conn_string

Schema Objects and Oracle JVM Utilities 12-23

The ojvmjava Tool

Table 12-4 (Cont.) ojvmjava Argument Summary

Argument Description
-fileout file Redirects output to the provided file.
-0 | -oci | -oci8 Uses the JDBC OCI driver. The OCI driver is the default. This

flag specifies the syntax used in either the @lat abase or -
dat abase option.

-0 schema schema Uses this schema for class lookup.
-t | -thin Specifies that the database syntax used is for the JDBC Thin

driver. The database connection string must be of the form
host : port: Sl Dor an Oracle Net Services name-value list.

-ver bose Displays the connection information.
-version Shows the version.
-runj ava Uses DBM5_JAVA. r unj ava when executing Java commands.

With no argument, interprets - cl asspat h as referring to the
client file system. With argument server _fil e_system
interprets - cl asspat h as referring to the file system on which
Oracle server is running, as DBMS_JAVA. r unj ava typically
does.

-j dwp Makes the connection listen for a debugger connection on the
indicated port and host. The default value of host is
| ocal host .

12.8.3 ojvmjava Tool Example

Open a shell on the session namespace of the database or cl on listener port 2481 on
the host dbser ver, as follows:

ojvnjava -thin -user HR@bserver: 2481: orcl
Passwor d: password

12.8.4 ojvmjava Tool Functionality

The oj vnj ava tool commands span several different types of functionality, which are
grouped as follows:

¢ ojvmjava Tool Command-Line Options (page 12-24)
¢ ojvmjava Tool Shell Commands (page 12-26)

12.8.4.1 ojvmjava Tool Command-Line Options

This section describes the following options available with the oj vij ava tool
command:

® Scripting the ojvmjava Tool Commands in the @filename Option (page 12-25)
* -runjava (page 12-25)
¢ -jdwp (page 12-25)

12-24 Oracle Database Java Developer's Guide

The ojvmjava Tool

Scripting the ojvmjava Tool Commands in the @filename Option

This @ i | enane option designates a script file that contains one or more oj vij ava
tool commands. The specified script file is located on the client. The oj vnj ava tool
reads the file and runs all commands on the designated server. In addition, because
the script file is run on the server, any interaction with the operating system in the
script file, such as redirecting output to a file or running another script, occurs on the
server. If you direct the 0j vnj ava tool to run another script file, then this file must
exist in $ORACLE_HOVE on the server.

You must enter the 0j vnj ava tool command followed by any options and any
expected input arguments. The script file contains the oj vnj ava tool command
followed by options and input parameters. The input parameters can be passed to the
0j vnj ava tool on the command line. The 0j vnj ava tool processes all known options
and passes on any other options and arguments to the script file.

The following shows the contents of the script file, execShel | :

java myclass a b ¢

To run this file, use the following command:

ojvnmava -user HR -thin -database dbserver:2481:orcl @onmands
Password: password

The oj vnj ava tool processes all options that it knows about and passes along any
other input parameters to be used by the commands that exist within the script file. In
this example, the parameters are passed to the j ava command in the script file.

You can add any comments in your script file using the hash sign (#). Comments are
ignored by the oj vnj ava tool. For example:

#this whole line is ignored by ojvnjava

-runjava

This option controls whether or not the 0j vnj ava tool shell command Java runs
executable classes using the command-line interface or database resident classes.
When the - r unj ava option is present the command-line interface is used. Otherwise,
the executable must be a database resident class that was previously loaded with the

| oadj ava tool. Using the optional argument ser ver _f i | e_syst emmeans that the
- ¢l asspat h terms are on the file system of the machine running Oracle server.
Otherwise, they are interpreted as being on the file system of the machine running the
0j vnj ava tool.

See Also:

"About Using the Command-Line Interface (page 3-8)"

-jdwp

This option specifies a debugger connection to listen for when the shell command

j ava is used to run an executable. This allows for debugging the executable. The
arguments specify the port and host. The default value of the host argument is

| ocal host. These are used to execute a call to DBMS_DEBUG JDWP. CONNECT _TCP
from the RDBMS session, in which the executable is run.

Schema Objects and Oracle JVM Utilities 12-25

The ojvmjava Tool

12.8.4.2 ojvmjava Tool Shell Commands

This section describes the following commands available within the oj vij ava shell:
* echo (page 12-26)

* exit (page 12-27)

¢ help (page 12-27)

* java (page 12-27)

¢ version (page 12-28)

e whoami (page 12-28)

* connect (page 12-28)

* runjava (page 12-29)

¢ jdwp (page 12-29)

Note:

An error is reported if you enter an unsupported command.

Table 12-5 (page 12-26) summarizes the commands that share one or more common
options, which are summarized in Table 12-5 (page 12-26):

Table 12-5 ojvmjava Command Common Options

Option Description
-describe | -d Summarizes the operation of the tool.
-help | -h Summarizes the syntax of the tool.
-version Shows the version.

echo

This command displays to st dout exactly what is indicated. This is used mostly in
script files.

The syntax is as follows:

echo [echo_string] [args]

echo_st ri ng is a string that contains the text you want written to the screen during
the shell script invocation and ar gs are input arguments from the user. For example,
the following command displays out a notification:

echo "Adding an owner to the schema" &1

If the input argument is HR, then the output would be:

Addi ng an owner to the schema HR

12-26 Oracle Database Java Developer's Guide

The ojvmjava Tool

exit
This command terminates 0j vnj ava. The syntax is as follows:

exit
For example, to leave a shell, use the following command:

$exit
%

help

This command summarizes the syntax of the shell commands. You can also use the
help command to summarize the options for a particular command. The syntax is as
follows:

hel p [command]

java

This command is analogous to the JDK j ava command. It calls the static mai n()
method of a class. It does this either by using the command-line interface or using a
database resident class, depending on the setting of the r unj ava mode. In the latter
case, the class must have been previously loaded with the | oadj ava tool. The
command provides a convenient way to test Java code that runs in the database. In
particular, the command catches exceptions and redirects the standard output and
standard error of the class to the shell, which displays them as with any other
command output. The destination of standard out and standard error for Java classes
that run in the database is one or more database server process trace files, which are
inconvenient and may require DBA privileges to read.

See Also:

"About Using the Command-Line Interface (page 3-8)"

The syntax of the command with r unj ava mode of f is:

java [-schema schema] class [argl ... argn]

The syntax of the command with r unj ava mode on is:

java [command-1ine options] class [argl ... argn]
where, command-line options can be any of those mentioned in Table 3-1 (page 3-9).

Table 12-6 (page 12-27) summarizes the arguments of this command.

Table 12-6 java Argument Summary
L __|

Argument Description
cl ass Names the Java class schema object that is to be run.
-schena Names the schema containing the class to be run. The default is

the invoker's schema. The schema name is case-sensitive.

argl ... argn Arguments to the st at i ¢ mai n() method of the class.

Schema Objects and Oracle JVM Utilities 12-27

The ojvmjava Tool

Consider the following Java file, Wor | d. j ava:

package hello;
public class Wrld

{
public Wrld()
{
super();
1
public static void main(String[] argv)
{
Systemout.printin("Hello from Oracl e Database");
if (argv.length !=0)
Systemout. printIn("You supplied " + argv.length + " argunents: ");
for (int i =0; i <argv.length; i++)
Systemout.printIn(" arg[" +1i +"] : " +argv[i]);
1
}

You can compile, load, publish, and run the class, as follows:

% javac hello/Wrld.java

%1 oadj ava -r -user HR@ocal host: 2481:orcl hello/ Wrld.class
Password: password

% oj vnj ava -user HR -database |ocal host:2481: orcl

Password: password

$ java hello. Wrld al pha beta

Hello from Oracl e Database

You supplied 2 argunents:

arg[0] : al pha
arg[1] : beta
version

This command shows the version of the 0j vnj ava tool. You can also show the
version of a specified command. The syntax of this command is:

version [options] [conmand]

For example, you can display the version of the shell, as follows:

$ version
1.0

whoami

This command displays the user name of the user who logged in to the current
session. The syntax of the command is:

whoam

connect

This command enables the client to drop the current connection and connect to
different databases without having to reinvoke the 0j vnj ava tool with a different
connection description.

The syntax of this command is:

connect [-service service] [-user user][-password password]

12-28 Oracle Database Java Developer's Guide

The ojvmjava Tool

You can use this command as shown in the following examples:

connect -s thin@ocahost:5521:orcl -u HR/ <password>
connect -s oci @ocahost:5521:orcl -u HR -p <password>

Table 12-7 (page 12-29) summarizes the arguments of this command.

Table 12-7 connect Argument Summary

Argument Description

-service | -s Any valid JDBC driver URLS, namely, oci @<connection
descriptor> and thin@<host:port:db>

-user | -u User to connect as
-password | -p Password to connect with
runjava

This command queries or modifies the r unj ava mode. The r unj ava mode
determines whether or not the j ava command uses the command-line interface to run
executables. The j ava command:

e Uses the command-like interface when r unj ava mode is on

e Uses database resident executables when r unj ava mode is of f

See Also:

"About Using the Command-Line Interface (page 3-8)"

Using the r unj ava command with no arguments displays the current setting of
runj ava mode.

Table 12-8 (page 12-29) summarizes the arguments of this command.

Table 12-8 runjava Argument Summary

Argument Description

of f Turns r unj ava mode off.

on Turns r unj ava mode on.

server _file_system Turns r unj ava mode on. Using this option means that -

cl asspat h terms are on the file system of the machine
running Oracle server. Otherwise, they are interpreted as being
on the file system of the machine running the oj vnj ava tool.

jdwp

This command queries or modifies whether and how a debugger connection is
listened for when an executable is run by the Java command.

Schema Objects and Oracle JVM Utilities 12-29

The ojvmjava Tool

Note:

The RDBMS session, prior to starting the executable, executes a

DBMS_DEBUG_JDWP. CONNECT_TCP call with the specified port and host. This
is called Listening.

Using this command with no arguments displays the current setting.

Table 12-9 (page 12-30) summarizes the arguments of this command.

Table 12-9 jdwp Argument Summary

Argument Description

off

Stops listening in future executables.

port Enables listening and specifies the port to be used.

host Enables listening and specifies the host to be used. The default

value for this argument is | ocal host .

12-30 Oracle Database Java Developer's Guide

13

Database Web Services

This chapter provides an overview of database Web services and discusses how to call
existing Web services. This chapter contains the following sections:

* Overview of Database Web Services (page 13-1)

¢ About Using Oracle Database as Web Services Consumer (page 13-1)

13.1 Overview of Database Web Services

Web services enable application-to-application interaction over the Web, regardless of
platform, language, or data formats. The key ingredients, including Extensible
Markup Language (XML), Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), REpresentational State Transfer (REST), Web
Application Description Language (WADL), and Universal Description, Discovery,
and Integration (UDDI), have been adopted across the entire software industry. Web
services usually refer to services implemented and deployed in middle-tier application
servers. However, in heterogeneous and disconnected environments, there is an
increasing need to access stored procedures, as well as data and metadata, through
Web services interfaces.

Oracle Database can access Web services through PL/SQL packages and Java classes
deployed within the database. Consuming external Web services from the database,
together with integration with the SQL engine, enables Enterprise Information
Integration.

13.2 About Using Oracle Database as Web Services Consumer

You can extend the storage, indexing, and searching capabilities of a relational
database to include semistructured and nonstructured data, including Web services, in
addition to enabling federated data. By calling Web services, the database can track,
aggregate, refresh, and query dynamic data produced on-demand, such as stock
prices, currency exchange rates, and weather information.

An example of using Oracle Database as a service consumer would be to call external
Web services from a predefined database job to retrieve inventory information from
multiple suppliers, and then update your local inventory database. Another example
is that of a Web crawler, where a database job can be scheduled to collate product and
price information from a number of sources.

This section covers the following topics:
¢ How to use the Oracle JVM Web Services Call-Out Utility (page 13-2)
* Web Service Data Sources (Virtual Table Support) (page 13-7)

* Features of Oracle Database as a Web Service Consumer (page 13-8)

Database Web Services 13-1

About Using Oracle Database as Web Services Consumer

13.2.1 About Using Oracle JVM Web Services Call-Out Utility

Starting from Oracle Database 12¢ Release 2 (12.2.0.1), you can use the Oracle JVM
Web Services Call-Out Utility to call the operations from the Web services running in
the network, from Oracle Database. This utility accepts the SOAP Web services
specified in WSDL format or REST Web services specified in WADL format.

Perform the following before using this utility:
e Set the JAVA HOVE environment variable.

* Use the following command to create the QJVMACU_| NSTALL schema:
create user QJVMACU I NSTALL identified by <ANY_PASSWRCD>

Note:

- You must create the QJVMACU_| NSTALL schema before running the
i nstal | _oj vmwcu. sql script. Thei nstal | _oj vimacu. sqgl script
checks whether the QJVMACU_I NSTALL schema is present in the database
or not. If not, then it displays a message that the schema is not present
and stops running.

— The QJVMACU_| NSTALL schema is created only for using the Oracle JVM
Web Services Call-Out Utility and should not be used for any other
purpose.

e Runtheinstall_oj vmacu. sql script, followed by the gr ant _oj vimacu. sql
script.

The gr ant _oj vimacu. sql script takes user name as argument, and it must be
invoked as SYSDBA. For example: sql pl us / as sysdba @
grant _oj vmacu. sql scott

The following sections describe this utility in details:

® Architecture of Oracle JVM Web Services Call-Out Utility (page 13-2)
* Input to Oracle JVM Web Services Call-Out Utility (page 13-4)

* Output of the Oracle JVM Web Services Call-Out Utility (page 13-6)

e Calling Secure Web Service from Oracle JVM Web Services Call-Out Utility
(page 13-7)

13.2.1.1 Architecture of Oracle JVM Web Services Call-Out Utility
The Oracle JVM Web services Call-Out utility consists of the following two phases:

e (lient Stub Generation

® Oracle JVM-specific Artifact Generation

The following figure illustrates the architecture of the Oracle JVM Web Services Call-
Out Utility.

13-2 Oracle Database Java Developer's Guide

About Using Oracle Database as Web Services Consumer

Figure 13-1 Oracle JVM Web Services Call-Out Utility Architecture

la"
WSDL or WADL file location / URL
> Input
Location of output directory for storing client artifacts
Location of output directory for storing generated Java source
Other command-line options
v
Client stub generation using wsimport tool or wadl2java tool 1 Processing
A%
e
README.txt
<Web_Service_Name>_wrapper.sql
0 B —EPIRES > Output
<Web_Service_Name>_cleanup_wrapper.sql
<Web_Service_Name>.jar
A%

Client Stub Generation

The Oracle JVM Web Services Call-Out Utility uses the JAX-WS library and generates
Java client stubs from the input specified in the “Input of Oracle JVM Web Services
Call-Out Utility” section for accessing SOAP Web services. For REST services, the
Oracle JVM Web Services Call-Out Utility uses the Third Party Tool wadl 2j ava,
which you must download separately.

Note:

If you use REST services, then after downloading the wadl 2j ava tool, you
must perform either of the following;:

e Set the WADL_HOME environment variable to the path of the wadl 2j ava
tool directory

¢ Use the -t command-line option to specify the path of the wadl 2j ava
tool directory

Oracle JVM-Specific Artifact Generation

For accessing the web services from PL/SQL, you need a static Java method and a
PL/SQL wrapper function for each of the operations supported by the Web service.

Database Web Services 13-3

About Using Oracle Database as Web Services Consumer

The Oracle JVM Web Services Call-Out Utility creates a static method for each of the
supported operations in the Web service and extracts the details of the operations
from the generated client classes by interpreting the different annotations. The
extracted information includes WebService, Webmethods, WebServiceClient, and
WebEndpoint. Using this information, the utility generates corresponding static
methods in such a way that each of the operation has the same input parameters and
return types as the corresponding operation in the published Web service. Then it
adds all the static methods, corresponding to each of the supported operations, to a
Java class.

The Oracle JVM Web services Call-Out utility then creates PL/SQL wrapper functions
corresponding to each of the static methods in the generated Java class and packs the
functions into a PL/SQL package with the name of the Web service. It also generates
the PL/SQL wrapper for granting and revoking the basic permissions for running the
Java Class in Oracle JVM.

13.2.1.2 Input to Oracle JVM Web Services Call-Out Utility

The input to the Oracle JVM Web Services Call-Out Utility mainly includes the WSDL
or WADL file location, output directory to store the client artifacts, output directory to
store the generated Java sources, if required, and the verbose mode. This utility
reports any missing mandatory arguments and adds default values for the optional
arguments. The following table describes the command-line arguments of the Oracle
JVM Web Services Call-Out Utility.

Table 13-1 Input to Oracle JVM Web Services Call-Out Utility
|

Argument Argument Type Description

—+ <conmand-1ine Web Service Specifies the file where other

options file> command-line options are
stored.

—eut <out put Web Service Specifies the directory where

directory> the output files are stored.

The default value is the
current directory.

-p Web Service Specifies the package name
for the generated Client
Stubs. The default value is
0j vm webser vi ce.

—keepsrc Web Service Indicates to store the
generated sources to the
output directory.

—v Web Service Enables verbose mode for
detailed description.

—Xaut hfile Web Service Indicates the name of the file
that contains authorization
information in the format
http://
user nane: passwor d@ web
-service URL_?wsdl .

13-4 Oracle Database Java Developer's Guide

About Using Oracle Database as Web Services Consumer

Table 13-1 (Cont.) Input to Oracle JVM Web Services Call-Out Utility
|

Argument

Argument Type

Description

—hamnme

-1 og

-wsdl <WBDL | ocati on>

-wadl <WADL | ocati on>

-t <wadl 2j ava t ool
| ocati on>

-cp <additional
cl asspat h>

-auto

Web Service

Web Service

Web Service

Web Service

Web Service

Web Service

Web Service

Specifies the name for the
Web Service. The operations
of the Web Service are put
under a PL/SQL package
specified with this value. The
default value is

def aul t WebSer vi ce.

Specifies the log file to store
the output stream of Oracle
JVM Web Services Call-Out
Utility. If you do not provide
this value, then the output
stream is displayed on
System out.

Specifies the hosted location
of the WSDL file. This option
is mutually exclusive with
the - WADL option.

Specifies the hosted location
of the WADL file. This option
is mutually exclusive with
the - WEDL option.

Specifies the location of the
wadl 2j ava tool directory.
By default, the WADL_ HOME
environment variable that
points to wad| 2j ava tool
Home directory is checked. If
this environment variable is
not set properly, then an
error is thrown.

Specifies the class path that is
used to compile the Java
source files. You can either
use the value of the
CLASSPATH variable or
specify the value using this
option.

Automatically loads the
generated classes to the
specified database. For this
option to work, the following
fields are mandatory:

o -user

e -orasid/-oraserv

Database Web Services 13-5

About Using Oracle Database as Web Services Consumer

Table 13-1 (Cont.) Input to Oracle JVM Web Services Call-Out Utility
|

Argument Argument Type Description

-ts <trust_store path> Web Service Specifies the path to the
trustore in which the SSL
certificate is imported.

-user Auto Mode Specifies the user who is
supposed to invoke the Web
Service.

- dbhost <host _nane> Database Specifies the host name

where Oracle Database is
installed. This field is used
when auto mode is specified.
The default value is

| ocal host.

-dbport <port_nunber> Database Specifies the port number in
which Oracle Database runs.
This field is used when auto
mode is specified. The
default value is 1521.

-orasid <Oracle SID> Database Specifies the SID of the
Oracle Database registered to
the listener. This field is used
when auto mode is specified.

-oraserv <name of Database Specifies the name of the

correspondi ng CDB> CDB (container database) to
which the classes should be
loaded. This field is used
when auto mode is specified.

13.2.1.3 Output of the Oracle JVM Web Services Call-Out Utility

The following table describes the output of the Oracle JVM Web Services Call-Out
Utility.

Table 13-2 Output of the Oracle JVM Web Services Call-Out Utility
|

File Name Description

README.txt This file contains instructions to manually
load the classes, grant the permissions, and
run them.

<Web_Servi ce_Nanme>_wr apper. sql This SQL file is used to create PL/SQL

wrappers for each operations in the specified
Web service.

<Web_Servi ce_Nane>. j ar This JAR file contains the client stub classes
for the Web services.

13-6 Oracle Database Java Developer's Guide

About Using Oracle Database as Web Services Consumer

Note:

With REST Web services, all Web method wrappers return Web response in
String format. Though Gener i cType is supported with Jersey-Client, Oracle
JVM Web Services Call-Out Utility does not support it.

13.2.1.4 Calling Secure Web Service from Oracle JVM Web Services Call-Out Utility

The Oracle JVM Web Services Call-Out Utility provides support for SSL based Web
services. This utility also provides support for Web services secured with basic HTTP
authentication. If you are using an SSL based Web service, then you must add SSL
certificate to Keystore before running this utility or use the - t S command-line option
to pass truststore path. Before the Web call out, you must use the

gr abAndSaveCerti fi cat e<WebSer vi ceNane>(host, port) procedure from
wr appers. sql file for setting the path to key store path. If you are using Web
services secured with basic authentication, then use the - Xaut hf i | e<auth_fil e>
command-line option with this utility. The aut h_f i | e argument contains
authorization information in the following format:

http://username: passwor d@web- ser vi ceURL>?wsdl

Before the Web call out, you must use set wsCr ed<WebSer vi ceNane>(usr, pwd)
from wr apper s. sql file for setting the Web service credentials.

13.2.2 Web Service Data Sources (Virtual Table Support)

To access data that is returned from single or multiple Web service invocations, create
a virtual table using a Web service data source. This table lets you query a set of
returned rows as though it were a table.

The client calls a Web service and the results are stored in a virtual table in the
database. You can pass result sets from function to function. This enables you to set up
a sequence of transformation without a table holding intermediate results. To reduce
memory usage, you can return the result set rows, a few at a time, within a function.

By using Web services with the table function, you can manipulate a range of input
values from single or multiple Web services as a real table. In the following example,
the inner SELECT statement creates rows whose columns are used as arguments for
calling the CALL_W5 Web service call-out.

SELECT col uml, cloum2, ...
FROM TABLE(W5_TABFUN(CURSOR(SELECT s FROM t abl e_nane)))
WHERE . ..

The table expression in the preceding example can be used in other SQL queries, for
constructing views, and so on.

Figure 13-2 (page 13-8) illustrates the support for virtual table.

Database Web Services 13-7

About Using Oracle Database as Web Services Consumer

Figure 13-2 Storing Results from Request in a Virtual Table

/WD
Web Services w

JVM
Database
Call out Virtual module
SOAP to Web database as a Web
L Service table Service
Requestor

N

13.2.3 Features of Oracle Database as a Web Service Consumer

Using Oracle Database as a Web service consumer provides the following features:

Consuming Web services from Java

Provides an easy-to-use interface for Web services call-outs, thereby insulating
developers from low-level SOAP programming. Java classes running in the
database can directly call external Web services by using the previously loaded
Java proxy class or through dynamic invocation.

Consuming Web services from SQL and PL/SQL

Enables any SQL-enabled tool or application to transparently and easily consume
dynamic data from external Web services. After exposing Web services methods
as Java stored procedures, a PL/SQL wrapper on top of a Java stored procedure
hides all Java and SOAP programming details from the SQL client.

Using Web services data source

Enables application and data integration by turning external Web service into a
SQL data source, making the external Web service appear as regular SQL table.
This table function represents the output of calling external Web services and can
be used in a SQL query.

13-8 Oracle Database Java Developer's Guide

A

DBMS JAVA Package

This chapter provides a description of the DBMS_JAVA package. The functions and
procedures in this package provide an entry point for accessing RDBMS functionality
from Java.

A.1longname
FUNCTI ON | ongnane (shortname VARCHAR2) RETURN VARCHAR2

Returns the fully qualified name of the specified Java schema object. Because Java
classes and methods can have names exceeding the maximum SQL identifier length,
Oracle JVM uses abbreviated names internally for SQL access. This function returns
the original Java name for any truncated name. An example of this function is to
display the fully qualified name of classes that are invalid:

SELECT dbms_j ava. | ongnane (obj ect _nane) FROM user_objects
VWHERE obj ect _type = 'JAVA CLASS' AND status = 'INVALID ;

See Also:

"Shortened Class Names (page 2-25)"

A.2 shorthame
FUNCTI ON shortnane (Il ongname VARCHAR2) RETURN VARCHAR2

You can specify a full name to the database by using the shor t nane() routine of the
DBMS_JAVA package, which takes a full name as input and returns the corresponding
short name. This is useful when verifying that your classes loaded by querying the
USER_OBJECTS view.

See Also:

"Shortened Class Names (page 2-25)"

A.3 get_compiler_option
FUNCTI ON get _conpi | er_option(name VARCHAR2, optionName VARCHAR2) RETURN VARCHAR2

Returns the value of the option specified through the opt i onNane parameter. It is
one of the functions used to control the options of the Java compiler supplied with
Oracle Database.

DBMS_JAVA Package A-1

set_compiler_option

A.4 set_compiler_option
PROCEDURE set _conpi | er _option(name VARCHAR2, optionName VARCHAR2, val ue VARCHAR2)

Is used to set the options of the Java compiler supplied with Oracle Database.

A.5 reset_compiler_option

PROCEDURE reset _conpi | er_opti on(name VARCHAR2, optionNane VARCHAR?)

Is used to reset the specified compiler option to the default value.

A.6 resolver

FUNCTI ON resol ver (name VARCHAR2, owner VARCHAR2, type VARCHAR2) RETURN VARCHAR2

Returns the resolver specification for the object specified in nane and in the schema
specified in owner , where the object is of the type specified in t ype. The caller must
have EXECUTE privilege and have access to the given object to use this function.

The nanme parameter is the short name of the object.
The value of t ype can be either SOURCE or CLASS.

If there is an error, then NULL is returned. If the underlying object has changed, then
hj ect TypeChangedExcept i on is thrown.

You can call this function as follows:

SELECT dbms_j ava.resolver('tst', 'HR, 'CLASS) FROM DUAL;

This would return:

DBMS_JAVA. RESOLVER(' TST', ' HR', ' CLASS')

((* HR(* PUBLIQ))

A.7 derivedFrom

FUNCTI ON derivedFrom (nane VARCHAR2, owner VARCHAR2, type VARCHAR2) RETURN VARCHAR2

Returns the source name of the object specified in nane of the type specified in t ype
and in the schema specified in owner . The caller must have EXECUTE privilege and
have access to the given object to use this function.

The name parameter, as well as the returned source name, is the short name of the
object.

The value of t ype can be either SOURCE or CLASS.

If there is an error, then NULL is returned. If the underlying object has changed, then
hj ect TypeChangedExcept i on is thrown.

The returned value will be NULL if the object was not compiled in Oracle JVM.
You can call this function as follows:

SELECT dbms_j ava. derivedFron('tst', 'HR, 'CLASS) FROM DUAL;

This would return:

A-2 Oracle Database Java Developer's Guide

fixed_in_instance

DBMS_JAVA. DERI VEDFROM' TST', ' HR , ' CLASS')

A.8 fixed_in_instance

FUNCTI ON fixed_i n_instance (name VARCHAR2, owner VARCHAR2, type VARCHAR2) RETURN
NUMBER

Returns the permanently kept status for object specified in name of the type specified
int ype and in the schema specified in owner . The caller must have EXECUTE
privilege and have access to the given object to use this function.

The nanme parameter is the short name for the object.
The value of t ype can be either of RESOURCE, SOURCE, CLASS, or SHARED DATA.

The number returned is either 0, indicating the status is not kept, or 1, indicating the
status is kept.

You can call this function as follows:

SELECT dbms_j ava. fi xed_in_instance('tst', 'HR, 'CLASS') FROM DUAL;

This would return:

DBNMS_JAVA. FI XED | N_| NSTANCE(' TST', ' HR , ' CLASS')

Consider the following statement:

SELECT dbms_j ava. fi xed_in_instance('javal/lang/String', 'SYS, 'CLASS') FROM DUAL;

This would return:

DBNVS_JAVA. FI XED | N_I NSTANCE(' JAVA/ LANG/ STRING , ' SYS', ' CLASS')

A.9 set_output

PROCEDURE set _out put (buffersize NUMBER)

Redirects the output of Java stored procedures and triggers to the DBM5_OUTPUT
package.

See Also:

"Redirecting the Output (page 7-2)"

A.10 export_source

PROCEDURE export _sour ce(name VARCHAR2, schema VARCHAR2, src BLOB)
PROCEDURE export _sour ce(name VARCHAR2, src BLOB)

PROCEDURE export _sour ce(name VARCHAR2, src CLOB)

DBMS_JAVA Package A-3

export_class

PROCEDURE export _sour ce(nanme varchar2, schema varchar2, src CLOB)

Are used to export the Java source as a Java source schema object to Oracle Database.
The source is specified through the nanme parameter. The source can be exported into a
BLOB or CLOB object. The internal representation of the source uses the UTES8 format,
so that format is used to store the source in the BLOB as well. The source schema object
is created in the specified schema. If the schema is not specified then the current
schema is used.

A.11 export_class

PROCEDURE export _cl ass(nane VARCHAR2, schema VARCHAR2, src BLOB)
PROCEDURE export _cl ass(nane VARCHAR2, src BLOB)

Are used to export Java classes specified through the nane parameter as Java class
schema objects to Oracle Database. You cannot export a class into a CLOB object, only
into a BLOB object. If the schema is specified, then the class schema object is created in
this schema, else in the current schema.

A.12 export_resource

PROCEDURE export _resource(name VARCHAR2, schema VARCHAR2, src BLOB)
PROCEDURE export _resource(name VARCHAR2, src BLOB)
PROCEDURE export _resource(name VARCHAR2, schema VARCHAR2, src CLOB)
PROCEDURE export _resource(name VARCHAR2, src CLOB)

The resource specified through the name parameter is exported to Oracle Database as
a resource schema object in the schema specified through the schenma parameter. If the
schema is not specified then the current schema is used. The resource can be exported
into either a CLOB object or BLOB object.

A.13 loadjava

PROCEDURE | oadj ava(options VARCHAR?2)
PROCEDURE | oadj ava(options VARCHAR2, resol ver VARCHAR2)
PROCEDURE | oadj ava(options VARCHAR2, resolver VARCHAR2, status NUMBER)

Enable you to load classes in to the database using a call, rather than through the
| oadj ava command-line tool. You can call this procedure within your Java
application as follows:

CALL dbns_j ava. | oadjava('... options..."');

The options are identical to those specified on the command line. Each option should
be separated by a space. Do not separate the options with a comma. The only
exception to this is the | oadj ava -resol ver option, which contains spaces. For -

r esol ver, specify all other options first, separate these options by a comma, and then
specify the - r esol ver options, as follows:

CALL dbns_java.loadjava('... options...", 'resolver_options');

A-4 Oracle Database Java Developer's Guide

dropjava

Do not specify the - t hi n, - oci , - user, and - passwor d options, because they relate
to the database connection. The output is directed to Syst em er r . The output
typically goes to a trace file, but can be redirected.

See Also:

"The loadjava Tool (page 12-6)"

A.14 dropjava

PROCEDURE dr opj ava(options VARCHAR?2)

Enables you to drop classes within the database using a call, rather than through the
dr opj ava command-line tool. You can call this procedure within your Java
application as follows:

CALL dbns_java.dropjava('... options...");

See Also:

"The dropjava Tool (page 12-18)"

A.15 grant_permission

PROCEDURE grant _per i ssi on(grant ee VARCHAR2, permission_type VARCHAR?,
per m ssi on_nane VARCHARZ,
perm ssion_action VARCHAR2)

The result of a call to gr ant _per mi ssi on is an active row in the policy table
granting the permission as specified by per m ssi on_t ype, per m ssi on_nane, and
per m ssi on_acti on to gr ant ee. If an enabled row matching these parameters
already exists, then the table is unmodified. If the row exists but is disabled, then it is
enabled. If no matching row exists, then one row is inserted. Parameter descriptions:

e grant ee is the name of a schema or role

e permi ssion_type is the fully qualified name of a class that extends
java.l ang. security. Perm ssion

e perm ssi on_nane is the name of the Permission

e perm ssion_action is the action of the Permission

See Also:

"Fine-Grain Definition for Each Permission (page 10-5)"

A.16 grant_permission

PROCEDURE grant _per ni ssi on(grant ee VARCHAR2, permi ssion_type VARCHAR?,
per m ssi on_name VARCHAR2,
perm ssion_acti on VARCHAR2, key OUT NUMBER)

DBMS_JAVA Package A-5

restrict_permission

Adds a new policy table row granting the permission as determined by the
parameters.

Parameter descriptions:
e grant ee is the name of a schema or role

e permi ssion_type is the fully qualified name of a class that extends
java.l ang. security. Perm ssion

e perm ssi on_nane is the name of the Permission
e perm ssion_action is the action of the Permission

¢ Kkey is the key of the newly inserted row that grants the Permission. This value is
-1, if an error occurs.

See Also:

"Fine-Grain Definition for Each Permission (page 10-5)"

A.17 restrict_permission

PROCEDURE restrict_perm ssion(grantee VARCHAR2, pernission_type VARCHARZ,
perm ssion_name VARCHARZ,
perm ssion_acti on VARCHAR2)

Results in an active row in the policy table restricting the permission as specified by
per mi ssi on_t ype, per m ssi on_namne, and per m ssi on_acti on to gr ant ee. If
a restricting row matching these parameters already exists then the table is
unmodified. If no matching row exists then one is inserted.

Parameter descriptions:
e grant ee is the name of a schema or role

e permi ssion_type is the fully qualified name of a class that extends
j ava. |l ang. security. Perm ssion

e perm ssi on_nane is the name of the Permission

e perm ssion_action is the action of the Permission

See Also:

"Fine-Grain Definition for Each Permission (page 10-5)"

A.18 restrict_permission
PROCEDURE restrict_permi ssion(grantee VARCHAR2, pernission_type VARCHARZ,

per m ssion_name VARCHARZ,
pernmi ssion_action VARCHAR2, key OUT NUMBER)

Adds a new policy table row restricting the permission as determined by the
parameters.

A-6 Oracle Database Java Developer's Guide

grant_policy_permission

Parameter descriptions:
e grant ee is the name of a schema or role

e permi ssion_type is the fully qualified name of a class that extends
java.l ang. security. Perm ssion

e perm ssi on_nane is the name of the Permission
e perm ssion_action is the action of the Permission

* Kkey is the key of the newly inserted row that grants the Permission. This value is
-1, if an error occurs.

See Also:

"Fine-Grain Definition for Each Permission (page 10-5)"

A.19 grant_policy_permission

PROCEDURE grant _pol i cy_perm ssion(grantee VARCHAR2, pernission_schema VARCHARZ,
perm ssion_type VARCHARZ,
per mi ssi on_name VARCHAR?)

A specialized version of the gr ant _per i ssi on(gr ant ee VARCHAR2,
per m ssi on_type VARCHAR2, permi ssion_nanme VARCHAR2,

per m ssion_acti on VARCHAR2) procedure for granting

Pol i cyTabl ePer mi ssi on permissions.

Parameter descriptions:
e grant ee is the name of a schema or role
e permi ssi on_schema is the schema of the permission

e permi ssion_type is the fully qualified name of a class that extends
java.l ang. security. Perm ssion

e permi ssi on_nare is the name of the Permission, which can be a glob asterisk

()

See Also:

"Acquiring Administrative Permission to Update Policy Table (page 10-9)"

A.20 grant_policy_permission

PROCEDURE grant _pol i cy_perm ssion(grantee VARCHAR2, pernission_schema VARCHAR?,
perm ssion_type VARCHARZ,
perni ssion_nane VARCHAR2, key OUT NUMVBER)

A specialized version of the gr ant _per mi ssi on(gr ant ee VARCHARZ,

permi ssi on_type VARCHAR2, perni ssion_nane VARCHARZ?,

perm ssion_action VARCHAR2, key OUT NUMBER) procedure for granting
Pol i cyTabl ePer mi ssi on permissions. Parameter descriptions:

DBMS_JAVA Package A-7

revoke_permission

e grant ee is the name of a schema or role
e perm ssi on_schema is the schema of the permission

* permi ssion_type is the fully qualified name of a class that extends
java.l ang. security. Perm ssion

e pernissi on_nare is the name of the Permission, which can be a glob asterisk

()

* key is the key of the newly inserted row that grants the Permission. This value is
-1, if an error occurs.

See Also:

"Acquiring Administrative Permission to Update Policy Table (page 10-9)"

A.21 revoke_permission

PROCEDURE r evoke_per ni ssi on(permi ssion_schema VARCHAR2, pernission_type VARCHARZ,
per m ssi on_name VARCHAR2,
perm ssion_action VARCHAR?)

Disables every active permission in the policy table that matches the parameters. The
result is the same as calling the "disable_permission (page A-8)" procedure on every
matching row. The rows are not deleted and kept in the table and can be activated by a
call to "grant_permission (page A-5)" procedure with parameters matching those in
the r evoke_per ni ssi on procedure.

Parameter descriptions:
e perm ssion_schena is the name of a schema or role

e permni ssion_type is the fully qualified name of a class that extends
java.l ang. security. Perm ssion

e perm ssi on_nane is the name of the Permission

e perm ssion_action is the action of the Permission

See Also:

"Enabling or Disabling Permissions (page 10-13)"

A.22 disable_permission

PROCEDURE di sabl e_per m ssi on(key NUVBER)

Disables existing policy table row matching the specified key. The row remains in the
table as an | NACTI VE row. No error is reported if the key does not identify a row. The
di sabl e_per m ssi on procedure checks user permissions for policy table access and
may throw a Secur it yExcepti on.

A-8 Oracle Database Java Developer's Guide

enable_permission

See Also:

"Enabling or Disabling Permissions (page 10-13)"

A.23 enable_permission
PROCEDURE enabl e_per ni ssi on(key NUMBER)

Enables the existing policy table row matching the specified key. No error is reported
if the key does not identify a row. The enabl e_per mi ssi on procedure checks user
permissions for policy table access and may throw a Securi t yExcepti on.

See Also:

"Enabling or Disabling Permissions (page 10-13)"

A.24 delete_permission

PROCEDURE del et e_per ni ssi on(key NUMBER)

Removes the existing policy table row matching the specified key. Before deleting the
row, you must disable it as mentioned in "disable_permission (page A-8)". The

del et e_per mi ssi on procedure has no effect if the row is still active or if key
matches no rows.

See Also:

"Enabling or Disabling Permissions (page 10-13)"

A.25 set_preference

PROCEDURE set _preference(user VARCHAR2, type VARCHAR2, abspath VARCHAR2, key
VARCHAR?, val ue VARCHAR?)

Inserts or updates a row in the SYS: j ava$pr ef s$ table as follows:
CALL dbns_java.set_preference(' HR, 'U, '/ny/package/ nethod/three', 'w ndowsize',
'22:32');

The user parameter specifies the name of the schema to which the preference should
be attached. If the logged in schema is not SYS, then user must specify the current
logged in schema or the | NSERT will fail. The t ype parameter can take either the
value U, indicating user preference, or S, indicating system preference. The abspat h
parameter specifies the absolute path for the preference. key is the preference key
used for the lookup, and val ue is the value of the preference key.

A.26 runjava
FUNCTI ON runj ava(cnudl i ne VARCHAR2) RETURN VARCHAR2

Takes the Java command line as its only argument and runs it in Oracle JVM.

DBMS_JAVA Package A-9

runjava_in_current_session

See Also:

"About Using the Command-Line Interface (page 3-8)"

A.27 runjava_in_current_session
FUNCTI ON runj ava_i n_current _session(cndl i ne VARCHAR2) RETURN VARCHAR2

Same as the r unj ava function, except that it does not clear Java state remaining from
previous use of Java in the session, prior to executing the current command line.

See Also:

"About Using the Command-Line Interface (page 3-8)"

A.28 set_property

FUNCTI ON set _property(name VARCHAR2, val ue VARCHAR2) RETURN VARCHAR2

Establishes a value for a system property that is then used for the duration of the
current RDBMS session, whenever a Java session is initialized.

Note:

In order to execute the SET_PROPERTY function, a user must have write
permission on SYS: j ava. uti | . PropertyPerm ssi on for the property
name. You can grant this permission using the following command:

call dbns_j ava. grant _permi ssion('<user_name>',
"SYS:java.util.PropertyPermssion', '<property name>, 'wite');

See Also:

"About Setting System Properties (page 4-4)"

A.29 get_property

FUNCTI ON get _property(name VARCHAR2) RETURN VARCHAR?

Returns any value previously established by set _property.

See Also:

"About Setting System Properties (page 4-4)"

A.30 remove_property
FUNCTI ON renove_property(name VARCHAR2) RETURN VARCHAR2

A-10 Oracle Database Java Developer's Guide

show_property

Removes any value previously established by set _property.

Note:

In order to execute the r enbve_pr opert y function, a user must have write
permission on SYS: j ava. uti | . PropertyPerni ssi on for the property
name. You can grant this permission using the following command:

call dbns_j ava. grant _permi ssion(' <user_name>',
"SYS:java.util.PropertyPermssion', '<property name>, 'wite');

See Also:

"About Setting System Properties (page 4-4)"

A.31 show_property

FUNCTI ON show_property(name VARCHAR2) RETURN VARCHAR2

Displays a message of the form name = val ue for the input name, or for all
established property bindings, if name is null.

See Also:

"About Setting System Properties (page 4-4)"

A.32 set_output_to_sql

FUNCTI ON set _out put _to_sql (id VARCHARZ,
stm VARCHARZ,

bi ndi ngs VARCHAR?,

no_new ine_stnmt VARCHAR2 default null,
no_new i ne_bi ndi ngs VARCHAR2 default null,
new ine_only_stnm VARCHAR2 default null,
new i ne_only_bindi ngs VARCHAR2 default null,
maxi mum | i ne_segnent _| ength NUMBER defaul t O,
al l ow_repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,

fromstderr NUMBER default 1,

i ncl ude_new i nes NUMBER default 0,

eager NUMBER default 0) RETURN VARCHAR2

Defines a named output specification that constitutes an instruction for executing a
SQL statement, whenever output to the default Syst em out and System err
streams occurs.

Valid commands for SQL statement arguments start with one of the following case-
insensitive keywords, followed by a space or tab:

e SELECT
e | NSERT
e DELETE

DBMS_JAVA Package A-11

remove_output_to_sql

e UPDATE
e CALL
See Also:

"About Redirecting Output on the Server (page 3-12)"

A.33 remove_output_to_sql
FUNCTI ON renove_out put _to_sql (id VARCHAR2) RETURN VARCHAR2

Deletes a specification created by set _out put _t o_sql .

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.34 enable_output_to_sql

FUNCTI ON enabl e_out put _to_sql (id VARCHAR2) RETURN VARCHAR2

Reenables a specification created by set _out put _t o_sql and subsequently disabled
by di sabl e_out put _to_sql .

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.35 disable_output_to_sql

FUNCTI ON di sabl e_out put _to_sqgl (id VARCHAR2) RETURN VARCHAR2

Disables a specification created by set _out put _t o_sql .

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.36 query_output_to_sql

FUNCTI ON query_output _to_sqgl (id VARCHAR2) RETURN VARCHAR2

Returns a message describing a specification created by set _out put _t o_sql .

See Also:

"About Redirecting Output on the Server (page 3-12)"

A-12 Oracle Database Java Developer's Guide

set_output_to_java

A.37 set_output_to_java

FUNCTI ON set _output _to_java (id VARCHAR?,

cl ass_nanme VARCHARZ,

cl ass_schema VARCHARZ,

met hod VARCHAR2,

bi ndi ngs VARCHAR?,

no_new i ne_net hod VARCHAR2 default null,
no_new i ne_bi ndi ngs VARCHAR2 default null,

new i ne_only_method VARCHAR2 default null,

new i ne_only_bindi ngs VARCHAR2 default null,
maxi mum | i ne_segnent _| engt h NUMBER defaul t 0,
al l ow_repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,

fromstderr NUMBER default 1,

i ncl ude_new i nes NUMBER default 0,

eager NUMBER default O,
initialization_statement VARCHAR2 default null,
finalization_statement VARCHAR2 default null)RETURN VARCHAR2

Defines a named output specification that constitutes an instruction for executing a
Java method whenever output to the default Syst em out and Syst em err streams
occurs.

Valid commands for SQL statement arguments start with one of the following case-
insensitive keywords, followed by a space or tab:

e SELECT
e | NSERT
e DELETE
e UPDATE
e CALL
See Also:

"About Redirecting Output on the Server (page 3-12)"

A.38 remove_output_to_java

FUNCTI ON renove_output _to_java (id VARCHAR2) RETURN VARCHAR2

Deletes a specification created by set _out put _t o_j ava.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.39 enable_output_to_java

FUNCTI ON enabl e_out put _to_java (id VARCHAR2) RETURN VARCHAR2

DBMS_JAVA Package A-13

disable_output_to_java

Reenables a specification created by set _out put _t o_j ava and subsequently
disabled by di sabl e_out put _t o_j ava.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.40 disable_output_to_java

FUNCTI ON di sabl e_out put _to_java (id VARCHAR2) RETURN VARCHAR2

Disables a specification created by set _out put _t o_j ava.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.41 query_output_to_java
FUNCTI ON query_output _to_java (id VARCHAR2) RETURN VARCHAR2

Returns a message describing a specification created by set _out put _t o_j ava.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.42 set_output_to_file

FUNCTI ON set _output _to file (id VARCHAR?Z,
file_path VARCHAR?,

al | ow_repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,

fromstderr NUMBER default 1) RETURN VARCHAR2

Defines a named output specification that constitutes an instruction to capture any
output sent to the default Syst em out and

System err streams and append it to a specified file.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.43 remove_output_to_file

FUNCTI ON renove_output _to file (id VARCHAR2) RETURN VARCHAR2

Deletes a specification created by set _out put _to_fil e.

A-14 Oracle Database Java Developer's Guide

enable_output_to_file

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.44 enable_output_to_file

FUNCTI ON enabl e_output _to file (id VARCHAR2) RETURN VARCHAR2

Reenables a specification created by set _out put _t o_fi | e and subsequently
disabled by di sabl e_out put _to_file.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.45 disable_output_to_file

FUNCTI ON di sabl e_output _to_file (id VARCHAR2) RETURN VARCHAR2

Disables a specification created by set _out put _to_fil e.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.46 query_output_to_file

FUNCTI ON query_output _to file (id VARCHAR2) RETURN VARCHAR2

Returns a message describing a specification created by set _out put _to_fil e.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.47 enable_output_to_trc

PROCEDURE enabl e_out put _to_trc

Reenables printing the output to Syst em out and System err inthe. trc file that
was disabled by the di sabl e_out put _t o_t r ¢ procedure.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.48 disable_output_to_trc

PROCEDURE di sabl e_output _to_trc

DBMS_JAVA Package A-15

query_output_to_trc

Prevents output to Syst em out and Syst em err from appearing in the . t r ¢ file.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.49 query_output_to_trc

FUNCTI ON query_out put _to_trc RETURN VARCHAR2

Returns a value indicating whether printing output to Syst em out and System err
in the . t r ¢ file is currently enabled.

See Also:

"About Redirecting Output on the Server (page 3-12)"

A.50 endsession

FUNCTI ON endsessi on RETURN VARCHAR?2

Clears any Java session state remaining from previous execution of Java in the current
RDBMS session.

See Also:

"Two-Tier Duration for Java Session State (page 4-4)"

A.51 endsession_and_ related_state

FUNCTI ON endsession_and rel ated state RETURN VARCHAR2

Clears any Java session state remaining from previous execution of Java in the current
RDBMS session and all supporting data related to running Java.

See Also:

"Two-Tier Duration for Java Session State (page 4-4)"

A.52 set_native_compiler_option

PROCEDURE set _native_conpil er_option(optionName VARCHARZ,
val ue VARCHAR?)

Sets a native-compiler option to the specified value for the current schema.

See Also:

"Oracle JVM Just-in-Time Compiler (JIT) (page 9-1)"

A-16 Oracle Database Java Developer's Guide

unset_native_compiler_option

A.53 unset_native_compiler_option

PROCEDURE unset _native_conpi |l er _option(opti onNane VARCHAR?,
val ue VARCHAR?)

Unsets a native-compiler option/value pair for the current schema.

See Also:

"Oracle JVM Just-in-Time Compiler (JIT) (page 9-1)"

A.54 compile_class
FUNCTI ON conpi | e_cl ass(cl assname VARCHAR2) RETURN NUMBER

Compiles all methods defined by the class that is identified by classname in the current
schema.

See Also:
"Oracle JVM Just-in-Time Compiler (JIT) (page 9-1)"

A.55 uncompile_class

FUNCTI ON unconpi | e_cl ass(cl assnanme VARCHAR2,
permanent p NUMBER default 0) RETURN NUMBER

Uncompiles all methods defined by the class that is identified by classname in the
current schema.

See Also:

"Oracle JVM Just-in-Time Compiler (JIT) (page 9-1)"

A.56 compile_method

FUNCTI ON conpi | e_net hod(cl assname VARCHAR2,
met hodnane VARCHAR?,
met hodsi g VARCHAR2) RETURN NUMBER

Compiles the method specified by name and Java type signatures defined by the class,
which is identified by classname in the current schema.

See Also:
"Oracle JVM Just-in-Time Compiler (JIT) (page 9-1)"

DBMS_JAVA Package A-17

uncompile_method

A.57 uncompile_method

FUNCTI ON unconpi | e_net hod(cl assnane VARCHAR?,
met hodname VARCHAR2,

met hodsi g VARCHAR?,

permanent p NUMBER default 0) RETURN NUMBER

Uncompiles the method specified by the name and Java type signatures defined by the
class that is identified by classname in the current schema.

See Also:

"Oracle JVM Just-in-Time Compiler (JIT) (page 9-1)"

A.58 start_jmx_agent

PROCEDURE start_j mx_agent (port VARCHAR2 default NULL,
ss| VARCHAR2 default NULL,
auth VARCHAR2 default NULL)

Starts the JMX agent in a specific session. Generally, the agent remains active for the
duration of the session.

See Also:

"Managing Your Applications Using JMX (page 2-33)"

A.59 set_runtime_exec_credentials

PROCEDURE set _runtime_exec_credential s(dbuser VARCHAR?,
osuser VARCHARZ,
ospass VARCHAR?2)

where, dbuser is the name of a database user or a schema name and osuser,
ospass are OS account credentials.

Associates the database user/schema dbuser with the osuser/ ospass operating
system (OS) credential pair. This association is encrypted and stored in a table owned
by the SYS user. Once the new and valid association is established, every new OS
process forked by the j ava. | ang. Runt i me. exec methods or every

ProceessBui | der invoked by dbuser to run an OS command runs as the UID
osuser, and not as the OS ID of the Oracle process. That is, the UID bits of the forked
process are set to UID osuser .

A-18 Oracle Database Java Developer's Guide

set_runtime_exec_credentials

Note:

DBAs and security administrators can use this procedure to tighten security of
Java applications deployed to Oracle Database. By specifying lesser-privileged
accounts, a DBA can limit the power and access rights of spawned processes
as appropriate. You must be the SYS user to use the
set_runtime_exec_credenti al s procedure, otherwise the ORA- 01031:

i nsufficient privileges erroris raised. Use of invalid account
credentials results in an | OExcept i on, when a new process is created.

Following examples show how to use this procedure:

Example 1
The following command binds user/schema DBUSER to credentials osuser /ospass:

dbns_j ava. set _runtinme_exec_credential s(' DBUSER , 'osuser', 'ospass');

Example 2

Either of the following commands unbinds the association of DBUSER and credentials
osuser /ospass:

dbns_j ava. set _runtine_exec_credential s(' DBUSER, '', '');

dbns_j ava. set _runtime_exec_credential s(' DBUSER , null, null);

Note:

To use the set _runti me_exec_credenti al s procedure, you must
configure the Oracle j ssu facility to setuid r oot during oracle product
installation, otherwise the pr ocess spawn via jssu failed...
IOException may be raised at process creation time.

See Also:

"Secure Use of Runtime.exec Functionality in Oracle Database (page 10-23)"

DBMS_JAVA Package A-19

set_runtime_exec_credentials

A-20 Java Developer's Guide

B

Classpath Extensions and User
Classloaded Metadata

This section provides a description of the extensions to the - cl asspat h search path
and User Classloaded Metadata.

B.1 Classpath Extensions

This section provides a description of the extensions to the - ¢l asspat h search path
and j server URL protocol syntaxes that allow specification of database resident
objects and byte sets in search paths used by the command-line interface.

B.1.1 jserverQuotedClassPathTermPrefix

When a classpath term begins with the j ser ver Quot edCl assPat hTer nPref i x
string, it extends through the next occurrence of the string, regardless of the

Fi | e. pat hSepar at or characters it may contain. The actual value of this string is
given by the system property j server . quot ed. cl asspat h. t erm prefi x. If this
property is not defined, the default valueis | | .

B.1.2 jserverURLPrefix

When a dequoted classpath term begins with the j ser ver URLPr ef i x string, the rest
of the term is treated as a URL. The value of this string is given by the system property
jserver.url.in.classpath. prefix. If this valueis hul | , any quoted term
that does not begin with one of the following three prefixes, is treated as a URL:

e jserver Speci al TokenPrefi x, if the value is set
e JSERVER CP

e JSERVER SCHEMAC

Note:

A quoted term is one that begins and ends with the string that is the value of
j server Quot edCl assPat hTer nPref i x. A dequoted term is either the
whole original term if it is not quoted, or the part of a quoted term between
the beginning and ending occurrences of

j server Quot edCl assPat hTer nPrefi x.

B.1.3 jserverSpecialTokenPrefix

The value of the j ser ver Speci al TokenPr ef i x string is given by the system
property j server. speci al t oken. i n. cl asspat h. prefi x. If this value is not

Classpath Extensions and User Classloaded Metadata B-1

Classpath Extensions

nul |, then the prefixes JSERVER _CP and JSERVER_SCHEMAC are recognized only
when preceded by this string.

See Also:

"JSERVER_CP (page B-2)" and "JSERVER_SCHEMACc (page B-2)"

B.1.4 JSERVER_CP

A classpath term beginning with the literal substring " JSERVER_CP" is converted to a
URL by replacing JSERVER CP with j server:/ CP.

B.1.5 JSERVER_SCHEMAc

A classpath term beginning with the literal substring " JSERVER_SCHEMAC" is
converted to a URL by replacing JSERVER_SCHEMAc with j server : / CPcSCHEMAC.
Here ¢ can be any character, but is typically / . This means that a term of the form
JSERVER_SCHEMAC + <remai ni ng string>istreated as a prescription for
looking for shared System classloaded classes and resources in the schema identified
by <remai ni ng string>. For example, the term JSERVER _SCHEMA HRis
equivalent toj server :/ CP/ SCHEMY HRand it instructs to look for shared classes
and resources in the schema named HR

B.1.6 jserver:/CP general syntax

A URL beginning with j ser ver : / CP is meaningful only as a classpath term. The first
character following j server : / CPis used as the token separator for the remainder of
the string. This is typically the character / . The subsequent tokens are the following:

® The possible values of the first token are JAR, RESOURCE, or SHARED_DATA,
where RESOURCE indicates a Java resource object, SHARED_DATA indicates a
Java shared data object, and JAR indicates a database resident JAR object. This
token is optional and all of the values are case-insensitive. If one of these is
present, the URL is called a JAR specifier. Otherwise, it is called a SCHEMA
specifier.

® The value of the second token is PRIVATE. This is an optional token and is case-
insensitive.

¢ The value of the third token is SCHEMA. This is a required token and is case-
insensitive.

® The fourth token is a required token, which is interpreted as a schema name.

¢ The fifth token is required for a JAR specifier and prohibited for a SCHEMA
specifier. It is interpreted as the name of an object in the schema identified by the
fourth token, if present.

Functionally, a classpath term is used to look for an object that matches a class or
resource name that is being searched for. In the case of a SCHEMA specifier, the object
is looked for in the indicated schema. In the case of a JAR specifier, a particular object
in the schema is identified by the fifth token in the URL. This object is treated as a JAR
and the searched for object is looked for by name, within that JAR. In the case of
looking for a class within a database resident JAR, this may mean finding the class as a
class object in the schema. Otherwise, it means finding the search object in the actual
bytes of the JAR object.

B-2 Oracle Database Java Developer's Guide

User Classloaded Metadata

The searched for object is a database Java class object, if it meets the following
conditions:

e The search name endsin . cl ass

e the URL is either a SCHEMA specifier or a JAR specifier for a database resident
JAR

Such a class object may be:

¢ Loaded as a shared system classloaded class. This is done if the optional second
token PRIVATE is not present.

¢ Interpreted as a set of bytecodes and loaded by the def i neCl ass method as a
private user classloaded class. This is done if the optional second token PRIVATE
is present.

Note:

Classes loaded from classpath terms not beginning with the jserver URL
marker are always private, user classloaded classes.

B.2 User Classloaded Metadata

Starting from 11g release 1 (11.1), there is a new system table created in the following
manner inj avavniinstal | /initjvma. sql during database creation and
upgrade:

create table java$jvndrunti ne$paraneters (owner# nunber not null,flags nunber);
create uni que index java$jvnsrunti me$paranmeters$i on java$j vndruntime
$par anet er s(owner #) ;

This table is removed during downgrade by j avavm i nstal I / rnj vm sql . If you
want to share private class metadata and have DBA privileges, then you can populate
this table manually. The rule is that if there is a row matching your owner ID, then the
flag value of this row is bitwise anded with the flag value from the row with owner# =
-1, if any. If none of these previously mentioned rows exist, then the bit set in the
result is -1, that is, all bits set. If bit 0 (1<<0) is set in the result, then your session
attempts to share existing shared private metadata. If bit 1 (1<<1) is set in the result,
then the session creates shared metadata when existing shared metadata is not found.
By default, there is no row in the table. So, all sessions both use and create shared
private metadata.

Classpath Extensions and User Classloaded Metadata B-3

User Classloaded Metadata

B-4 Java Developer's Guide

Symbols

.class files, 2-4, 2-15, 2-16
java files, 2-4, 2-15
.properties files, 2-4

.ser files, 2-4

.sqlj files, 2-4, 2-15

A

act method, 2-55, 2-56
application
compiling, 2-6
developing, 8-1
development, 2-1
executing in a session, 2-1
execution control, 2-3
execution rights, 2-19
invoking, 3-1
running on the server, 3-12
threading, 2-51
attributes
declaring, 6-14
authentication
mechanisms, 10-23
AUTHID clause, 6-7, 6-11, 6-14

B

BasicPermission, 10-10
body
package, 6-11
SQL object type, 6-13
bytecode
defined, 1-6
definition, 1-19
verifier, 2-12

C

call
definition, 1-15
managing resources across calls, 2-59

call memory, 2-3
call specification
defining, 6-2
mapping data types, 6-3
object type, 6-13
packaged, 6-11
top-level, 6-7
Callback class
act method, 2-55
calss
loader, 1-19
class
auditing, 2-23
definition, 1-2
dynamic loading, 1-14
execution, 2-3
fields, 1-2
hierarchy, 1-8
inheritance, 1-8
interpretation, 2-3
loading, 2-3, 2-14
loading permission, 10-21
marking valid, 2-10
methods, 1-2
name, 2-25
publish, 2-23, 6-1
resolving dependencies, 2-10
resolving reference, 2-10
schema object, 2-3, 2-10, 2-15, 2-16
shortened name, 2-25
single inheritance, 1-4
Class interface
forName method, 2-26
class schema object, 2-15, 2-16, 12-1, 12-3
ClassForName
lookupClass method, 2-29
classForNameAndSchema method, 2-28
client
install JDK, 4-3
set up environment variables, 4-3
setup, 4-3
compiling
error messages, 2-7, 12-4

Index

Index-1

compiling (continued)

options, 2-7, 12-4

run time, 2-6, 2-7
configuration

JVM, 4-2

performance, 9-4
connection

security, 10-1
constructor methods, 6-15
context

run-time, 5-1

stored procedures, 5-1
CREATE JAVA statement, 5-5

D
data confidentiality, 10-1
data types
mapping, 6-3
database
privileges, 10-2
schema plan, 8-1
trigger, 7-4
triggers, 5-2
database triggers

calling Java, 7-4

DBA_JAVA_POLICY view, 10-14

DBMS_JAVA package
compile_class, A-17
compile_method, A-17
delete_permission method, 10-14, A-9
derivedFrom method, A-2
disable_output_to_file, A-15
disable_output_to_java, A-14
disable_output_to_sql, A-12
disable_output_to_trc, A-15
disable_permission method, 10-14, A-8§
dropjava method, A-5
enable_output_to_file, A-15
enable_output_to_java, A-13
enable_output_to_sql, A-12
enable_output_to_trc, A-15
enable_permission method, 10-14, A-9
endsession, A-16
endsession_and_related_state, A-16
export_class method, A-4
export_resource method, A-4
export_source method, A-3
fixed_in_instance method, A-3
get property, A-10
get_compiler_option method, A-1
grant_permission method, 10-6, A-5

grant_policy_permission method, 10-9, 10-11,

A-7
loadjava method, A-4
longname method, 2-22, 2-26, A-1

Index-2

DBMS_JAVA package (continued)
modifying permissions, 10-14

modifying PolicyTable permissions, 10-6, 10-9

query_output_to_file, A-15
query_output_to_sql, A-12
query_output_to_trc, A-16
remove property, A-10
remove_output_to_file, A-14
remove_output_to_java, A-13
remove_output_to_sql, A-12
reset_compiler_option method, A-2
resolver method, A-2
restrict_permission method, 10-7, A-6
revoke_permission method, 10-14, A-8
runjava, A-9
runjava_in_current_session, A-10
set property, A-10
set_compiler_option method, A-2
set_native_compiler_option, A-16
set_output method, A-3
set_output_to_file, A-14
set_output_to_java, A-13
set_output_to_sql, A-11
set_preference method, A-9
setting permissions, 10-4
shortname method, 2-22, 2-26, A-1
show property, A-11
start_jmx_agent, A-18
uncompile_class, A-17
uncompile_method, A-18
unset_native_compiler_option, A-17
DBMS_JAVA query_output_to_java, A-14
DBMS_OUTPUT package, A-3

Dbms]ava class see DBMS_JAVA package, 4-2

deadlock, 2-52
DeadlockError exception, 2-52
debugging
Java stored procedures, 5-7
permissions, 10-20
default java.security resource, 10-21
definer rights, 2-20
delete method, 10-14
delete_permission method, A-9
derivedFrom method, A-2
DETERMINISTIC hint, 6-8
Directory Context, 11-3
disable method, 10-14
disable_permission method, A-8
dropjava method, A-5
dropjava tool, 2-16, 12-18

E

ease of use, 5-3
echo command, 12-26
enable method, 10-14

enable_permission method, A-9
encapsulation, 1-4
end-of-call Migration, 2-54
EndOfCallRegistry class
registerCallback method, 2-55
errors
compilation, 2-7
exception
DeadlockError, 2-52
how Oracle JVM handles, 7-10
LimboError, 2-52
exit command, 12-26
exitCall method, 2-52
export_class method, A-4
export_resource method, A-4
export_source method, A-3

F

fields

definition, 1-2

types of, 1-2
file names

dropjava tool, 12-21

loadjava tool, 12-13
files

lifetime, 2-59
finalizers, 2-32
fixed_in_instance method, A-3
footprint, 1-12, 2-2
foreign key, 8-2
forName method, 2-26
full name, Java, 2-5
functions, 5-2

G

garbage collection
managing resources, 2-30
misuse, 2-32
garbage collectoion
purpose, 2-32
get_compiler_option method, 2-8, A-1
grant method, 10-7
grant_permission method, 10-6, A-5

grant_policy_permission method, 10-9, A-7

granting permissions, 10-4
grantPolicyPermission method, 10-9
graphical user interface see GUI, 1-17
GUIL, 1-17,2-25

H

help command, 12-26

inheritance, 1-3, 1-4
installation, 4-1
integrated development environment (IDE), 1-17
integrity, 10-1

interface, 1-4

internal JDBC driver, 1-20
interoperability, 5-4
interpreter, 1-19

J

J2SE

Java

Java

java
Java

Java Database Connectivity see JDBC, 1-6

Java
java

Java Language Specification see JLS, 1-2

install, 4-3

applications, 2-1, 2-14
calling from database triggers, 7-4
calling from PL/SQL, 7-8
calling from SQL DML, 7-7
calling from the top level, 7-1
calling restrictions, 7-7
checking loaded classes, 2-21
classes, 1-2

client setup, 4-2

compiling, 2-6

development environment, 2-3
development tools, 1-23
execution control, 2-3
execution in database, 5-1
execution rights, 2-19

fields, 1-2

full name, 2-5

in the database, 1-8, 2-1
invoking, 3-1

key features, 1-5

loading applications, 2-14
loading classes, 2-3

methods, 1-2

overview, 1-1
polymorphism, 1-4
publishing, 2-3, 6-1
resolving classes, 2-10

short name, 2-5

stored procedures see stored procedures, 7-1

audit

object level, 2-24

statement level, 2-23
command, 12-26
Compatibility Kit see JCK, 1-7

Development Kit see JDK, 4-3
interpreter, 2-3

Java Naming and Directory Interface see JNDI, 1-6

Java

Native Interface see JNI, 3-3

Index-3

Java session initialization, duration and entrypoints,
1-16
Java stored procedures see stored procedures, 7-1
Java virtual machine see JVM, 1-6
JAVA_ADMIN
granting permission, 10-2, 10-4, 10-9, 10-15
JAVA_ADMIN example, 10-10
java_jit_enabled, 9-1
JAVA_SOFT_SESSIONSPACE_LIMIT parameter, 9-4
JAVA$OPTIONS table, 2-7
Java2
security, 10-2
Java2 Platform, Standard Edition see Java SE, 4-3
JAVADEBUGPRIV role, 10-17
JAVASYSPRIV role, 10-17
JAVAUSERPRIV role, 10-17
JCK, 1-7
JDBC
accessing SQL, 1-22
defined, 3-3
driver, 1-19
driver types, 1-22, 3-4
drivers, 1-22
example, 3-6
security, 10-1
server-side internal driver, 1-20
JDeveloper
development environment, 1-23
JDK
install, 4-3
JIT
advantages, 9-2
overview, 9-1
JLS, 1-2,1-7
JNDI, 1-6
JNDI support
overview, 11-1
requirements
Namespace, 11-1
namespace browser, 11-5
Oracle Java Directory Service JNDI Name
Space Provider, 11-3
NI
support, 3-3
Just-in-Time Compiler see JIT, 9-1
JVM
bytecode, 1-6
configure, 4-1
defined, 1-1
garbage collection, 1-10
install, 4-1
multithreading, 1-9
responsibilities, 2-2

key

Index-4

key (continued)
foreign, 8-2
primary, 8-2

L

library manager, 1-19

LimboError exception, 2-52

loader, class, 1-19

loading
checking results, 2-16, 2-21
class, 1-14, 2-3, 2-5, 2-14
compilation option, 2-6
granting execution, 2-19
reloading classes, 2-18
restrictions, 2-17

loadjava method, A-4

loadjava tool
compiling source, 2-7, 9-8
example, 3-2, 5-6
execution rights, 2-19, 10-2
loading class, 2-14
resolution modes, 12-3
using memory, 9-4

logging, 2-13

LogManager, 2-13

longname method, 2-26, A-1

lookupClass method, 2-29

M

main method, 2-3
maintainability, 5-4
map methods, 6-15
memory

across calls, 2-32

call, 2-3

Java pool, 9-6

leaks, 2-32

lifetime, 2-31, 2-59

performance configuration, 9-4

session, 2-3
methods

constructor, 6-15

declaring, 6-14

map and order, 6-15

object-relational, 5-2
missing classes, 12-9
modes

parameter, 6-3
multiple inheritance, 1-4
multithreading, 1-9

N

NAME clause, 6-8

namespace, 12-22

native compilation
methods, 1-13
performance, 1-13

native Java interface, 3-10

O

object
full to short name conversion, 2-22
lifetime, 2-59
schema, 2-3
serialization, 2-29
SQL type, 5-2
table, 6-16
writing call specifications, 6-13
object-relational methods, 5-2
ObjectFactories, 11-4
OJDS
APIs and classes, 11-14
command-line tools
bind, 11-11
bindds, 11-12
bindurl, 11-13
cd, 11-7
chmod, 11-10
chown, 11-8
In, 11-9
Is, 11-7
mkdir, 11-8
mv, 11-10
pwd, 11-7
rm, 11-9
OJDS URL Support, 11-4
ojvmjava tool,
operating system
resources, 2-30
operating system resources
access, 2-31
across calls, 2-59
closing, 2-32
garbage collection, 2-32
lifetime, 2-31
managing, 2-30
overview, 2-31
performance, 9-4
Oracle Java Directory Service, 11-1
Oracle JVM
class loader, 1-19
compiler, 1-19
configuration requirements, 4-2
interpreter, 1-19
JDBC internal driver, 1-20
library manager, 1-19
main components, 1-18
SQL]J translator, 1-20

Oracle JVM (continued)

verifier, 1-20
Oracle Net Services Connection Manager, 1-9
oracle.aurora.jndi.ojds.OjdsClientContext, 11-14
oracle.aurora.jndi.ojds.OjdsInitial ContextFactory,

11-15

oracle.aurora.jndi.ojds.OjdsServerContext, 11-15
oracle.aurora.jndi.ojds.OjdsURLContext, 11-16
oracle.aurora.jndi.ojds.OjdsURLContextFactory, 11-16
order methods, 6-15
output

redirecting, 3-12, 7-2

P

package DBMS_JAVA, 4-2, 7-2
packaged call specifications, writing, 6-11
PARALLEL_ENABLE option, 6-8
parameter modes, 6-3
performance
native compilation, 1-13
permission
Oracle-specific, 10-15
types, 10-14
Permission class, 10-5, 10-6, 10-9
permissions
administrating, 10-9
assigning, 10-3, 10-4
debugging, 10-20
deleting, 10-14
granting, 10-4, 10-6
granting policy, 10-9
granting, example, 10-6
grouped into roles, 10-20
JAVADEBUGPRIV role, 10-17
JAVASYSPRIV role, 10-17
JAVAUSERPRIV role, 10-17
limiting, 10-4, 10-7
limiting, example, 10-6
PUBLIC, 10-17
restricting, 10-4, 10-7
restricting, example, 10-6
specifying policy, 10-4
SYS permission, 10-17
types, 10-14
PL/SQL
calling Java from, 7-8
packages, 6-11
policy table
managing, 10-9
modifying, 10-4
setting permissions, 10-4
viewing, 10-5
PolicyTable class
updating, 10-4
PolicyTableManager class

Index-5

PolicyTableManager class (continued)
delete method, 10-14
disable method, 10-14
enable method, 10-14

polymorphism, 1-4

primary key, 8-2

privileges
database, 10-2

procedures, 5-2

productivity, 5-3

PUBLIC permissions, 10-17

publishing
example, 3-2, 5-6

R

redirecting output, 3-12, 7-2
registerCallback method, 2-55
replication, 5-4
reset_compiler_option method, 2-8, A-2
resolver

default, 2-11

defined, 2-4, 2-5, 2-26

example, 3-2, 5-6

ignoring non-existent references, 2-11, 2-12

resolver method, A-2
resolver specification
definition, 2-10
resource schema object, 2-15, 2-16, 12-1
restrict method, 10-7

restrict_permission method, 10-6, 10-7, A-6

revoke method, 10-14
revoke_permission method, 10-14, A-8
row trigger, 7-4

run-time contexts, stored procedures, 5-1
Runtime.exec, 2-33

S

scalability, 5-4
scavenging, 1-10
security, 5-4
session

namespace, 12-22
session memory, 2-3
set_compiler_option method, 2-8, A-2
set_output method, A-3
set_preference method, A-9
SHARED_POOL_SIZE parameter, 9-4
shell commands, 12-26
short name, Java, 2-5
shortname method, A-1
single inheritance, 1-3
source schema object, 2-15, 2-16, 12-1
SQLJ

server-side translator, 1-20

Index-6

SQLJ (continued)
tarnslator, 1-20

start_jmx_agent, A-18

StateFactories, 11-4

statement trigger, 7-4

stored procedures
advantages, 5-3
calling, 7-1
defined, 1-21, 1-22
developing, 5-1, 8-1
example, 8-1
introduction, 5-1
invoking, 3-1
publishing, 6-1
steps, 5-5

T

threading

model, 1-9, 2-51
threads

across calls, 2-59

Oracle JVM, 2-31

threading in Oracle Database, 2-51
top-level call specifications, writing, 6-7
triggers

calling Java from, 7-4

database, 5-2, 7-4

row, 7-4

statement, 7-4

using Java stored procedures, 3-1, 5-5

U

user interface, 2-25
USER_JAVA_POLICY view, 10-14
USER_OBJECTS

accessing, example, 2-21

Vv

V$SGASTAT table, 9-7
variables

static, 2-3
verifier, 1-20
version

retrieving, 3-12
version command, 12-26

w

Web services
call-outs from database, 13-7
Oracle Database features, 13-8
overview, 13-1
service consumer, 13-1

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Java Developer's Guide
	Changes in Oracle Database 12c Release 2 (12.2.0.1)
	New Features
	Desupported Features

	1 Introduction to Java in Oracle Database
	1.1 Overview of Java
	1.1.1 Java and Object-Oriented Programming Terminology
	1.1.1.1 Classes
	1.1.1.2 Objects
	1.1.1.3 Inheritance
	1.1.1.4 Interfaces
	1.1.1.5 Encapsulation
	1.1.1.6 Polymorphism

	1.1.2 Key Features of the Java Language
	1.1.3 Java Virtual Machine
	1.1.4 Java Class Hierarchy

	1.2 About Using Java in Oracle Database
	1.2.1 Java and RDBMS: A Robust Combination
	1.2.2 About Multithreading
	1.2.3 Memory Spaces Management
	1.2.4 Footprint
	1.2.5 Performance of an Oracle JVM
	1.2.6 Dynamic Class Loading

	1.3 Overview of Oracle JVM
	1.3.1 Process Area
	1.3.2 Java session initialization, duration and entrypoints
	1.3.3 The GUI
	1.3.4 The IDE

	1.4 Feature List of Oracle JVM
	1.5 Main Components of Oracle JVM
	1.5.1 Library Manager
	1.5.2 Compiler
	1.5.3 Interpreter
	1.5.4 Class Loader
	1.5.5 Verifier
	1.5.6 Server-Side JDBC Internal Driver
	1.5.7 Server-Side SQLJ Translator
	1.5.8 System Classes

	1.6 Java Programming in Oracle Database
	1.6.1 Java in Database Application Development
	1.6.2 Java Programming Environment Usage
	1.6.3 Java Stored Procedures
	1.6.4 PL/SQL Integration and Oracle RDBMS Functionality
	1.6.4.1 JDBC Drivers
	1.6.4.2 SQLJ

	1.6.5 Development Tools
	1.6.6 Internet Protocol Version 6 Support

	1.7 Support for Java 8
	1.8 Introduction to Nashorn JavaScript Engine
	1.8.1 About Using Nashorn JavaScript Engine
	1.8.1.1 Loading JavaScript Code into a Schema
	1.8.1.2 How to run JavaScript in Oracle JVM
	1.8.1.2.1 Using the DBMS_JAVASCRIPT.RUN PL/SQL Procedure
	1.8.1.2.2 Using the DbmsJavaScript Java Class
	1.8.1.2.3 Using the Standard javax.script Java Package

	1.8.2 JavaScript Data Access using JDBC
	1.8.3 REST Enable Your JavaScript Application

	1.9 Memory Model for Dedicated Mode Sessions

	2 Java Applications on Oracle Database
	2.1 Database Sessions Imposed on Java Applications
	2.2 Execution Control of Java Applications
	2.3 Java Code, Binaries, and Resources Storage
	2.4 About Java Classes Loaded in the Database
	2.5 Preparing Java Class Methods for Execution
	2.5.1 Compiling Java Classes
	2.5.1.1 Compiling Source Through javac
	2.5.1.2 Compiling Source Through the loadjava Tool
	2.5.1.3 Compiling Source at Run Time
	2.5.1.4 Specifying Compiler Options
	2.5.1.4.1 Specifying Default Compiler Options
	2.5.1.4.2 Specifying Compiler Options on the Command Line
	2.5.1.4.3 Specifying Compiler Options Specified in a Database Table
	2.5.1.4.4 Details About Specifying Compiler Options Specified in the Database Table

	2.5.1.5 Recompiling Source Programs Automatically

	2.5.2 Overview of Resolving Class Dependencies
	2.5.2.1 Allowing References to Nonexistent Classes
	2.5.2.2 Bytecode Verifier

	2.5.3 Logging in Oracle JVM
	2.5.4 Overview of Loading Classes Using the loadjava Tool
	2.5.4.1 About Sharing of Metadata for User Classloaded Classes
	2.5.4.2 Defining the Same Class Twice
	2.5.4.3 About Designating Database Privileges and JVM Permissions
	2.5.4.4 About Loading JAR or ZIP Files
	2.5.4.5 Database Resident JARs

	2.5.5 Overview of Granting Execute Rights
	2.5.6 Overview of Controlling the Current User
	2.5.7 Overview of Checking Java Uploads
	2.5.8 About Publishing Java Methods Loaded in the Database
	2.5.9 Overview of Auditing Java Classes Loaded in the Database

	2.6 User Interfaces on the Server
	2.7 Shortened Class Names
	2.8 Class.forName() in Oracle Database
	2.8.1 Supply ClassLoader in Class.forName()
	2.8.2 Supply Class and Schema Names to classForNameAndSchema()
	2.8.3 Supply Class and Schema Names to lookupClass()
	2.8.4 Supply Class and Schema Names when Serializing
	2.8.5 Class.forName Example

	2.9 About Managing Your Operating System Resources
	2.9.1 Overview of Operating System Resources
	2.9.2 Garbage Collection and Operating System Resources

	2.10 About Using the Runtime.exec Functionality in Oracle Database
	2.11 Managing Your Applications Using JMX
	2.11.1 Overview of JMX
	2.11.2 Enabling and Starting JMX in a Session
	2.11.3 Setting Oracle JVM JMX Defaults and Configurability
	2.11.4 Examples of SQL calls to dbms_java.start_jmx_agent
	2.11.5 Using JConsole to Monitor and Control Oracle JVM
	2.11.5.1 Using the jconsole Command
	2.11.5.2 About Using the JConsole interface
	2.11.5.3 About Viewing Oracle JVM Summary Information
	2.11.5.4 About Monitoring Memory Consumption
	2.11.5.5 About Monitoring Thread Use
	2.11.5.6 About Monitoring Class Loading
	2.11.5.7 About Monitoring and Managing MBeans
	2.11.5.8 About Viewing VM Information
	2.11.5.9 The OracleRuntime MBean
	2.11.5.10 Memory Thresholds

	2.11.6 Important Security Notes
	2.11.7 Shared Server Limitations for JMX

	2.12 Overview of Threading in Oracle Database
	2.12.1 Thread Life Cycle
	2.12.2 System.exit(), OracleRuntime.exitSession(), and OracleRuntime.exitCall()

	2.13 Shared Servers Considerations
	2.13.1 End-of-Call Migration
	2.13.2 Oracle-Specific Support for End-of-Call Optimization
	2.13.3 The EndOfCallRegistry.registerCallback() Method
	2.13.4 The EndOfCallRegistry.runCallbacks() Method
	2.13.5 The Callback Interface
	2.13.6 The Callback.act() method
	2.13.7 Operating System Resources Affected Across Calls

	3 Calling Java Methods in Oracle Database
	3.1 Invoking Java Methods
	3.1.1 Using PL/SQL Wrappers
	3.1.2 About JNI Support
	3.1.3 About Utilizing SQLJ and JDBC with Java in the Database
	3.1.3.1 Using JDBC
	3.1.3.2 Using SQLJ
	3.1.3.3 Example Comparing JDBC and SQLJ
	3.1.3.4 SQLJ Strong Typing Paradigm
	3.1.3.5 Translating a SQLJ Program
	3.1.3.6 Interaction with PL/SQL

	3.1.4 About Using the Command-Line Interface
	3.1.5 Overview of Using the Client-Side Stub
	3.1.5.1 Using the Default Service Feature
	3.1.5.2 Testing the Default Service with a Basic Configuration

	3.2 How To Tell Whether You Are Running on the Server
	3.3 About Redirecting Output on the Server

	4 Java Installation and Configuration
	4.1 Initializing a Java-Enabled Database
	4.1.1 Configuring the Oracle JVM Option within the Oracle Database Template
	4.1.2 Modifying an Existing Oracle Database to Include Oracle JVM

	4.2 Configuring Oracle JVM
	4.3 The DBMS_JAVA Package
	4.4 Enabling the Java Client
	4.4.1 Installing Java SE on the Client
	4.4.2 Setting Up Environment Variables

	4.5 Two-Tier Duration for Java Session State
	4.6 About Setting System Properties

	5 Developing Java Stored Procedures
	5.1 Stored Procedures and Run-Time Contexts
	5.1.1 Functions and Procedures
	5.1.2 Database Triggers
	5.1.3 Object-Relational Methods

	5.2 Advantages of Stored Procedures
	5.2.1 Performance
	5.2.2 Productivity and Ease of Use
	5.2.3 Scalability
	5.2.4 Maintainability
	5.2.5 Interoperability
	5.2.6 Replication
	5.2.7 Security

	5.3 Running Java Stored Procedures
	5.3.1 Creating or Reusing the Java Classes
	5.3.2 Loading and Resolving the Java Classes
	5.3.3 Publishing the Java Classes
	5.3.4 Calling the Stored Procedures

	5.4 Debugging Java Stored Procedures
	5.4.1 Prerequisites for Debugging Java Stored Procedures
	5.4.2 Debugging Java Stored Procedures Using the jdb Debugger
	5.4.3 Debugging Java Stored Procedures Using JDeveloper

	6 Publishing Java Classes With Call Specifications
	6.1 What Are Call Specifications?
	6.2 Defining Call Specifications
	6.2.1 About Setting Parameter Modes
	6.2.2 About Mapping Data Types
	6.2.3 Using the Server-Side Internal JDBC Driver

	6.3 Writing Top-Level Call Specifications
	6.3.1 Examples

	6.4 Writing Packaged Call Specifications
	6.5 Writing Object Type Call Specifications
	6.5.1 About Attributes
	6.5.2 Declaring Methods
	6.5.2.1 Map and Order Methods
	6.5.2.2 Constructor Methods
	6.5.2.3 Examples

	7 Calling Stored Procedures
	7.1 Calling Java from the Top Level
	7.1.1 Redirecting the Output
	7.1.2 Examples of Calling Java Stored Procedures From the Top Level

	7.2 Calling Java from Database Triggers
	7.3 Calling Java from SQL DML
	7.4 Calling Java from PL/SQL
	7.5 Calling PL/SQL from Java
	7.6 How Oracle JVM Handles Exceptions

	8 Java Stored Procedures Application Example
	8.1 About Planning the Database Schema
	8.2 Creating the Database Tables
	8.3 Writing the Java Classes
	8.4 Loading the Java Classes
	8.5 Publishing the Java Classes
	8.6 Calling the Java Stored Procedures

	9 Oracle Database Java Application Performance
	9.1 Oracle JVM Just-in-Time Compiler (JIT)
	9.1.1 Overview of Oracle JVM JIT
	9.1.2 Advantages of JIT Compilation
	9.1.3 Methods Introduced in Oracle Database 11g

	9.2 About Java Memory Usage
	9.2.1 Configuring Memory Initialization Parameters
	9.2.1.1 Initializing Pool Sizes within Database Templates

	9.2.2 About Java Pool Memory
	9.2.3 Displaying Used Amounts of Java Pool Memory
	9.2.4 Correcting Out of Memory Errors
	9.2.5 Displaying Java Call and Session Heap Statistics

	10 Security for Oracle Database Java Applications
	10.1 Network Connection Security
	10.2 Database Contents and Oracle JVM Security
	10.2.1 Overview of Java 2 Security Features
	10.2.2 Overview of Setting Permissions
	10.2.2.1 Fine-Grain Definition for Each Permission
	10.2.2.1.1 Granting and Limiting Permissions
	10.2.2.1.2 Acquiring Administrative Permission to Update Policy Table
	10.2.2.1.3 Creating Permissions
	10.2.2.1.4 Enabling or Disabling Permissions
	10.2.2.1.5 About Permission Types
	10.2.2.1.6 About Initial Permission Grants

	10.2.2.2 Assigning General Permission Definition to Roles

	10.2.3 Debugging Permissions
	10.2.4 Permission for Loading Classes
	10.2.5 Customizing the Default java.security Resource

	10.3 Database Authentication Mechanisms Available with Oracle JVM
	10.4 Secure Use of Runtime.exec Functionality in Oracle Database

	11 Native Oracle JVM Support for JNDI
	11.1 Overview of Oracle JVM Support for JNDI
	11.2 Requirements for Oracle JVM Support for JNDI
	11.2.1 Namespace
	11.2.1.1 Object permissions
	11.2.1.2 Persistent Storage Tables, Indexes, and Sequences
	11.2.1.3 Initial Contexts and Permissions
	11.2.1.4 Object and Context Default Permissions

	11.2.2 Oracle Java Directory Service JNDI Name Space Provider
	11.2.2.1 Directory Context
	11.2.2.2 StateFactories
	11.2.2.3 ObjectFactories
	11.2.2.4 OJDS URL Support
	11.2.2.5 Client classpath

	11.2.3 Namespace Browser

	11.3 OJDS Command-Line Tools
	11.3.1 ls Command
	11.3.2 cd Command
	11.3.3 pwd Command
	11.3.4 chown Command
	11.3.5 mkdir Command
	11.3.6 rm Command
	11.3.7 ln Command
	11.3.8 mv Command
	11.3.9 chmod Command
	11.3.10 bind Command
	11.3.11 bindds Command
	11.3.12 bindurl Command

	11.4 OJDS APIs and Classes
	11.4.1 oracle.aurora.jndi.ojds.OjdsClientContext
	11.4.2 oracle.aurora.jndi.ojds.OjdsServerContext
	11.4.3 oracle.aurora.jndi.ojds.OjdsInitialContextFactory
	11.4.4 oracle.aurora.jndi.ojds.OjdsURLContextFactory
	11.4.5 oracle.aurora.jndi.ojds.OjdsURLContext

	12 Schema Objects and Oracle JVM Utilities
	12.1 Overview of Schema Objects
	12.2 What and When to Load
	12.3 Resolution of Schema Objects
	12.4 Compilation of Schema Objects
	12.5 The ojvmtc Tool
	12.5.1 About the ojvmtc Tool
	12.5.2 Arguments of ojvmtc Command

	12.6 The loadjava Tool
	12.6.1 loadjava Tool Syntax
	12.6.2 loadjava Tool Argument Summary
	12.6.3 loadjava Tool Argument Details

	12.7 The dropjava Tool
	12.7.1 dropjava Tool Syntax
	12.7.2 dropjava Tool Argument Summary
	12.7.3 dropjava Tool Argument Details
	12.7.4 About Dropping Resources Using dropjava Tool

	12.8 The ojvmjava Tool
	12.8.1 ojvmjava Tool Syntax
	12.8.2 ojvmjava Tool Argument Summary
	12.8.3 ojvmjava Tool Example
	12.8.4 ojvmjava Tool Functionality
	12.8.4.1 ojvmjava Tool Command-Line Options
	12.8.4.2 ojvmjava Tool Shell Commands

	13 Database Web Services
	13.1 Overview of Database Web Services
	13.2 About Using Oracle Database as Web Services Consumer
	13.2.1 About Using Oracle JVM Web Services Call-Out Utility
	13.2.1.1 Architecture of Oracle JVM Web Services Call-Out Utility
	13.2.1.2 Input to Oracle JVM Web Services Call-Out Utility
	13.2.1.3 Output of the Oracle JVM Web Services Call-Out Utility
	13.2.1.4 Calling Secure Web Service from Oracle JVM Web Services Call-Out Utility

	13.2.2 Web Service Data Sources (Virtual Table Support)
	13.2.3 Features of Oracle Database as a Web Service Consumer

	A DBMS_JAVA Package
	A.1 longname
	A.2 shortname
	A.3 get_compiler_option
	A.4 set_compiler_option
	A.5 reset_compiler_option
	A.6 resolver
	A.7 derivedFrom
	A.8 fixed_in_instance
	A.9 set_output
	A.10 export_source
	A.11 export_class
	A.12 export_resource
	A.13 loadjava
	A.14 dropjava
	A.15 grant_permission
	A.16 grant_permission
	A.17 restrict_permission
	A.18 restrict_permission
	A.19 grant_policy_permission
	A.20 grant_policy_permission
	A.21 revoke_permission
	A.22 disable_permission
	A.23 enable_permission
	A.24 delete_permission
	A.25 set_preference
	A.26 runjava
	A.27 runjava_in_current_session
	A.28 set_property
	A.29 get_property
	A.30 remove_property
	A.31 show_property
	A.32 set_output_to_sql
	A.33 remove_output_to_sql
	A.34 enable_output_to_sql
	A.35 disable_output_to_sql
	A.36 query_output_to_sql
	A.37 set_output_to_java
	A.38 remove_output_to_java
	A.39 enable_output_to_java
	A.40 disable_output_to_java
	A.41 query_output_to_java
	A.42 set_output_to_file
	A.43 remove_output_to_file
	A.44 enable_output_to_file
	A.45 disable_output_to_file
	A.46 query_output_to_file
	A.47 enable_output_to_trc
	A.48 disable_output_to_trc
	A.49 query_output_to_trc
	A.50 endsession
	A.51 endsession_and_related_state
	A.52 set_native_compiler_option
	A.53 unset_native_compiler_option
	A.54 compile_class
	A.55 uncompile_class
	A.56 compile_method
	A.57 uncompile_method
	A.58 start_jmx_agent
	A.59 set_runtime_exec_credentials

	B Classpath Extensions and User Classloaded Metadata
	B.1 Classpath Extensions
	B.1.1 jserverQuotedClassPathTermPrefix
	B.1.2 jserverURLPrefix
	B.1.3 jserverSpecialTokenPrefix
	B.1.4 JSERVER_CP
	B.1.5 JSERVER_SCHEMAc
	B.1.6 jserver:/CP general syntax

	B.2 User Classloaded Metadata

	Index

