Oracle® Text
Reference

12c Release 2 (12.2)
E49661-07

April 2017

Provides reference information for building applications with
Oracle Text.

ORACLE"

Oracle Text Reference, 12c Release 2 (12.2)

E49661-07

Copyright © 2001, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Roopesh Ashok Kumar

Contributors: Drew Adams, Edwin Balthes, Eric Belden, Rajesh Bhatiya, Mohammad Faisal, Roger Ford,
Rahul Kadwe, George Krupka, Paul Lane, Colin McGregor, Padmaja Potineni, Yiming Qi, Sanoop
Sethumadhavan, Asha Makur, Gaurav Yadav, Reema Khosla

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ...ttt XixX
BN o <) Vel <IN XiX
Documentation AcCeSSIDILILYcccvviiimiiiiiiiiiiiiiiiic e Xix
J RS F=RTe B D)ool b0 s 1<) o X 1< TR XiX
COMVEIIEIONIS ..o eeeeieieeeeeee ettt e e et e e e eeaae e e e e s e aaseeeeessaasaseeeesansasseeesesnaatseessennssseeeessnssaseesessnnnseeessssnnrees XX

Changes in This Release for Oracle Text Reference............cceinnicneeineensieseene. XXi
Changes in Oracle Text 12¢c Release 2 (12.2.0.1) c.c.oueuiurieirirririiieeireeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeenas XXi

1 Oracle Text SQL Statements and Operators

1.1 ALTERINDEX ..ottt 1-1
1.2 ALTER TABLE: Supported Partitioning Statements.............cccoovveeieniinineicee 1-19
1.3 CATSEARCH ..ottt 1-23
1.4 CONTAINS. ..ottt et b bbbt 1-30
1.5 CREATE INDEX ..ottt 1-41
1.6 CREATE SEARCH INDEX........ccoiiiiiiiiiiiiniinici e 1-64
1.7 DROP INDEXootiiiiiiiiniiiiiee ettt 1-66
1.8 MATCHES ...ttt s 1-66
1.9 MATCH_SCORE.......cooiiiiiiiitcte ittt a b 1-68
110 SCORE ...ttt bbbt 1-68

2 Oracle Text Indexing Elements

2.1 OVEIVIEW c.tieieieeeieieetesttete st et e e eeete st e se e st e s esstesseestessaessesseessesssasseaseessesssessesssesseessanseensensesnsenseensenses 2-1
2.2 Creating PreferenCes.ot 2-2
2.3 Datastore TYPEScccoviiiiiiiiiiiiiicc e 2-2
2.3.1 DIRECT_DATASTOREcoioiitieeeeeeeeeteeeettete ettt ettt et sveesaesveeae s s esaeessessaesnansaens 2-3
2.3.2 MULTI_COLUMN_DATASTORE......cccotttrtrtrtrinitnesestesteste ettt 2-3
2.3.3 DETAIL_DATASTOREoooiitieieeeeeeetee ettt ettt aesse s e saeesesnaesesnsessasnsensnens 2-7
2.3.4 FILE_DATASTORE.......cooooteotteietteteee ettt ettt ettt ettt eesae et e saeesesneeseensesseensenseens 2-9
2.3.5 URL_DATASTOREoototirtieiitieiesieetet ettt ettt ste sttt ste sttt e st et e st eseeseesessenas 2-11
2.3.6 USER_DATASTORE ..ottt sttt ettt 2-14

2.3.7 NESTED_DATASTOREcc.ccooiiriiininienneeenteenteesee sttt seenesaene 2-16

2.4 FIEET TYPES vttt 2-19
241 AUTO_FILTER ..ottt 2-19
242 NULL_FILTER ...coiioiiiiiiiiiiniie ettt 2-22
2.4.3 MAIL_FILTER.....ccooiiiiiiiiiininii i 2-22
244 USER_FILTERcccocoiiiiiiiiniiiiii s 2-26
2.4.5 PROCEDURE_FILTERccooisiiniiiiniiiimiiiiiiiiesnic s ssssssnssessans 2-29

2.5 LeXET TYPES. .ottt 2-32
2.5.1 AUTO_LEXERcooiiiiiiiiiiiieieriiiesetce et 2-33
2.52 BASIC_LEXERcoouiiiiiiiiiiiiiniiiii s 2-41
2.5.3 MULTLLEXERccccoiiiiiiiiiiiiiiiii s ssss s ssnesnais 2-49
2.5.4 CHINESE_VGRAM_LEXER........cccceosiiiiiiiiiininiiiisse s 2-52
2.5.5 CHINESE_LEXERcccceiiiniiiiiiiriiiieieiniicieisnieie et seeeans 2-52
2.5.6 JAPANESE_VGRAM_LEXERccccoeunimiiiiiiniiiininiiiciiicce e 2-53
2.5.7 JAPANESE_LEXER......ccccoviiiiiiiiiiiiiiis s 2-55
2.5.8 KOREAN_MORPH_LEXERcccoceiviiiimiiiiiiiiniiiiii s 2-56
2.5.9 USER_LEXER.......ceceiiiiiiiiiiieiiiit s 2-59
2.5.10 WORLD_LEXER........ccceosniiiiiriniiieininiicieisinicie et 2-72

2.6 WOIAList TYPe....oceieeiiicicie et 2-73
2.6.1 BASIC_WORDLISTcceoviiiiiiiiiiiiiiiisss e 2-73
2.6.2 BASIC_WORDLIST EXQMPILEcuouiuimiiimiiiiiiiiiiiciececc e 2-81

2.7 SOTAZE TYPES c.ovveiiiiciciic e 2-82
2.7.1 BASIC_STORAGEcceotiiiiiiicirtce ittt 2-83

2.8 Section GroUP TYPES ...ccuruiiiiiiciiiect e 2-92
2.8.1 Section Group Types for Creating a Section GIoupc.cccoeuvvevririnirieiiceiicsieeee, 2-92
2.8.2 Section Group Examples for HTML, XML, and JSON Enabled Documents.............. 2-93

2.9 ClaSSIfIEr TYPES ..ocveviveieiriiiicicicirecie e 2-95
2.9.1 RULE_CLASSIFIER.......ccecsioiiiiriiiieiiniicieisinisie et 2-95
2.9.2 SVM_CLASSIFIER........cccoosiiiiiiiiiiiiiici i 2-96
2.9.3 SENTIMENT_CLASSIFIER.......cccoioiiiiiimiiiiiiincsss s 2-97

210 CIUSEET TYPES...eviiiiiiiiriicicicteeeiete ettt enes 2-98
2.10.1 KMEAN_CLUSTERING........cccevtiiiiriiiieicnee st 2-99

211 SEOPLISES e 2-99
2.11.1 Multi-Language StOPLiStScoovrueieiiiicieice 2-100
2.11.2 Creating StOPLiStS.......ccviviiieieieece 2-100
2.11.3 Modifying the Default STOPLStccceueuiuiuiuiiiiiiiiciccccceccceee e 2-100

2.12 System-Defined Preferences...........cccooiiiiiiiiiininiiiii e 2-101
2.12.1 Data Storage Preferences............cooooerieiiicicieiecceeeccie e 2-101
2.12.2 Filter Preferences ...t 2-102
2.12.3 LeXer Preferences. ... 2-102
2.12.4 Section Group Preferences ... 2-103
2.12.5 Stoplist Preferences ... 2-104
2.12.6 Storage Preferences ...t 2-104

2.12.7 WOTALISt PreferICeSooivviieiiieeiieeie ettt ettt st saaeesaaeenaean 2-105

2.13 System Parameters..........ccociiiiiiiiiniiii s 2-105
2.13.1 General System Parametersccccccccuiuiiiiiiiiiiiiiiiiccccc s 2-105
2.13.2 Default Index Parameters...........cccoceuiiririiiiininiiiciiicicictireeereeee e 2-106
2.13.3 Default Policy Parameters..........cccccouoioiurueiiiicicieieicie e 2-109

2.14 Token Limitations.......cccooeiiiiiiiiiiiiiiiiiciiiic s 2-110

Oracle Text CONTAINS Query Operators

3.1 Operator Precedenceccvviiiiiiiiiiieiiiiiiiiieicciccee s 3-2
3. 1.1 Group 1 OPerators ... 3-2
3.1.2 Group 2 Operators and Characters...........c.cooiiiiiiiiiiiccces 3-3
3.1.3 Procedural Operators........coooiiiieiiiicicieiiecie e 3-3
3.1.4 Precedence EXamplesc.cccooiiiioiiiiiiiiiicic e 3-3
3.1.5 Altering Precedence ... 3-4

8.2 ABOUT ...ttt ettt ettt sttt n st nnen 3-4

3.3 ACCUMUIALE (1,) cerveertererierieienteientetest ettt ettt sttt be st st st steb e st e se b sa et e st st et st et s be e ebeneebenene 3-7

B4 AND (&) ceeveveiririeieenireete ettt ettt b et bbbt b ekt b ekttt b bt be b et be b et 3-8

3.5 Broader Term (BT, BTG, BTP, BTI)......cceoeiiiiiiieiierecietestesee ettt s 3-9

3.6 CTXFILTERCACHEcooiieieiiiieiccinenteeerenteieiettet ettt sese et s ettt sa s nene 3-11

3.7 DEFINEMERGEoooiiiiiiiiiinieiectnrteeetrte ettt ne ettt ene e 3-14

3.8 DEFINESCORE ..ottt ettt ettt ettt b ettt be ettt ese sttt bene st et ebeseneaseeenens 3-15

3.9 EQUIVALENCE (F) cueeveeeriieiinieiinieierieine ettt ettt bbb bttt ettt st ne e ne e 3-19

3100 FUZZY vttt 3-20

B11 HASPATH ..ottt ettt b ettt sttt n e 3-21

312 INPATH .ottt ettt sttt 3-23

313 IMDATA .ttt h et b bbbttt s et st b ettt b bttt nene 3-29

314 IMIINUS (5)eveveereeeeieiresietetntete ettt ettt sttt ettt sttt b bttt b ket sa ke be st st bbbttt et b et st esebene 3-31

315 MINOT ..ottt ettt ettt ettt ekt b et st bbb bt nsenebene 3-31

3.16 Narrower Term (NT, NTG, NTP, NTI)......ccoceririririnieereeereeeteteteee et e e 3-32

317 NDATA ..ottt ettt st sttt 3-34

318 NNEAR () cvoveueerieieieirietet ettt ettt ettt b et b btttk ettt ettt b ettt et bt eenene 3-36

319 NEAR2Z....c ettt sttt bbbkt sttt sttt bbbt b e 3-40

3200 NOT (%) seererereririeieeirerieietrtniete ettt sttt sttt ettt etttk et s bt sa bbbt et besemensenenene 3-41

821 OR (1)t ettt ettt 3-42

3.22 Preferred Term (PT) ...ttt ettt ettt sttt st 3-42

3.23 Related Term (RT)....ccoeereireirieinieieieieietei ettt ettt et b et ettt 3-43

324 SDATA .ottt bbbttt bbb 3-44

325 SOUNAEX (1) cuteutenieiieiieierieet ettt ettt b bbb bbb bbb et et e b et et e st et e bt e bt e bt sbesbe b ee 3-46

B.26 SEEIML (B) cvvevverrerrerieieietetietiste st e st e te st et et et este st e st e st eseeseesesseaseesasseesessessessensensessensesbesteseeseesensenseesansenes 3-47

3.27 Stored Query Expression (SQE).......ccccoeiiiiiiiiiiiiiiiiiiiiicnns 3-48

3.28 SYNONYIMN (SYN) oottt s 3-49

3.29 thIESIOLA (3) cveververerieiinieiirietrte ettt ettt e 3-49

3.30 Translation Term (TR)......ccecerieierieiereeereetereete ettt e et e ssesseesaessaessesssesseessessesssenseens 3-50

Vi

3.31 Translation Term Synonym (TRSYN)........cccooiiiiiiiiiii 3-51

3.32 Top Term (TT) e s 3-52
3.33 WEIGHE (%) e s 3-53
3.34 WILACATAS (Y0 _)ueverenterenteiinieiirtetrtetet ettt bbbttt ettt 3-54
3.35 WITHIN.....ootiietiietiieietetttettete ettt ettt ettt et e s e s ese e s e s esensesaseseseseeseneesansesansesansesensens 3-56

Special Characters in Oracle Text Queries

4.1 Grouping Characters ..ot 4-1
4.2 Escape CRaracters ... 4-1
4.3 Reserved Words and Characters ... 4-2

CTX_ADM Package

5.1 About CTX_ADM Package Procedures...........cccceeeriruiiriiiririniiiiiiereecceeeeseeeeeeeeeeeeeeeeas 5-1
5.2 MARK _FAILED ..ottt ettt ettt e eeeaeeteeteeaeeveeveeseesesesensensessensensessessessereeseeseeseas 5-1
5.3 RECOVER ..ottt ettt ettt ettt et ettt etsetseteeteeveeve et e se et easessessensessessessessessessersesestessens 5-2
54 RESET_AUTO_OPTIMIZE_STATUScooieieieieeeeeteeteeteste ettt ess st sseveese s vsevesressesaens 5-3
5.5 SET_PARAMETERccociiititiietiicteeteteetettetee ettt ettt ettt et sa et b ss b e seebeseebeseebeseebensesensesassans 5-3

CTX_ANL Package

6.1 About CTX_ANL Package Procedures..........cccccceueueururueerieerirereeiieeereeeeeeeeeeeeeeeeeeeseeeeeeeeeeeseens 6-1
6.2 ADD_DICTIONARY ...ovtiiietieeieeeeeee ettt et et et ete et etesssesaesasessssstessssnsesssensesssensesssensesssensssnsensesnes 6-1
6.3 DROP_DICTIONARY ...ttt ettt e e e et e e e e eae e et e s eae e et e seatesteeeaeeseeeeseesateseaeessnesns 6-4

CTX_CLS Package

7.1 About CTX_CLS Package Proceduresc.ccccviviiininiiiniiinininiiiiiiinnssssssssses 7-1
7.2 TRAIN ..ottt ettt ettt e et e e raesbeesaesbeesbesbeessesseessasssessaessensaessenseessesseessesseessenseas 7-1
7.3 CLUSTERING......cciecteetieiestetesteeteete e e testeeseestesseessesstessasssesseessasseessasssessasssessesssessesssessesssessesssessees 7-5
7.4 SA_TRAIN_MODELccooooieiiiiieiiiesiesteieietete st estetes e s sse st et ssessessessessessessessessessassasassessessensanes 7-8
7.5 SA_DROP_MODEL.......cotiiieiitieiecieeeecteeteete ettt ere et et e eeeae s s ete s s e beessebeesseseessenteensenseenes 7-10

CTX_DDL Package

8.1 ADD_ATTR _SECTTION.....cc.iititiitirieteieteteteteteiteiteie sttt sttt et se ettt et ettt ese e e sseseesnesbesaens 8-3
8.2 ADD_AUTO_OPTIMIZE......cccotoiniineinieeneertctrtetsiesteie sttt sttt sttt et ene 8-4
8.3 ADD_FIELD_SECTIONccctstirtiinteinteinicerteertetnieteteseereseeseseesesee et e et ste e saesessesesnesessenenne 8-5
84 ADD_IINDEX ...ttt sttt ettt sttt st st sttt ne 8-8
8.5 ADD_MDATA ...ttt e 8-10
8.6 ADD_MDATA_COLUMNcciiiititiiititcteteteteitetsie sttt sttt sttt ettt ettt saesre e nae 8-12
8.7 ADD_MDATA_SECTION....ccucctriirtiiriitetenteitntei ittt esrestssetese st bt ettt se e se s see e seesesene 8-13
8.8 ADD_NDATA_SECTIONooiotriiriiirriterinieiinrertntestssestssesesseeeseseesesesessesessesessesesseseesesessessesensns 8-14
8.9 ADD_SDATA_COLUMNooioiriiriirtiteteetretntetsre et esae et e e e seeneseene 8-15
8.10 ADD_SDATA_SECTIONocciiiiiiiiiieiieieiteenre e e 8-16
8.11 ADD_SEC_GRP_ATTR _VAL ...ooioiiieiiiiiiieteteteentettetcse ettt ettt ettt s sne e e 8-19
8.12 ADD_SPECIAL_SECTIONoouiotriiiriiieiinieiinieitteientesenresesreeesesteseste ettt sessesessesessesessesesseneene 8-20

8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46
8.47
8.48
8.49
8.50
8.51
8.52
8.53
8.54
8.55

ADD_STOPCLASS ...ttt sttt sttt be e se s neene 8-21

ADD_STOP_SECTIONcctriiiriiirieirtieerieeiisteetereetsre et esaesessesesnesessesesnesessesesneseens 8-23
ADD_STOPTHEMEooiiiiiiiee ettt 8-24
ADD_STOPWORDcooiiriiiiinieserteetectetete ettt st st ettt et ettt sae b s saea 8-25
ADD_SUB_LEXERcctetntitrietrieinicieietettntetttes ettt st be st st esae sttt s b se e b e b sessenene 8-26
ADD_ZONE_SECTIONooiiiriitrietriiierineeitntertnrestnretsreteseeeseseesessesessesessestssesessesesseneesessesensens 8-28
COPY_POLICY ..ottt ettt se e ae st eene 8-31
CREATE_INDEX_SET ..ottt 8-31
CREATE _POLICY ...utiiiitiieieneettetesestestetetet ettt et e sa v st et sae et et ene et s sseenesnesaens 8-32
CREATE_PREFERENCEcciiiiiiiiiiiiiiteiei ettt ettt ene 8-33
CREATE_SECTION_GROUPcoocoiriiiriiieiiieiiretrtetnreenreteieeeseae et ses s e ne e seeneneene 8-36
CREATE_SHADOW_INDEX.......cootoriieieietrietnreeereeeeee et eene 8-39
CREATE_STOPLISToouteiiiiiiinertteerestetetetceet ettt st eve e st ettt ettt et saeebesnesaens 8-41
DROP_INDEX_SET ...ttt ettt sttt ettt ettt be s se e ne e 8-42
DROP_POLICY .ovtuietiieiirieitnietrtetntetetetetttestsees e sestsse e sse s se e be e se st s esae st s st ssesessesessesessenesseneene 8-42
DROP_PREFERENCEcciriiiiiiiiiiriiietieieee ettt st eene 8-43
DROP_SECTION_GROUPcooioiiiiriiiriieeieeiretieeereeereeee e 8-43
DROP_SHADOW _INDEXooirtiitiiienienieietcteteteteteese st stestesseseeseteseeseeseesesseesessesaens 8-44
DROP_STOPLIST ...ttt ettt sttt ettt ettt be et ene 8-44
EXCHANGE_SHADOW _INDEXceotimeinieinieinietnetnretnreeerestesessesessestssesessesessesessesessensene 8-45
OPTIMIZE _IINDEX.......ccmeimeineinieiriieetineettsteetsretsre et see et sae st se e s e s e seseeneneene 8-46
POPULATE_PENDING.......cocctitiiriiitiietieeieeteeesreeeseeese e e se e e seene 8-52
PREFERENCE_IMPLICIT_COMMITccoooiiiiiiiiiiiiiiicceeeeeee e 8-52
RECREATE_INDEX_ONLINEcctriiititeieirctrteenetnieteieteiestes et sessenene 8-53
REM_SEC_GRP_ATTR _VAL ..ottt sae sttt see e e seene 8-60
REMOVE_AUTO_OPTIMIZE.........ccoootoeiieinreinretneeereeereeereae et sesne e e seeneseene 8-60
REMOVE_INDEXccoiiiiiiiiiieeeeeteete et 8-61
REMOVE_MDATA ...ttt ettt ettt st sttt ettt ettt sae b snesaen 8-61
REMOVE_SECTIONoiiiiiriiirieirietnieietttetttee ettt tsse bbbttt sttt be e se s neene 8-62
REMOVE_STOPCLASS ..ottt ettt st se e s e se e saene 8-63
REMOVE_STOPTHEMEccooiiiiiiiieieeetereeereeee et 8-63
REMOVE_STOPWORDooiiiiiiiiiiiieeceee e 8-64
REMOVE_SUB_LEXER......cccoectrtrintiieniinieieietetetet et sttt st st s seesse et eneesessesseenesnesaens 8-65
REPLACE_INDEX_METADATAooteitetetretntetnietnteteieteies et be e e s neene 8-65
SET_ATTRIBUTE ..ottt ettt 8-66
SET_SEC_GRP_ATTR ..ottt e 8-68
SET_SECTION_ATTRIBUTEcoiotiiiriiietiicteieteeeteenie sttt st ettt ettt st sae s sne e 8-68
SYNC_INDEX ..ottt ettt ettt ettt sttt b ettt et be e be e b e e b e ene 8-70
UNSET_ATTRIBUTE ...ttt ettt sttt sttt st be e 8-73
UNSET_SEC_GRP_ATTR ..ottt sttt st eene 8-73
UPDATE_SUB_LEXER ..ottt see e 8-74
UPDATE_POLICY ...ttt ettt st s sttt sttt ettt et et sse b snesaens 8-74
UPDATE_SDATA ...ttt ettt ettt ettt be e 8-75

Vii

10

11

viii

CTX_DOC Package

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24

About CTX_DOC Package Procedures. ... 9-2
FILTER ..ottt ettt ettt ettt ettt et esb e st e st esaesaebeesaebeebesb e b asbasbessessessessassessesaeseesessessesenes 9-3
GIST ettt ettt ettt et st e st e st e Rt et e e s et e e b e b e b e s b e st esb e st erte st et b eseeneesaeseere et esenee 9-5
HIGHLIGHT ..ottt ettt ettt et ettt ese et e ssesb e b e sassessensensensessaseeseesessessensensenes 9-9
TEILTER ..ottt ettt ettt ettt et e e ae e beeraesbeesa e beesb e baessasaessasssesseeseenseessenseessenseeseas 9-13
IMARKIUDP ..ottt ettt et et e sae st e aessaesbessaesbaessesbaessasssessassaenseeseensesseessesseassenses 9-14
PKENGCODE ...ttt ettt e st et et e st e aessaesaessaesseesaessaessassaessassaessasseensesssessesseensensees 9-20
POLICY _FILTERoeteteteieiieteeete ettt ettt ettt esessassassessessessassessessessassessessessesessessensenses 9-20
POLICY _GIST ...ttt ettt ettt ettt et be et s be et e ba et e be e b e eseenseessenseersenseensenseeneas 9-21
POLICY _HIGHLIGHTooitiiiiieeieeeee ettt ettt s vt sreevesseesseesaesseesaesseessessnensensnens 9-23
POLICY_LANGUAGES. ..ottt ettt ettt ettt et steesesveessesseessessaesaesssassaessassaensanseens 9-25
POLICY_IMARKIUDP ...ttt ettt ettt te sttt ste e s e sseessasseessesssessesssessesssessesssensenns 9-26
POLICY_INOUN_PHRASESootetreeterieteieteteteeeteteessessas e ssessessessessessessessessessesssssnsessessens 9-29
POLICY_PART_OF_SPEECH.......coooiiieteteeeeteetecteetete ettt ettt eve e sae et sve b svseneesnens 9-32
POLICY _SNIPPET ...ttt ettt ettt ve et steevesreesaesseesseesaesaeessesseessesseensansenns 9-34
POLICY _STEMS.......o oottt ettt ettt st stestesve s s e teessesta et e sssessassaessesssesseessasseessessesssansenns 9-36
POLICY_THEMESoootiiiteiiiettetesestetet ettt ettt e et te e st sb b e besessessessassessessasansassessens 9-37
POLICY_TOKENScoeotitetetetettetistestestestetesteseteteseesessessessassessessessessessessessessessesseseessesessensens 9-39
SENTIMENT ..ottt ettt ettt et eebe et e eseeseesseeseessesseessesseessesseensenseans 9-41
SENTIMENT_AGGREGATE ...ttt ettt ettt ve e sae b sveeae s s ensasrnens 9-42
SET_KEY_TYPE ...ttt ettt ettt te e s te st e et sta s e eseesseeseessessaesaeessesseessasssansansenns 9-43
SINIPPETctetetetetetetete ettt ettt ettt et et et esbeseesa et e ese st eesassesse b esbessessassassessessassaseasensansessens 9-44
THEMES. ...ttt ettt ettt ettt e sa et e e se st e et e sesse s e s essensensensensessesseseesensensensens 9-47
TOKENS ...ttt ettt ettt et eebe et e beesa e beesbesbaessesseeasesssenseesseseessesseessesseessesseensenseans 9-50

CTX_ENTITY Package

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

ADD_EXTRACT_RULE.......ootiiitieeetecteteteteteese sttt ettt ettt st sae v e saens 10-1
ADD_STOP_ENTITY ..outteirieiricirteirietetetetttee ettt ettt be e se b nene 10-5
COMPILE ...ttt ettt ettt ettt ettt b et be e seene e e 10-6
CREATE_EXTRACT _POLICY ...ttt see e seene 10-7
DROP_EXTRACT _POLICY ..ottt sttt sttt ettt eseesessesseesessesaens 10-8
EXTRACT .ttt ettt ettt ettt bttt ettt b et b et se e b e ene 10-8
REMOVE_EXTRACT _RULE......ccoiotiiiriiniietieee ettt et sesessesesse e snenes 10-10
REMOVE_STOP_ENTITY ..coeuirieirieirieinieieteeeteeeienterensetsreetssesesseseeseeesesesesesesnesessesessesesnens 10-10

CTX_OUTPUT Package

11.1
11.2
11.3
11.4
11.5

ADD_EVENT ..ottt ettt sttt e 11-2
ADD_TRACE ...ttt 11-2
DISABLE_QUERY_STATS ...ttt sttt ettt ettt sae v e e 11-4
ENABLE_QUERY_STATS ...ttt ettt 11-4
END_LOG ...ttt ettt sttt s et bbbttt b et b e se b ene 11-5

12

13

14

11.6 END_QUERY_LOG.....cctirteinieinieiinieitnietnieteteteretesetestssestssestssestssestssesessessesessesesesesesesenesseses 11-6

11.7 GET_TRACE_VALUE ...ttt te e st ss bt esaesaesaesassassessannas 11-6
11.8 LOG_TRACES.....c. oottt ettt ettt et et se et eseesesse st e ss e sessessessensensessessessessesessessensensen 11-7
11.9 LOGEFILENAME........oot ittt ettt ettt ettt ee e et eteeveeveeteeae et e s ese s easessenseaseseessesseseenas 11-7
11.10 REMOVE_EVENToooiiitiiieieeeeeetetet ettt ettt ettt et sttt st sessessessessessessessessesserenas 11-7
11.11 REMOVE_TRACE ..ottt ettt vt et teeteetestesvesb e b e be b e s essessessessessessesessessessess 11-8
11.12 RESET _TRACE..... oottt ettt ettt esassesseesessassesb e b e sassessessessessessessessesensessensenses 11-8
1113 START_LOG ...ttt ettt ettt et et est e e ssessessessess e sassassensensensensensessessesessessessenss 11-9
11.14 START_QUERY_LOG.....coooioiotietietietieteeteeteetetet ettt eveete et eae et evese s e s essessensessesserseseas 11-10
CTX_QUERY Package

12.1 BROWSE_WORDSoootiitiitietieteeteeteeteeteet ettt ettt et ete e eveeteeteeae et e s ensessessessenseaseseessesseseeses 12-1
12.2 COUNT _HITS ...ttt ettt ettt ete et beeve st e besae b e s essessessessessessessessessesess 12-4
12.3 EXPLAIN ..o oottt ettt ettt et e st et e st e st eseesaeseeseesaebessessesbessassessassessessassassessasansessenseses 12-4
12,4 HFEEEDBACK ..ottt ettt et ettt s e esaesassassess e sessessessessessessessessessasensensensenses 12-7
125 REMOVE_SQE ..ottt ettt ettt et oot et eteeteeteeveeve et ase s esensensenseseessesseneas 12-10
12,6 RESULT _SET ...ttt ettt ettt et as e et eteebeeteeteeaesse s essensessessessensessesserserea 12-11
12.7 RESULT_SET_CLOB_QUERYccciciitiitiieieieteiereeeeeeeere e steeteete e stessessessessessessessessessessessesens 12-20
12.8 RESULT_SET_DOCUMENTccotiiotiieteieieierieteteeeteetesteste e e stessessessessessessessessessssseseasens 12-21
12,9 STORE_SQE......ciiieieieieieieeettettete sttt ettt et se e e et esessessassessessessessessessessessassessessessesessensens 12-21
CTX_REPORT Package

13.1 Description of Procedures in CTX_REPORTcccccocoiiiiiiiiiiiiiiccccccceceeennes 13-1
13.2 Using the FUNCION VEISIONScoiiiiiiiiiiiiiiiiiiciice e 13-2
13.3 DESCRIBE_INDEXcoiiiitiiiitietiiteitietectecteteteet et et eveesseseeseeteevestessessessessessessessessessessessessesseseeses 13-2
13.4 DESCRIBE_POLICY ..octiietiiieiieticteiteetet ettt ees et st stseseeseetessessessessessessessassessessassessessesessessessenses 13-3
13.5 CREATE_INDEX_SCRIPTccictetirtirteieieieieteteteeeeeesessessessesses e ssessessessessessessessessesessessessenses 13-4
13.6 CREATE_POLICY_SCRIPTeotitieteteieieieieieteteitee e etesteste st saessese s aesaessessessesassessessenses 13-5
13.7 INDEX_SIZE ...ttt ettt ettt et easeteeteeteeveetseteeae et et et et ensessenseaseseersersessesas 13-5
13.8 IINDEX_STATS ..ottt ettt ettt et et ts e et et e teetesbe b e be b e s essessessessessessessessersesess 13-6
13.9 QUERY_LOG_SUMMARYcoiciitiitirtiiteteietestesteseeseesseseesessessessessessessessassessessessessessesssssssessens 13-11
13.10 TOKEN_INFOoctiiiieieieisietieiestestetete ettt esaeseesessessassassessessessessessessessessessessesensessensens 13-14
13.11 TOKEN_TYPE ...ttt ettt et ete et e e eseese et eseesesensensensesserseseeneas 13-15
13.12 VALIDATE_INDEX......coiiiioietietietieteeteeteetet ettt eteeveeteeteeteeteeveeseesessesessessessessessessessesens 13-17
CTX_THES Package

14.1 ALTER_PHRASE ..ottt ettt ettt ettt eve et veeae et s et e s essessenseaseseessesseseesas 14-2
14.2 ALTER_THESAURUS.......cooiitietiesteetetet ettt ettt ettt te st svesvesae s sessessessessessessesaesseseesess 14-4
TA.3 BT oottt ettt et ettt ettt et e b e b e b e b e b et e s b es b e st esbesbeseesteseeteereerenns 14-4
T4.4 BTG oottt ettt et s e st e s e s R e et e b e b e be st e s b en b e st entesteneesteseeseeseesens 14-6
TA.5 BT oottt ettt ettt ettt ettt et ettt e teete et et e et et et et et et eat et eaeereereeaeereenas 14-7
T4.6 BT oottt ettt ettt ettt e teete et beete et et e b et et e st e st easertensereeteetsereereets 14-9
14.7 CREATE_PHRASEcoootiotieietieticteeteet ettt ettt eveetesteebe et b e besb b assessessessessesseseesaesserens 14-10

15

16

14.8 CREATE_RELATIONcoootitiitiiirieienteienieentetntetstetnteeereeesestesesee e e e see e saesesaesesaesesaesesseneeseneen 14-11

14.9 CREATE_THESAURUScoooiiiiiiiiiiic s 14-12
14.10 CREATE_TRANSLATION ...ccooiiiiiiiiieieieicce s 14-13
14.11 DROP_PHRASEcooiiiiiiiicirrte et 14-13
14.12 DROP_RELATIONciiiiiiiiiiiiiiiiiisiice s 14-14
14.13 DROP_THESAURUScccooiiiiiiiiiiiiiisssss s sssnns 14-16
14.14 DROP_TRANSLATION ...c.cooiiiiiiiiiiiiiiiiiniecicis s cnns 14-16
14.15 EXPORT_THESAURUScocooiiiiiiiiiiiiiicceccsssese e 14-17
14.16 HAS_RELATION ..ottt 14-18
14.17 IMPORT_THESAURUSccceiiiiiiiiiiiiiiiise s 14-18
TAL8 INT o 14-19
1419 NTG i 14-21
TA20 NTT oot 14-22
1421 NTP oo 14-24
1422 OUTPUT_STYLE ...t 14-25
1423 PT oo 14-25
1424 RT oo 14-27
TA25 SN e 14-28
1426 SYN i 14-28
14.27 THES_TT oot 14-30
1428 TR oo 14-31
1429 TRSEYN oot 14-32
TAB0 TT oo 14-34
14.31 UPDATE_TRANSLATIONccociiiiiiiiiiiiicinii s 14-35
CTX_ULEXER Package
15.1 WILDCARD_TAB. ...t 15-1
Oracle Text Utilities
16.1 Thesaurus Loader (CEXI0ad).......coeerieuereirieiriiinieieiereittet ettt nes 16-1
16.1.1 ctxload Text LOading ...t 16-1
16.1.2 ctX1oad SYNEAX ...vimiiimiiiiiiiiiiiiciccccccceee e 16-2
16.1.3 ctxload EXamPLES.......cccccocuiiiiiiiiiiiiiiiiiciiiccicicec e 16-3
16.2 Entity Extraction User Dictionary Loader (ctxload)ccoeiiiiiinioiiiiic 16-4
16.2.1 ctxload SYNEAX ..c.cviiecieieiececit e 16-4
16.2.2 Considerations When Creating a User Dictionaryccooveeiiieiiiiiciiincnnns 16-4
16.2.3 XML SChemac.cuvimiiiiiiiiiiccccccccce e 16-5
16.2.4 ctxload EXamMPLEccccoiuiiiiiiiiiiiiiiic e 16-6
16.3 Knowledge Base Extension Compiler (ctxKbtc)ccoeuiviiiiiiiii 16-6
16.3.1 Knowledge Base Character Set...........cccooiiiiiiiiiiiiiicc 16-7
16.3.2 CEXKDEC SYIEAX oo 16-7
16.3.3 ctxkbtc Usage INOLESc.cuiuiuimiiiiiiiiiicicicccccecccee e 16-8
16.3.4 ctxKbtc Limitationsocueieiriiiiiiiniicciiriece ettt 16-8

17

16.3.5 ctxkbtc Constraints on TheSaurus TeIMIS.........couvviiveeiieeieeeeie e 16-9

16.3.6 ctxkbtc Constraints on Thesaurus Relations ..., 16-9
16.3.7 Extending the Knowledge Base...........ccccooiiiiiiiiiiiiiiiiiiiccccccccecccennas 16-10
16.3.8 Example for Extending the Knowledge Base............cccccooiiiiiiiiiiiiiiiiiicns 16-10
16.3.9 Adding a Language-Specific Knowledge Basecccoooueviiiiiiiiii 16-11
16.3.10 Limitations for Adding a Knowledge Baseccccooeiviiiniiiininiiiicce, 16-11
16.3.11 Order of Precedence for Multiple Thesauri.........cccccoceiiiiiiiiccciicciccccenes 16-12
16.3.12 Size Limits for Extended Knowledge Base............ccccccoiiiiiiiiiiiiiiiiciicnes 16-12
16.4 Lexical Compiler (CEXIC) ...coiiuiiiiiiiiiiiiic e 16-12
16.4.1 Syntax Of CEXIC ..c.oviieiiei e 16-13
16.4.2 ctxlc Performance Considerations ... 16-13
16.4.3 ctXICc USAe INOEScucumiiiiiiiiiicccccecce e 16-13
16.4.4 ctXIC EXAMPLE ..ooviiiiiiii e 16-13
Oracle Text Alternative Spelling
17.1 Overview of Alternative Spelling Features. ..o 17-1
17.1.1 Alternate SPelling..........cooeuoiiiiiiiiiiee e 17-2
17.1.2 Base-Letter CONVEISION........cciiuimiiiviiiiiiitiiitiiciieictisteisrse et sanne 17-2
17.1.3 New German SPelling ..o 17-3
17.2 Overriding Alternative Spelling Features.............cccooiiiiiiiiiiiiiiicccecccecceeeenenes 17-3
17.3 Alternative Spelling CONVENTIONSccooiiiiiiiiiiiiiiceeee e 17-4
17.3.1 German Alternate Spelling Conventions.............cococeeiiircieieiiiciceccce e 17-4
17.3.2 Danish Alternate Spelling Conventions.............cccoooeueieiiinicieiniicieecce s 17-4
17.3.3 Swedish Alternate Spelling CONVENIONSc.ccceueuiuiuimiuicicriciceeeeeeeeeeeenenenes 17-5
Oracle Text Result Tables

Al CTX_QUERY RESUIL TADLES.....cuecovicueiiieereiteceectecteereeteete et ettt ettt eveereeve et eveereereenseneens A-1
A 1.1 EXPLAIN TADIE ...ocuiiiieiieeieieeieteietetetee ettt sttt ste e eseseetess s essesassesessesessesessesessesessasens A-1
A.1.2 HFEEDBACK TADIEocuiovieiiitieiiieeteeeeeeeeeeteet et ettt ettt et s e s s eseevseaeeveere v s A-3

A2 CTX DOC RESUIE TADLES......uviiieiiieeieeeeee ettt ee e st e e s s aeessnaeeessaeesnnaeeans A-6
N N i =S o I 1 o LT OO SRPTRS A-7
A2.2 GISETADIE ..ottt ettt ettt st e s be st e b e b e b esbesse st esaesaeseeseasenseeseesensanes A-7
A.23 Highlight Table.......ccccooiiiiiiiiii e A-7
A24 Markup Table.........ccooii e A-8
A25 Theme TabBIe.....ccueciiiieieceeeeee ettt ettt sa e sveesbesreesaesraessesssesseessasanns A-8
A2.6 TOKEN TaDILE....ocuvoeiieieiieiieiieieecieet ettt ettt e et te e be bt e b e b e ssessessessesaesseseasaesessessensanes A-9

A.3 CTX_THES Result Tables and Data TYPesccccceuvuvuririrririririiiiirrrceeeeeeeeeeeeeeeeas A-9
A31 EXP_TAB Table TYPE...coiiiiiiriiiieiriiiiciericceree et A-9

Oracle Text Supported Document Formats

B.1 About Document Filtering TeChNOLOZYcccccovveiririniiiiiiiiiiiiiiiiiiicns B-1
B.1.1 Latest Updates for Patch Releases............cccooeueueiiimiiiiiiiiiciicc B-1
B.1.2 Restrictions on Format SUPPOIt ..ot B-2

Xi

B.2

B.1.3 Supported Platforms for AUTO_FILTER Document Filtering Technology................. B-2

B.1.4 Filtering on PDF Documents and Security Settings.............ccoeoeiioioiciiinrnccnccnnennnn. B-3
B.1.5 PDF Filtering Limitationscccocovuviririviiiiniiiiiiiiinniccrrresseeeas B-4
B.1.6 Environment Variablesc.cccoiiiiiiiiiciiccccc s B-4
B.1.7 General Limitations ... B-4
Supported Document FOrmatsccocoeviiiiiiiiiiiiiiiiicc s B-4
B.2.1 Archive File FOrmatcccooooviiiiiiiiiiiiiiicc e B-5
B.2.2 Database FOrmats..........cccocvviiiiiriiiiiiiiiiiiiiiicicr s B-6
B.2.3 EMail FOIMats.....cccoviiiiiiiiiiciiiccccc e B-6
B.2.4 Graphic Formats (Raster and Vector Image)ccccoeeerueieiiinieiciiiccccce, B-8
B.2.5 Multimedia FOrmatsccccooiiiiiiiiiii B-11
B.2.6 Other FOImMAts.......c.ccoviiiiiiiiiiiici s B-12
B.2.7 Presentation FOIMAts.cccoioiiiiiiiiiiiiiiccccceee e B-12
B.2.8 Spreadsheet FOrmatsccoooimiiiiiiiii B-13
B.2.9 Text and Markup FOormats..........cccoooiiiiiiiii B-14
B.2.10 Word Processing and Desktop Publishing Formats............cccccouvviniininiinnnnnnns B-14

C Text Loading Examples for Oracle Text

Xii

C1
C2

C3

SQL INSERT EXaMPIe......covviimiiiiiiiiiiiiiiiiiniccccs st C-1
SQL*Loader EXamPLEc.ccuvuririiiiiiiiriciciiciree s C-1
C.2.1 Creating the Table ... C-1
C.2.2 Issuing the SQL*Loader Command...........ccooeuiiiiiiiiniiiiicicci C-2
Structure of ctxload Thesaurus Import Filecccooiiiiiiiiiie C-3
C.3.1 Import File FOrmMatccoooiiiiiiiiiiicccccccecccc e C-3
C.3.2 Alternate Hierarchy STrUCIUTEcoiiiiiiiiiiiiicccccccc e C-6
C.3.3 Usage Notes for Terms in Import Filesc.cooooiiiiiiiiiiccc, C-6
C.3.4 Usage Notes for Relationships in Import Files...........ccccoooiiiiiii, C-7
C.3.5 Examples of IMport Files.........cocccovviiiiiiiiii e C-7

Oracle Text Multilingual Features

D.1
D.2

D.3
D4
D.5
D.6

J gL oo b ol s Lo o USSR PTRR D-1
INAEXING -t D-1
D.2.1 Multilingual Features for Text IndeX TYPes.........ccccoouiiiiiiiiiiiiiiiccccccces D-2
D.2.2 LeXeT TYPES covviieiiitiiieettt s D-3
D.2.3 BasiC LeXer FEAtUIES.......ccciiiiieiieeiietetecteete ettt ettt st esaa e sbeesaaesbeesssesssaenane s D-3
D.2.4 Multi LeXer FEALUTEScceeovieeieiieieeeeesteteeteee ettt st et eae e e e ssse e essenseens D-5
D.2.5 WOrld LeXer FEAtUIEScceviriiiiieieieieteteietetete ettt ettt saesaesassessessese s D-5
QUETYIING .ttt D-7
Supplied StOP LiStS.......coviiiicicicet e D-7
Knowledge Base...........coiiii e D-8
Multilingual Features MatriXcccccciiiiiiieiiiiceeieieeeeeiee et nenenes D-8

E Oracle Text Supplied Stoplists

F

E.1 English Default StOPLSt.......couoioiiieieiicc e E-1
E.2 Chinese Stoplist (Traditional)..........ccccoiiiiiiiiiiiiiiiiiiii e E-5
E.3 Chinese Stoplist (SIMPLIEA)c.cceveururiririiiciriririciecrreeeee s E-5
E.4 Danish (dk) Default StOPLiStccccevuririiiiiiiiiriiiiiiiccccrrr s E-6
E.5 Dutch (nl) Default StOPLStcccovviiviiiiiiiiiiiiiiciiiic s E-8
E.6 Finnish (sf) Default STOPListcccccoviiiiiiiiiiiiiiiiccccs E-16
E.7 French (f) Default STOPLStc.cceuiiiiiiririeicieicecccceeeeeeeeee et aeeaes E-22
E.8 German (d) Default StOPLiSt.........cccceuruririiiiiiiririiiiciccccecceee s E-28
E.9 Italian (i) Default StOPLiStccccoiviiiiiiriiiiiiiiiciiciciccc s E-35
E.10 Portuguese (pt) Default StOPList........ccooeiiiiiiiiiiic e E-40
E.11 Spanish (e) Default StOPList........cccouririiiriiiiicicice e E-42
E.12 Swedish (s) Default STOPLISt.....c.c.cueurururiiiiicicirieieicieieeeeeeeee e E-47
The Oracle Text Scoring Algorithm

F.1 Scoring Algorithm for Word QUETIESccccovuviriiiiiririiiiereeecceeeeeee s F-1
F.2 Word Scoring EXamplecccoviiiiiiiiiiiicerrccree s F-2
F.3 DML and Scoring AIgOTithmcccccoviiiiiiiiiiiiiiiiiiiiiiiccs F-2

Oracle Text Views

G.1
G2
G3
G4
G5
G.6
G7
G38
G.9
G.10
G.11
G.12
G.13
G.14
G.15
G.16
G.17
G.18
G.19
G.20
G.21
G.22

CTX_ALEXER _DICTS ...ttt sttt ettt et et sat st st e b b st e neneneen G-3
CTX_AUTO_OPTIMIZE _INDEXEScoctstiiniiinieintieneenectnieesieesieseeiesesresee et e saeseseeseee G-3
CTX_AUTO_OPTIMIZE _STATUS.....cotrteitrenteeneeenteenteeseeesteesieesieseenesesreseeseseese e e saeseseesenee G-3
CTX_CLASSES ...ttt ettt sttt st ee G-3
CTX_FILTER_BY_COLUMNS.ocictiiiiiiieneereeereee ettt G-4
CTX_FILTER_CACHE_STATISTICS ..ottt svesse e saeneeeneen G-4
CTX INDEXES ...ttt sttt ettt se et sttt st st b e s se e sae s saenesaeseee G-5
CTX_INDEX_ERRORS........cciritrieirietnieteeteenteeseeesteestee st sttt sre st re e se e sae e sae e sae e G-6
CTX_INDEX_OBJECTS.......ccireireireeeeeeeeeereeesee ettt sttt s ne G-6
CTX_INDEX_PARTITIONSctitiitiieietrieterestestesestesteteteteee ettt st saesre s sae st s s saeaennene G-6
CTX INDEX_SETS ...ttt ettt ettt s et ettt et be st bt sa e a e naene e G-7
CTX_INDEX_SET _INDEXES.......cccestretimeineinetnetnieteienterentesessesessesessesessesessesessesaesessesesaenens G-7
CTX_INDEX_SUB_LEXERS.......cceceirteuineinteinretrretnieeereeereseresestssesessesessesesseessesaesessenesaenens G-7
CTX_INDEX_SUB_LEXER_VALUES........cccecniininieieereereeeeere e ee G-7
CTX_INDEX _VALUES ...ttt sttt ettt ettt sa s b s sae st s s e e nene G-8
CTX _OBJECTS. ...ttt ettt ettt ettt ettt b et b et sa e e e nae e ee G-8
CTX_OBJECT_ATTRIBUTEScotttirietiteitetrctrctreteieeeieteiesees et resesre e seee e sae e e ee G-8
CTX_OBJECT_ATTRIBUTE_LOV ...cootiiiiieicineirieieeeeeteene et e see e sae e G-9
CTX_ORDER_BY_COLUMNESoocicitiieieirretreeeeeerete et see e ee G-9
CTX_PARAMETERS ..ottt sttt ettt ettt st s s st sa e G-10
CTX PENDIING ...cviiitiriiinteirictntetetetetctetest ettt sttt sa et bbbt s e st sese b se s s e se e enen G-11
CTX_PREFERENCESooecirtitriiiriiteieteitteetetnte ettt sae et ese st st st se e ae e s eenen G-12

Xiii

Xiv

G.23
G.24
G.25
G.26
G.27
G.28
G.29
G.30
G.31
G.32
G.33
G.34
G.35
G.36
G.37
G.38
G.39
G.40
G4l
G.42
G.43
G.44
G.45
G.46
G.47
G.48
G.49
G.50
G.51
G.52
G.53
G.54
G.55
G.56
G.57
G.58
G.59
G.60
G.61
G.62

CTX_PREFERENCE_VALUESooioiittieineinetrctnietntet sttt esestssestssesesseessesesseseenes G-12
CTX_SECTIONS.......oteirteirtetrteirteteteeeteeetts ettt sae st n et a et s et se st s sne e nenenen G-12
CTX_SECTION_GROUPSccoriiiiiiiieieirteeretseestee ettt G-13
CTXSQES .ottt ettt sttt s st ettt et ettt sbt bbbttt ae e mnene G-13
CTX _STOPLISTS ...ttt ettt sttt ettt eb et bbbt b et be e se e enen G-13
CTX_STOPWORDScctmitriitrieieteteteeeitetetstetsre sttt sae s ese st ae st st s st s e s sesaenenen G-14
CTX_SUB_LEXERS ...ttt sttt ne s ne e G-14
CTX_THESAURI ...ttt G-14
CTX_THES_PHRASES ..ottt sttt ettt ettt st sbe s sae s s besa s e G-15
CTX_TRACE_VALUES ...ttt sttt ettt es ettt se s e e eenes G-15
CTX_USER_ALEXER _DICTSccoeieieiiieiinreinieirietntetntetsreeeteeesesesessesessestsnesesseessenesseeenes G-15
CTX_USER_AUTO_OPTIMIZE _INDEXESccccccoviimirinieineineetneeesreeeneeeneeeneenes G-15
CTX_USER_EXTRACT_POLICIEScceiiiiiiiiieiricirtcirteinieteeeeeee et G-16
CTX_USER_EXTRACT_POLICY_VALUEScccooiiiiiiiiiiicccineecceenese e G-16
CTX_USER_EXTRACT_RULES......c.cccetretimteiinteintetrietntetseeteieeeresestssesessestssesessesesseneeseseenes G-16
CTX_USER_EXTRACT_STOP_ENTITIEScccceviiiiiiiiiiiniiiiiccccens G-17
CTX_USER_ FILTER_BY_COLUMNS.......ccceititiireineireerteeeteeeteee et G-17
CTX_USER _IINDEXES........cotiiiitititiietetetee sttt sttt ettt ettt saesse e sae s s s saemsenee G-17
CTX_USER_INDEX_ERRORSc.coutiitiiieiiiiinieinietntetrtet ettt ettt sse e eenes G-18
CTX_USER_INDEX_OBJECTSceiiiiiiiiiiiiiiccci e G-19
CTX_USER_INDEX_PARTITIONS.......cccectntttrteiretnretnieerreeeresereneresnestsnentsnesessesessenessenenes G-19
CTX_USER_INDEX_SETS ..ottt G-20
CTX_USER_INDEX_SET_INDEXES........cccccoiniiiiiiiiiiniiniiieieteteeeee e G-20
CTX_USER_INDEX_SUB_LEXERS.......cccceciiiiiiiiiiiiiiiiniiieiseces s G-20
CTX_USER_INDEX_SUB_LEXER_VALSc.cccceciiiiiiiiiiiiiiiiiccie s G-21
CTX_USER _INDEX_VALUEScoccectteieineiretrtetrtet sttt eeneeenes G-21
CTX_USER_ORDER_BY_COLUMNESccceotriiriineirieirteenteeereeeeeeeseetsnesesse e G-21
CTX_USER_PENDIINGcoiitiiitititiietetetee sttt sttt ettt ettt sae s e s b s saesnenee G-22
CTX_USER_PREFERENCES........cccectrttititiieiinieinietnietntet ettt sesestssesessese et sseesseeenes G-22
CTX_USER_PREFERENCE_VALUES.......cccccostitnttnininiteeeteeetseetseetssesesse e seenes G-22
CTX_USER _SECTIONS ..ottt ese e st se st s s ene e nenenes G-23
CTX_USER_SECTION_GROUPS........ccooeiiiiiiiciriciricrieeeieeeieeeeee et G-23
CTX_USER_SESSION_SQES........ccooiiiiiiiiiiiiiicicicce e G-23
CTX_USER _SQES ...ttt ettt st sa et bbb et st s st se b s s e s nenen G-23
CTX_USER _STOPLISTS ..ottt seeeeseeesesesessestssestssesessesessenessennenen G-24
CTX_USER_STOPWORDS........oootciiiietiieieeeeeretstetsiee ettt sne s e enes G-24
CTX_USER_SUB_LEXERSccctiitirtitititntntnentestese st steteteseete et ettt st sse s e s s ssesaensenee G-24
CTX_USER_THESAURLI ...ttt ettt ettt et ettt G-25
CTX_USER_THES PHRASEScootiiietietntetnetntetrtet ettt et s sne e seenes G-25
CTX_VERSION ...iiiiiirieirteirietrteteteeetee ettt tsse e sse st sse e s ese st s et se st ssese st sneneenennenen G-25

Stopword Transformations in Oracle Text

H.1 Understanding Stopword Transformationsccceeeerrrereernennenenernrseeeseeeeeeeeeeeeseens H-1

H.2 About Stopwords in Phrase QUETIescccccueueiiiuiiiiiiiciciec s H-2

H.3 WOrd TransSfOrmMatioNsccceeevierieriesierieieseieieesesseesessessessessessessessessessessessessessesessessessessassessens H-2
H.4 AND TransSfOrmMationscccceeiererieriesierieieieteieteeseessessessessessessessessessessessessessessesessessessessessessens H-3
H.5 OR TransfOrMatiONSccccceevvieieiiiiieiiecieiteetesie et e ste et et esae e e esteeseesseesaesseessesseessessesssesseensesssenseenes H-3
H.6 ACCUMulate TransfOrmMationsccccccevueevierieerieneeiineerieeeesteeeesaeessesteessesseessessesssessesssessesssesnes H-3
H.7 MINUS TransSfOrmMatiOnSccceeevierierierieieieeereereeeeteetestessessessessessessessessessessessessessssessessessessessens H-4
H.8 MNOT TransfOrmatiOnS........ccecevverierierierieieretetetseseeseesessessessessessessessessessessessessessssassessessassessens H-4
H.9 NOT TransSfOrTatiOnscccieieeiiiieiieeieiteeeeeteeteereeteeteeeteeeeeseereesseessesseessesseesesseesesseeseessenseenes H-4
H.10 EQUIValence TransfOrmationsc.ccoeeierieeienieeriisieerieeeeereeeesteeeesveesaesseesesseesesseessesssesesnns H-5
H.11 NEAR TransfOrmMatiOnScccccccieveeriieieriieienieeteseeteeeesseseessesseessesssessesssessesssessesssessesssessssssesses H-5
H.12 Weight Transformationsc..ccceeueiieiiiiiiiciic e H-6
H.13 Threshold TranSfOrmMationsc.ccceeierieiecieieieieeeisieese et este e s eseessesseseeseesessessessessassessens H-6
H.14 WITHIN TransfOrmationscccccceeieieirierieiieeieereeiteereeereeeeereereesseesesseessesseessessesssessesssesssssseenes H-6
Index

XV

XVi

List of Tables

1-1

1-2

1-3

1-4

1-5

1-6

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45

ALTER INDEX SYNC Methods.......cccccoiiiiiiininiiiiiiiiscssnsnene 1-8
CATSEARCH Query Operators........cceuoiiucieieiiiiieieicicicie et 1-25
TRANSFORM Parameters..........ccooeiiiiiiiiiiiiiiciiiniiccncc e 1-32
Template Attribute VAlUES........ccoovviiiiiiiicer s 1-36
SYNC TYPES..ueitiiiiicie ettt et 1-54
Supported CTXCAT Index Preferences............c.oooeueueiiininiiiiccniecceeccce e 1-61
Datastore TYPES.....ccouviiiiiiiiiiiiiiiiic 2-2
MULTI_COLUMN_DATASTORE Atributes........cccocoevvviiiiiviiiiiiiiiicnne 2-4
DETAIL_DATASTORE Attributes........ccooeuviiiiiiiiiiiicenicce s 2-7
FILE_DATASTORE Attributes.........cccoooveviiiiiiieiiiccccce e 2-10
URL_DATASTORE ATIDULES. . ..veeeeeeeeeeeeeeeeeeeeee et e et eeeeeeeeeteeeseaeeseeneesssseeeesaeesennes 2-12
USER_DATASTORE AtribULes......ccccuiiviiiiiiiiciicici s 2-14
NESTED_DATASTORE AHIIDULES.......coovieiiiiiriiiiiceceeree s 2-17
FIIEET TYPES... vttt 2-19
AUTO_FILTER AHIIDULES.....coiviiiiiiiiiiiciii s 2-20
MAIL_FILTER AtEDULES. ..ot 2-23
USER_FILTER Attribute.......cooviiiiieieicc s 2-26
PROCEDURE_FILTER AHITDULES......cciviiiiiiiiiiiiiiciics s 2-29
LeXOT TYPOS ..ottt 2-32
Languages Supported for AUTO_LEXER...........ccocooiiiiiiiiiiccce e 2-33
AUTO_LEXER Language-Independent Attributes............cccococeueiiueuiiiciicieeeeeceenennes 2-35
AUTO_LEXER Language-Dependent Attributes...........c.cccoooieiiiiiiiiiiiics 2-38
Default Values for AUTO_LEXER Language-Dependent Attributes..........cc..ccccooevnin 2-38
Supported Languages for AUTO_LEXER Dictionary Attribute.........cccccocoiiiiiiincnnn. 2-40
BASIC_LEXER AHIIDULES......cooviiiiniiiiiicis s 2-41
Stemming User-Dictionaries...........ccoeeuiiriiieiiicicieccie e 2-47
Languages Supported for MULTI_LEXER Auto-detection...........ccccccceueueieiiiiiiicicnennnas 2-51
CHINESE_VGRAM_LEXER Attributes........c.cccoviiiviiiniminiiiiiieicenes 2-52
CHINESE_LEXER AtIIDULES......covviiiiiiiiiiiciiici s 2-53
JAPANESE_VGRAM_LEXER AHIibutes.........cccccovuririniriniiniinicsccececccneee 2-53
JAPANESE_LEXER AHIIDULES.......covviiiiiiiiiiciiic s 2-55
KOREAN_MORPH_LEXER Dictionaries.........cccoccevviiminiiiiiiniiiiiicensennens 2-57
KOREAN_MORPH_LEXER Attributes........ccccccviviiiiiiiiiiiiiicccecnceesesenns 2-58
User-Defined Routines for USER_LEXER.........oooooiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeseeaeesseaneens 2-60
USER_LEXER AtTIDULES. c.ceveeeeeee ettt eeeeeeeeeeeeeeneeseeaeessseesessseesanseesssseesesnsesseneeeas 2-61
VARCHAR? Interface for INDEX_PROCEDURES...........ccccoeiviininiiiniiieiians 2-62
CLOB Interface for INDEX_PROCEDURE...........ccccoovniiimiiiicreinriicesineceeseeeeneneeans 2-63
User-defined Lexer Query Procedure XML Schema Attributes..........ccccccoiiiiiiiinnnne. 2-64
User-defined Lexer Indexing Procedure XML Schema Element Names.............c.ccc...... 2-66
User-defined Lexer Indexing Procedure XML Schema Attributes...........cccccoovviiininnnnes 2-69
User-defined Lexer Query Procedure XML Schema Attributes...........cccccociiiiiinnnnne. 2-71
WORLD_LEXER AttribULES......cooviiviiiiiiii e 2-73
BASIC_WORDLIST AHIIDULES......cocviiiiiiiiiiiiiiiiir s 2-74
SHOTAEE TYPES...ocviviiiiiiiiciccc s 2-82
BASIC_STORAGE Aributes........ccovvvimiiiiiiiiiiiiccc s 2-83
Section GroUP TYPeS... ..ottt 2-92
RULE_CLASSIFIER AtriDULES.cuoviiiiiiiiicicicrici s 2-96
SVM_CLASSIFIER ATIDULES. c..veeeveeeeeeeeeeee ettt eeee e eeeeeeeaeeeeeneeeseaseeseseesseneessneeeas 2-97
SENTIMENT_CLASSIFIER Attributes........cccovviviiiiiniiiiiiiicccccccnes 2-98
KMEAN_CLUSTERING AHIIDULES.......ccooiiiiiiiiiiiciiccscse e 2-99
General System Parameters...........ccccciiiiiiiiiiiiicceee e 2-105

XVii

XViii

2-46
2-47
2-48
2-49
3-1
3-2
3-3
4-1
4-2
4-3
6-1
6-2
8-1
9-1
9-2
10-1
11-1
16-1
17-1
17-2
17-3
A-1
A-2

A-4
A5
A-6
A-7

A-9
A-10
A-11
A-12
A-13
A-14
B-1
B-2
B-3
B-4
D-1
D-2

D-4
D-5

Default CONTEXT Index Parameters.......c..coueivviiceieceiiiieeieeeieeceeeeteeeee e eneeesveeenveennee e 2-106

Default CTXCAT Index Parameters...........ccccccvuvimiiiiiniiiiiniiiicneeecnns 2-107
Default CTXRULE Index Parameters...........ccocccvuciiiiniicioininiccicicccseieeeseseeeecenes 2-108
Default Policy Parameters for CTX_DDL.CREATE_POLICYcccccccoeiiiiinieccnnes 2-109
Query Expression Precedence Examples............cccocoviiiiiiiiiiiiiiiiiiiiccees 3-3
MDATA and Other Query Operators..........ccccouieueieioiiiiieieiiccie s 3-30
SCOTE SAMPIES......ouiiiiiiiiir s 3-54
Characters for Grouping QUETY TEIMS........cccccviiiiiiiiiic e 4-1
Characters for Escaping Query Terms.........c.cccoooveinieinininininiiccc e 4-2
Reserved Words and Characters............ccciiiiiiiiiicciceceeeeneeennas 4-3
Custom Dictionary Valid Parts-of-Speech (case sensitive)..........cccocovvvvvvrrnncrvrneneenes 6-3
Custom Dictionary Valid Features..........ccccoviirioiiiiiiiiiic 6-3
Paragraph and Sentence Section Boundaries...........c.ccooooiiiiiiiiicicc 8-20
Part of Speech Abbreviations...........ccccoeueiiiiiieiiiiiiicce s 9-30
Required Columns for Token Tables..........cccovvreeeririninnninirrrr s 9-51
Supplied Entity TYPes.......cooruiiiiiiiiiiei s 10-2
AVAILADIE TTACES. ..ottt 11-3
Size Limit for the Extended Knowledge Base...........cccocovuvuvirirnnininnniiircnccceenes 16-12
German Alternate Spelling Conventions.............cooceioiiicieiiiiceec s 17-4
Danish Alternate Spelling CONVeNtions...........ccocevoiiiieiiiiccicce e 17-4
Swedish Alternate Spelling Conventions............ccccccccueuiuiiieiiiiiiiieeeeccceeee e 17-5
EXPLAIN ReSult Table.......covviiiiiiiiiiiiiii s A-1
EXPLAIN Table OPERATION COIUMMN.....c.cooviiiiiiiiiiiiiiiiieeic e A-2
EXPLAIN Table OPTIONS COIUMN.......ccoeueuriiiiieiiiecieneirieieie s nens A-3
HFEEDBACK Results Table.........cccccooiiiiiiiiiiiinc s A-4
HFEEDBACK Results Table OPERATION Column.........cccccoevviiiiniiiniiiiiciiiicennns A-5
HFEEDBACK Results Table OPTIONS COIUMN........cccoeiviiiiiiiiiiiiiniiiiinniees A-5
CTX_FEEDBACK_ITEM_TYPE......ccceciiiiiiiiiiiiiie s A-6
FILTER Result Table.........ccooiiiiiiiiiicccccc s A-7
GISt TADIE......oiiiiiiii A-7
Highlight Table..........ccocoviiiiiiiiiiiiiiiic e A-8
MarKup Table......c.c.ccuiiiiicceeccce e A-8
Theme Table........cccoiiiiiiiiiii e A-8
TOKEN TADLE. ...ttt A-9
EXP_TAB Table Type (EXP_REQC).......cccceviiiiiiiicrcceceeeeeeeeeeeeeeee s A-10
AUTO_FILTER Behavior with PDF Security Settings...........ccoceueioiinieiiiiieieiiciee, B-3
Supported Archive File FOrmats...........coooiiiiiiiiicc e B-5
Supported Raster Image Formats for AUTO_FILTER Filter..........cccccoovvninnnnnnnnnnnnes B-8
Supported Vector Image Formats for AUTO_FILTER Filter........cccccccovvvinnnnnnrnnes B-10
Oracle Text Lexer TYPes.......cocueiiiiiriciiiccie et D-3
Languages Supported by the World Lexer (Space-separated)...........cccccoeeuiuiiiiiiinnnnns D-5
Languages Supported by the World Lexer (Non-space-separated)...........cccccocoeueuiururennee D-6
Languages Not Supported by the World LeXer ..o D-6
Multilingual Features for Supported Languages..........cccccooovmeueininiccieiiicieeccceee D-8

Audience

Preface

Welcome to Oracle Text Reference. This document provides reference information for
building applications with Oracle Text. This preface contains the following topics:

* Audience (page xix)

¢ Documentation Accessibility (page xix)

Related Documents (page xix)

¢ Conventions (page xx)

This document is intended for application developers and system administrators who
maintain an Oracle Text system in an Oracle environment. To use this document, you
need experience with Oracle Database, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http:/ /www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information about Oracle Text, see:

e Oracle Text Application Developer’s Guide

For more information about Oracle Database, see:
® Oracle Database Concepts
e QOracle Database Administrator’'s Guide

e Oracle Database Utilities

Xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

® Oracle Database Performance Tuning Guide
® Oracle Database SQL Tuning Guide

® Oracle Database SQL Language Reference

® Oracle Database Reference

® Oracle Database Development Guide

® Oracle Database Sample Schemas

For more information about PL/SQL, see:

e Oracle Database PL/SQL Language Reference

Conventions

XX

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Changes in This Release for Oracle Text
Reference

This preface points you to changes in Oracle Text for this release.

® Changes in Oracle Text 12c Release 2 (12.2.0.1) (page xxi)

Changes in Oracle Text 12¢ Release 2 (12.2.0.1)

The changes in Oracle Text for Oracle Database 12c Release 2 (12.2) are described in
this topic.
New Features

The new features introduced in this release for Oracle Text are listed and described in
the New Features section of Oracle Text Application Developer’s Guide.

For a complete list of new features for Oracle Database 12c, see Oracle Database New
Features Guide.

Deprecated Features

The deprecated features for Oracle Database 12c Release 2 (12.2) are described in
Oracle Database Upgrade Guide.

XXi

1

Oracle Text SQL Statements and Operators

This chapter describes the SQL statements and Oracle Text operators for creating and
managing Oracle Text indexes and performing Oracle Text queries.

The following statements are described in this chapter:
e ALTERINDEX (page 1-1)

e ALTER TABLE: Supported Partitioning Statements (page 1-19)
e CATSEARCH (page 1-23)

e CONTAINS (page 1-30)

e CREATE INDEX (page 1-41)

e CREATE SEARCH INDEX (page 1-64)

e DROP INDEX (page 1-66)

e MATCHES (page 1-66)

¢ MATCH_SCORE (page 1-68)

* SCORE (page 1-68)

1.1 ALTER INDEX

Note:

This section describes the ALTER INDEX statement as it pertains to managing
an Oracle Text domain index.

For a complete description of the ALTER INDEX statement, see Oracle Database
SQL Language Reference.

ALTER INDEX Purpose

Use ALTER INDEX to make changes to, or perform maintenance tasks for a CONTEXT,
CTXCAT, or CTXRULE index.

All Index Types
Use ALTER INDEX to perform the following tasks on all Oracle Text index types:

® Rename the index or index partition. See "ALTER INDEX RENAME Syntax
(page 1-4)".

Oracle Text SQL Statements and Operators 1-1

ALTER INDEX

¢ Rebuild the index using different preferences. Some restrictions apply for the
CTXCAT index type. See "ALTER INDEX REBUILD Syntax (page 1-5)".

¢ Add stopwords to the index. See "ALTER INDEX REBUILD Syntax (page 1-5)".

* Add or remove a sub_lexer, and remove a stopword or set of stopwords for a
given symbol (language or language-independent). See "ALTER INDEX
Sub_Lexer Syntax (page 1-13)"

CONTEXT and CTXRULE Index Types

Use ALTER INDEX to perform the following tasks on CONTEXT and CTXRULE index
types:

* Resume a failed index operation (creation/optimization).
e Add sections and stop sections to the index.

* Replace index metadata.

See Also:

"ALTER INDEX REBUILD Syntax (page 1-5)" to learn more about
performing these tasks

Overview of ALTER INDEX Syntax

The syntax for ALTER INDEX is fairly complex. The major divisions are covered in the

following sections:

e "ALTER INDEX MODIFY PARTITION Syntax (page 1-2)"- use this to modify
an index partition's metadata.

¢ "ALTER INDEX PARAMETERS Syntax (page 1-3)"— use this to modify the
parameters of a nonpartitioned index, or to modify all partitions of a local
partitioned index, without rebuilding the index.

e "ALTER INDEX RENAME Syntax (page 1-4)"- use this to rename an index or
index partition.

¢ "ALTER INDEX REBUILD Syntax (page 1-5)"- use this to rebuild an index or
index partition. With this statement, you can also replace index metadata; add

stopwords, sections, and stop sections to an index; and resume a failed operation.

The parameters for ALTER INDEX REBUILD have their own syntax, which is a

subset of the syntax for ALTER INDEX. For example, the ALTER INDEX REBUILD
PARAMETERS statement can take either REPLACE or RESUME as an argument, and

ALTER INDEX REBUILD PARAMETERS ("REPLACE") can take several
arguments. Valid examples of ALTER INDEX REBUILD include the following
statements:

ALTER INDEX REBUILD PARALLEL n

ALTER INDEX REBUILD PARAMETERS ("REPLACE DATASTORE datastore_pref')

ALTER INDEX REBUILD PARAMETERS ("REPLACE WORDLIST wordlist_pref ™)
ALTER INDEX MODIFY PARTITION Syntax

Use the following syntax to modify the metadata of an index partition:

1-2 Oracle Text Reference

ALTER INDEX

ALTER INDEX index_nanme MODIFY PARTITION partition_name PARAMETER (paranstring)

index_name
Specify the name of the index whose partition metadata you want to modify.

partition_name
Specify the name of the index partition whose metadata you want to modify.

paramstring

The only valid argument here is 'REPLACE METADATA'. This follows the same syntax
as ALTER INDEX REBUILD PARTITION PARAMETERS ("REPLACE METADATA®);
see the REPLACE METADATA subsection of the "TALTER INDEX REBUILD Syntax
(page 1-5)" section for more information. (The two statements are equivalent.

ALTER INDEX MODIFY PARTITION is offered for ease of use, and is the
recommended syntax.)

ALTER INDEX PARAMETERS Syntax

The parameter string now supports READ ONLY MDATA. Use the following syntax
to modify the parameters either of nonpartitioned or local partitioned indexes,
without rebuilding the index. For partitioned indexes, this statement works at the
index level, not at the partition level. This statement changes information for the entire
index, including all partitions.

ALTER INDEX index_nanme PARAMETERS (paranstring)

paramstring
ALTER INDEX PARAMETERS accepts the following arguments for paramstring:
* 'REPLACE METADATA'

Replaces current metadata. See the REPLACE METADATA subsection of the
"ALTER INDEX REBUILD Syntax (page 1-5)" section for more information.

e ‘ADD MDATA SECTION secname TAG sectag READ ONLY’

Creates non-updatable MDATA sections so that queries on these MDATA
sections do not require extra cursors to be opened on $1 table.

e 'ADD STOPWORD'

Dynamically adds a stopword to an index. See the ADD STOPWORD subsection of
the "ALTER INDEX REBUILD Syntax (page 1-5)" section for more information.

e 'ADD FIELD SECTION'

Dynamically adds a field section to an index. See the ADD FIELD subsection of
the "ALTER INDEX REBUILD Syntax (page 1-5)" section for more information.
You can add an unlimited number of field sections.

e 'ADD ZONE SECTION'

Dynamically adds a zone section to an index. See the ADD ZONE subsection of the
"ALTER INDEX REBUILD Syntax (page 1-5)" section for more information.

e 'ADD ATTR SECTION'

Oracle Text SQL Statements and Operators 1-3

ALTER INDEX

Dynamically adds an attribute section to an index. See the ADD ATTR subsection
of the "ALTER INDEX REBUILD Syntax (page 1-5)" section for more
information.

e 'ADD SDATA SECTION'

Dynamically adds an SDATA section to an index, without rebuilding the index.
An SDATA section can only be added to BASIC, HTML, XML, and NEWS section
groups. It supports both global as well as local indexes. The syntax is:

ALTER INDEX index_name PARAMETERS (ADD SDATA SECTION sdata_section_nanme TAG
sdata_section_tag DATATYPE sdata_section_datatype);

The datatype can be VARCHAR2, CHAR, NUMBER, DATE, or RAW.
See "Adding an SDATA Section (page 1-18)" for more information.

Each of the above described parameters has an equivalent ALTER INDEX REBUILD
PARAMETERS version, except ADD SDATA SECTION.

For example, ALTER INDEX PARAMETERS ("REPLACE METADATAT) is equivalent
to ALTER INDEX REBUILD PARAMETERS ("REPLACE METADATA®").However, the
ALTER INDEX PARAMETERS versions work on either partitioned or nonpartitioned
indexes, whereas the ALTER INDEX REBUILD PARAMETERS versions work only on
nonpartitioned indexes.

ALTER INDEX RENAME Syntax
Use the following syntax to rename an index or index partition:

ALTER INDEX [schena.]index_name RENAME TO new_ i ndex_nane;

ALTER INDEX [schema.]index_name RENAME PARTITION part_name TO new_part_name;

[schema.]lindex_name
Specify the name of the index to rename.

new_index_name

Specify the new name for schema. index. The new_index_name parameter can be
no more than 25 bytes, and 21 bytes for a partitioned index in earlier releases of
Oracle Database that have not been upgraded to Oracle Database 12¢ Release 2 (12.2).
If you specify a name longer than 25 bytes (or longer than 21 bytes for a partitioned
index), then Oracle Text returns an error and the renamed index is no longer valid.

Note:

When new_index_name is more than 25 bytes (21 for local partitioned
index) and less than 30 bytes, Oracle Text renames the index, even though the
system returns an error. To drop the index and associated tables, you must
drop new_index_name with the DROP INDEX statement and then re-create
and drop index_name.

The upgraded databases that do not have the compatible parameter set to 12.2 can
have the new_index_name parameter no more than 30 bytes, and 30 bytes for a
partitioned index.

1-4 Oracle Text Reference

ALTER INDEX

The upgraded databases that have the compatible parameter set to 12.2 or new
Oracle Database 12¢ Release 2 (12.2) installations can have the new_index_name
parameter no more than 128 bytes, and 128 bytes for a partitioned index.

part_name
Specify the name of the index partition to rename.

new_part_name
Specify the new name for partition.

ALTER INDEX REBUILD Syntax

Use ALTER INDEX REBUILD to rebuild an index, rebuild an index partition, resume a
failed operation, replace index metadata, add stopwords to an index, or add sections
and stop sections to an index.

The ALTER INDEX REBUILD syntax has its own subsyntax. That is, its parameters
have their own syntax. For example, the ALTER INDEX REBUILD PARAMETERS
statement can take either REPLACE or RESUME as an argument, and ALTER INDEX
REBUILD PARAMETERS ("REPLACE™) has several arguments it can take.

Note:

You cannot use the ALTER INDEX REBUILD syntax to add or remove the
INMEMORY option associated Text index tables.

Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS (REPLACE DATASTORE datastore_pref)
ALTER INDEX REBUILD PARAMETERS (REPLACE WORDLIST wordlist_pref)

This is the syntax for ALTER INDEX REBUILD:

ALTER INDEX [schema.]index [REBUILD] [PARTITION partname] [ONLINE] [PARAMETERS
(paranstring)][PARALLEL N];

PARTITION partname
Rebuilds the index partition partname. Only one index partition can be built at a
time.

When you rebuild a partition you can specify only RESUME or REPLACE in
paramstring. These operations work only on the partname you specify.

With the REPLACE operation, you can specify MEMORY, STORAGE, and SYNC for each
index partition.

Adding Partitions To add a partition to the base table, use the ALTER TABLE SQL
statement. When you add a partition to an indexed table, Oracle Text automatically
creates the metadata for the new index partition. The new index partition has the
same name as the new table partition. If you must change the index partition name,
then use ALTER INDEX RENAME.

Splitting or Merging Partitions Splitting or merging a table partition with ALTER
TABLE renders the index partitions invalid. You must rebuild them with ALTER
INDEX REBUILD.

Oracle Text SQL Statements and Operators 1-5

ALTER INDEX

ONLINE

Enables you to continue to perform updates, insertions, and deletions on a base table.
It does not enable you to query the base table. The ONL INE keyword can only be used
with the Enterprise Edition of Oracle Database.

Note:
You can specify REPLACE or RESUME when rebuilding an index or an index
partition ONL INE.

PARAMETERS (paramstring)
Optionally, specify paramstring. If you do not specify paramstring, then Oracle
Text rebuilds the index with existing preference settings.

The syntax for paramstring is as follows:

paramstring =

"REPLACE
[DATASTORE dat astore_pref]
[FILTER filter_pref]
[LEXER | exer_pref]
[WORDLIST wordlist_pref]
[STORAGE st orage_pref]
[STOPLIST stoplist]
[SECTION GROUP section_group]
[MEMORY mensi ze
[[POPULATE | NOPOPULATE]
[INDEX SET index_set]

[METADATA preference new_preference]
[METADATA FORMAT COLUMN format_column_name]
[[METADATA] SYNC (MANUAL | EVERY "interval-string” | ON COMMIT)]
[[METADATA] TRANSACTIONAL |NONTRANSACTIONAL
[[METADATA] [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]]

| [DATAGUIDE [ON | OFF]| ON CHANGE [ADD_VC|Function_nane]]

| [SEARCH_ON TEXT_VALUE]

| RESUME [memory nensi ze]

| ADD STOPWORD word [language | anguage]

| ADD ZONE SECTION section_nane tag tag

| ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
| ADD ATTR SECTION section_nane tag tag@ttr

| ADD STOP SECTION tag'

REPLACE [optional_preference_list]
Rebuilds an index. You can optionally specify your own preferences, or system-
defined preferences.

You can replace only preferences that are supported for that index type. For instance,
you cannot replace index set for a CONTEXT or CTXRULE index. Similarly, for the
CTXCAT index type, you can replace lexer, wordlist, storage index set, and memory
preferences.

The POPULATE parameter is the default and need not be specified. If you want to
empty the index of its contents, then specify NOPOPULATE. Clear an index of its
contents when you must rebuild your index incrementally. The NOPOPULATE choice
is available for a specific partition of the index, and not just for the entire index.

1-6 Oracle Text Reference

ALTER INDEX

If you are rebuilding a partitioned index using the REPLACE parameter, then you can
specify only STORAGE, MEMORY, and NOPOPULATE.

A new wordlist preference SEPARATE_OFFSETS specifies that the token_info in
the index is stored as docids only in one place, and offsets is stored only in another
place. Refer to Oracle Text Application Developer’s Guide for information on improved
response time using the SEPARATE_OFFSETS option of CONTEXT index.

Note:

If this procedure modifies the existing index tables for only the following
storage attributes of the BASIC_STORAGE type (any one of them), then it will
not result in re-indexing of data:

BIG_I0

I_INDEX_CLAUSE

I_TABLE_CLAUSE

SEPARATE_OFFSETS

See Also:

® Oracle Text Indexing Elements (page 2-1) for more information about
creating and setting preferences, including information about system-
defined preferences

® Oracle Text Application Developer’s Guide for information on improved
response time using the SEPARATE_OFFSETS option of CONTEXT
index

REPLACE METADATA preference new_preference

Replaces the existing preference class settings, including SYNC parameters, of the
index with the settings from new_preference. Only index preferences and
attributes are replaced. The index is not rebuilt.

This statement is useful when you want to replace a preference and its attribute
settings after the index is built, without re-indexing all data. re-indexing data can
require significant time and computing resources.

This statement is also useful for changing the SYNC parameter type, which can be
automatic, manual, or on-commit.

The ALTER INDEX REBUILD PARAMETER ("REPLACE METADATA®) statement
does not work for a local partitioned index at the global level for the index. You
cannot, for example, use this syntax to change a global preference, such as filter or
lexer type, without rebuilding the index. Use ALTER INDEX PARAMETERS instead to
change the metadata of an index at the global level, including all partitions. See
"ALTER INDEX PARAMETERS Syntax (page 1-3)".

When should I use the METADATA keyword? REPLACE METADATA should be
used only when the change in index metadata will not lead to an inconsistent index,
which can lead to incorrect query results.

For example, use this statement in the following instances:

Oracle Text SQL Statements and Operators 1-7

ALTER INDEX

e To go from a single-language lexer to a multilexer in anticipation of multilingual
data. For an example, see "Replacing Index Metadata: Changing Single-Lexer to
Multilexer (page 1-16)".

¢ To change the WILDCARD_MAXTERMS setting in BASIC_WORDLIST (page 2-73).

e To change the SYNC parameter type, which can be automatic, manual, or on-
commit.

These changes are safe and will not lead to an inconsistent index that might adversely
affect your query results.

WARNING:

The REPLACE METADATA statement can result in inconsistent index data,
which can lead to incorrect query results. As such, Oracle does not
recommend using this statement, unless you carefully consider the effect it
will have on the consistency of your index data and subsequent queries.

There can be many instances when changing metadata can result in inconsistent index
data. For example, Oracle recommends against using the METADATA keyword after
performing the following procedures:

® Changing the USER_DATASTORE (page 2-14) procedure to a new PL/SQL
stored procedure that has different output.

¢ Changing the BASIC_WORDLIST (page 2-73) attribute PREFIX_INDEX from NO
to YES because no prefixes have been generated for existing documents.
Changing it from YES to NO is safe.

* Adding or changing BASIC_LEXER printjoin and skipjoin characters, because
new queries with these characters would be lexed differently from how these
characters were lexed at index time.

¢ Do not use REPLACE METADATA with FORWARD_ INDEX. Instead use REPLACE
STORAGE.

In these unsafe cases, Oracle recommends rebuilding the index.

REPLACE [METADATA] SYNC (MANUAL | EVERY "interval-string" | ON
COMMIT)

Specifies SYNC for automatic synchronization of the CONTEXT index when a DML
change has occurred to the base table. You can specify one of the SYNC methods
shown in Table 1-1 (page 1-8).

SYNC Type Description

MANUAL Means no automatic synchronization. This is the
default. You must manually synchronize the index
using CTX_DDL .SYNC_ INDEX.

Use MANUAL to disable ON COMMIT and EVERY
synchronization.

1-8 Oracle Text Reference

ALTER INDEX

SYNC Type Description

EVERY interval-string ~ Automatically synchronize the index at a regular
interval specified by the value of interval-string,
which takes the same syntax as that for scheduler
jobs. Automatic synchronization using EVERY
requires that the index creator have CREATE JOB
privileges.

Ensure that interval-string is set to a long enough
period so that any previous synchronization jobs
will have completed. Otherwise, the
synchronization job may hang. The interval-string
argument must be enclosed in double quotation
marks (" ").

See "Enabling Automatic Index Synchronization
(page 1-56)" for an example of automatic
synchronization syntax.

ON COMMIT Synchronize the index immediately after a commit.
The commit does not return until the sync is
complete. (Because the synchronization is
performed as a separate transaction, there may be a
time period, usually small, when the data is
committed but index changes are not.)

The operation uses the memory specified with the
memory parameter.

Note that the sync operation has its own transaction
context. If this operation fails, the data transaction
still commits. Index synchronization errors are
logged in the CTX_USER_ INDEX_ERRORS view. See
"Viewing Index Errors (page 1-59)" under CREATE
INDEX.

ON COMMIT sync works best when the
STAGE_ITAB index option is enabled, because
otherwise it causes significant fragmentation of the
main index, requiring frequent OPTIMIZE calls.

See "Enabling Automatic Index Synchronization
(page 1-56)" for an example of ON COMMIT syntax.
Refer to Oracle Text Application Developer’s Guide for
more information about the STAGE_ITAB option of
the CONTEXT index.

Each partition of a locally partitioned index can have its own type of sync: (ON
COMMIT, EVERY, or MANUAL). The type of sync specified in master parameter strings
applies to all index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. The syntax is:

. EVERY interval _string MEMORY mem size PARALLEL paradegree ...

ON COMMIT synchronizations can only be executed serially and at the same memory
size as what was specified at index creation.

Oracle Text SQL Statements and Operators 1-9

ALTER INDEX

Note:

This command rebuilds the index. When you want to change the SYNC setting
without rebuilding the index, use the REBUILD REPLACE METADATA SYNC
(MANUAL | ON COMMIT) operation.

REPLACE [METADATA] TRANSACTIONAL | NONTRANSACTIONAL
This parameter enables you to turn the TRANSACT IONAL property on or off. For more
information, see "TRANSACTIONAL (page 1-55)".

Using this parameter only succeeds if there are no rows in the DML pending queue.
Therefore, you may need to sync the index before issuing this command.

To turn on the TRANSACT IONAL index property:
ALTER INDEX myidx REBUILD PARAMETERS("replace metadata transactional®);

or

ALTER INDEX myidx REBUILD PARAMETERS("replace transactional®);

To turn off the TRANSACT IONAL index property:
ALTER INDEX myidx REBUILD PARAMETERS("replace metadata nontransactional®);

or

ALTER INDEX myidx REBUILD PARAMETERS("replace nontransactional®);
REPLACE [METADATA] [ASYNCHRONOUS_UPDATE |
SYNCHRONOUS_UPDATE]

When you update the column in a document on which an Oracle Text index is based,
that document is marked as invalid for search operations until index synchronization
is performed. Enabling asynchronous update for an index enables a document to be
searchable even though its index has not yet been synchronized after the index
column was updated. Until the index is synchronized, Oracle Text uses the contents
of the old document to answer user queries.

To enable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ("REPLACE METADATA asynchronous_update®);

To disable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ("REPLACE METADATA synchronous_update®);

Note:
Synchronous update is not supported with the TRANSACT IONAL option and
for updates that cause row movement.

RESUME [MEMORY memsize]
Resumes a failed index operation. You can optionally specify the amount of memory
to use with memsize.

1-10 Oracle Text Reference

ALTER INDEX

Note:
This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes.
It does not apply to CTXCAT indexes.

ADD STOPWORD word [language language]
Dynamically adds a stopword word to the index.

Index entries for word that existed before this operation are not deleted. However,
subsequent queries on word are treated as though it has always been a stopword.

When your stoplist is a multilanguage stoplist, you must specify language.
The index is not rebuilt by this statement.
ADD ZONE SECTION section_name tag tag

Dynamically adds the zone section section_name identified by tag to the existing
index.

The added section section_name applies only to documents indexed after this
operation. For the change to take effect, you must manually re-index any existing
documents that contain the tag.

The index is not rebuilt by this statement.

Note:
This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes.
It does not apply to CTXCAT indexes.

See Also:
"Notes (page 1-18)"

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
Dynamically adds the field section sect i on_nane identified by tag to the existing
index. There is no limit to the number of field sections that can be added.

Optionally specify VISIBLE to make the field sections visible. The default is
INVISIBLE.

See Also:
CTX_DDL.ADD_FIELD_SECTION (page 8-5) for more information on
visible and invisible field sections

The added section sect i on_namne applies only to documents indexed after this
operation. For the change to affect previously indexed documents, you must explicitly
re-index the documents that contain the tag.

This statement does not rebuild the index.

Oracle Text SQL Statements and Operators 1-11

ALTER INDEX

Note:
This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It
does not apply to CTXCAT indexes.

See Also:
"Notes (page 1-18)"

ADD ATTR SECTION section_name tag tag@attr

Dynamically adds an attribute section sect i on_nare to the existing index. You
must specify the XML tag and attribute in the form tag@attr. You can add attribute
sections only to XML section groups.

The added attribute section sect i on_nane applies only to documents indexed after
this operation. For the change to take effect, you must manually re-index any existing
documents that contain the tag.

The index is not rebuilt by this statement.

Note:
This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It
does not apply to CTXCAT indexes.

See Also:
"Notes (page 1-18)"

ADD STOP SECTION tag

Dynamically adds the stop section identified by tag to the existing index. As stop
sections apply only to automatic sectioning of XML documents, the index must use
the AUTO_SECT ION_GROUP section group. The tag you specify must be case sensitive
and unique within the automatic section group or else ALTER INDEX raises an error.

The added stop section tag applies only to documents indexed after this operation.
For the change to affect previously indexed documents, you must explicitly re-index
the documents that contain the tag.

The text within a stop section can always be searched.
The number of stop sections you can add is unlimited.

The index is not rebuilt by this statement.

See Also:
"Notes (page 1-18)"

Note:
This ALTER INDEX operation applies only to CONTEXT indexes. It does not
apply to CTXCAT indexes.

1-12 Oracle Text Reference

ALTER INDEX

PARALLEL n

Using n, you can optionally specify the parallel degree for parallel indexing. This
parameter is supported only when you use SYNC, REPLACE, and RESUME in
paramstring. The actual degree of parallelism might be smaller depending on your
resources.

Parallel indexing can speed up indexing when you have large amounts of data to
index and when your operating system supports multiple CPUs.

ALTER INDEX Sub_Lexer Syntax

Use the following syntax.

See Also:

"ALTER INDEX Purpose (page 1-1)" for list of types of indexes and syntax for
ALTER INDEX

New paramstring =

"REPLACE
[DATASTORE datastore_pref]
[FILTER filter_pref]
[LEXER lexer_pref]
[WORDLIST wordlist_pref]
[STORAGE storage_pref]
[STOPLIST stoplist]
[SECTION GROUP section_group]
[MEMORY memsize
[[POPULATE | NOPOPULATE]
[INDEX SET index_set]

[METADATA preference new_preference]
[[METADATA] SYNC (MANUAL | EVERY "interval-string” | ON COMMIT)]
[[METADATA] TRANSACT IONAL |NONTRANSACT IONAL

RESUME [memory memsize]

OPTIMIZE [token index_token | fast | full [maxtime (time | unlimited)]
SYNC [memory memsize]

ADD STOPWORD word [language language][LANGUAGE_DEPENDENT(TRUE|FALSE)]
ADD ZONE SECTION section_name tag tag

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]

ADD ATTR SECTION section_name tag tag@attr

ADD STOP SECTION tag

ADD SUB_LEXER sub_lexer_name LANGUAGE language [ALT_VALUE
Iternate_value_for_language] [LANGUAGE_DEPENDENT (TRUE|FALSE)]

REMOVE SUB_LEXER LANGUAGE language

REMOVE STOPWORD word [LANGUAGE language]

REMOVE STOPWORDS FOR LANGUAGE language

MIGRATE to MULTI_STOPLIST [LANGUAGE COLUMN lang]

MIGRATE FIELD SECTION field_section_name to [READ ONLY] MDATA

UPDATE SUB_LEXER LANGUAGE language TO sub_lexer_preference

ADD MDATA SECTION secname TAG sectag READ ONLY

— — — — — —— () —— —————— —

Sub_Lexer Example

ALTER INDEX myidx PARAMETERS("ADD SUB_LEXER mycompany_lexer LANGUAGE mycompany
LANGUAGE_DEPENDENT FALSE");

ALTER INDEX myidx PARAMETERS(*REMOVE STOPWORDS FOR LANGUAGE mycompany®);

Oracle Text SQL Statements and Operators 1-13

ALTER INDEX

Sub_Lexer Notes

The language can be Oracle predefined language symbols (globalization support name
or abbreviation of an Oracle Text-supported language), or user-defined symbols for
language independent sub_lexer or stopword.

ADD SUB_LEXER
The following conditions apply:

e If LANGUAGE_DEPENDENT clause is not provided, it will default TRUE.
¢ Sync will be blocked (or it will be blocked by sync).

¢ If adding first language independent sub_lexer, then base table will also be
locked.

¢ Adding first language independent sub_lexer or stopword will take longer to
complete. Otherwise, it should take fraction of a second to complete unless it's
being blocked by ongoing sync process on the same index.

REMOVE SUB_LEXER

Will succeed only if there are no documents with language column set to the symbol
for the sub_lexer being removed.

REMOVE STOPWORD
The following conditions apply:

e If LANGUAGE clause is not specified, it is assumed that the index is using
basic_stoplist. If the index is not using basic_stoplist, an error will be raised.

¢ If the index is using basic_stoplist (instead of multi_stoplist), then it will succeed
only if the base table is empty.

e If the index is using multi_stoplist, and user specifies "ALL" for LANGUAGE
clause, then it will succeed only if the base table is empty.

¢ If the index is using multi_stoplist, and user specifies a symbol for LANGUAGE
clause, then it will succeed only if there are no documents with language column
set to the symbol for the stopword being removed.

See Also:
"ALTER INDEX REBUILD Syntax (page 1-5)"

MIGRATE TO MULTI_STOPLIST [LANGUAGE COLUMN lang]
The following conditions apply:

¢ Migrate the stoplist of an existing Text index to Multi_stoplist. The language of
the existing stopwords will have the value of ALL.

e If LANGUAGE column has already been defined for the index:

— LANGUAGE COLUMN can be skipped (old language column is retained for the
index).

1-14 Oracle Text Reference

ALTER INDEX

— If LANGUAGE COLUMN is specified and there is a mismatch between index
language column and the one specified, an error will be raised.

e LANGUAGE COLUMN must be specified for the index; otherwise, an error is raised.

MIGRATE FIELD SECTION TO MDATA SECTION
The following conditions apply:

* Allow user to convert a field section to MDATA section. Specify READ ONLY if
the MDATA section is meant to be a READ_ONLY MDATA section (ADD and
REMOVE not allowed).

¢ Limitation: Tokens in migrated MDATA sections will not have typical MDATA
characteristics - case information, tokens being stored as it is in the document, etc.
To retain these, those documents need to be reindexed.

UPDATE SUB_LEXER LANGUAGE SUB_LEXER_SYMBOL TO
SUB_LEXER_PREFERENCE

The following conditions apply:
e Allows user to update sublexer dynamically.

¢ Language, alt_value, language dependency should remain same for the old and
new sublexer preference.

e For updating the default sublexer, the syntax is:
UPDATE SUB_LEXER DEFAULT TO SUB_LEXER_PREFERENCE

ADD MDATA SECTION secname TAG sectag READ ONLY
The following conditions apply:

e Allows users to add MDATA section to the index.

e Cannot be used with NULL/AUTO/PATH section groups.

ALTER INDEX Examples
Resuming Failed Index

The following statement resumes the indexing operation on newsindex with 2
megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS("resume memory 2M");

Rebuilding an Index

The following statement rebuilds the index, replacing the stoplist preference with
new_stop.

ALTER INDEX newsindex REBUILD PARAMETERS("replace stoplist new_stop®);

Rebuilding a Partitioned Index

The following example creates a partitioned text table, populates it, and creates a
partitioned index. It then adds a new partition to the table and rebuilds the index with
ALTER INDEX as follows:

PROMPT create partitioned table and populate it

Oracle Text SQL Statements and Operators 1-15

ALTER INDEX

create table part_tab (a int, b varchar2(40)) partition by range(a)
(partition p_tabl values less than (10),
partition p_tab2 values less than (20),
partition p_tab3 values less than (30));

insert into part_tab values (1,"Actinidia deliciosa");

insert into part_tab values (8, "Distictis buccinatoria®);

insert into part_tab values (12,"Actinidia quinata®);

insert into part_tab values (18, "Distictis Rivers");

insert into part_tab values (21, "pandorea jasminoides Lady Di");
insert into part_tab values (28, "pandorea rosea");

commit;

PROMPT create partitioned index
create index part_idx on part_tab(b) indextype is ctxsys.context
local (partition p_idx1l, partition p_idx2, partition p_idx3);

PROMPT add a partition and populate it

alter table part_tab add partition p_tab4 values less than (40);
insert into part_tab values (32, "passiflora citrina®);

insert into part_tab values (33, "passiflora alatocaerulea®);
commit;

The following statement rebuilds the index in the newly populated partition. In
general, the index partition name for a newly added partition is the same as the table
partition name, unless the name has already been used. In this case, Oracle Text
generates a new name.

alter index part_idx rebuild partition p_tab4;

The following statement queries the table for the two hits in the newly added
partition:

select * from part_tab where contains(b, "passiflora®) >0;

The following statement queries the newly added partition directly:

select * from part_tab partition (p_tab4) where contains(b, "passiflora®) >;

Replacing Index Metadata: Changing Single-Lexer to Multilexer

The following example demonstrates how an application can migrate from single-
language documents (English) to multilanguage documents (English and Spanish) by
replacing the index metadata for the lexer.

REM creates a simple table, which stores only English (American) text

create table simple (text varchar2(80));
insert into simple values ("the quick brown fox");
commit;

REM create a simple lexer to lex this English text

begin

ctx_ddl.create_preference("us_lexer", "basic_lexer");
end;
/

REM create a text index on the simple table
create index simple_idx on simple(text)

1-16 Oracle Text Reference

ALTER INDEX

indextype is ctxsys.context parameters ("lexer us_lexer");

REM we can query easily
select * from simple where contains(text, "fox")>0;

REM now suppose we want to start accepting Spanish documents.
REM first we have to extend the table with a language column
alter table simple add (lang varchar2(10) default “us");

REM now let"s create a Spanish lexer,

begin
ctx_ddl.create_preference("e_lexer®,"basic_lexer");
ctx_ddl.set_attribute("e_lexer","base_letter","yes");

end;

/

REM Then create a multilexer incorporating our English and Spanish lexers.

REM Note that the DEFAULT lexer is the exact same lexer, with which we have

REM have already indexed all the documents.

begin
ctx_ddl.create_preference("m_lexer®, "multi_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"default®, "us_lexer");
ctx_ddl.add_sub_lexer("m_lexer","spanish®,"e_lexer");

end;

/

REM next replace our metadata

alter index simple_idx rebuild

parameters ("replace metadata language column lang lexer m_lexer®);

REM We are ready for some Spanish data. Note that we could have inserted
REM this BEFORE the alter index, as long as we did not SYNC.

insert into simple values (el zorro marréón rápido”, "e");
commit;

exec ctx_ddl.sync_index("simple_idx");

REM now query the Spanish data with base lettering:

select * from simple where contains(text, "rapido®)>0;

Optimizing the Index

To optimize your index, use CTX_DDL.OPTIMIZE_INDEX (page 8-46).
Synchronizing the Index

To synchronize your index, use CTX_DDL.SYNC_INDEX (page 8-70).
Adding a Zone Section

To add to the index the zone section author identified by the tag <author>, enter
the following statement:

ALTER INDEX myindex REBUILD PARAMETERS("add zone section author tag author®);

Adding a Stop Section

To add a stop section identified by tag <Fluff> to the index that uses the
AUTO_SECT ION_GROUP, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS("add stop section fluff®);

Adding an Attribute Section
Assume that the following text appears in an XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

Oracle Text SQL Statements and Operators 1-17

ALTER INDEX

Assume also that you want to create a separate section for the title attribute and you
want to name the new attribute section booktitle. To do so, enter the following
statement:

ALTER INDEX myindex REBUILD PARAMETERS("add attr section booktitle tag
title@book");

Adding an SDATA Section

To add an SDATA section S1 of NUMBER data type and identified by tag T1, to the
index, enter the following statement:

ALTER INDEX myindex PARAMETERS("add sdata section S1 tag T1 datatype NUMBER);

Using Flashback Queries

If a Text query is flashed back to a point before an ALTER INDEX statement was issued
on the Text index for which the query is being run, then:

* The query optimizer will not choose the index access path for that given index
because the index is treated according to its creation time with ALTER INDEX.
Therefore, to the query optimizer, the index is perceived not to exist.

* The functional processing of the Text operator will fail with ORA-01466 or
ORA-08176 errors if the ALTER INDEX statement involves re-creation of DR$ index
tables.

To work around this issue, use the DBMS_FLASHBACK package. For example:

EXEC dbms_flashback.enable_at_system change_number(:scn);
SELECT id from documents WHERE CONTAINS(text, "oracle®)>0;
EXEC dbms_flashback.disable;

See Also:

"Using DBMS_FLASHBACK Package" in Oracle Database Development Guide

Notes
Add Section Constraints

Before altering the index section information, Oracle Text checks the new section
against the existing sections to ensure that all validity constraints are met. These
constraints are the same for adding a section to a section group with the CTX_DDL
PL/SQL package and are as follows:

* You cannot add zone, field, or stop sections to a NULL_SECTION_GROUP.

* You cannot add zone, field, or attribute sections to an automatic section group.
* You cannot add attribute sections to anything other than XML section groups.
* You cannot have the same tag for two different sections.

e Section names for zone, field, and attribute sections cannot intersect.

* You cannot exceed 64 fields per section.

* You cannot add stop sections to basic, HTML, XML, or news section groups.

1-18 Oracle Text Reference

ALTER TABLE: Supported Partitioning Statements

e SENTENCE and PARAGRAPH are reserved section names.

* You cannot have embedded blanks in section and field names.
Related Topics

CTX_DDL.SYNC_INDEX (page 8-70) in CTX_DDL Package (page 8-1)

CTX_DDL.OPTIMIZE_INDEX (page 8-46) in CTX_DDL Package (page 8-1)
CREATE INDEX (page 1-41)

1.2 ALTER TABLE: Supported Partitioning Statements

Note:

This section describes the ALTER TABLE statement as it pertains to adding and
modifying a partitioned text table with a context domain index.

For a complete description of the ALTER TABLE statement, see Oracle Database
SQL Language Reference.

Purpose

Use the ALTER TABLE statement to add, modify, split, merge, exchange, or drop a
partitioned text table with a context domain index. The following sections describe
some of the ALTER TABLE operations.

Modify Partition Syntax

Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition UNUSABLE LOCAL INDEXES
Marks the index partition corresponding to the given table partition UNUSABLE. You

might mark an index partition unusable before you rebuild the index partition as
described in "Rebuild Unusable Local Indexes (page 1-19)".

If the index partition is not marked unusable, then the statement returns without
actually rebuilding the local index partition.

Rebuild Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition REBUILD UNUSABLE LOCAL
INDEXES

Rebuilds the index partition corresponding to the specified table partition that has an
UNUSABLE status.

Note:

If the index partition status is already VAL ID before you enter this statement,
then this statement does not rebuild the index partition. Do not depend on this
statement to rebuild the index partition unless the index partition status is
UNUSABLE.

Oracle Text SQL Statements and Operators 1-19

ALTER TABLE: Supported Partitioning Statements

Add Partition Syntax

ALTER TABLE [schema.]table ADD PARTITION [partition]
VALUES LESS THAN (value_list) [partition_description]

Adds a new partition to the high end of a range-partitioned table.

To add a partition to the beginning or to the middle of the table, use the ALTER
TABLE SPLIT PARTITION statement.

The newly added table partition is always empty, and the context domain index (if
any) status for this partition is always VALID. After issuing DML, if you want to
synchronize or optimize this newly added index partition, then you must look up the
index partition name and enter the ALTER INDEX REBUILD PARTITION statement.
For this newly added partition, the index partition name is usually the same as the
table partition name, but if the table partition name is already used by another index
partition, the system assigns a name in the form of SYS_Pn.

By querying the USER_IND_PARTITIONS view and comparing the HIGH_VALUE
field, you can determine the index partition name for the newly added partition.

Merge Partition Syntax

ALTER TABLE [schema.]table

MERGE PARTITIONS partitionl, partition2

[INTO PARTITION [new_partition] [partition_description]]
[UPDATE GLOBAL INDEXES]

Applies only to a range partition. This statement merges the contents of two adjacent
partitions into a new partition and then drops the original two partitions. If the
resulting partition is non-empty, then the corresponding local domain index partition
is marked UNUSABLE. You can use ALTER TABLE MODIFY PARTITION to rebuild
the partition index.

For a global, nonpartitioned index, if you perform the merge operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be
invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after
the operation and the SYNC type is MANUAL, then the index will be valid, but you still
must synchronize the index with CTX_DDL.SYNC_INDEX (page 8-70) for the update
to take place.

The naming convention for the resulting index partition is the same as in the ALTER
TABLE ADD PARTITION statement.

Split Partition Syntax

ALTER TABLE [schema.]table

SPLIT PARTITION partition_name_old

AT (value_list)

[into (partition_description, partition_description)]
[parallel_clause]

[UPDATE GLOBAL INDEXES]

Applies only to range partitions. This statement divides a table partition into two
partitions, thus adding a new partition to the table. The local corresponding index
partitions will be marked UNUSABLE if the corresponding table partitions are non-
empty. Use the ALTER TABLE MODIFY PARTITION statement to rebuild the
partition indexes.

1-20 Oracle Text Reference

ALTER TABLE: Supported Partitioning Statements

For a global, nonpartitioned index, if you perform the split operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be
invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after
the operation and the SYNC type is MANUAL, then the index will be valid, but you still
must synchronize the index with CTX_DDL.SYNC_INDEX (page 8-70) for the update
to take place.

The naming convention for the two resulting index partition is the same as in the
ALTER TABLE ADD PARTITION statement.

Exchange Partition Syntax

ALTER TABLE [schema.]table EXCHANGE PARTITION partition WITH TABLE table
[INCLUDING]EXCLUDING INDEXES}

[WITH|WITHOUT VALIDATION]

[EXCEPTIONS INTO [schema.]table]

[UPDATE GLOBAL INDEXES]

Converts a partition to a nonpartitioned table, and converts a table to a partition of a
partitioned table by exchanging their data segments. Rowids are preserved.

If EXCLUDING [INDEXES is specified, all the context indexes corresponding to the
partition and all the indexes on the exchanged table are marked as UNUSABLE. To
rebuild the new index partition in this case, issue an ALTER TABLE MODIFY
PARTITION statement.

If INCLUDING INDEXES is specified, then for every local domain index on the
partitioned table, there must be a nonpartitioned domain index on the nonpartitioned
table. The local index partitions are exchanged with the corresponding regular
indexes.

For a global, nonpartitioned index, if you perform the exchange operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be
invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after
the operation and the SYNC type is MANUAL, then the index will be valid, but you still
must synchronize the index with CTX_DDL.SYNC_INDEX (page 8-70) for the update
to take place.

Field Sections

Field section queries might not work the same way if the nonpartitioned index and
local index use different section IDs for the same field section.

Storage

Storage is not changed. So if the index on the nonpartitioned table $1 table was in
tablespace XYZ, then after the exchange partition, it will still be in tablespace XYZ, but
now it is the $1 table for an index partition.

Storage preferences are not switched, so if you switch and then rebuild the index, then
the table may be created in a different location.

Restrictions

Both indexes must be equivalent. They must use the same objects and the same
settings for each object. Note that Oracle Text checks only that the indexes are using
the same object. But they should use the same exact everything.

No index object can be partitioned, that is, when the user has used the storage object to
partition the $I, $N tables.

Oracle Text SQL Statements and Operators 1-21

ALTER TABLE: Supported Partitioning Statements

If either index or index partition does not meet all these restrictions an error is raised
and both the index and index partition will be INVALID. You must manually rebuild
both index and index partition using the ALTER INDEX REBUILD statement.

Truncate Partition Syntax

ALTER TABLE [schema.]table TRUNCATE PARTITION [DROP|REUSE STORAGE] [UPDATE GLOBAL
INDEXES]

Removes all rows from a partition in a table. Corresponding CONTEXT index partitions
are also removed.

For a global, nonpartitioned index, if you perform the truncate operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be
invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after
the operation, the index will be valid.

ALTER TABLE Examples
Global Index on Partitioned Table Examples

The following example creates a range-partitioned table with three partitions. Each
partition is populated with two rows. A global, nonpartitioned CONTEXT index is then
created. To demonstrate the UPDATE GLOBAL INDEXES clause, the partitions are split
and merged with an index synchronization.

create table tdrexglb_part(a int, b varchar2(40)) partition by range(a)
(partition pl values less than (10),
partition p2 values less than (20),
partition p3 values less than (30));

insert into tdrexglb_part values (1,"rowl®);
insert into tdrexglb_part values (8,"row2");
insert into tdrexglb_part values (11,"rowll");
insert into tdrexglb_part values (18,"rowl8");
insert into tdrexglb_part values (21,"row21");
insert into tdrexglb_part values (28, "row28");

commit;
create index tdrexglb_parti on tdrexglb_part(b) indextype is ctxsys.context;

create table tdrexglb(a int, b varchar2(40));

insert into tdrexglb values(20, "newrow20");

commit;

PROMPT make sure query works

select * from tdrexglb_part where contains(b, "rowl8") >0;
PROMPT split partition

alter table tdrexglb_part split partition p2 at (15) into
(partition p21, partition p22) update global indexes;
PROMPT before sync

select * from tdrexglb_part where contains(b, "rowll®) >0;
select * from tdrexglb_part where contains(b, "rowl8") >0;

exec ctx_ddl.sync_index("tdrexglb_parti®)

PROMPT after sync

1-22 Oracle Text Reference

CATSEARCH

select * from tdrexglb_part where contains(b, "rowll®) >0;
select * from tdrexglb_part where contains(b, "rowl8") >0;

PROMPT merge partition
alter table tdrexglb_part merge partitions p22, p3
into partition pnew3 update global indexes;

PROMPT before sync

select * from tdrexglb_part where contains(b, "rowl8") >0;
select * from tdrexglb_part where contains(b, "row28") >0;
exec ctx_ddl.sync_index("tdrexglb_parti®);

PROMPT after sync
select * from tdrexglb_part where contains(b, "rowl8") >0;
select * from tdrexglb_part where contains(b, "row28") >0;

PROMPT drop partition
alter table tdrexglb_part drop partition pl update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b, "rowl®) >0;
exec ctx_ddl.sync_index("tdrexglb_parti®);

PROMPT after sync
select * from tdrexglb_part where contains(b, "rowl®) >0;

PROMPT exchange partition
alter table tdrexglb_part exchange partition pnew3 with table
tdrexglb update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b, "newrow20") >0;
select * from tdrexglb_part where contains(b, "row28") >0;

exec ctx_ddl.sync_index("tdrexglb_parti®);

PROMPT after sync

select * from tdrexglb_part where contains(b, "newrow20") >0;
select * from tdrexglb_part where contains(b, "row28") >0;

PROMPT move table partition

alter table tdrexglb_part move partition p21 update global indexes;
PROMPT before sync

select * from tdrexglb_part where contains(b, "rowll®) >0;

exec ctx_ddl.sync_index("tdrexglb_parti®);
PROMPT after sync
select * from tdrexglb_part where contains(b, "rowll®) >0;

PROMPT truncate table partition
alter table tdrexglb_part truncate partition p2l update global indexes;

update global indexes;

1.3 CATSEARCH

Use the CATSEARCH operator to search CTXCAT (page 1-42) indexes. Use this
operator in the WHERE clause of a SELECT statement.

The CATSEARCH operator also supports database links. You can identify a remote table
or materialized view by appending @dblink to the end of its name. The dbl ink must

Oracle Text SQL Statements and Operators 1-23

CATSEARCH

be a complete or partial name for a database link to the database containing the remote
table or materialized view. (Indexing of remote views is not supported.)

The grammar of this operator is called CTXCAT. You can also use the CONTEXT
grammar if your search criteria require special functionality, such as thesaurus, fuzzy
matching, proximity searching, or stemming. To utilize the CONTEXT grammar, use
the "Query Template Specification (page 1-26)" in the text_query parameter as
described in this section.

About Performance

Use the CATSEARCH operator with a CTXCAT (page 1-42) index mainly to improve
mixed-query performance. Specify your text query condition with text_query and
your structured condition with the structured_gquery argument.

Internally, Oracle Text uses a combined B-tree index on text and structured columns to
quickly produce results satisfying the query.

Limitations

If the optimizer chooses to use the functional query invocation, then your query will
fail. The optimizer might choose functional invocation when your structured clause is
highly selective.

The structured_query argument of the CATSEARCH operator must reference
columns used during CREATE INDEX sets; otherwise, error DRG-10845 will be raised.
For example, the error will be raised if you issue a CATSEARCH query on a view
created on top of a table with the CTXCAT index on it, and the name of the logical
column on the view is different from the actual column name on the physical table.
The columns referenced by the structured_query argument of the CATSEARCH
operator must be the physical column name used during CREATE INDEX sets, not the
logical column on the view.

Syntax
CATSEARCH(

[schema.]col um,
text_query [VARCHAR2|CLOB],
structured_query VARCHARZ,

RETURN NUMBER;

[schema.]column
Specifies the text column to be searched on. This column must have a CTXCAT index
associated with it.

text_query
Specify one of the following to define your search in column:

e CATSEARCH Query Operations (page 1-24)

* Query Template Specification (page 1-26) (for using CONTEXT grammar)
CATSEARCH Query Operations
The CATSEARCH operator supports only the following query operations:

e Logical AND

1-24 Oracle Text Reference

CATSEARCH

e Logical OR (1)
* Logical NOT (-)
"" (quoted phrases)
¢ Wildcarding

CATSEARCH Query Operations (page 1-25) provides the syntax for these operators.

Table 1-2 CATSEARCH Query Operators
|

Operation Syntax Description of Operation

Logical AND abc Returns rows that contain a, b, and c.

Logical OR alblc Returns rows that contain a, b, or c.

Logical NOT a-b Returns rows that contain a and not b.

Hyphen withno a-b Hyphen treated as a regular character.

space For example, if the hyphen is defined as skipjoin,

words such as web-site are treated as the single query
term website.

Likewise, if the hyphen is defined as a printjoin,
words such as web-site are treated as web-site in the
CTXCAT query language.

"nn "

"abc Returns rows that contain the phrase "ab c".

For example, entering "Sony CD Player" means return
all rows that contain this sequence of words.

() (AB) I C Parentheses group operations. This query is
equivalent to the CONTAINS query (A &B) | C.

Wildcard term* The wildcard character matches zero or more

(right and double a*b characters.

truncated) For example, do* matches dog, and gl*s matches glass.
Left truncation not supported.

Note: Oracle recommends that you create a prefix
index if your application uses wildcard searching. Set
prefix indexing with the BASIC_WORDLIST

(page 2-73) preference.

The following limitations apply to these operators:

e The left-hand side (the column name) must be a column named in at least one of
the indexes of the index set.

¢ The left-hand side must be a plain column name. Functions and expressions are
not allowed.

* The right-hand side must be composed of literal values. Functions, expressions,
other columns, and subselects are not allowed.

¢ Multiple criteria can be combined with AND. Note that OR is not supported.

Oracle Text SQL Statements and Operators 1-25

CATSEARCH

* When querying a remote table through a database link, the database link must be
specified for CATSEARCH as well as for the table being queried.

For example, these expressions are supported:

catsearch(text, "dog", "foo > 15%)

catsearch(text, "dog®, "bar = ""SMITH""")
catsearch(text, "dog", "foo between 1 and 15%)
catsearch(text, "dog", "foo = 1 and abc = 123%)
catsearch@remote(text, "dog", "foo = 1 and abc = 123%)

These expressions are not supported:

catsearch(text, "dog", “upper(bar) = ""A""")
catsearch(text, "dog®, "bar LIKE ""A%""")
catsearch(text, "dog", "foo = abc")
catsearch(text, "dog®", "foo = 1 or abc = 3%)

Query Template Specification

Specifies a marked-up string that specifies a query template. Specify one of the
following templates:

* Query rewrite, used to expand a query string into different versions

® Progressive relaxation, used to progressively enter less restrictive versions of a
query to increase recall

® Alternate grammar, used to specify CONTAINS operators (See "CONTEXT Query
Grammar Examples (page 1-28)")

e Alternate language, used to specify alternate query language

* Alternate scoring, used to specify alternate scoring algorithms

See Also:

The text_query (page 1-31) parameter description for CONTAINS for more
information about the syntax for these query templates

structured_query

Specifies the structured conditions and the ORDER BY clause. There must exist an
index for any column you specify. For example, if you specify "category_id=1
order by bid_close”, you must have an index for "category_id,
bid_close" as specified with the CTX_DDL.ADD_ INDEX package.

With structured_qguery, you can use standard SQL syntax only with the following

operators:
° =

[} <=

° >=

e >

¢ <

1-26 Oracle Text Reference

CATSEARCH

IN
BETWEEN

AND (to combine two or more clauses)

Note:

You cannot use parentheses () in the structured_query parameter.

Examples

1.

Create the table.
The following statement creates the table to be indexed:

CREATE TABLE auction (category_id number primary key, title varchar2(20),
bid_close date);

The following statements insert the values into the table:

INSERT INTO auction values(l, "Sony DVD Player®, "20-FEB-2012%);
INSERT INTO auction values(2, "Sony DVD Player®, "24-FEB-2012%);
INSERT INTO auction values(3, "Pioneer DVD Player®, "25-FEB-20127);
INSERT INTO auction values(4, "Sony DVD Player®, "25-FEB-2012%);
INSERT INTO auction values(5, "Bose Speaker®, "22-FEB-2012%);

INSERT INTO auction values(6, "Tascam CD Burner®, "25-FEB-2012%);
INSERT INTO auction values(7, "Nikon digital camera®, "22-FEB-2012%);
INSERT INTO auction values(8, "Canon digital camera®, "26-FEB-2012%);

Create the CTXCAT index.
The following statements create the CTXCAT index:
begin

ctx_ddl.create_index_set("auction_iset");
ctx_ddl.add_index("auction_iset","bid_close");

end;

/

CREATE INDEX auction_titlex ON auction(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ("index set auction_iset");

Query the table.

A typical query with CATSEARCH might include a structured clause as follows to
find all rows that contain the word camera ordered by bid_close:

SELECT * FROM auction WHERE CATSEARCH(title, "camera®, "order by bid_close
desc*)>
0;

CATEGORY_ID TITLE BID_CLOSE

8 Canon digital camera 26-FEB-12
7 Nikon digital camera 22-FEB-12

The following query finds all rows that contain the phrase Sony DVD Player and
that have a bid close date of February 20, 2012:

Oracle Text SQL Statements and Operators 1-27

CATSEARCH

SELECT * FROM auction WHERE CATSEARCH(title, ""Sony DVD Player™®,
"bid_close=""20-FEB-00""")> 0;

CATEGORY_ID TITLE BID_CLOSE

1 Sony DVD Player 20-FEB-12

The following query finds all rows with the terms Sony and DVD and Player:

SELECT * FROM auction WHERE CATSEARCH(title, "Sony DVD Player”,
"order by bid_close

desc*)> 0;

CATEGORY_ID TITLE BID_CLOSE
4 Sony DVD Player 25-FEB-12
2 Sony DVD Player 24-FEB-12
1 Sony DVD Player 20-FEB-12

The following query finds all rows with the term DVD and not Player:

SELECT * FROM auction WHERE CATSEARCH(title, "DVD - Player®, "order by bid_close
desc*)> 0;

CATEGORY_ID TITLE BID_CLOSE

6 Tascam CD Burner 25-FEB-12

The following query finds all rows with the terms CD or DVD or Speaker:

SELECT * FROM auction WHERE CATSEARCH(title, "CD | DVD | Speaker®, "order by
bid_close desc")> 0;

CATEGORY_ID TITLE BID_CLOSE

3 Pioneer DVD Player 25-FEB-12

4 Sony DVD Player 25-FEB-12
6 Tascam CD Burner 25-FEB-12
2 Sony DVD Player 24-FEB-12
5 Bose Speaker 22-FEB-12
1 Sony DVD Player 20-FEB-12

The following query finds all rows that are about audio equipment:

SELECT * FROM auction WHERE CATSEARCH(title, "ABOUT(audio equipment)”,
NULL)> 0;

CONTEXT Query Grammar Examples

The following examples show how to specify the CONTEXT grammar in CATSEARCH
queries using the template feature:

PROMPT
PROMPT fuzzy: query = ?test
PROMPT should match all fuzzy variations of test (for example, text)
select pk|]" ==> "||text from test
where catsearch(text,
"<query>
<textquery grammar="context'>

?test

</textquery>
</query>","")>0
order by pk;

1-28 Oracle Text Reference

CATSEARCH

PROMPT
PROMPT fuzzy: query = !sail
PROMPT should match all soundex variations of bot (for example, sell)
select pk||* ==> "||text from test
where catsearch(text,
"<query>
<textquery grammar="context'>
Isail
</textquery>
</query>","")>0
order by pk;

PROMPT
PROMPT theme (ABOUT) query
PROMPT query: about(California)
select pk||* ==> "||text from test
where catsearch(text,
"<query>
<textquery grammar="context'>
about(California)
</textquery>
</query>","")>0
order by pk;

The following example shows a field section search against a CTXCAT index using
CONTEXT grammar by means of a query template in a CATSEARCH query:

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values(l, "<author>NOAM CHOMSKY</author><subject>CIVIL
RIGHTS</subject><language>ENGL I SH</language><publisher>MIT
PRESS</publisher>", "01-NOV-2003");

insert into BOOKS values(2, "<author>NICANOR PARRA</author><subject>POEMS
AND ANTIPOEMS</subject><language>SPANISH</language>
<publisher>VASQUEZ</publisher>", "01-JAN-2001");

insert into BOOKS values(l, "<author>LUC SANTE</author><subject>XML
DATABASE</subject><language>FRENCH</language><publ isher>FREE
PRESS</publisher>", "15-MAY-2002%);

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set("BOOK_INDEX_SET");
exec ctx_ddl.add_index("BOOKSET", "PUBDATE");

exec ctx_ddl.create_section_group("BOOK_SECTION_GROUP",
*BASIC_SECTION_GROUP™);

exec ctx_ddl.add_field_section("BOOK_SECTION_GROUP®, "AUTHOR", "AUTHOR"™);

exec ctx_ddl.add_field_section("BOOK_SECTION_GROUP*,"SUBJECT", "SUBJECT");

exec ctx_ddl.add_field_section("BOOK_SECTION_GROUP®, "LANGUAGE", "LANGUAGE");

exec ctx_ddl.add_field section("BOOK_SECTION_GROUP®,*PUBLISHER®, *PUBLISHER");

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
parameters("index set book_index_set section group book_section_group®);

-- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it

Oracle Text SQL Statements and Operators 1-29

CONTAINS

-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
-- We need to use query template with CONTEXT grammar to access field
-- sections with CATSEARCH.

select 1id, info from books
where catsearch(info,
"<query>
<textquery grammar="context'>
NOAM within author and english within language
</textquery>
</query>",
"order by pubdate®)>0;

Related Topics
"Syntax for CTXCAT Index Type (page 1-59)"
Oracle Text Application Developer’s Guide

1.4 CONTAINS

Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the
query expression for a Text query.

The CONTAINS operator also supports database links. You can identify a remote table
or materialized view by appending @dblink to the end of its name. The dbl ink must
be a complete or partial name for a database link to the database containing the remote
table or materialized view (querying of remote views is not supported).

CONTAINS returns a relevance score for every row selected. Obtain this score with the
SCORE (page 1-68) operator.

The grammar for this operator is called the CONTEXT grammar. You can also use
CTXCAT grammar if your application works better with simpler syntax. To do so, use
the "Query Template Specification (page 1-26)" in the text_query parameter as
described in this section.

See Also:

* "Query Rewrite Template (page 1-31)"

® "Query Result Set Descriptor Template (page 1-32)"
* "Query Relaxation Template (page 1-33)"

e "Alternate Grammar Template (page 1-33)"

¢ '"Language Independent Template (page 1-33)"

e "Alternate Language Template (page 1-34)"

¢ "Alternative Scoring Template (page 1-34)"

e The CONTEXT Grammar" topic in Oracle Text Application Developer’s
Guide

1-30 Oracle Text Reference

CONTAINS

Syntax

CONTAINS(
[schema.]col um,
text_query [VARCHAR2|CLOB]
[,l1abel NUMBER])

RETURN NUMBER;

[schema.]column
Specify the text column to be searched on. This column must have a Text index
associated with it.

text_query
Specify one of the following (limited to 4000 bytes for a VARCHAR2 or 64000 bytes for
a CLOB):

e The query expression that defines your search in column.

* A marked-up document that specifies a query template.

Use one of the following query templates:

- Query Rewrite Template (page 1-31)

- Query Result Set Descriptor Template (page 1-32)
— Query Relaxation Template (page 1-33)

— Alternate Grammar Template (page 1-33)

- Language Independent Template (page 1-33)

— Alternate Language Template (page 1-34)

— Alternative Scoring Template (page 1-34)
Query Rewrite Template

Use this template to automatically write different versions of a query before you
submit the query to Oracle Text. This is useful when you need to maximize the recall
of a user query. For example, you can program your application to expand a single
phrase query of 'cat dog' into the following queries:

{cat} {dog}
{cat} ; {dog}
{cat} AND {dog}
{cat} ACCUM {dog}

These queries are submitted as one query and results are returned with no
duplication. In this example, the query returns documents that contain the phrase cat
dog as well as documents in which cat is near dog, and documents that have cat and
dog.

This is done with the following template:

<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> cat dog
<progression>
<seg><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>

<seg><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite></seq>

Oracle Text SQL Statements and Operators 1-31

CONTAINS

<seg><rewrite>transform((TOKENS, "{", "}", "ACCUM"™))</rewrite></seq>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

The operator TRANSFORM is used to specify the rewrite rules and has the following
syntax (note that it uses double parentheses). The parameters are described in the
following table.

TRANSFORM((terms, prefix, suffix, connector))

Table 1-3 TRANSFORM Parameters
|

Parameter Description

term Specifies the type of terms to be produced from the original query. Specify
either TOKENS or THEMES.

prefix Specifies the literal string to be prepended to all terms.

suffix Specifies the literal string to be appended to all terms.

connector Specifies the literal string to connect all terms after applying the prefix and
suffix.

Note:

An error will be raised if the input Text query string specified in the Query
Rewrite Template with TRANSFORM rules contains any Oracle Text query
operators (such as AND, OR, or SOUNDEX). Also, any special characters (such as
% or $) in the input Text query string must be preceded by an escape character,
or an error is raised.

Query Result Set Descriptor Template

Use this template to take in a Result Set Descriptor. The element
ctx_result_set_descriptor is added to the query template. This enables the CONTAINS
query cursor to take in a group count query.

The Result Set Interface document is placed in a public variable in the ctx_query
package. (ctx_query.result_set_document.)

The CONTAINS query cursor behavior remains unchanged and the Result Set
Document is available right after closing the cursor

For example, the following query of kukui nut returns a result set with the following
template.

<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>

e Y L]

1, " ")/ rewrite></seq>

", " ")</rewrite></seq>
", "AND"™))</rewrite></seq>
", "ACCUM™))</rewrite></seq>

1-32 Oracle Text Reference

CONTAINS

<ctx_result_set_descriptor>
<group>
<group_values>
<value id="2"/>
<value id="3"/>
<value id="4"/>
</group_values>
<count/>
</group>
</ctx_result_set_descriptor>
</query>

Query Relaxation Template

Use this template to progressively relax your query. Progressive relaxation is when
you increase recall by progressively issuing less restrictive versions of a query, so that
your application can return an appropriate number of hits to the user.

For example, the query of black pen can be progressively relaxed to:

black pen

black NEAR pen
black AND pen
black ACCUM pen

This is done with the following template

<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg>black pen</seg>
<seg>black NEAR pen</seg>
<seg>black AND pen</seg>
<seg>black ACCUM pen</seg>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Alternate Grammar Template

Use this template to specify an alternate grammar, such as CONTEXT or CATSEARCH.
Specifying an alternate grammar enables you to enter queries using different syntax
and operators.

For example, with CATSEARCH, enter ABOUT queries using the CONTEXT grammar.
Likewise with CONTAINS, enter logical queries using the simplified CATSEARCH
syntax.

The phrase ‘dog cat mouse’ is interpreted as a phrase in CONTAINS. However, with
CATSEARCH, this is equivalent to an AND query of ‘dog AND cat AND mouse’. Specify
that CONTAINS use the alternate grammar with the following template:
<query>

<textquery grammar="CTXCAT'>dog cat mouse</textquery>

<score datatype="integer"/>
</query>

Language Independent Template

Use this template to specify a lexer that uses user-defined symbols (or abbreviations)
and does not depend on any language.

Oracle Text SQL Statements and Operators 1-33

CONTAINS

The following example specifies that the query take a list of language-independent
sublexers.

<query>
<textquery grammar="CONTEXT" lang="ENGLISH">
Oracle
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
<subl exer s>
<subl exer | abel > SESSION LANG </subl exer | abel >
<subl exer label> MAIL </sublexer_|abel>
<subl exer _| abel > CALENDER </ subl exer _| abel >
</ subl exer s>
</query>

The following conditions apply:
e The sublexers element consists of one or more sublexer_label elements.

e Each sublexer_label element contains the symbol for the language
independent sub_lexer.

¢ When the sublexers element is specified, the query will be processed with the
stopwords and sub_lexers for each of the symbols specified in the sublexers
element, and query will return only the documents indexed by the specified
sub_lexers.

® A special reserved symbol called SESSION_LANG can be used for the system to
pick a language-dependent sub_lexer based on the language specified in 1ang
attribute of the textquery element in the query template. If lang attribute is not
specified, then the lang attribute will be based on session language. Query
parsed by the chosen sub_lexer will only return documents indexed by that
language-dependent sub_lexer. If both SESSION_LANG and lang attribute are
specified, the lang attribute will take priority.

e If sublexers element is specified without SESSION_LANG, then lang attribute
of textquery element will be ignored.

e Default Behavior:

If sublexers element is not present in the query template, then query will be
parsed with one language-dependent sub-lexer (if any), which is chosen based on
the specified lang attribute value or the session language AND all language
independent sub-lexers.

Alternate Language Template
Use this template to specify an alternate language:

<query><textquery lang="french">bon soir</textquery></query>

Alternative Scoring Template
Use this template to specify an alternative scoring algorithm.

The following example specifies that the query use the CONTEXT grammar and return
integer scores using the COUNT algorithm. This algorithm returns a score as the
number of query occurrences in the document.

<query>
<textquery grammar="CONTEXT" lang="english"> mustang

1-34 Oracle Text Reference

CONTAINS

</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

The following example uses the normal ization_expr attribute to add SDATA(price)
into the score returned by the query, and uses it as the final score:

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE(dog, RELEVANCE) and cat
</textquery>
<score algorithm="COUNT" normalization_expr ="doc_score+ SDATA(price)"/>
</query>

The normal ization_expr attribute is used only with the alternate scoring template,
and is an arithmetic expression that consists of:

* Arithmetic operators: + - * /. The operator precedence is the same as that for SQL
operator precedence.

* Grouping operators: (). Parentheses can be used to alter the precedence of the
arithmetic operators.

* Absolute function: ABS(n) returns the absolute value of n; where 7 is any
expression that returns a number.

* Logarithmic function: LOG(n): returns the base-10 logarithmic value of n; where n
is any expression that returns a number.

¢ Predefined components: The doc_score predefined component can be used to
return the initial query score of a particular document.

* SDATA component: SDATA(name) returns the value of the SDATA with the
specified name as the score.

— Only SDATA with a NUMBER or DATE data type is allowed. An error is raised
otherwise.

— The sdata string and the SDATA name are case-insensitive.

— Because an SDATA section value can be NULL, any expression with NULL
SDATA section value is evaluated as 0. For example: the
normalization_expr "‘doc_score + SDATA(price)" will be
evaluated to 0 if SDATA(price) for a given document has a NULL value.

e Numeric literals: There are any number literal that conforms to the SQL pattern of
NUMBER literal and is within the range of the double-precision floating-point
(-3.4e38 to 3.4e38).

* Date literals: Date literals must be enclosed with DATE (). Only the following
format is allowed: YYYY-MM-DD or YYYY-MM-DD HH24:MI :SS. For example:
DATE(2005-11-08).

Consistent with SQL, if no time is specified, then 00:00:00 is assumed.

The normal ization_expr attribute overrides the algorithm attribute. That is, if
algorithm is set to COUNT, and the user also specifies normal ization_expr, then the
score will not be count, but the calculated score based on the normalization_expr.

If the score (either from algorithm = COUNT or normalization_expr =..)is
internally calculated to be greater than 100, then it will be set to 100.

Oracle Text SQL Statements and Operators 1-35

CONTAINS

If the query relaxation template is used, the score will be further normalized in such a
way that documents returned from higher sequences will always have higher scores
than documents returned from sequence(s) below.

DATE Literal Restrictions

Only the minus (-) operator is allowed between date-type data (DATE literals and
date-type SDATA). Using other operators will result in an error. Subtracting two date-
type data will produce a number (float) that represents the difference in number of
days between the two dates. For example, the following expression is allowed:

SDATA(dob) — DATE(2005-11-08)

The following expression is not allowed:

SDATA(dob) + DATE(2005-11-08)

The plus (+) and minus (-) operators are allowed between numeric data and date
type of data. The number operand is interpreted as the number or fraction of days.
For example, the following expression is allowed:

DATE(2005-11-08) + 1 = 9 NOV 2005

The following expression is not allowed:

DATE(2005-11-08)* 3 = ERROR
Template Attribute Values

Table 1-4 (page 1-36) gives the possible values for template attributes.

Table 1-4 Template Attribute Values
___|

Tag Attribute Description Possible Values Meaning

grammar= Specifies the CONTEXT The grammar of the query.
grammar of the CTXCAT
query.

datatype= Specifies the type of ~ INTEGER Returns score as integer
number returned as FLOAT between 0 and 100.
score.

Returns score as its high-
precision floating-point
number between 0 and 100.

algorithm= Specifies the scoring DEFAULT Returns the default.

algorithm to use. COUNT Returns scores as the

number of occurrences in
the document.

lang= Specifies the Any language The language name.
language name. supported by Oracle
Database. See Oracle
Database Globalization
Support Guide.

Template Grammar Definition

1-36 Oracle Text Reference

CONTAINS

The query template interface is an XML document. Its grammar is defined with the
following XML DTD:

<IDOCTYPE query [

<IELEMENT query (textquery, score?, order?)>

<IELEMENT textquery (#PCDATA|progression)*>

<IELEMENT progression (seq)+>

<IELEMENT seq (#PCDATA|rewrite)*>

<IELEMENT rewrite (#PCDATA)>

<IELEMENT score EMPTY>

<IELEMENT order (orderkey+)>

<IELEMENT orderkey (#PCDATA)>

<IATTLIST textquery grammar (CONTEXT | CTXCAT | CTXRULE) #REQUIRED>
<IATTLIST textquery lang CDATA #IMPLIED>

<IATTLIST score datatype (integer | float) "integer'>
<IATTLIST score algorithm (default | count) "default'>
<IATTLIST score normalization_expr CDATA >

Values are case insensitive: integer | float, default | count, context |ctxcat .

See Also:

Oracle Text CONTAINS Query Operators (page 3-1) for more information
about the operators in query expressions

label
Optionally, specifies the label that identifies the score generated by the CONTAINS
operator.

Returns

For each row selected, the CONTAINS operator returns a number between 0 and 100
that indicates how relevant the document row is to the query. The number 0 means
that Oracle Text found no matches in the row.

Note:

You must use the SCORE operator with a label to obtain this number.

Example

The following example searches for all documents in the text column that contain the
word oracle. The score for each row is selected with the SCORE operator using a label
of 1:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, "oracle®, 1) > 0;

The CONTAINS operator must be followed by an expression such as > 0, which
specifies that the score value calculated must be greater than zero for the row to be
selected.

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS
clause must reference the score label value as in the following example:

Oracle Text SQL Statements and Operators 1-37

CONTAINS

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, "oracle®, 1) > 0 ORDER BY SCORE(1) DESC;

The following example specifies that the query be parsed using the CATSEARCH
grammar:

SELECT id FROM test WHERE CONTAINS (text,
"<query>
<textquery lang="ENGLISH" grammar="CATSEARCH">
cheap pokemon
</textquery>
<score datatype="INTEGER"/>
</query>") > 0;

Grammar Template Example

The following example shows how to use the CTXCAT grammar in a CONTAINS query.
The example creates a CTXCAT and a CONTEXT index on the same table, and compares
the query results.

PROMPT create context and ctxcat indexes, both using theme indexing
PROMPT

create index tdrbgcgqlOlx on test(text) indextype is ctxsys.context
parameters ("lexer theme_lexer®);

create index tdrbgcglOlcx on test(text) indextype is ctxsys.ctxcat
parameters ("lexer theme_lexer®);

PROMPT *hkkk San Diego *khkkhkkhkkhkhkkhkkhkkhk
PROMPT ***** CONTEXT grammar KK
PROMPT ** should be interpreted as phrase query **
select pk||* ==> "||text from test

where contains(text, "San Diego")>0

order by pk;

PROMPT *hkkk San Diego *khkkhkkhkkhkhkhkkikik

PROMPT ***** CTXCAT grammar ****x*kikiix

PROMPT ** should be interpreted as AND query ***

select pk||* ==> "||text from test

where contains(text,

"<query>
<textquery grammar="CTXCAT">San Diego</textquery>
<score datatype="integer"/>

</query>")>0

order by pk;

PROMPT ***** Hitlist from CTXCAT index ***+ksktkix
select pk||* ==> "||text from test

where catsearch(text,"San Diego”,"")>0

order by pk;

Alternate Scoring Query Template Example

The following query template adds price SDATA section (or SDATA filter-by column)
value into the score returned by the query and uses it as the final score:

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE(dog, RELEVANCE) and cat
</textquery>
<score algorithm="COUNT" normalization_expr ="doc_score+SDATA(price)"/>
</query>

1-38 Oracle Text Reference

CONTAINS

Query Relaxation Template Example

The following query template defines a query relaxation sequence. The query of black
pen is entered in sequence as black pen, then black NEAR pen, then black AND pen, and
then black ACCUM pen. Query hits are returned in this sequence with no duplication as
long as the application requires results.

select id from docs where CONTAINS (text, *
<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg>black pen</seq>
<seg>black NEAR pen</seq>
<seg>black AND pen</seq>
<seg>black ACCUM pen</seq>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>")>0;

Query relaxation is most effective when your application requires the top # hits to a
query, which you can obtain with the DOMAIN_INDEX_SORT or FIRST_ROWS hint,
which is being deprecated, in a PL/SQL cursor.

Query Rewrite Template Example

The following template defines a query rewrite sequence. The query of kukui nut is
rewritten as follows:

kukui} {nut}

kukui} ; {nut}

kukui} AND {nut}
kukui} ACCUM {nut}

select id from docs where CONTAINS (text, *
<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
<progression>
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
<seg><rewrite>transform((TOKENS, "{"
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>")>0;

{
{
{
{

", " "M))</rewrite></seq>

" ")</rewrite>/seq>
", "AND"™))</rewrite><seq/>
", "ACCUM™))</rewrite><seq/>

e Y L]

Order By SDATA Sections Template Example

The following query template defines a query sequence for ordering by SDATA section
values using the <order> and <orderkey> elements. The first level of ordering is
done on the SDATA section price, which is sorted in the ascending order. The second
and third level of ordering is done by the SDATA section pub_date and score, both of
which are sorted in the descending order.

select id from docs where CONTAINS (text, *

<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> Oracle </textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
<order>

Oracle Text SQL Statements and Operators 1-39

CONTAINS

<orderkey> SDATA(price) ASC </orderkey>
<orderkey> SDATA(pub_date) DESC </orderKey>
<orderkey> Score DESC </orderkey>
</order>
</query>", 1)>0;

The <orderkey> element value must have the following format:

<orderkey> SDATA(sdata_section_name) | score [DESC|JASC] </orderkey>

The sort order is ascending by default, if not specified as either DESC or ASC.

The <orderkey> element will be ignored in the following cases:

* when the Oracle Cost-Based Optimizer (CBO) pushes the SQL query level
ordering into the Text index

* when the CONTAINS() predicate is processed functionally

¢ when the ordering is already specified by the ORDER BY clause in the SQL query
statement

Notes
Querying Multilanguage Tables

With the multilexer preference, you can create indexes from multilanguage tables. At
query time, the multilexer examines the session's language setting and uses the
sublexer preference for that language to parse the query. If the language setting is not
mapped, then the default lexer is used.

When the language setting is mapped, the query is parsed and run as usual. The index
contains tokens from multiple languages, so such a query can return documents in
several languages.

To limit your query to returning documents of a given language, use a structured
clause on the language column.

Query Performance Limitation with a Partitioned Index
Oracle Text supports the CONTEXT indexing and querying of a partitioned text table.

However, for optimal performance when querying a partitioned table with an ORDER
BY SCORE clause, query the partition. If you query the entire table and use an ORDER
BY SCORE clause, the query might not perform optimally unless you include a range
predicate that can limit the query to a single partition.

For example, the following statement queries the partition p_tab4 partition directly:

select * from part_tab partition (p_tab4) where contains(b,"oracle®) > 0 ORDER BY
SCORE DESC;

Limitation with Remote Execution of CONTAINS Query

Oracle Text supports the remote execution of the CONTAINS operator, but with some
limitations. You can invoke the CONTAINS operator in a remote query only if the
query is executed completely in the remote database. You cannot use the CONTAINS
operator in a subquery of a query, which causes the query to run partly on the remote
database and partly on the local database. Doing so will raise the error "ORA-00949:
illegal reference to remote database." However, CONTAINS, when invoked remotely
from an inner query might run successfully sometimes if view merging is enabled and

1-40 Oracle Text Reference

CREATE INDEX

possible on this query, as in this case the query will be transformed into a single query
and, hence, no error will occur.

For example, the following query is correct:

select id from remtab@rdb
where contains@rdb(text, "hello®) > 0;

Related Topics

"Syntax for CONTEXT Index Type (page 1-42)"

Oracle Text CONTAINS Query Operators (page 3-1)

"The CONTEXT Grammar" topic in Oracle Text Application Developer’s Guide
"SCORE (page 1-68)"

1.5 CREATE INDEX

This section describes the CREATE INDEX statement as it pertains to creating an Oracle
Text domain index and composite domain index.

See Also:

"Oracle Database SQL Language Reference for a complete description of the
CREATE INDEX statement

Purpose

Use CREATE INDEX to create an Oracle Text index. An Oracle Text index is an Oracle
Database domain index or composite domain index of type CONTEXT, CTXCAT, or
CTXRULE. A domain index is an application-specific index. A composite domain
index (CDI) is an Oracle Text index that not only indexes and processes a specified
text column, but also indexes and processes FILTER BY and ORDER BY structured
columns, which are specified during index creation.

Example

create table mytab

(item_id number,
item_info varchar2(4000),
item_supplier varchar2(250),
item_distributor varchar2(500));

create index idx on mytab(item_info) indextype is ctxsys.context
filter by item_supplier order by item_distributor;

You must create an appropriate Oracle Text index to enter CONTAINS, CATSEARCH, or
MATCHES queries.

You cannot create an Oracle Text index on an index-organized table.
You can create the following types of Oracle Text indexes.
CONTEXT

A CONTEXT index is the basic type of Oracle Text index. This is an index on a text
column. A CONTEXT index is useful when your source text consists of many large,
coherent documents. Query this index with the CONTAINS operator in the WHERE

Oracle Text SQL Statements and Operators 1-41

CREATE INDEX

clause of a SELECT statement. This index requires manual synchronization after DML.
See "Syntax for CONTEXT Index Type (page 1-42)".

CTXCAT

The CTXCAT index is a combined index on a text column and one or more other
columns. The CTXCAT type is typically used to index small documents or text
fragments, such as item names, prices, and descriptions found in catalogs. Query this
index with the CATSEARCH operator in the WHERE clause of a SELECT statement. This
type of index is optimized for mixed queries. This index is transactional, automatically
updating itself with DML to the base table. CTXCAT indexes are generally larger and
slower to create and update than CONTEXT indexes, and have a narrower range of
indexing options available. See "Syntax for CTXCAT Index Type (page 1-59)".

CTXRULE

A CTXRULE index is used to build a document classification application. The CTXRULE
index is an index created on a table of queries or a column containing a set of queries,
where the queries serve as rules to define the classification criteria. Query this index
with the MATCHES operator in the WHERE clause of a SELECT statement. See "Syntax
for CTXRULE Index Type (page 1-62)".

Required Privileges

You do not need the CTXAPP role to create an Oracle Text index. If you have Oracle
Database privileges to create an index on the text column, you have sufficient privilege
to create a text index. The issuing owner, table owner, and index owner can all be
different users, which is consistent with Oracle standards for creating regular indexes.

Note: Whenever you create an Oracle Text index, a number of additional
internal objects are created which have names prefixed with DR$. These
internal object names usually contain the index name. In some cases, the index
name is shortened to fit in the object name. In such cases, the index ID is
present in the object name to avoid naming conflicts with objects of other
indexes.

Syntax for CONTEXT Index Type

Uses a CONTEXT index to create an index on a text column. Query this index with the
CONTAINS operator in the WHERE clause of a SELECT statement. This index requires
manual synchronization after DML.

CREATE INDEX [schenma.]index ON [schema.]tabl e(txt_col um)
INDEXTYPE 1S ctxsys.context [ONLINE]
[FILTER BY filter_colum[, filter_colum]...]
[ORDER BY oby_col um[desc|asc][, oby_col um[desc|asc]]---]
[LOCAL [PARTITION [partition] [PARAMETERS("paranmstring®)]]
[, PARTITION [partition] [PARAMETERS("paramstring®)]]]1
[PARAMETERS(par amstri ng)] [PARALLEL n] [UNUSABLE]];

[schema.lindex
Specifies the name of the Text index to create.

[schema.ltable(txt_column)
Specifies the name of the table and column to index. txt_column is the name of the
domain index column on which the CONTAINS() operator will be invoked.

1-42 Oracle Text Reference

CREATE INDEX

Your table can optionally contain a primary key if you prefer to identify your rows as
such when you use procedures in CTX_DOC. When your table has no primary key,
document services identifies your documents by ROWID.

Note:

Primary keys of the following type are supported: NUMBER, VARCHAR2, DATE,
CHAR, VARCHAR, and RAW.

The column that you specify must be one of the following types: CHAR, VARCHAR,
VARCHAR2, BLOB, CLOB, BFILE, XMLType, or URIType.

Note:

In Oracle Database 12¢ Release 2 (12.2), an Oracle Text index cannot be
created on a column with a declared collation other than BINARY,
USING_NLS_COMP, USING_NLS_SORT or USING_NLS_SORT_CS. For all the
supported collations, the Oracle Text behavior is the same.

The table that you specify can be a partitioned table. If you do not specify the LOCAL
clause, then a global, nonpartitioned index is created.

The DATE, NUMBER, and nested table columns cannot be indexed. Object columns also
cannot be indexed, but their attributes can be indexed, provided that they are atomic
data types.

Attempting to create an index on a Virtual Private Database (VPD) protected table
will fail unless one of the following criteria is true:

e The VPD policy is created such that it does not apply to the INDEX statement type.
¢ The policy function returns a NULL predicate for the current user.

e The user (or index owner) is SYS.

¢ The user has the EXEMPT ACCESS POLICY privilege.

Indexes on multiple columns are not supported with the CONTEXT index type. You
must specify only one column in the column list.

Note:

With the CTXCAT index type, you can create indexes on text and structured
columns. See "Syntax for CTXCAT Index Type (page 1-59)"

Note:

Because a Transparent Data Encryption-enabled column does not support
domain indexes, it cannot be used with Oracle Text. However, you can create
an Oracle Text index on a column in a table stored in a Transparent Data
Encryption-enabled tablespace.

Oracle Text SQL Statements and Operators 1-43

CREATE INDEX

ONLINE

Creates the index while enabling DML insertions /updates/deletions on the base
table.

During indexing, Oracle Text enqueues DML requests in a pending queue. At the end
of the index creation, Oracle Text locks the base table. During this time, DML is
blocked. You must synchronize the index in order for DML changes to be available.

Limitations

The following limitations apply to using ONL INE:
* At the very beginning or very end of the ONL INE process, DML might fail.

¢ ONLINE is supported for CONTEXT indexes only.

FILTER BY filter_column

This is the structured indexed column on which a range or equality predicate in the

WHERE clause of a mixed query will operate. You can specify one or more structured
columns for Filter_column, on which the relational predicates are expected to be
specified along with the CONTAINS() predicate in a query.

The Cost-based Optimizer (CBO) will consider pushing down the structured
predicates on these FILTER BY columns with the following relational operators: <,
<=, =, >=, >, between, and LIKE (for VARCHAR2).

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type.
Additionally, VARCHARZ2 and RAW types are supported only if the maximum length is
specified and is limited to no more than 249. The ADT attributes of supported types
(CHAR, NUMBER, DATE, VARCHAR2, or RAW) are also allowed. An error is raised for all
other data types. Expressions, for example, func(cola), and virtual columns are not
allowed.

txt_column is allowed in the FILTER BY column list.

DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column
This is the structured indexed column on which a structured ORDER BY mixed query

will be based. A list of structured oby_columns can be specified in the ORDER BY clause
of a CONTAINS() query.

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type.
VARCHAR2 and RAW columns longer than 249 bytes are truncated to the first 249
bytes. Expressions, for example, func(cola), and virtual columns are not allowed.

The order of the specified columns matters. The Cost-based Optimizer (CBO) will
consider pushing the sort into the composite domain index only if the ORDER BY
clause in the text query contains:

e Entire ordered ORDER BY columns declared by the ORDER BY clause during the
CREATE INDEX statement

* Only the prefix of the ordered ORDER BY columns declared by the ORDER BY
clause during the CREATE INDEX statement

¢ The score followed by the prefix of the ordered ORDER BY columns declared by
the ORDER BY clause during the CREATE INDEX statement

1-44 Oracle Text Reference

CREATE INDEX

¢ The score following the prefix of the ordered ORDER BY columns declared by the
ORDER BY clause during the CREATE INDEX statement

The following example illustrates Cost-based Optimizer (CBO) behavior with regard
to ORDER BY columns:

CREATE INDEX foox ON foo(D) INDEXTYPE IS CTXSYS.CONTEXT
FILTER BY B, C
ORDER BY A, B desc;

Consider the following query:

SELECT A, SCORE(1) FROM foo WHERE CONTAINS(D, "oracle®,1)>0
AND C>100 ORDER BY col_list;

Note:

If you set NLS_SORT or NLS_COMP parameters (that is, al ter session
set NLS_SORT = <some lang>;), then CBO will not push the sort or
related structured predicate into the CDI. This behavior is consistent with
regular optimized for search SDATA indexes.

The Cost-based Optimizer (CBO) will consider pushing the sort into the composite
domain index (CDI) if col _list has the following values:

A
A,B

SCORE(L), A
SCORE(L), A, B
A, SCORE(1)

A, B, SCORE(1)

The CBO will not consider to push the sort into the CDI if col _list has the
following values:

B

B,A

SCORE(L), B

B, SCORE(L)

A, B, C

A, B asc
(or simply A, B)
Expressions, for example, func(cola), are not allowed.
txt_column appearing in the ORDER BY column list is allowed.
DML operations on ORDER BY columns are always transactional.

Limitations
The following limitations apply to FILTER BY and ORDER BY:
e A structured column is allowed in FILTER BY and ORDER BY clauses. However, a

column that is mapped to MDATA in a FILTER BY clause cannot also appear in the
ORDER BY clause. An error will be raised in this case.

¢ The maximum length for CHAR, VARCHARZ2, and RAW columns cannot be greater
than 249 for FILTER BY columns. For ORDER BY columns, the data is truncated
at 249 characters.

Oracle Text SQL Statements and Operators 1-45

CREATE INDEX

e The total number of CDI (FILTER BY and ORDER BY) is 32.

Note:

As with concatenated optimized for search SDATA indexes or bitmap
indexes, performance degradation may occur in DML as the number of
FILTER BY and ORDER BY columns increases.

Mapping a FILTER BY column to MDATA is not recommended if the
FILTER BY column contains sequential values or has very high
cardinality. Doing so can result in a very long and narrow $1 table and
reduced $X performance. An example is a column of type DATE. For
columns of this type, mapping to SDATA is recommended.

Note:

An index table with the name DR$indextable$S is created to store FILTER BY
and ORDER BY columns that are mapped to SDATA sections. If nothing is
mapped to an SDATA section, then the $S table will not be created.

$S table contains the following columns:

SDATA 1D number is the internal SDATA section ID.

SDATA_LAST number, the last document ID, which is analogous to
token_last.

SDATA_DATA RAW(2000), the compressed SDATA values. Note that if $S
is created on a tablespace with 4K database block size, then it will be
defined as RAW(1500).

Restriction: For performance reasons, $S table must be created on a
tablespace with db block size >= 4K without overflow segment and without
PCTTHRESHOLD clause. If $S is created on a tablespace with db block size <
4K, or is created with an overflow segment or with a PCTTHRESHOLD clause,
then appropriate errors will be raised during the CREATE INDEX statement.

Restrictions on exporting and importing text tables with composite domain index
created with FILTER BY and/or ORDER BY clauses are as follows:

* Regular exp and imp will not support exporting and importing of composite
domain index. Doing so will lead to the following error: EXP-00113: Feature
Composite Domain Index is unsupported.

e Toexport a text table with composite domain index, you must use Data Pump
Export and Import utilities (invoked with the expdp and impdp commands,
respectively), or DBMS_DATAPUMP PL/SQL package.

See Also:

ADD_SDATA_COLUMN (page 8-15) in CTX_DDL Package (page 8-1)

1-46 Oracle Text Reference

CREATE INDEX

Limitations of using ALTER INDEX and ALTER TABLE with FILTER BY and ORDER BY
columns of the composite domain index, which are imposed by Extensible Indexing
Framework in Oracle Database:

(These limitations are imposed by Extensible Indexing Framework in Oracle
Database.)

Using ALTER INDEX to add or drop FILTER BY and ORDER BY columns is
currently not supported. You must re-create the index to add or drop FILTER BY
or ORDER BY columns.

To use ALTER TABLE MODIFY COLUMN to modify the datatype of a column that
has the composite domain index built on it, you must first drop the composite
domain index before modifying the column.

To use ALTER TABLE DROP COLUMN to drop a column that is part of the composite
domain index, you must first drop the composite domain index before dropping
the index column.

The following limitations apply to FILTER BY and ORDER BY when used with
PL/SQL packages:

Mapping FILTER BY columns to sections is optional. If section mapping does not
exist for a FILTER BY column, then it is mapped to an SDATA section by default.
The section name assumes the name of the FILTER BY column.

If a section group is not specified during the CREATE INDEX clause of a composite
domain index, then system default section group settings are used. An SDATA
section is created for each of the FILTER BY and ORDER BY columns.

Note:

Because a section name does not allow certain special characters and is case-
insensitive, if the column name is case-sensitive or contains special characters,
then an error will be raised. To work around this problem, you must map the
column to an MDATA or SDATA section before creating the index. See
CTX_DDL.ADD_MDATA_COLUMN (page 8-12) or
CTX_DDL.ADD_SDATA_COLUMN (page 8-15).

An error is raised if a column that is mapped to an MDATA section also appears in
the ORDER BY column clause.

Column section names are unique to their section group. That is, you cannot have
an MDATA column section named FOO if you already have an MDATA column
section named FOO. Nor can you have a field section named FOO if you already
have an SDATA column section named FOO. This is true whether it is implicitly
created (by CREATE INDEX for FILTER BY or ORDER BY clauses) or explicitly
created (by CTX_DDL.ADD_SDATA_COLUMN).

One section name can be mapped to only one FILTER BY column, and vice versa.
Mapping a section to more than one column, or mapping a column to more than
one section is not allowed.

Column sections can be added to any type of section group, including the NULL
section group.

Oracle Text SQL Statements and Operators 1-47

CREATE INDEX

e If a section group with sections added by the CTX_DDL .ADD_MDATA_COLUMN or
CTX_DDL.ADD_SDATA_COLUMN packages is specified for a CREATE INDEX
statement without a FILTER BY clause, then the mapped column sections will be
ignored. However, the index will still get created without those column sections.
The same is true for a FILTER BY clause that does not contain mapped columns in
the specified section group.

See Also:

CTX_DDL.ADD_SDATA_COLUMN (page 8-15)

LOCAL [PARTITION [partition] [PARAMETERS('paramstring')]
Specifies a local partitioned context index on a partitioned table. The partitioned table
must be partitioned by range. Hash, composite, and list partitions are not supported.

You can specify the list of index partition names with partition_name. If you do not
specify a partition name, then the system assigns one. The order of the index partition
list must correspond to the table partition order.

The PARAMETERS clause associated with each partition specifies the parameters string
specific to that partition. You can only specify sync (manual | every |on commit), memory
and storage for each index partition.

The PARAMETERS clause also supports the POPULATE and NOPOPULATE arguments.
See "POPULATE | NOPOPULATE (page 1-53)".

Query the views CTX_INDEX_PARTITIONS (page G-6) or
CTX_USER_INDEX_PARTITIONS (page G-19) to find out index partition
information, such as index partition name, and index partition status.

See Also:
"Creating a Local Partitioned Index (page 1-57)"

Query Performance Limitation with Partitioned Index

For optimal performance when querying a partitioned index with an ORDER BY SCORE
clause, query the partition. If you query the entire table and use an ORDER BY SCORE
clause, the query might not perform optimally unless you include a range predicate
that can limit the query to the fewest number of partitions, which is optimally a single
partition.

See Also:

"Query Performance Limitation with a Partitioned Index (page 1-40)"

PARALLEL n

Optionally specifies the parallel degree for parallel indexing. The actual degree of
parallelism might be smaller depending on your resources. You can use this
parameter on nonpartitioned tables. However, creating a nonpartitioned index in
parallel does not turn on parallel query processing. Parallel indexing is supported for
creating a local partitioned index.

1-48 Oracle Text Reference

CREATE INDEX

The indexing memory size specified in the parameter clause applies to each parallel
slave. For example, if indexing memory size is specified in the parameter clause as
500M and parallel degree is specified as 2, then you must ensure that there is at least
1GB of memory available for indexing.

See Also:
e "Parallel Indexing (page 1-57)"
* "Creating a Local Partitioned Index in Parallel (page 1-58)"

® The "Performance Tuning" chapter in Oracle Text Application Developer's
Guide

Performance

Parallel indexing can speed up indexing when you have large amounts of data to
index and when your operating system supports multiple CPUs.

Note:

Using PARALLEL to create a local partitioned index that enables parallel
queries. (Creating a nonpartitioned index in parallel does not turn on parallel
query processing.)

Parallel querying degrades query throughput especially on heavily loaded
systems. Because of this, Oracle recommends that you disable parallel
querying after creating a local index. To do so, use the ALTER INDEX
NOPARALLEL statement.

For more information on parallel querying, see the "Performance Tuning"
chapter in Oracle Text Application Developer’s Guide.

Limitations

Parallel indexing is supported only for the CONTEXT index type.

UNUSABLE
Creates an unusable index. This creates index metadata only and exits immediately.

You might create an unusable index when you need to create a local partitioned index
in parallel.

See Also:
"Creating a Local Partitioned Index in Parallel (page 1-58)"

PARAMETERS(paramstring)
Optionally specify indexing parameters in paramstring. You can specify
preferences owned by another user using the user _preference notation.

The syntax for paramstring is as follows:

Oracle Text SQL Statements and Operators 1-49

CREATE INDEX

paramstring =

* [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]
[DATASTORE dat astore_pref]
[FILTER filter_pref]
[CHARSET COLUMN charset _col um_nane]
[FORMAT COLUMN f or mat _col unn_nane]
[SAVE_COPY COLUMN save_copy_col um_nane]

[LEXER I exer_pref]
[LANGUAGE COLUMN | anguage_col urm_nane]

[WORDLIST wordlist_pref]

[STORAGE st orage_pref]

[STOPLIST stoplist]

[SECTION GROUP section_group]

[MEMORY rmensi ze]

[POPULATE | NOPOPULATE]

[SYNC (MANUAL | EVERY “interval-string™ | ON COMMIT)]
[TRANSACTIONAL]"

Create datastore, filter, lexer, wordlist, and storage preferences with
CTX_DDL.CREATE_PREFERENCE (page 8-33) and then specify them in the
paramstring.

Note:
When you specify no paramstring, Oracle Text uses the system defaults.

For more information about these defaults, see "Default Index Parameters
(page 2-106)".

ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE

Specifies whether Oracle Text must retain old index entries for documents in which
the indexed column was updated. The default is SYNCHRONOUS_UPDATE which
indicates that index updates are synchronous and that old index entries are
unavailable for search operations until the index is synchronized.

ASYNCHRONOUS_UPDATE indicates that until the index is synchronized, search
queries will use the old index entries to return the old document content. After index
synchronization, the rebuilt index is used to return the updated document content.

This option cannot be set at the partition level.

The following example creates a CONTEXT index idx for which asynchronous update
is enabled.

CREATE INDEX myidx ON mytabl(item_info) INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS("asynchronous_update™);

Note: Asynchronous updates are not supported for DML operations that cause row
movement.

DATASTORE datastore_pref
Specifies the name of your datastore preference. Use the datastore preference to
specify where your text is stored.See "Datastore Types (page 2-2)".

FILTER filter_pref
Specifies the name of your filter preference. Use the filter preference to specify how to
filter formatted documents to plain text or HTML. See "Filter Types (page 2-19)".

1-50 Oracle Text Reference

CREATE INDEX

CHARSET COLUMN charset_column_name

Specifies the name of the character set column. This column must be in the same table
as the text column, and it must be of type CHAR, VARCHAR, or VARCHARZ. Use this
column to specify the document character set for conversion to the database character
set. The value is case-insensitive. You must specify a globalization support character
set string, such as JA16EUC.

When the document is plain text or HTML, the AUTO_FILTER and CHARSET filters
use this column to convert the document character set to the database character set for
indexing.

Use this column when you have plain text or HTML documents with different
character sets or in a character set different from the database character set.

Setting NLS_LENGTH_SEMANT ICS parameter to CHAR is not supported at the
database level. This parameter is supported for the following columns:

e The CHARSET COLUMN, for example:

VARCHAR2 <si ze> CHAR
CHAR <si ze> CHAR

e Anindex created on a VARCHAR2 and CHAR column

e VARCHARZ2 and CHAR columns for FILTER BY and ORDER BY clauses of CREATE
INDEX

e FORMAT COLUMN

Note:

¢ Documents are not marked for re-indexing when only the character set
column changes. The indexed column must be updated to flag the re-
index.

e The NLS_LENGTH_SEMANTICS = CHAR parameter is supported at the
column level only, and is not supported at the database level, as
described in this section.

FORMAT COLUMN format_column_name
Specifies the name of the format column. The format column must be in the same
table as the text column and it must be CHAR, VARCHAR, or VARCHAR?Z type.

FORMAT COLUMN determines how a document is filtered, or, in the case of the
IGNORE value, if it is to be indexed.

AUTO_FILTER uses the format column when filtering documents. Use this column
with heterogeneous document sets to optionally bypass filtering for plain text or
HTML documents.

In the format column, you can specify one of the following options:

e TEXT
e BINARY
e IGNORE

Oracle Text SQL Statements and Operators 1-51

CREATE INDEX

The TEXT option indicates that the document is either plain text or HTML. When
TEXT is specified, the document is not filtered, but may have the character set
converted.

The BINARY option indicates that the document is a format supported by the
AUTO_FILTER object other than plain text or HTML, for example PDF. BINARY is the
default, if the format column entry cannot be mapped.

The IGNORE option indicates that the row is to be ignored during indexing. Use this
value when you need to bypass rows that contain data incompatible with text
indexing such as image data, or rows in languages that you do not want to process.
The difference between documents with TEXT and IGNORE format column types is
that the former are indexed but ignored by the filter, while the latter are not indexed
at all. Thus, IGNORE can be used with any filter type.

Note:
Documents are not marked for re-indexing when only the format column
changes. The indexed column must be updated to flag the re-index.

SAVE_COPY COLUMN save_copy_column_name
Specifies the name of the column that contains the preference of whether to save a
copy of a document into the $D index table during a search operation.

You can specify one of the following three options in the SAVE_COPY column:
PLAINTEXT, FILTERED, or NONE.

The PLAINTEXT option indicates that the document should be stored as a plain text in
the $D index table. Specify this value when using the SNIPPET procedure.

The FILTERED option indicates that a filter preference should be applied on the text
present in the document before storing it into the $D index table. Specify this value
when using the MARKUP procedure or the HIGHLIGHT procedure.

The NONE option indicates that a copy of the document should not be saved in the $D
index table. Specify this value for any of the following scenarios:

e when SNIPPET, MARKUP, or HIGHLIGHT procedure is not used.

e when the indexed column is either VARCHARZ2 or CLOB.

LEXER lexer_pref

Specifies the name of your lexer or multilexer preference. Use the lexer preference to
identify the language of your text and how text is tokenized for indexing. See "Lexer
Types (page 2-32)".

LANGUAGE COLUMN language_column_name
Specifies the name of the language column when using a multi-lexer preference. See
"MULTI_LEXER (page 2-49)".

This column must exist in the base table. It cannot be the same column as the indexed
column. Only the first 30 bytes of the language column are examined for language
identification.

1-52 Oracle Text Reference

CREATE INDEX

Note:
Documents are not marked for re-indexing when only the language column
changes. The indexed column must be updated to flag the re-index.

WORDLIST wordlist_pref

Specifies the name of your wordlist preference. Use the wordlist preference to enable
features such as fuzzy, stemming, and prefix indexing for better wildcard searching.
See "Wordlist Type (page 2-73)".

STORAGE storage_pref
Specifies the name of your storage preference for the Text index. Use the storage

preference to specify how the index tables are stored. See "Storage Types
(page 2-82)".

STOPLIST stoplist

Specifies the name of your stoplist. Use stoplist to identify words that are not to be
indexed. See CTX_DDL.CREATE_STOPLIST (page 8-41).

SECTION GROUP section_group

Specifies the name of your section group. Use section groups to create searchable
sections in structured documents. See CTX_DDL.CREATE_SECTION_GROUP
(page 8-36).

MEMORY memsize

Specifies the amount of run-time memory to use for indexing. The syntax for
memsize is as follows:

memsize = nunber [K|M]G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

The value you specify for mnems i ze must be between 1M and the value of
MAX_INDEX_MEMORY in the CTX_PARAMETERS (page G-10) view. To specify a
memory size larger than the MAX_INDEX_MEMORY, you must reset this parameter
with CTX_ADM.SET_PARAMETER (page 5-3) to be larger than or equal to
memsize.

The default is the value specified for DEFAULT_INDEX_MEMORY in
CTX_PARAMETERS.

The memsize parameter specifies the amount of memory Oracle Text uses for
indexing before flushing the index to disk. Specifying a large amount memory
improves indexing performance because there are fewer I/O operations and
improves query performance and maintenance, because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

POPULATE | NOPOPULATE
Specifies whether an index should be empty or populated. The default is POPULATE.

Note:
POPULATE | NOPOPULATE is the only option whose default value cannot be
set with CTX_ADM.SET_PARAMETER (page 5-3).

Oracle Text SQL Statements and Operators 1-53

CREATE INDEX

Empty indexes are populated by updates or inserts to the base table. You might create
an empty index when you need to create your index incrementally or to selectively
index documents in the base table. You might also create an empty index when you
require only theme and Gist output from a document set.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies SYNC for automatic synchronization of the CONTEXT index when there are

inserts, updates or deletes to the base table. You can specify one of the following
SYNC methods:

SYNC Type Description

MANUAL Provides no automatic synchronization. This is the
default. You must manually synchronize the index
with CTX_DDL . SYNC_ INDEX.

EVERY "interval- Automatically synchronizes the index at a regular

string" interval specified by the value of interval-string,
which takes the same syntax as that for scheduler
jobs. Automatic synchronization using EVERY
requires that the index creator have CREATE JOB
privileges.
Ensure that interval-string is set to a long enough
period that any previous sync jobs will have
completed; otherwise, the sync job might hang.
interval-string must be enclosed in double quotes,
and any single quote within interval-string must be
preceded by the escape character with another
single quote.
See "Enabling Automatic Index Synchronization
(page 1-56)" for an example of automatic sync
syntax.

ON COMMIT Synchronizes the index immediately after a commit
transaction. The commit transaction does not return
until the sync is complete. (Because the
synchronization is performed as a separate
transaction, there may be a period, usually small,
when the data is committed but index changes are
not.)

The operation uses the memory specified with the
memory parameter.

Note that the sync operation has its own transaction
context. If this operation fails, the data transaction is
still committed. Index synchronization errors are
logged in the CTX_USER_ INDEX_ERRORS view. See
"Viewing Index Errors (page 1-59)".

See "Enabling Automatic Index Synchronization
(page 1-56)" for an example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync (ON
COMMIT, EVERY, or MANUAL). The type of sync specified in master parameter strings
applies to all index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

1-54 Oracle Text Reference

CREATE INDEX

. EVERY interval _string MEMORY mem size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same
memory size that was specified at index creation.

See Also:
Oracle Database Administrator’s Guide for information about job scheduling

TRANSACTIONAL

Specifies that documents can be searched immediately after they are inserted or
updated. If a text index is created with TRANSACT IONAL enabled, then, in addition to
processing the synchronized rowids already in the index, the CONTAINS operator will
process unsynchronized rowids as well. Oracle Text does in-memory indexing of
unsynchronized rowids and processes the query against the in-memory index.

TRANSACTIONAL is an index-level parameter and does not apply at the partition
level.

You must still synchronize your text indexes from time to time (with
CTX_DDL.SYNC_INDEX) to bring pending rowids into the index. Query performance
degrades as the number of unsynchronized rowids increases. For that reason, Oracle
recommends setting up your index to use automatic synchronization with the EVERY
or ON COMMIT parameter. (See "SYNC (MANUAL | EVERY "interval-string" | ON
COMMIT) (page 1-54)".)

Transactional querying for indexes that have been created with the TRANSACT I0ONAL
parameter can be turned on and off (for the duration of a user session) with the
PL/SQL variable CTX_QUERY .disable_transactional_query. This is useful,
for example, if you find that querying is slow due to the presence of too many
pending rowids. Here is an example of setting this session variable:

exec ctx_query.disable_transactional_query := TRUE;

If the index uses AUTO_FILTER, queries involving unsynchronized rowids will
require filtering of unsynchronized documents.

CREATE INDEX: CONTEXT Index Examples
The following sections give examples of creating a CONTEXT index.
Creating CONTEXT Index Using Default Preferences

The following example creates a CONTEXT index called myindex on the docs column
in mytable. Default preferences are used.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context;

See Also:
e Oracle Text Application Developer’s Guide

e For more information about default settings, see "Default Index
Parameters (page 2-106)"

Creating CONTEXT Index with Custom Preferences

Oracle Text SQL Statements and Operators 1-55

CREATE INDEX

The following example creates a CONTEXT index called myindex on the docs column
in mytable. The index is created with a custom lexer preference called my_ lexer and
a custom stoplist called my_stop.

This example also assumes that the preference and stoplist were previously created
with CTX_DDL.CREATE_PREFERENCE (page 8-33) for my_ lexer, and
CTX_DDL.CREATE_STOPLIST (page 8-41) for my_stop. Default preferences are
used for the unspecified preferences.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
PARAMETERS("LEXER my_lexer STOPLIST my_stop®);

Any user can use any preference. To specify preferences that exist in another user's
schema, add the user name to the preference name. The following example assumes
that the preferences my_ lexer and my_stop exist in the schema that belongs to user
kenny:

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
PARAMETERS("LEXER kenny.my lexer STOPLIST kenny.my_stop®);

Enabling Automatic Index Synchronization

You can create your index and specify that the index be synchronized at regular
intervals for insertions, updates and deletions to the base table. To do so, create the
index with the SYNC (EVERY "‘interval-string'") parameter.

To use job scheduling, you must log in as a user who has DBA privileges and then
grant CREATE JOB privileges.

The following example creates an index and schedules three synchronization jobs for
three index partitions. The first partition uses ON COMMI T synchronization. The other
two partitions are synchronized by jobs that are scheduled to be executed every
Monday at 3 P.M.

CONNECT system/passwor d
GRANT CREATE JOB TO dr_test

CREATE INDEX tdrmauto02x ON tdrmauto02(text)
INDEXTYPE IS CTXSYS.CONTEXT local
(PARTITION tdrm02x_il PARAMETERS("
MEMORY 20m SYNC(ON COMMIT)*),
PARTITION tdrm02x_i2,
PARTITION tdrm02x_i3) PARAMETERS("
SYNC (EVERY "NEXT_DAY(TRUNC(SYSDATE), *"MONDAY"*) + 15/24")

s
See Oracle Database Administrator’s Guide for information about job scheduling syntax.

Creating CONTEXT Index with Multilexer Preference

The multilexer preference decides which lexer to use for each row based on a language
column. This is a character column in the table that stores the language of the
document in the text column. For example, create the table globaldoc to hold
documents of different languages:

CREATE TABLE globaldoc (
doc_id NUMBER PRIMARY KEY,
lang VARCHAR2(10),
text CLOB

1-56 Oracle Text Reference

CREATE INDEX

Assume that global_lexer is a multilexer preference you created. To index the
global_doc table, specify the multilexer preference and the name of the language
column as follows:

CREATE INDEX globalx ON globaldoc(text) INDEXTYPE IS ctxsys.context PARAMETERS
("LEXER global_lexer LANGUAGE COLUMN lang®);

See Also:

"MULTI_LEXER (page 2-49)" for more information about creating multilexer
preferences

Creating a Local Partitioned Index

The following example creates a text table that is partitioned into three, populates it,
and then creates a partitioned index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b varchar2(40)) PARTITION BY RANGE(a)
(partition p_tabl values less than (10),
partition p_tab2 values less than (20),
partition p_tab3 values less than (30));

PROMPT create partitioned index
CREATE INDEX part_idx on part_tab(b) INDEXTYPE IS CTXSYS.CONTEXT
LOCAL (partition p_idx1l, partition p_idx2, partition p_idx3);

Note:

The limit for the number of partitions in Oracle Text is the same as the
maximum number of partitions per table in Oracle Database.

Using FILTER BY and ORDER BY Clauses

The following example creates an index on table docs and orders the documents by
author's publishing date.

First, create the table:

CREATE TABLE docs (
docid NUMBER,
pub_date DATE,
author VARCHAR2(30),
category VARCHAR2(30),
document CLOB

):
Create the index with FILTER BY and ORDER BY clauses:

CREATE INDEX doc_idx on docs(document) indextype is ctxsys.context
FILTER BY category, author
ORDER BY pub_date desc, docid
PARAMETERS ("memory 500M™);

Parallel Indexing

Parallel indexing can improve index performance when you have multiple CPUs.

Oracle Text SQL Statements and Operators 1-57

CREATE INDEX

To create an index in parallel, use the PARALLEL clause with a parallel degree. This
example uses a parallel degree of 3:

CREATE INDEX myindex ON mytab(pk) INDEXTYPE IS ctxsys.context PARALLEL 3;

Creating a Local Partitioned Index in Parallel

Creating a local partitioned index in parallel can improve performance when you have
multiple CPUs. With partitioned tables, you can divide the work. You can create a
local partitioned index in parallel in two ways:

¢ Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX
statement. In this case, the maximum parallel degree is limited to the number of
partitions you have. See "Parallelism with CREATE INDEX (page 1-58)".

e (Create an unusable index first, then run the
DBMS_PCLXUTIL.BUILD_PART_INDEX utility. This method can result in a
higher degree of parallelism, especially if you have more CPUs than partitions.
See "Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX (page 1-58)".

If you attempt to create a local partitioned index in parallel, and the attempt fails, you
may see the following error message:

ORA-29953: error in the execution of the ODClIndexCreate routine for one or more
of the index partitions

To determine the specific reason why the index creation failed, query the
CTX_USER_INDEX_ERRORS (page G-18) view.

Parallelism with CREATE INDEX

You can achieve local index parallelism by using the PARALLEL and LOCAL clauses in
the CREATE INDEX statement. In this case, the maximum parallel degree is limited to
the number of partitions that you have.

The following example creates a table with three partitions, populates them, and then
creates the local indexes in parallel with a degree of 2:

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)

(partition pl values less than (1000),

partition p2 values less than (2000),

partition p3 values less than (3000));

begin
for i in 0..2999
loop
insert into part_tab3 values (i,"oracle®);
end loop;
end;
/

create index part_tab3x on part_tab3(text)

indextype is ctxsys.context local (partition part_tabxl,
partition part_tabx2,
partition part_tabx3)

parallel 2;

Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX

You can achieve local index parallelism by first creating an unusable CONTEXT index,
and then running the DBMS_PCLUTIL .BUILD_PART_INDEX utility. This method can

1-58 Oracle Text Reference

CREATE INDEX

result in a higher degree of parallelism, especially when you have more CPUs than
partitions.

In this example, the base table has three partitions. We create a local partitioned
unusable index first, then run DBMS_PCLUTIL.BUILD_PART_INDEX, which builds
the 3 partitions in parallel (referred to as inter-partition parallelism). Also, inside each
partition, index creation proceeds in parallel (called intra-partition parallelism) with a
parallel degree of 2. Therefore, the total parallel degree is 6 (3 times 2).

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)

(partition pl values less than (1000),

partition p2 values less than (2000),

partition p3 values less than (3000));

begin
for i in 0..2999
loop
insert into part_tab3 values (i,"oracle®);
end loop;
end;
/

create index part_tab3x on part_tab3(text)

indextype is ctxsys.context local (partition part_tabxl,
partition part_tabx2,
partition part_tabx3)

unusable;

exec dbms_pclxutil.build_part_index(jobs_per_batch=>3,
procs_per_job=>2,
tab_name=>"PART_TAB3",
idx_name=>"PART_TAB3X",
force_opt=>TRUE);

Viewing Index Errors

After a CREATE INDEX or ALTER INDEX operation, you can view index errors with
Oracle Text views. To view errors on your indexes, query the
CTX_USER_INDEX_ERRORS (page G-18) view. To view errors on all indexes as
CTXSYS, query the CTX_INDEX_ERRORS (page G-6) view.

For example, to view the most recent errors on your indexes, enter the following
statement:

SELECT err_timestamp, err_text FROM ctx_user_index_errors
ORDER BY err_timestamp DESC;

Deleting Index Errors
To clear the index error view, enter the following statement:

DELETE FROM ctx_user_index_errors;

Syntax for CTXCAT Index Type

Combines an index on a text column and one or more other columns. Query this index
with the CATSEARCH operator in the WHERE clause of a SELECT statement. This type
of index is optimized for mixed queries. This index is transactional, automatically
updating itself with DML to the base table.

Oracle Text SQL Statements and Operators 1-59

CREATE INDEX

CREATE INDEX [schema.]index on [schema.]tabl e(col um) INDEXTYPE IS ctxsys.ctxcat
[PARAMETERS("[index set index_set]

[lexer lexer_pref]

[storage storage_pref]

[stoplist stoplist]

[section group sectiongroup_pref]

[wordlist wordlist_pref]

[memory mensi ze]");

[schema.ltable(column)
Specifies the name of the table and column to index.

The column that you specify when you create a CTXCAT index must be of type CHAR
or VARCHARZ2. No other types are supported for CTXCAT.

Attempting to create an index on a Virtual Private Database (VPD) protected table
will fail unless one of the following options is true:

e The VPD policy is created such that it does not apply to INDEX statement type,
which is the default

¢ The policy function returns a null predicate for the current user.

e The user (index owner) is SYS.

® The user has the EXEMPT ACCESS POLICY privilege.

Supported CTXCAT Preferences

index set index_set

Specifies the index set preference to create the CTXCAT index. Index set preferences
name the columns that make up your subindexes. Any column that is named in an
index set column list cannot have a NULL value in any row of the base table, or else
you get an error.

Always ensure that your columns have non-null values before and after indexing.
See "Creating a CTXCAT Index (page 1-61)".
Index Performance and Size Considerations

Although a CTXCAT index offers query performance benefits, creating this type of
index has its costs. The time that it takes Oracle Text to create a CTXCAT index
depends on the total size of the index.

The total size of a CTXCAT index is directly related to:
¢ Total text to be indexed
¢ Number of component indexes in the index set

e Number of columns in the base table that make up the component indexes

Having many component indexes in your index set also degrades DML performance
because more indexes must be updated.

Because of these added costs in creating a CTXCAT index, you should carefully
consider the query performance benefit that each component index gives your
application before adding it to your index set.

1-60 Oracle Text Reference

CREATE INDEX

See Also:

Oracle Text Application Developer’s Guide for more information about creating
CTXCAT indexes and the benefits

Other CTXCAT Preferences
When you create an index of type CTXCAT, you can use the supported index
preferences listed in Table 1-6 (page 1-61) in the parameters string.

Table 1-6 Supported CTXCAT Index Preferences

Preference Class Supported Types

Datastore This preference class is not supported for CTXCAT.

Filter This preference class is not supported for CTXCAT.

Lexer BASIC_LEXER (page 2-41) (index_themes attribute not
supported)

CHINESE_LEXER (page 2-52)
CHINESE_VGRAM_LEXER (page 2-52)
JAPANESE_LEXER (page 2-55)
JAPANESE_VGRAM_LEXER (page 2-53)
KOREAN_MORPH_LEXER (page 2-56)

Wordlist BASIC_WORDLIST (page 2-73)

Storage BASIC_STORAGE (page 2-83)

Stoplist Supports single language stoplists only (BASIC_STOPLIST type).
Section Group Only Field Section is supported for CTXCAT.

Unsupported Preferences and Parameters

When you create a CTXCAT index, you cannot specify datastore and filter preferences.
For section group preferences, only the field section preference is supported. You also
cannot specify language, format, or charset columns as with a CONTEXT index.

Creating a CTXCAT Index

This section gives a brief example for creating a CTXCAT index. For a more complete
example, see Oracle Text Application Developer’s Guide.

Consider a table called AUCT 10N with the following schema:

create table auction(item_id number,
title varchar2(100),

category_id number,

price number,

bid_close date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on price. Results must be sorted based on bid_close. This

Oracle Text SQL Statements and Operators 1-61

CREATE INDEX

means that an index to support good response time for the structured and sorting
criteria is required.

You can create a catalog index to support the different types of structured queries a
user might enter. For structured queries, a CTXCAT index improves query performance
over a context index.

To create the indexes, first, create the index set preference, next, optionally, add the
storage preference, and, finally, add the required indexes to it:

begin

ctx_ddl.create_index_set("auction_iset");
ctx_ddl.add_index("auction_iset", "bid_close");
ctx_ddl.add_index("auction_iset","price, bid_close");
end;

Optionally, create the storage preference:

begin
ctx_ddl.create_preference("auction_st_pref", "BASIC_STORAGE");
ctx_ddl.set_attribute("auction_st_pref", "1_TABLE_CLAUSE",
"tablespace TEXT storage (initial 5M)");
ctx_ddl.set_attribute("auction_st_pref®, "1_ROWID_INDEX_CLAUSE",
"tablespace TEXT storage (initial 5M)");
ctx_ddl.set_attribute("auction_st_pref", "I_INDEX_CLAUSE",
"tablespace TEXT storage (initial 5M) compress 2%);
end;
/

Then, create the CTXCAT index with the CREATE INDEX statement as follows:

create index auction_titlex on AUCTION(title) indextype is CTXSYS.CTXCAT
parameters ("index set auction_iset storage auction_st_pref");

Querying a CTXCAT Index

To query the title column for the word pokemon, enter regular and mixed queries as
follows:

select * from AUCTION where CATSEARCH(title, "pokemon®,NULL)> 0;
select * from AUCTION where CATSEARCH(title, "pokemon®, "price < 50 order by
bid_close desc")> 0;

See Also:

Oracle Text Application Developer’s Guide for a complete CTXCAT example

Syntax for CTXRULE Index Type

The CTXRULE type is an index on a column containing a set of queries. Query this
index with the MATCHES operator in the WHERE clause of a SELECT statement.

CREATE INDEX [schema.]index on [schema.]tabl e(rule_col) INDEXTYPE IS
ctxsys.ctxrule

[PARAMETERS ("[lexer lexer_pref] [storage storage_pref]

[section group section_pref] [wordlist wordlist_pref]

[classifier classifier_pref]”);

[PARALLEL n];

1-62 Oracle Text Reference

CREATE INDEX

[schema.ltable(column)
Specifies the name of the table and rule column to index. The rules can be query
compatible strings, query template strings, or binary Support Vector Machine rules.

The column you specify when you create a CTXRULE index must be VARCHAR2, CLOB
or BLOB. No other types are supported for the CTXRULE type.

Attempting to create an index on a Virtual Private Database (VPD) protected table
will fail unless one of the following is true:

e The VPD policy does not have the INDEX statement type turned on (which is the
default).

¢ The policy function returns a null predicate for the current user.
e The user (index owner) is SYS.

¢ The user has the EXEMPT ACCESS POLICY privilege.

lexer_pref
Specifies the lexer preference to be used for processing queries and later for the
documents to be classified with the MATCHES function.

With both classifiers SVN_CLASSFIER and RULE_CLASSIFIER, you can use the
BASIC_LEXER, CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER
lexer. (See "Classifier Types (page 2-95)" and "Lexer Types (page 2-32)".)

For processing queries, these lexers support the following operators: ABOUT, STEM,
AND, NEAR, NOT, OR, and WITHIN.

The thesaural operators (BT*, NT*, PT, RT, SYN, TR, TRSYS, TT, and so on) are
supported. However, these operators are expanded using a snapshot of the thesaurus
at index time, not when the MATCHES function is entered. This means that if you
change your thesaurus after you index, you must re-index your query set.

storage_pref
Specify the storage preference for the index on the queries. Use the storage preference
to specify how the index tables are stored. See "Storage Types (page 2-82)".

section group

Specify the section group. This parameter does not affect the queries. It applies to
sections in the documents to be classified. The following section groups are supported
for the CTXRULE index type:

e BASIC_SECTION_GROUP
e HTML_SECTION_GROUP
e XML_SECTION_GROUP

e AUTO_SECTION_GROUP
See "Section Group Types (page 2-92)".
CTXRULE does not support special sections. It also does not support NDATA sections.

wordlist_pref
Specifies the wordlist preferences. This is used to enable stemming operations on
query terms. See Wordlist Type (page 2-73).

Oracle Text SQL Statements and Operators 1-63

CREATE SEARCH INDEX

classifier_pref
Specifies the classifier preference. See "Classifier Types (page 2-95)". You must use
the same preference name you specify with CTX_CLS.TRAIN.

Example for Creating a CTXRULE Index

See Oracle Text Application Developer’s Guide for a complete example of using the
CTXRULE index type in a document routing application.

Related Topics
CTX_DDL.CREATE_PREFERENCE (page 8-33)
CTX_DDL.CREATE_STOPLIST (page 8-41)
CTX_DDL.CREATE_SECTION_GROUP (page 8-36)
"ALTER INDEX (page 1-1)"

"CATSEARCH (page 1-23)"

1.6 CREATE SEARCH INDEX

This section describes the CREATE SEARCH INDEX statement as it pertains to creating
a JSON search index.

Purpose
Use CREATE SEARCH INDEX to create a JSON search index.

Example

create table tl (txn_date date, po CLOB, constraint cl check (po is json));
create search index idx on tl(po) for JSON parameters(“DATAGUIDE ON sync (on
commit)”’);

Syntax

You can use a simpler alternative syntax to create a search index on JSON. Starting
with Oracle Database 12c Release 2 (12.2), the following are the parameters that are
allowed:

CREATE SEARCH INDEX IDX ON TAB(COL) FOR JSON
PARAMETERS(DATAGUIDE [ON | OFF | ON CHANGE [ADD_VC|Function_nane]]
[SEARCH_ON [NONE | TEXT |TEXT VALUE])

CREATE SEARCH INDEX ON [schenm.]index ON [schema.]tabl e(j son_col)
FOR JSON PARAMETERS ([paranstring]);

If the PARAMETERS clause is omitted, then the default values of DATAGUIDE,
SEARCH_ON and SYNC are ON, TEXT_VALUE and ON COMMIT respectively.

[schema.lindex
Specifies the name of the JSON search index to create.

[schema.ltable(json_col)
Specifies the name of the table and the JSON column to index. json_col is the name
of the JSON column on which the index will be created.

The column should have 1S JSON check constraint.

1-64 Oracle Text Reference

CREATE SEARCH INDEX

[paramstring] =

(DATAGUIDE [ON | OFF | ON CHANGE [ADD_VC|Function_name]]
[SEARCH_ON [NONE | TEXT |TEXT_VALUE]]

[MEMORY rmensi ze]

[SYNC (MANUAL | EVERY “interval-string" | ON COMMIT))]

ADD_VC
Indicates whether virtual columns are created based on the data guide.

Function_name
Specifies the function to be executed when the data guide changes.

TEXT
Indicates that full-text search queries will use the search index.

TEXT_VALUE
Indicates that full-text search, as well as range search for leaf elements can be
answered using the search index.

NONE
Indicates that $1 and $S* tables are not populated. This option enables you to have
data guide only and no index tables.

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for
memsize is as follows:

memsize = nunber [K|M]G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

The value you specify for memsize must be between 1M and the value of
MAX_INDEX_MEMORY in the CTX_PARAMETERS (page G-10) view. To specify a
memory size larger than the MAX_INDEX_MEMORY, you must reset this parameter
with CTX_ADM.SET_PARAMETER (page 5-3) to be larger than or equal to
memsize.

The default is the value specified for DEFAULT_INDEX_MEMORY in
CTX_PARAMETERS.

The memsize parameter specifies the amount of memory Oracle Text uses for
indexing before flushing the index to disk. Specifying a large amount memory
improves indexing performance because there are fewer I/O operations and
improves query performance and maintenance, because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies SYNC for automatic synchronization of the CONTEXT index when there are

inserts, updates or deletes to the base table. You can specify one of the SYNC methods
as described in Table 1-5 (page 1-54).

Each partition of a locally partitioned index can have its own type of sync (ON
COMMIT, EVERY, or MANUAL). The type of sync specified in master parameter strings
applies to all index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

Oracle Text SQL Statements and Operators 1-65

DROP INDEX

. EVERY interval _string MEMORY mem size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same
memory size that was specified at index creation.

See Also:

® Oracle Database Administrator’s Guide for information about job
scheduling

e Oracle Database |[SON Developer’s Guide

1.7 DROP INDEX

Note:

This section describes the DROP INDEX statement as it pertains to dropping a
Text domain index.

For a complete description of the DROP INDEX statement, see Oracle Database
SQL Language Reference.

Purpose
Use DROP INDEX to drop a specified Text index.

Syntax
DROP INDEX [schema.]index [force];

[force]
Optionally forces the index to be dropped. Use the force option when Oracle Text
cannot determine the state of the index, such as when an indexing operation fails.

Oracle recommends against using this option by default. Use it only when a regular
call to DROP INDEX fails.

Example

The following example drops an index named doc_index in the current user's
database schema:

DROP INDEX doc_index;

Related Topics
"ALTER INDEX (page 1-1)"
"CREATE INDEX (page 1-41)"

1.8 MATCHES

Use the MATCHES operator to find all rows in a query table that match a given
document. The document must be a plain text, HTML, or XML document.

1-66 Oracle Text Reference

MATCHES

The MATCHES operator also supports database links. You can identify a remote table or
materialized view by appending @dbl ink to the end of its name. The dbl ink must
be a complete or partial name for a database link to the database containing the remote
table or materialized view. (Querying of remote views is not supported.)

This operator requires a CTXRULE index on your set of queries.

When the SVM_CLASSIFIER (page 2-96) classifier type is used, MATCHES returns a
score in the range 0 to 100; a higher number indicates a greater confidence in the
match. Use the label parameter and MATCH_SCORE to obtain this number. Then use
the matching score to apply a category-specific threshold to a particular category.

If the SVM_CLASSIFIER type is not used, then this operator returns either 100 (the
document matches the criteria) or 0 (the document does not match).

Limitation

If the optimizer chooses to use the functional query invocation with a MATCHES query,
your query will fail.

Syntax
MATCHES(
[schema.]column,

document VARCHAR2 or CLOB
[,label INTEGER])

RETURN NUMBER;

column
Specifies the column containing the indexed query set.

document
Specifies the document to be classified. The document can be plain text, HTML, or
XML. Binary formats are not supported.

label
Optionally specifies the label that identifies the score generated by the MATCHES
operator. Use this label with MATCH_SCORE (page 1-68).

Matches Example

The following example creates a table querytable, and populates it with
classification names and associated rules. It then creates a CTXRULE index.

The example enters the MATCHES query with a document string to be classified. The
SELECT statement returns all rows (queries) that are satisfied by the document:

create table querytable (classification varchar2(64), text varchar2(4000));
insert into querytable values ("common names®, "smith OR jones OR brown®);
insert into querytable values (“"countries®, "United States OR Great Britain OR
France®);

insert into querytable values ("Oracle DB", "oracle NEAR database");

create index query_rule on querytable(text) indextype is ctxsys.ctxrule;

SELECT classification FROM querytable WHERE MATCHES(text, "Smith is a common name
in the United States") > 0;

Oracle Text SQL Statements and Operators 1-67

MATCH_SCORE

CLASSIFICATION

common names
countries

Related Topics

"MATCH_SCORE (page 1-68)"

"Syntax for CTXRULE Index Type (page 1-62)"
CTX_CLS.TRAIN (page 7-1)

Oracle Text Application Developer’s Guide contains extended examples of simple and
supervised classification, which make use of the MATCHES operator.

1.9 MATCH_SCORE

1.10 SCORE

Use the MATCH_SCORE operator in a statement to return scores produced by a
MATCHES query.

The MATCH_SCORE operator also supports database links. You can identify a remote
table or materialized view by appending @dblink to the end of its name. The dblink
must be a complete or partial name for a database link to the database containing the
remote table or materialized view. (Querying of remote views is not supported.)

When the SVM_CLASSIFIER classifier type is used, this operator returns a score in the
range 0 to 100. Use the matching score to apply a category-specific threshold to a
particular category.

If the SYM_CLASSIFIER classifier is not used, then this operator returns either 100
(the document matches the criteria) or 0 (the document does not match).

Syntax
MATCH_SCORE(label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to
identify the MATCHES clause that returns this score.

Example
To get the matching score, use:

select cat_id, match_score(l) from training_result where matches(profile,
text,1)>0;

Related Topics
"MATCHES (page 1-66)"

Use the SCORE operator in a SELECT statement to return the score values produced by
a CONTAINS (page 1-30) query. The SCORE operator can be used in a SELECT, ORDER
BY, or GROUP BY clause.

1-68 Oracle Text Reference

SCORE

The SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dbl ink to the end of its name. The dbl ink must
be a complete or partial name for a database link to the database containing the remote
table or materialized view. (Querying of remote views is not supported.)

Syntax
SCORE(label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to
identify the CONTAINS clause that returns this score.

Example
Single CONTAINS

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS
clause must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, “oracle®, 1) > 0 ORDER BY SCORE(1) DESC;

Multiple CONTAINS

Assume that a news database stores and indexes the title and body of news articles
separately. The following query returns all the documents that include the words
Oracle in their title and java in their body. The articles are sorted by the scores for the
first CONTAINS (Oracle) and then by the scores for the second CONTAINS (java).

SELECT title, body, SCORE(10), SCORE(20)

FROM news
WHERE CONTAINS (news.title, "Oracle", 10) > 0 OR

CONTAINS (news.body, "java®, 20) > 0
ORDER BY SCORE(10), SCORE(20);

Related Topics
"CONTAINS (page 1-30)"
The Oracle Text Scoring Algorithm (page F-1)

Oracle Text SQL Statements and Operators 1-69

SCORE

1-70 Reference

2

Oracle Text Indexing Elements

Oracle provides indexing types for storage, filtering, and lexers, and preferences and
stoplists that you can use to create an Oracle Text index.

The chapter includes the following topics:

2.1 Overview

When you use the CREATE INDEX (page 1-41) statement to create an index or the

Overview (page 2-1)

Creating Preferences (page 2-2)
Datastore Types (page 2-2)
Filter Types (page 2-19)

Lexer Types (page 2-32)
Wordlist Type (page 2-73)
Storage Types (page 2-82)
Section Group Types (page 2-92)
Classifier Types (page 2-95)
Cluster Types (page 2-98)
Stoplists (page 2-99)
System-Defined Preferences (page 2-101)
System Parameters (page 2-105)

Token Limitations (page 2-110)

ALTER INDEX (page 1-1) statement to manage an index, you can optionally specify
indexing preferences, stoplists, and section groups in the parameter string. Specifying
a preference, stoplist, or section group answers one of the following questions about
the way Oracle Text indexes text:

Preference Class Answers the Question
Datastore How are your documents stored?
Filter How can the documents be converted to plain text?

Lexer What language is being indexed?

Oracle Text Indexing Elements 2-1

Creating Preferences

Preference Class Answers the Question

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index tables be stored?

Stop List What words or themes are not to be indexed?

Section Group Is querying within sections enabled, and how are the document

sections defined?

This chapter describes how to set each preference. Enable an option by creating a
preference with one of the types described in this chapter.

For example, to specify that your documents are stored in external files, you can create
a datastore preference called mydatastore using the FILE_DATASTORE

(page 2-9) type. Specify mydatastore as the datastore preference in the parameter
clause of the CREATE INDEX statement.

2.2 Creating Preferences

To create a datastore, lexer, filter, classifier, wordlist, or storage preference, use the
CTX_DDL.CREATE_PREFERENCE (page 8-33) procedure and specify one of the
types described in this chapter. For some types, you can also set attributes with the
CTX_DDL.SET_ATTRIBUTE (page 8-66) procedure.

An indexing fype names a class of indexing objects that you can use to create an index
preference. A type, therefore, is an abstract ID, while a preference is an entity that
corresponds to a type. Many system-defined preferences have the same name as types
(for example, BAS1C_LEXER), but exact correspondence is not guaranteed. Be careful
in assuming the existence or nature of either indexing types or system preferences.

You specify indexing preferences with the CREATE INDEX and ALTER INDEX
statements. Indexing preferences determine how your index is created. For example,
lexer preferences indicate the language of the text to be indexed. You can create and
specify your own user-defined preferences, or you can use system-defined
preferences.

To create a stoplist, use the CTX_DDL.CREATE_STOPLIST (page 8-41) procedure.
Add stopwords to a stoplist with CTX_DDL . ADD_STOPWORD.

To create section groups, use CTX_DDL.CREATE_SECTION_GROUP (page 8-36)
and specify a section group type. Add sections to section groups with the
CTX_DDL .ADD_ZONE_SECTION or CTX_DDL .ADD_FIELD_SECTION procedures.

2.3 Datastore Types

Use the datastore types to specify how your text is stored. To create a datastore
preference, you must use one of the datastore types described in Table 2-1
(page 2-2).

Table 2-1 Datastore Types

Datastore Type Use When

DIRECT_DATASTORE (page 2-3) Data is stored internally in the text column. Each
row is indexed as a single document.

2-2 Oracle Text Reference

Datastore Types

Table 2-1 (Cont.) Datastore Types
___|

Datastore Type Use When
MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one
(page 2-3) column. Columns are concatenated to create a

virtual document, one for each row.

DETAIL_DATASTORE (page 2-7) Data is stored internally in the text column.
Document consists of one or more rows stored in a
text column in a detail table, with header
information stored in a master table.

FILE_DATASTORE (page 2-9) Data is stored externally in operating system files.
File names are stored in the text column, one for
each row.

NESTED_DATASTORE (page 2-16) Data is stored in a nested table.

URL_DATASTORE (page 2-11) Data is stored externally in files located on an

intranet or the Internet. Uniform Resource
Locators (URLs) are stored in the text column.

USER_DATASTORE (page 2-14) Documents are synthesized at index time by a
user-defined stored procedure.

2.3.1 DIRECT_DATASTORE

Use the DIRECT_DATASTORE type for text stored directly in the text column, one
document for each row. The DIRECT_DATASTORE type has no attributes.

The following column types are supported: CHAR, VARCHAR, VARCHARZ2, BLOB, CLOB,
BFILE, XMLType, and URIType.

Note:

If your column is a BFILE, then the index owner must have read permission
on all directories used by the BFILES.

The following example creates a table with a CLOB column to store text data. It then
populates two rows with text data and indexes the table using the system-defined
preference CTXSYS.DEFAULT_DATASTORE.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555, "this text will be indexed");
insert into mytable values(111556, "this is a direct_datastore example®);
commit;

create index myindex on mytable(docs)

indextype is ctxsys.context
parameters ("DATASTORE CTXSYS.DEFAULT_DATASTORE®);

2.3.2 MULTI_COLUMN_DATASTORE

Use the MULT1_COLUMN_DATASTORE datastore when your text is stored in more than
one column. During indexing, the system concatenates the text columns, tags the

Oracle Text Indexing Elements 2-3

Datastore Types

column text, and indexes the text as a single document. The XML-like tagging is
optional. You can also set the system to filter and concatenate binary columns.

e MULTI_COLUMN_DATASTORE Attributes (page 2-4)

* Indexing and DML (page 2-4)

e MULTI_COLUMN_DATASTORE Restriction (page 2-5)

e MULTI_COLUMN_DATASTORE Example (page 2-5)

e MULTI_COLUMN_DATASTORE Filter Example (page 2-5)
e Tagging Behavior (page 2-5)

¢ Indexing Columns as Sections (page 2-6)

2.3.2.1 MULTI_COLUMN_DATASTORE Attributes

The data store MULTI_COLUMN_DATASTORE has the attributes shown in Table 2-2
(page 2-4).

Table 2-2 MULTI_COLUMN_DATASTORE Attributes
e

Attribute Attribute Value

columns Specify a comma-delimited list of columns to be concatenated during
indexing. You can also specify any allowed expression for the SELECT
statement column list for the base table. This includes expressions,
PL/SQL functions, column aliases, and so on.

The NUMBER and DATE column types are supported. They are
converted to text before indexing using the default format mask. The
TO_CHAR function can be used in the column list for formatting.

The RAW and BLOB columns are directly concatenated as binary data.

The LONG, LONG RAW, NCHAR, and NCLOB data types, nested table
columns, and collections are not supported.

The column list is limited to 500 bytes.

filter Specify a comma-delimited list of Y/N flags. Each flag corresponds to
a column in the COLUMNS list and denotes whether to filter the column
using the AUTO_FILTER.

Specify one of the following allowed values:
Y: Column is to be filtered with AUTO_FILTER

N or no value: Column is not to be filtered (default)

delimiter Specify the delimiter that separates column text as follows:

COLUMN_NAME_TAG: Column text is set off by XML-like open and close
tags (default).

NEWL INE: Column text is separated with a newline.

2.3.2.2 Indexing and DML

To index, you must create a dummy column to specify in the CREATE INDEX
statement. This column's contents are not made part of the virtual document, unless its
name is specified in the columns attribute.

The index is synchronized only when the dummy column is updated. You can create
triggers to propagate changes if needed.

2-4 Oracle Text Reference

Datastore Types

2.3.2.3 MULTI_COLUMN_DATASTORE Restriction

You cannot create a multicolumn datastore with XMLType columns.
MULTI1_COLUMN_DATA_STORE does not support XMLType. You can create a CONTEXT
index with an XMLType column, as described in Oracle Text SQL Statements and
Operators (page 1-1).

2.3.2.4 MULTI_COLUMN_DATASTORE Example

The following example creates a multicolumn datastore preference called my_multi
with three text columns:

begin

ctx_ddl.create_preference("my_multi®, "MULTI_COLUMN_DATASTORE®);
ctx_ddl.set_attribute("my_multi®, "columns®, "columnl, column2, column3™);

end;

2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example

The following example creates a multicolumn datastore preference and denotes that
the bar column is to be filtered with the AUTO_FILTER.

ctx_ddl.create_preference("MY_MULTI", *"MULTI_COLUMN_DATASTORE");
ctx_ddl.set_attribute("MY_MULTI", "COLUMNS®,"foo,bar");
ctx_ddl.set_attribute("MY_MULTI","FILTER","N,Y");

The multicolumn datastore fetches the content of the foo and bar columns, filters
bar, then composes the compound document as:

<F00>

foo contents

</F00>

<BAR>

bar filtered contents (probably originally HTML)
</BAR>

The N flags do not need not be specified, and there does not need to be a flag for every
column. Only the Y flags must be specified, with commas to denote which column
they apply to. For example:

ctx_ddl.create_preference("MY_MULTI", *"MULTI_COLUMN_DATASTORE");
ctx_ddl.set_attribute("MY_MULTI", "COLUMNS®,"foo,bar,zoo,jar");
ctx_ddl.set_attribute("MY_MULTI","FILTER",",,Y");

This example filters only the column zoo0.

2.3.2.6 Tagging Behavior

During indexing, the system creates a virtual document for each row. The virtual
document is composed of the contents of the columns concatenated in the listing order
with column name tags automatically added.

For example:

create table mc(id number primary key, name varchar2(10), address varchar2(80));
insert into mc values(l, "John Smith®, "123 Main Street");

Oracle Text Indexing Elements 2-5

Datastore Types

exec ctx_ddl.create_preference("mymds®, *MULTI_COLUMN_DATASTORE");
exec ctx_ddl.set_attibute("mymds®, "columns®, "name, address");

This produces the following virtual text for indexing:

<NAME>

John Smith
</NAME>
<ADDRESS>

123 Main Street
</ADDRESS>

2.3.2.7 Indexing Columns as Sections

To index the tags as sections, you can optionally create field sections with
BASIC_SECTION_GROUP.

Note:

No section group is created when you use the MULT1_COLUMN_DATASTORE.
To create sections for these tags, you must create a section group.

When you use expressions or functions, the tag is composed of the first 30 characters
of the expression unless a column alias is used.

For example, if your expression is as follows:

exec ctx_ddl.set_attibute("mymds®, “"columns®, "4 + 17%);

then it produces the following virtual text:

<4 + 17>
21
</4 + 17>

If your expression is as follows:

exec ctx_ddl.set_attibute("mymds®, "columns®, "4 + 17 coll");

then it produces the following virtual text:

<col1>
21
<col1>

The tags are in uppercase unless the column name or column alias is in lowercase and
surrounded by double quotation marks. For example:

exec ctx_ddl.set_attibute("mymds®, "COLUMNS®, "foo");

This produces the following virtual text:

<F00>
content of foo
</F00>

For lowercase tags, use the following:

exec ctx_ddl.set_attibute("mymds®, "COLUMNS®, "foo "foo"");

This expression produces:

2-6 Oracle Text Reference

Datastore Types

<foo>
content of foo
</foo>

2.3.3 DETAIL_DATASTORE

Use the DETAIL_DATASTORE type for text stored directly in the database in detail
tables, with the indexed text column located in the master table.

e DETAIL_DATASTORE Attributes (page 2-7)
* Synchronizing Master/Detail Indexes (page 2-7)
e Example Master/Detail Tables (page 2-7)

2.3.3.1 DETAIL_DATASTORE Attributes
The DETAIL_DATASTORE type has the attributes described in Table 2-3 (page 2-7).

Table 2-3 DETAIL_DATASTORE Attributes
I

Attribute Attribute Value
binary Specify TRUE for Oracle Text to add no newline character after each
detail row.

Specify FALSE for Oracle Text to add a newline character (\n) after
each detail row automatically.

detail_table Specify the name of the detail table (OWNER . TABLE if necessary).
detail_key Specify the name of the detail table foreign key column.
detail_lineno Specify the name of the detail table sequence column.

detail_text Specify the name of the detail table text column.

2.3.3.2 Synchronizing Master/Detail Indexes

Changes to the detail table do not trigger re-indexing when you synchronize the index.
Only changes to the indexed column in the master table triggers a re-index when you
synchronize the index.

You can create triggers on the detail table to propagate changes to the indexed column
in the master table row.

2.3.3.3 Example Master/Detail Tables

This example illustrates how master and detail tables are related to each other.
¢ Master Table Example (page 2-8)

® Detail Table Example (page 2-8)

® Detail Table Example Attributes (page 2-8)

* Master/Detail Index Example (page 2-9)

Oracle Text Indexing Elements 2-7

Datastore Types

2.3.3.3.1 Master Table Example

Master tables define the documents in a master/detail relationship. Assign an

identifying number to each document. The following table is an example master table,
called my_master:

Column Name Column Type Description
article_id NUMBER Document ID, unique for each document
(primary key)
author VARCHAR2(30) Author of document
title VARCHAR2(50) Title of document
body CHAR(1) Dummy column to specify in CREATE INDEX
Note:

Your master table must include a primary key column when you use the
DETAIL_DATASTORE type.

2.3.3.3.2 Detail Table Example

Detail tables contain the text for a document, whose content is usually stored across a
number of rows. The following detail table my_detail is related to the master table
my_master with the article_id column. This column identifies the master
document to which each detail row (sub-document) belongs.

Column Name Column Type Description
article_id NUMBER Document ID that relates to master table
seq NUMBER Sequence of document in the master document

defined by article_id

text VARCHAR2 Document text

2.3.3.3.3 Detail Table Example Attributes
In this example, the DETAIL_DATASTORE attributes have the following values:

Attribute Attribute Value
binary TRUE
detail_table my_detail
detail_key article_id
detail_lineno seq
detail_text text

2-8 Oracle Text Reference

Datastore Types

Use CTX_DDL.CREATE_PREFERENCE (page 8-33) to create a preference with
DETAIL_DATASTORE. Use CTX_DDL.SET_ATTRIBUTE (page 8-66) to set the
attributes for this preference as described earlier. The following example shows how
this is done:

begin

ctx_ddl.create_preference("my_detail_pref®, "DETAIL_DATASTORE");
ctx_ddl.set_attribute("my_detail_pref®, “binary", "true");
ctx_ddl.set_attribute("my_detail_pref®, "detail_table®, "my_detail");
ctx_ddl.set_attribute("my_detail_pref®, "detail_key", "article_id");
ctx_ddl.set_attribute("my_detail_pref®, "detail_lineno", "seq");
ctx_ddl.set_attribute("my_detail_pref®, "detail_text", "text");

end;

2.3.3.3.4 Master/Detail Index Example

To index the document defined in this master/detail relationship, specify a column in
the master table using the CREATE INDEX statement. The column you specify must be
one of the allowed types.

This example uses the body column, whose function is to enable the creation of the
master/detail index and to improve readability of the code. The my_detail_pref
preference is set to DETAIL_DATASTORE with the required attributes:

CREATE INDEX myindex on my_master(body) indextype is ctxsys.context
parameters("datastore my_detail_pref®);

In this example, you can also specify the title or author column to create the index.
However, if you do so, changes to these columns will trigger a re-index operation.

2.3.4 FILE_DATASTORE

The FILE_DATASTORE type is used for text stored in files accessed through the local
file system.

e FILE_DATASTORE Attributes (page 2-9)
e FILE_DATASTORE and Security (page 2-10)

e FILE_DATASTORE Example (page 2-11)

Note:

e The FILE_DATASTORE type may not work with certain types of remote-
mounted file systems.

e The character set of the file datastore is assumed to be the character set of
the database.

2.3.4.1 FILE_DATASTORE Attributes
The FILE_DATASTORE type has the attributes described Table 2-4 (page 2-10).

Oracle Text Indexing Elements 2-9

Datastore Types

Table 2-4 FILE_DATASTORE Attributes
- - - -]

Attribute Attribute Value
path pathl:path2:pathn
filename_charset name

path

Specifies the full directory path name of the files stored externally in a file system.
When you specify the full directory path as such, you need to include only file names
in your text column.

You can specify multiple paths for the path attribute, with each path separated by a
colon (:) on UNIX and semicolon(;) on Windows. File names are stored in the text
column in the text table.

If you do not specify a path for external files with this attribute, then Oracle Text
requires that the path be included in the file names stored in the text column.

The PATH attribute has the following limitations:

e If you specify a PATH attribute, then you can only use a simple file name in the
indexed column. You cannot combine the PATH attribute with a path as part of
the file name. If the files exist in multiple folders or directories, you must leave
the PATH attribute unset, and include the full file name, with PATH, in the
indexed column.

* On Windows systems, the files must be located on a local drive. They cannot be
on a remote drive, whether the remote drive is mapped to a local drive letter.

filename_charset

Specifies a valid Oracle character set name (maximum length 30 characters) to be used
by the file datastore for converting file names. In general, the Oracle database can use
a different character set than the operating system. This can lead to problems in
finding files (which may raise DRG-11513 errors) when the indexed column contains
characters that are not convertible to the operating system character set. By default,
the file datastore will convert the file name to WESISO8859p1 for ASCII platforms or
WESEBCDIC1047 for EBCDIC platforms.

However, this may not be sufficient for applications with multibyte character sets for
both the database and the operating system, because neither WE8ISO8859p1 nor
WESEBCDIC1047 supports multibyte characters. The attribute i lename_charset
rectifies this problem. If specified, then the datastore will convert from the database
character set to the specified character set rather than to ISO8859 or EBCDIC.

If the Filename_charset attribute is the same as the database character set, then
the file name is used as is. If Fi lename_charset is not a valid character set, then the
error "DRG-10763: value %s is not a valid character set" is raised.

2.3.4.2 FILE_DATASTORE and Security

File and URL datastores enable access to files on the actual database disk. This may be
undesirable when security is an issue since any user can browse the file system that is
accessible to the Oracle user. The FILE_ACCESS_ROLE system parameter can be used
to set the name of a database role that is authorized to create an index using FILE or
URL datastores. If set, any user attempting to create an index using FILE or URL

2-10 Oracle Text Reference

Datastore Types

datastores must have this role, or the index creation will fail. Only SYS can set
FILE_ACCESS_ROLE, and an error will be raised if any other user tries to modify it. If
FILE_ACCESS_ROLE is left at the default of NULL, access is disallowed. Thus, by
default, users are not able to create indexes that use the file or URL datastores. Users
can, if desired, set FILE_ACCESS_ROLE to PUBLIC if they want to preserve the
behavior from earlier releases.

For example, the following statement sets the name of the database role:
ctx_adm.set_parameter("FILE_ACCESS ROLE","TOPCAT");
where TOPCAT is the role that is authorized to create an index on a file or URL

datastore. The CREATE INDEX operation will fail when a user that does not have an
authorized role tries to create an index on a file or URL datastore. For example:

CREATE INDEX myindex ON mydocument(TEXT) INDEXTYPE IS ctxsys.context
PARAMETERS("DATASTORE ctxsys.file_datastore™)

In this case, if the user does not have the role TOPCAT, then index creation will fail
and return an error. For users who have the TOPCAT role, the index creation will
proceed normally.

The authorized role name is checked any time the datastore is accessed. This includes
index creation, index sync, and calls to document services, such as
CTX_DOC.HIGHLIGHT.

2.3.4.3 FILE_DATASTORE Example

This example creates a file datastore preference called COMMON_DIR that has a path
of /mydocs:

begin
ctx_ddl.create_preference("COMMON_DIR", "FILE_DATASTORE");
ctx_ddl.set_attribute("COMMON_DIR", "PATH", */mydocs™);
end;

When you populate the table mytable, you need only insert file names. The path
attribute tells the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555, "first.txt");

insert into mytable values(111556, "second.txt");

commit;

Create the index as follows:

create index myindex on mytable(docs)
indextype is ctxsys.context
parameters ("datastore COMMON_DIR™);

2.3.5 URL_DATASTORE
Use the URL_DATASTORE type for text stored:

e Infiles on the World Wide Web (accessed through HTTP or FTP)

* Infiles in the local file system (accessed through the file protocol)

Store each URL in a single text field.

¢ URL_DATASTORE URL Syntax (page 2-12)

Oracle Text Indexing Elements 2-11

Datastore Types

¢ URL_DATASTORE Attributes (page 2-12)
e URL_DATASTORE and Security (page 2-13)
e URL_DATASTORE Example (page 2-13)

2.3.5.1 URL_DATASTORE URL Syntax

The syntax of a URL you store in a text field is as follows (with brackets indicating
optional parameters):

[URL:]<access_scheme>://<host_name>[:<port_number>]/[<url_path>]

The access_scheme string can be either ftp, http, or file. For example:

http://mycomputer.us.example.com/home.html

Note:

The login:password@ syntax within the URL is supported only for the ftp
access scheme.

Because this syntax is partially compliant with the RFC 1738 specification, the
following restriction holds for the URL syntax: The URL must contain only printable
ASCII characters. Non-printable ASCII characters and multibyte characters must be
escaped with the %xx notation, where xx is the hexadecimal representation of the
special character.

2.3.5.2 URL_DATASTORE Attributes
URL_DATASTORE has the following attributes:

Table 2-5 URL_DATASTORE Attributes
L

Attribute Attribute Value

timeout The value of this attribute is ignored. This is provided for backward
compatibility.

maxthreads The value of this attribute is ignored. URL_DATASTORE is single-
threaded. This is provided for backward compatibility.

urlsize The value of this attribute is ignored. This is provided for backward
compatibility.

maxurls The value of this attribute is ignored. This is provided for backward
compatibility.

maxdocsize The value of this attribute is ignored. This is provided for backward
compatibility.

http_proxy Specify the host name of http proxy server. Optionally specify port

number with a colon in the form hostname:port.

ftp_proxy Specify the host name of ftp proxy server. Optionally specify port
number with a colon in the form hostname :port.

No_proxy Specify the domain for no proxy server. Use a comma-delimited
string of up to 16 domain names.

2-12 Oracle Text Reference

Datastore Types

timeout
The value of this attribute is ignored. This is provided for backward compatibility.

maxthreads
The value of this attribute is ignored. URL_DATASTORE is single-threaded. This is
provided for backward compatibility.

urlsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxdocsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxurls
The value of this attribute is ignored. This is provided for backward compatibility.

http_proxy

Specify the fully qualified name of the host computer that serves as the HTTP proxy
(gateway) for the computer on which Oracle Text is installed. You can optionally
specify port number with a colon in the form hostname:port.

You must set this attribute if the computer is in an intranet that requires
authentication through a proxy server to access Web files located outside the firewall.

ftp_proxy

Specify the fully qualified name of the host computer that serves as the FIP proxy
(gateway) for the server on which Oracle Text is installed. You can optionally specify
a port number with a colon in the form hostname:port.

This attribute must be set if the computer is in an intranet that requires authentication
through a proxy server to access Web files located outside the firewall.

NO_proxy
Specify a string of domains (up to sixteen, separated by commas) that are found in
most, if not all, of the computers in your intranet. When one of the domains is
encountered in a host name, no request is sent to the server(s) specified for
Ttp_proxy and http_proxy. Instead, the request is processed directly by the host
computer identified in the URL.

For example, if the string us.example.com, uk.example.com is entered for no_proxy, any
URL requests to computers that contain either of these domains in their host names
are not processed by your proxy server(s).

2.3.5.3 URL_DATASTORE and Security

For a discussion of how to control file access security for file and URL datastores, refer
to "FILE_DATASTORE and Security (page 2-10)".

2.3.5.4 URL_DATASTORE Example

This example creates a URL_DATASTORE preference called URL_PREF for which the
http_proxy, no_proxy, and timeout attributes are set. The defaults are used for
the attributes that are not set.

begin
ctx_ddl.create_preference("URL_PREF", "URL_DATASTORE");
ctx_ddl.set_attribute("URL_PREF", "HTTP_PROXY", "www-proxy.us.example.com®);
ctx_ddl.set_attribute("URL_PREF", "NO_PROXY", "us.example.com®);

Oracle Text Indexing Elements 2-13

Datastore Types

ctx_ddl.set_attribute("URL_PREF", "Timeout","300");
end;

Create the table and insert values into it:

create table urls(id number primary key, docs varchar2(2000));
insert into urls values(111555, "http://context.us.example.com®);
insert into urls values(111556, "http://www.sun.com");

commit;

To create the index, specify URL_PREF as the datastore:

create index datastores_text on urls (docs)
indextype is ctxsys.context
parameters ("Datastore URL_PREF");

2.3.6 USER_DATASTORE

Use the USER_DATASTORE type to define stored procedures that synthesize
documents during indexing. For example, a user procedure might synthesize author,
date, and text columns into one document to have the author and date information be
part of the indexed text.

e USER_DATASTORE Attributes (page 2-14)

e USER_DATASTORE Constraints (page 2-15)

e USER_DATASTORE Editing Procedure after Indexing (page 2-15)
e USER_DATASTORE with CLOB Example (page 2-15)

e USER_DATASTORE with BLOB_LOC Example (page 2-16)

2.3.6.1 USER_DATASTORE Attributes
USER_DATASTORE has the following attributes:

Table 2-6 USER_DATASTORE Attributes
- - - - |

Attribute Attribute Value

procedure Specify the procedure that synthesizes the document to be indexed.

This procedure can be owned by any user and must be executable by the
index owner.

output_type Specify the data type of the second argument to procedure. Valid
values are CLOB, BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2. The
default is CLOB.

When you specify CLOB_LOC, BLOB_LOC, you indicate that no
temporary CLOB or BLOB is needed, because your procedure copies a
locator to the IN/OUT second parameter.

procedure

Specify the name of the procedure that synthesizes the document to be indexed. This
specification must be in the form PROCEDURENAME or
PACKAGENAME . PROCEDURENAME. You can also specify the schema owner name.

The procedure you specify must have two arguments defined as follows:

2-14 Oracle Text Reference

Datastore Types

procedure (r IN ROWID, c¢ IN OUT NOCOPY out put _type)

The first argument r must be of type ROWID. The second argument ¢ must be of type
output_type. NOCOPY is a compiler hint that instructs Oracle Text to pass
parameter c by reference if possible.

Note:
The procedure name and its arguments can be named anything. The
arguments r and c are used in this example for simplicity.

The stored procedure is called once for each row indexed. Given the rowid of the
current row, procedure must write the text of the document into its second
argument, whose type you specify with output_type.

2.3.6.2 USER_DATASTORE Constraints

The following constraints apply to procedure:

e It can be owned by any user, but the user must have database permissions to
execute procedure correctly

¢ It must be executable by the index owner

e It must not enter DDL or transaction control statements, like COMMIT

2.3.6.3 USER_DATASTORE Editing Procedure after Indexing

When you change or edit the stored procedure, indexes based on it will not be
notified, so you must manually re-create such indexes. So if the stored procedure
makes use of other columns, and those column values change, the row will not be re-
indexed. The row is re-indexed only when the indexed column changes.

output_type
Specify the datatype of the second argument to procedure. You can use either CLOB,
BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2.

2.3.6.4 USER_DATASTORE with CLOB Example

Consider a table in which the author, title, and text fields are separate, as in the
articles table defined as follows:

create table articles(
id number,
author varchar2(80),
title varchar2(120),
text clob);

The author and title fields are to be part of the indexed document text. Assume user
appowner writes a stored procedure with the user datastore interface that synthesizes
a document from the text, author, and title fields:

create procedure myproc(rid in rowid, tlob in out clob nocopy) is
begin
for cl in (select author, title, text from articles
where rowid = rid)
loop

Oracle Text Indexing Elements 2-15

Datastore Types

dbms_lob.writeappend(tlob, length(cl.title), cl.title);
dbms_lob.writeappend(tlob, length(cl.author), cl.author);
dbms_lob.writeappend(tlob, length(cl.text), cl.text);

end loop;
end;

This procedure takes in a rowid and a temporary CLOB locator, and concatenates all
the article's columns into the temporary CLOB. The for loop executes only once.

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference("myud®, "user_datastore®);
ctx_ddl.set_attribute("myud®, "procedure®, "myproc®);
ctx_ddl.set_attribute("myud®, “output_type®, "CLOB");

end;

When appowner creates the index on articles(text) using this preference, the
indexing operation sees author and title in the document text.

2.3.6.5 USER_DATASTORE with BLOB_LOC Example
The following procedure might be used with OUTPUT_TYPE BLOB_LOC:

procedure myds(rid in rowid, dataout in out nocopy blob)
is
I_dtype varchar2(10);
I_pk number ;
begin
select dtype, pk into 1_dtype, 1_pk from mytable where rowid = rid;
if (I_dtype = "MOVIE") then
select movie_data into dataout from movietab where fk = 1_pk;
elsif (I_dtype = "SOUND") then
select sound_data into dataout from soundtab where fk
end if;
end;

1_pk;

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference("myud®, "user_datastore®);
ctx_ddl.set_attribute("myud®, "procedure®, "myproc®);
ctx_ddl.set_attribute("myud®, “output_type", "blob_loc");

end;

2.3.7 NESTED_DATASTORE

Use the nested datastore type to index documents stored as rows in a nested table.
e NESTED_DATASTORE Attributes (page 2-16)

e NESTED_DATASTORE Example (page 2-17)

2.3.7.1 NESTED_DATASTORE Attributes
NESTED_DATASTORE has the following attributes:

2-16 Oracle Text Reference

Datastore Types

Table 2-7 NESTED_DATASTORE Attributes
- - - - |

Attribute Attribute Value

nested_column Specify the name of the nested table column. This attribute is required.
Specify only the column name. Do not specify schema owner or
containing table name.

nested_type Specify the type of nested table. This attribute is required. You must
provide owner name and type.

nested_lineno Specify the name of the attribute in the nested table that orders the
lines. This is like DETAIL_LINENO in detail datastore. This attribute is
required.

nested_text Specify the name of the column in the nested table type that contains

the text of the line. This is like DETAIL_TEXT in detail datastore. This
attribute is required. LONG column types are not supported as nested
table text columns.

binary Specify FALSE for Oracle Text to automatically insert a newline
character when synthesizing the document text. If you specify TRUE,
Oracle Text does not do this. This attribute is not required. The default
is FALSE.

When using the nested table datastore, you must index a dummy column, because the
extensible indexing framework disallows indexing the nested table column. See
"NESTED_DATASTORE Example (page 2-17)".

DML on the nested table is not automatically propagated to the dummy column used
for indexing. For DML on the nested table to be propagated to the dummy column,
your application code or trigger must explicitly update the dummy column.

Filter defaults for the index are based on the type of the nested_text column.

During validation, Oracle Text checks that the type exists and that the attributes you
specify for nested_lineno and nested_text exist in the nested table type. Oracle
Text does not check that the named nested table column exists in the indexed table.

2.3.7.2 NESTED_DATASTORE Example

This section shows an example of using the NESTED_DATASTORE type to index
documents stored as rows in a nested table.

® Create the Nested Table (page 2-17)

* Insert Values into Nested Table (page 2-18)
® Create Nested Table Preferences (page 2-18)
* Create Index on Nested Table (page 2-18)

* Query Nested Datastore (page 2-18)

2.3.7.2.1 Create the Nested Table

The following code creates a nested table and a storage table mytab for the nested
table:

create type nt_rec as object (
Ino number, -- line number

Oracle Text Indexing Elements 2-17

Datastore Types

Itxt varchar2(80) -- text of line
);

create type nt_tab as table of nt_rec;

create table mytab (
id number primary key, -- primary key
dummy char(1), -- dummy column for indexing
doc nt_tab -- nested table

nested table doc store as myntab;

2.3.7.2.2 Insert Values into Nested Table

The following code inserts values into the nested table for the parent row with ID
equal to 1.

insert into mytab values (1, null, nt_tab());

insert into table(select doc from mytab where id=1) values (1, "the dog");
insert into table(select doc from mytab where id=1) values (2, "sat on mat ");
commit;

2.3.7.2.3 Create Nested Table Preferences

The following code sets the preferences and attributes for the NESTED_DATASTORE
according to the definitions of the nested table type nt_tab and the parent table
mytab:

begin
-- create nested datastore pref
ctx_ddl.create_preference("ntds", "nested_datastore®);

-- nest tab column in main table
ctx_ddl.set_attribute("ntds", "nested_column®, "doc");

-- nested table type
ctx_ddl.set_attribute("ntds", "nested_type", "scott.nt_tab");

-- lineno column in nested table
ctx_ddl.set_attribute("ntds", "nested_lineno*,"Ino");

--text column in nested table
ctx_ddl.set_attribute("ntds", "nested_text", "ltxt");
end;

2.3.7.2.4 Create Index on Nested Table
The following code creates the index using the nested table datastore:

create index myidx on mytab(dummy) -- index dummy column, not nest table
indextype is ctxsys.context parameters ("datastore ntds");

2.3.7.2.5 Query Nested Datastore
The following select statement queries the index built from a nested table:

select * from mytab where contains(dummy, “"dog and mat®)>0;
-- returns document 1, because it has dog in line 1 and mat in line 2.

2-18 Oracle Text Reference

Filter Types

2.4 Filter Types

Use the filter types to create preferences that determine how text is filtered for
indexing. Filters enable word processor documents, formatted documents, plain text,
HTML, and XML documents to be indexed.

For formatted documents, Oracle Text stores documents in their native format and
uses filters to build interim plain text or HTML versions of the documents. Oracle Text
indexes the words derived from the plain text or HTML version of the formatted
document.

To create a filter preference, you must use one of the filter types shown in Table 2-8
(page 2-19).

Table 2-8 Filter Types

Filter When Used

AUTO_FILTER Auto filter for filtering formatted documents.

(page 2-19)

NULL_FILTER No filtering required. Use for indexing plain text, HTML, or XML
(page 2-22) documents.

MAIL_FILTER Use the MAIL_FILTER to transform RFC-822, RFC-2045

(page 2-22) messages in to text that can be indexed.

USER_FILTER User-defined external filter to be used for custom filtering.

(page 2-26)

PROCEDURE_FILTER User-defined stored procedure filter to be used for custom
(page 2-29) filtering.

2.41 AUTO_FILTER

The AUTO_FILTER is a universal filter that filters most document formats, including
PDF and Microsoft Word documents. Use it for indexing both single-format and
mixed-format columns. This filter automatically bypasses plain text, HTML, XHTML,
SGML, and XML documents.

e AUTO_FILTER Attributes (page 2-20)
e AUTO_FILTER and Indexing Formatted Documents (page 2-20)

e AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns (page 2-21)

e AUTO_FILTER and Character Set Conversion With AUTO_FILTER (page 2-22)

See Also:

Oracle Text Supported Document Formats (page B-1), for a list of the
formats supported by AUTO_FILTER, and to learn more about how to set up
your environment

Oracle Text Indexing Elements 2-19

Filter Types

Note:

The AUTO_FILTER replaces the INSO_FILTER, which has been deprecated.
While every effort has been made to ensure maximal backward compatibility
between the two filters, so that applications using INSO_FILTER will
continue to work without modification, some differences may arise. Users
should therefore use AUTO_FILTER in their new programs and, when
possible, replace instances of INSO_FILTER, and any system preferences or
constants that make use of it, in older applications.

2.4.1.1 AUTO_FILTER Attributes
The AUTO_FILTER preference has the attributes shown in Table 2-9 (page 2-20).

Table 2-9 AUTO_FILTER Attributes
L

Attribute Attribute Value

timeout Specify the AUTO_FILTER timeout in seconds. Use a number
between 0 and 42,949,672. Default is 120. Setting this value to 0
disables the feature.

How this wait period is used depends on how you set
timeout_type.

This feature is disabled for rows for which the corresponding
charset and format column cause the AUTO_FILTER to bypass the
row, such as when format is marked TEXT.

Use this feature to prevent the Oracle Text indexing operation from
waiting indefinitely on a hanging filter operation.

timeout_type Specify either HEURISTIC or FIXED. Default is HEURISTIC.

Specify HEURISTIC for Oracle Text to check every TIMEOUT
seconds if output from Outside In HTML Export has increased. The
operation terminates for the document if output has not increased.
An error is recorded in the CTX_USER__INDEX_ERRORS view and
Oracle Text moves to the next document row to be indexed.

Specify FIXED to terminate the Outside In HTML Export
processing after TIMEOUT seconds regardless of whether filtering
was progressing normally or just hanging. This value is useful
when indexing throughput is more important than taking the time
to successfully filter large documents.

output_formatting Setting this attribute has no effect on filter performance or filter
output. It is maintained for backward compatibility.

2.4.1.2 AUTO_FILTER and Indexing Formatted Documents

To index a text column containing formatted documents such as Microsoft Word, use
the AUTO_FILTER. This filter automatically detects the document format. Use the
CTXSYS.AUTO_FILTER system-defined preference in the parameter clause as follows:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ("datastore ctxsys.file_datastore
filter ctxsys.auto_filter™);

2-20 Oracle Text Reference

Filter Types

Note:

The CTXSYS.AUTO_FILTER replaces CTXSYS. INSO_FILTER, which has
been deprecated. Programs making use of CTXSYS. INSO_FILTER should
still work. New programs should use CTXSYS.AUTO_FILTER.

2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns

A mixed-format column is a text column containing more than one document format,
such as a column that contains Microsoft Word, PDF, plain text, and HTML
documents.

The AUTO_FILTER can index mixed-format columns, automatically bypassing plain
text, HTML, and XML documents. However, if you prefer not to depend on the built-
in bypass mechanism, you can explicitly tag your rows as text and cause the
AUTO_FILTER to ignore the row and not process the document in any way.

The format column in the base table enables you to specify the type of document
contained in the text column. You can specify the following document types: TEXT,
BINARY, and I1GNORE. During indexing, the AUTO_FILTER ignores any document
typed TEXT, assuming the charset column is not specified. The difference between a
document with a TEXT format column type and one with an 1GNORE type is that the
TEXT document is indexed, but ignored by the filter, while the IGNORE document is
not indexed at all. Use IGNORE to overlook documents such as image files, or
documents in a language that you do not want to index. IGNORE can be used with any
filter type.

To set up the AUTO_FILTER bypass mechanism, you must create a format column in
your base table.

For example:

create table hdocs (
id number primary key,
fmt varchar2(10),
text varchar2(80)

);

Assuming you are indexing mostly Word documents, you specify BINARY in the
format column to filter the Word documents. Alternatively, to have the AUTO_FILTER
ignore an HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning
one format as BINARY and the other TEXT:

insert into hdocs values(l, "binary®, "/docs/myword.doc");
insert in hdocs values (2, "text", "/docs/index.html");
commit;

To create the index, use CREATE INDEX and specify the format column name in the
parameter string;:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ("datastore ctxsys.file_datastore
filter ctxsys.auto_filter
format column fmt");

If you do not specify TEXT or BINARY for the format column, BINARY is used.

Oracle Text Indexing Elements 2-21

Filter Types

Note:

You need not specify the format column in CREATE INDEX when using the
AUTO_FILTER.

2.4.1.4 AUTO FILTER and Character Set Conversion With AUTO_FILTER

The AUTO_FILTER converts documents to the database character set when the
document format column is set to TEXT. In this case, the AUTO_FILTER looks at the
charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is
passed through without any character set conversion.

Note:

You need not specify the charset column when using the AUTO_FILTER.

2.42 NULL_FILTER

Use the NULL_FILTER type when plain text or HTML is to be indexed and no filtering
needs to be performed. NULL_FILTER has no attributes.

NULL_FILTER and Indexing HTML Documents

If your document set is entirely HTML, Oracle recommends that you use the
NULL_FILTER in your filter preference.

For example, to index an HTML document set, specify the system-defined preferences
for NULL_FILTER and HTML_SECT ION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters(“filter ctxsys.null_filter
section group ctxsys.html_section_group®);

See Also:

For more information on section groups and indexing HTML documents, see
"Section Group Types (page 2-92)".

2.4.3 MAIL_FILTER

Use MAIL_FILTER to transform RFC-822, RFC-2045 messages into indexable text. The
following limitations apply to the input:

¢ Documents must be US-ASCII
* Lines must not be longer than 1024 bytes

¢ Documents must be syntactically valid with regard to RFC-822.

Behavior for invalid input is not defined. Some deviations may be robustly handled by
the filter without error. Others may result in a fetch-time or filter-time error.

e MAIL_FILTER Attributes (page 2-23)

2-22 Oracle Text Reference

Filter Types

e MAIL_FILTER Behavior (page 2-23)
e About the Mail Filter Configuration File (page 2-24)
* Mail _Filter Example (page 2-25)

2.4.3.1 MAIL_FILTER Attributes
The MAIL_FILTER has the attributes shown in Table 2-10 (page 2-23).

Table 2-10 MAIL_FILTER Attributes
. ___|

Attribute Attribute Value

INDEX_FIELDS Specify a colon-separated list of fields to preserve in the
output. These fields are transformed to tag markup. For
example, if INDEX_FIELDS is set to "FROM":

From: Scott Tiger

becomes:

<FROM>Scott Tiger</FROM>

Only top-level fields are transformed in this way.

AUTO_FILTER_TIMEOUT Specify a timeout value for the AUTO_FILTER filtering
invoked by the mail filter. Default is 60. (Replaces the
INSO_TIMEOUT attribute and is backward compatible with
INSO_TIMEOUT.)

AUTO_FILTER_OUTPUT_FORMATTING Specify either TRUE or FALSE. Default is TRUE.

This attribute replaces the previous
INSO_OUTPUT_FORMATTING attribute. However, it has no
effect in the current release.

PART_FIELD_STYLE Specify how fields occurring in lower-level parts and
identified by the INDEX_FIELDS attribute should be
transformed. The fields of the top-level message part
identified by INDEX_FIELDS are always transformed to tag
markup (see the previous description of INDEX_FIELDS);
PART_FIELD_STYLE controls the transformation of
subsequent parts; for example, attached e-mails.

Possible values include IGNORE (the default), in which the
part fields are not included for indexing; TAG, in which the
part field names are transformed to tags, as occurs with top-
level part fields; FIELD, in which the part field names are
preserved as fields, not as tags; and TEXT, in which the part
field names are eliminated and only the field content is
preserved for indexing. See "Mail_Filter Example

(page 2-25)" for an example of how PART_FIELD_STYLE
works.

2.4.3.2 MAIL_FILTER Behavior

This filter behaves in the following way for each document:
* Read and remove header fields

* Decode message body if needed, depending on Content-transfer-encoding field

Oracle Text Indexing Elements 2-23

Filter Types

e Take action depending on the Content-Type field value and the user-specified
behavior specified in a mail filter configuration file. (See "About the Mail Filter
Configuration File (page 2-24)".) The possible actions are:

- produce the body in the output text (INCLUDE). If no character set is
encountered in the INCLUDE parts in the Content-Type header field, then
Oracle defaults to the value specified in the character set column in the base
table. Name your populated character set column in the parameter string of
the CREATE INDEX command.

— AUTO_FILTER the body contents (AUTO_FILTER directive).
- remove the body contents from the output text (IGNORE)

e If no behavior is specified for the type in the configuration file, then the defaults
are as follows:

— text/*: produce body in the output text
— application/*: AUTO_FILTER the body contents
- image/* audio/*, video/*, model/*: ignore

e Multipart messages are parsed, and the mail filter applied recursively to each
part. Each part is appended to the output.

e All text produced will be charset-converted to the database character set, if
needed.

2.4.3.3 About the Mail Filter Configuration File

The MAIL_FILTER filter makes use of a mail filter configuration file, which contains
directives specifying how a mail document should be filtered. The mail filter
configuration file is a editable text file. Here you can override default behavior for
each Content-Type. The configuration file also contains IANA-to-Oracle Globalization
Support character set name mappings.

The location of the file must be in ORACLE_HOME/ctx/config. The name of the file to
use is stored in the new system parameter MAIL_FILTER_CONFIG_FILE. On install,
this is set to drmailfl.txt, which has useful default contents.

Oracle recommends that you create your own mail filter configuration files to avoid
overwrite by the installation of a new version or patch set. The mail filter
configuration file should be in the database character set.

Mail File Configuration File Structure

The file has two sections, BEHAVIOR and CHARSETS. Indicate the start of the behavior
section as follows:

[behavior]

Each line following starts with a mime type, then whitespace, then behavior
specification. The MIME type can be a full TYPE/SUBTYPE or just TYPE, which will
apply to all subtypes of that type. TYPE/SUBTYPE specification overrides TYPE
specification, which overrides default behavior. Behavior can be INCLUDE,
AUTO_FILTER, or IGNORE (see "MAIL_FILTER Behavior (page 2-23)" for definitions).
For instance:

2-24 Oracle Text Reference

Filter Types

application/zip IGNORE
application/msword AUTO_FILTER
model IGNORE

You cannot specify behavior for "multipart" or "message" types. If you do, such lines
are ignored. Duplicate specification for a type replaces earlier specifications.

Comments can be included in the mail configuration file by starting lines with the #
symbol.

The charset mapping section begins with

[charsets]

Lines consist of an JANA name, then whitespace, then an Oracle Globalization
Support charset name, like:

US-ASCIHI US7ASCI
1S0-8859-1 WE81S08859P1

This file is the only way the mail filter gets the mappings. There are no defaults.

When you change the configuration file, the changes affect only the documents
indexed after that point. You must flush the shared pool after changing the file.

2.4.3.4 Mail_Filter Example

Suppose there is an e-mail with the following form, in which other e-mails with
different subject lines are attached to this e-mail:

To: somebody@someplace
Subject: mainheader
Content-Type: multipart/mixed

Content-Type: text/plain
X-Ref: some_value
Subject: subheader 1

Content-Type: text/plain
X-Control: blah blah blah
Subject: subheader 2

Set INDEX_FIELDS to be "Subject" and, initially, PART_FIELD_STYLE to 1GNORE.

CTX_DDL.CREATE_PREFERENCE(*my_mail_filt®, "mail_filter");
CTX_DDL_SET_ATTRIBUTE(my_mail_filt®, "INDEX_FILES®, "subject’);
CTX_DDL.SET ATTRIBUTE ("my_mail filt®, "PART _FIELD STYLE", "ignore");

Now when the index is created, the file will be indexed as follows:

<SUBJECT>mainheader</SUBJECT>

If PART_FIELD_STYLE is instead set to TAG, this becomes:

<SUBJECT>mainheader</SUBJECT>
<SUBJECT>subheader1</SUBJECT>
<SUBJECT>subheader2</SUBJECT>

If PART_FIELD_STYLE is set to FIELD instead, this is the result:

Oracle Text Indexing Elements 2-25

Filter Types

<SUBJECT>mainheader<SUBJECT>
SUBJECT :subheaderl
SUBJECT : subheader2

Finally, if PART_FIELD_STYLE is instead set to TEXT, then the result is:

<SUBJECT>mainheader</SUBJECT>
subheaderl
subheader2

2.4.4 USER_FILTER

Use the USER_FILTER type to specify an external filter for filtering documents in a
column.

This section contains the following topics.
e USER_FILTER Attributes (page 2-26)
e Using USER_FILTER with Charset and Format Columns (page 2-27)

e USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns (page 2-27)

¢ Character Set Conversion with USER_FILTER (page 2-28)

e User Filter Example (page 2-28)

2.4.41 USER_FILTER Attributes
USER_FILTER has the following attribute:

Table 2-11 USER_FILTER Attribute

Attribute Attribute Value
command Specify the name of the filter executable.
WARNING:

The USER_FILTER type introduces the potential for security threats. A
database user granted the CTXAPP role could potentially use USER_FILTER
to load a malicious application. Therefore, the DBA must safeguard against
any combination of input and output file parameters that would enable the
named filter executable to compromise system security.

command

Specify the executable for the single external filter that is used to filter all text stored
in a column. If more than one document format is stored in the column, then the
external filter specified for command must recognize and handle all such formats.

The executable that you specify must exist in the $ORACLE_HOME/ctx/bin directory
on UNIX, and in the %ORACLE_HOME%/ctx/bin directory on Windows.

You must create your user-filter command with two parameters:

¢ The first parameter is the name of the input file to be read.

2-26 Oracle Text Reference

Filter Types

¢ The second parameter is the name of the output file to be written to.

If all the document formats are supported by AUTO_FILTER, then use AUTO_FILTER
instead of USER_FILTER, unless additional tasks besides filtering are required for the
documents.

2.4.4.2 Using USER_FILTER with Charset and Format Columns

USER_FILTER bypasses documents that do not need to be filtered. Its behavior is
sensitive to the values of the format and charset columns. In addition, USER_FILTER
performs character set conversion according to the charset column values.

2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns

A mixed-format column is a text column containing more than one document format,
such as a column that contains Microsoft Word, PDF, plain text, and HTML
documents.

The USER_FILTER executable can index mixed-format columns, automatically
bypassing textual documents. However, if you prefer not to depend on the built-in
bypass mechanism, you can explicitly tag your rows as text and cause the
USER_FILTER executable to ignore the row and not process the document in any way.

The format column in the base table enables you to specify the type of document
contained in the text column. You can specify the following document types: TEXT,
BINARY, and IGNORE. During indexing, the USER_FILTER executable ignores any
document typed TEXT, assuming the charset column is not specified. (The difference
between a document with a TEXT format column type and one with an IGNORE type is
that the TEXT document is indexed, but ignored by the filter, while the IGNORE
document is not indexed at all. Use IGNORE to overlook documents such as image
files, or documents in a language that you do not want to index. IGNORE can be used
with any filter type.

To set up the USER_FILTER bypass mechanism, you must create a format column in
your base table. For example:

create table hdocs (
id number primary key,
fmt varchar2(10),
text varchar2(80)

);

Assuming you are indexing mostly Word documents, you specify BINARY in the
format column to filter the Word documents. Alternatively, to have the USER_FILTER
executable ignore an HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning
one format as BINARY and the other TEXT:

insert into hdocs values(l, "binary®, "/docs/myword.doc");
insert into hdocs values(2, "text", "/docs/index.html*);
commit;

Assuming that this file is named upcase . pl, create the filter preference as follows:

ctx_ddl.create_preference

(

preference_name => "USER_FILTER_PREF",
object_name => "USER_FILTER"

);

Oracle Text Indexing Elements 2-27

Filter Types

ctx_ddl.set_attribute ("USER_FILTER PREF*, "COMMAND®, “upcase.pl®);

To create the index, use CREATE INDEX and specify the format column name in the
parameter string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ("datastore ctxsys.file_datastore
filter "USER_FILTER_PREF"
format column fmt");

If you do not specify TEXT or BINARY for the format column, BINARY is used.

2.4.4.4 Character Set Conversion with USER_FILTER

The USER_FILTER executable converts documents to the database character set when
the document format column is set to TEXT. In this case, the USER_FILTER executable
looks at the charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is
passed through without any character set conversion.

2.4.4.5 User Filter Example

The following example shows a Perl script to be used as the user filter. This script
converts the input text file specified in the first argument to uppercase and writes the
output to the location specified in the second argument.

#1/usr/local/bin/perl

open(IN, $ARGV[O]);
open(OUT, ">".$ARGV[1]);

while (<IN>)

tr/a-z/A-2/;
print OUT;
}

close (IN);
close (OUT);

Assuming that this file is named upcase . pl, create the filter preference as follows:

begin
ctx_ddl.create_preference
(
preference_name => "USER_FILTER_PREF",
object_name => "USER_FILTER"
);
ctx_ddl.set_attribute
("USER_FILTER_PREF", "COMMAND" , "upcase.pl®);
end;

Create the index in SQL*Plus as follows:

create index user_filter_idx on user_filter (docs)
indextype is ctxsys.context
parameters ("FILTER USER_FILTER_PREF");

2-28 Oracle Text Reference

Filter Types

2.4.5 PROCEDURE_FILTER

Use the PROCEDURE_FILTER type to filter your documents with a stored procedure.
The stored procedure is called each time a document needs to be filtered.

This section contains the following topics.

e PROCEDURE_FILTER Attributes (page 2-29)

PROCEDURE_FILTER Parameter Order (page 2-31)

PROCEDURE_FILTER Execute Requirements (page 2-31)

PROCEDURE_FILTER Error Handling (page 2-31)

PROCEDURE_FILTER Preference Example (page 2-31)

2.4.5.1 PROCEDURE_FILTER Attributes
Table 2-12 (page 2-29) lists the attributes for PROCEDURE_FILTER.

Table 2-12 PROCEDURE_FILTER Attributes
I EEEEEEEEEE——

Attribute Purpose Allowable Values

procedure Name of the filter Any procedure. The procedure can be a
stored procedure. PL/SQL stored procedure.

input_type Type of input VARCHAR2, BLOB, CLOB, FILE
argument for stored
procedure.

output_type Type of output VARCHAR2, CLOB, FILE
argument for stored
procedure.

rowid_parameter Include rowid TRUE/FALSE
parameter?

format_parameter Include format TRUE/FALSE
parameter?

charset_parameter Include charset TRUE/FALSE
parameter?

procedure

Specify the name of the stored procedure to use for filtering. The procedure can be a
PL/SQL stored procedure. The procedure can be a safe callout, or call a safe callout.

With the rowid_parameter, format_parameter, and charset_parameter set
to FALSE, the procedure can have one of the following signatures:

PROCEDURE(IN BLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN CLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN VARCHAR, IN OUT NOCOPY CLOB)
PROCEDURE(IN BLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN CLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN VARCHAR2, IN OUT NOCOPY VARCHAR2)

Oracle Text Indexing Elements 2-29

Filter Types

PROCEDURE(IN BLOB, IN VARCHAR2)
PROCEDURE(IN CLOB, IN VARCHAR2)
PROCEDURE(IN VARCHAR2, IN VARCHAR2)

The first argument is the content of the unfiltered row, output by the datastore. The
second argument is for the procedure to pass back the filtered document text.

The procedure attribute is mandatory and has no default.

input_type
Specify the type of the input argument of the filter procedure. You can specify one of
the following types:
Type Description
procedure Name of the filter stored procedure.
input_type Type of input argument for stored procedure.
output_type Type of output argument for stored procedure.

rowid_parameter Include rowid parameter?

The Input_type attribute is not mandatory. If not specified, then BLOB is the

default.
output_type
Specify the type of output argument of the filter procedure. You can specify one of the
following types:
Type Description
CLOB The output argument is IN OUT NOCOPY CLOB. Your
procedure must write the filtered content to the CLOB
passed in.
VARCHAR2 The output argument is IN OUT NOCOPY VARCHARZ2.

Your procedure must write the filtered content to the
VARCHAR2 variable passed in.

FILE The output argument must be IN VARCHAR2. On
entering the filter procedure, the output argument is the
name of a temporary file. The filter procedure must write
the filtered contents to this named file.

Using a FILE output type is useful only when the
procedure is a safe callout, which can write to the file.

The output_type attribute is not mandatory. If not specified, then CLOB is the
default.

rowid_ parameter
When you specify TRUE, the rowid of the document to be filtered is passed as the
first parameter, before the input and output parameters.

For example, with INPUT_TYPE BLOB, OUTPUT_TYPE CLOB, and
ROWID_PARAMETER TRUE, the filter procedure must have the signature as follows:

procedure(in rowid, in blob, in out nocopy clob)

This attribute is useful for when your procedure requires data from other columns or
tables. This attribute is not mandatory. The default is FALSE.

2-30 Oracle Text Reference

Filter Types

format_parameter

When you specify TRUE, the value of the format column of the document being
filtered is passed to the filter procedure before input and output parameters, but after
the rowid parameter, if enabled.

Specify the name of the format column at index time in the parameters string, using
the keyword "format column <columnname>*®. The parameter type must be IN
VARCHAR2.

The format column value can be read by means of the rowid parameter, but this
attribute enables a single filter to work on multiple table structures, because the
format attribute is abstracted and does not require the knowledge of the name of the
table or format column.

FORMAT_PARAMETERIis not mandatory. The default is FALSE.
charset_parameter
When you specify TRUE, the value of the charset column of the document being

filtered is passed to the filter procedure before input and output parameters, but after
the rowid and format parameter, if enabled.

Specify the name of the charset column at index time in the parameters string, using
the keyword "charset column <columnname>". The parameter type must be IN
VARCHAR2.

The CHARSET_PARAMETER attribute is not mandatory. The default is FALSE.

2.4.5.2 PROCEDURE_FILTER Parameter Order

ROWID_PARAMETER, FORMAT_PARAMETER, and CHARSET_PARAMETER are all
independent. The order is rowid, the format, then charset. However, the filter
procedure is passed only the minimum parameters required.

For example, assume that INPUT_TYPE is BLOB and OUTPUT_TYPE is CLOB. If your
filter procedure requires all parameters, then the procedure signature must be:

(id IN ROWID, format IN VARCHAR2, charset IN VARCHAR2, input IN BLOB, output IN
OUT NOCOPY CLOB)

If your procedure requires only the ROWID, then the procedure signature must be:

(id IN ROWID, input IN BLOB, output IN OUT NOCOPY CLOB)

2.4.5.3 PROCEDURE_FILTER Execute Requirements

To create an index using a PROCEDURE_FILTER preference, the index owner must
have execute permission on the procedure.

2.4.5.4 PROCEDURE_FILTER Error Handling

The filter procedure can raise any errors needed through the normal PL/SQL
raise_application_error facility. These errors are propagated to the
CTX_USER_INDEX_ERRORS (page G-18) view or reported to the user, depending on
how the filter is invoked.

2.4.5.5 PROCEDURE_FILTER Preference Example

Consider a filter procedure CTXSYS_NORMAL I ZE that you define with the following
signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

Oracle Text Indexing Elements 2-31

Lexer Types

To use this procedure as your filter, set up your filter preference as follows:

begin

ctx_ddl.create_preference("myfilt", "procedure_filter");
ctx_ddl.set_attribute("myfilt", "procedure®, "normalize");
ctx_ddl.set_attribute("myfilt", "input_type", "clob");
ctx_ddl.set_attribute("myfilt", "output_type", "varchar2®);
ctx_ddl.set_attribute("myfilt", "rowid_parameter®, "TRUE");
ctx_ddl.set_attribute("myfilt", "charset_parameter®, "TRUE");

end;

2.5 Lexer Types

Use the lexer preference to specify the language of the text to be indexed. To create a
lexer preference, you must use one of the lexer types described in Table 2-13

(page 2-32).

Table 2-13 Lexer Types

Type

Description

AUTO_LEXER (page 2-33)

BASIC_LEXER (page 2-41)

MULTI_LEXER (page 2-49)

CHINESE_VGRAM_LEXER (page 2-52)

CHINESE_LEXER (page 2-52)

JAPANESE_VGRAM_LEXER
(page 2-53)

JAPANESE_LEXER (page 2-55)

KOREAN_MORPH_LEXER (page 2-56)
USER_LEXER (page 2-59)

WORLD_LEXER (page 2-72)

Lexer for indexing columns that contain documents of different
languages.

Lexer for extracting tokens from text in languages, such as English
and most western European languages that use white space
delimited words.

Lexer for indexing tables containing documents of different
languages such as English, German, and Japanese.

Lexer for extracting tokens from Chinese text.

Lexer for extracting tokens from Chinese text. This lexer offers
benefits over the CHINESE_VGRAM lexer:

¢ Generates a smaller index

o Better query response time

* Generates real world tokens resulting in better query precision
* Supports stop words

Lexer for extracting tokens from Japanese text.

Lexer for extracting tokens from Japanese text. This lexer offers the
following advantages over the JAPANESE_VGRAM lexer:

* Generates smaller index
® Better query response time
* Generates real world tokens resulting in better precision

Lexer for extracting tokens from Korean text.
Lexer you create to index a particular language.

Lexer for indexing tables containing documents of different
languages; autodetects languages in a document.

2-32 Oracle Text Reference

Lexer Types

2.5.1 AUTO_LEXER

Use the AUTO_LEXER type to index columns that contain documents of different
languages. It performs language identification, word segmentation, document
analysis, and stemming. The AUTO_LEXER also enables customization of these
components. Although parts-of-speech information that is generated by the
AUTO_LEXER is not exposed for your use, AUTO_LEXER uses it for context-sensitive or
tagged stemming.

This section contains the following topics.

e AUTO_LEXER Language Support (page 2-33)

e AUTO_LEXER Attributes Inherited from BASIC_LEXER (page 2-34)
e AUTO_LEXER Language-Independent Attributes (page 2-34)

¢ AUTO_LEXER Language-Dependent Attributes (page 2-37)

e AUTO_LEXER Dictionary Attribute (page 2-40)

2.5.1.1 AUTO_LEXER Language Support

At index time, AUTO_LEXER automatically detects the language of the document, and
tokenizes and stems the document appropriately. To specify an AUTO_LEXER
dictionary, use the name of the dictionary you created instead of the filename for the
dictionary.

At query time, the language of the query is inherited from the query template. If the
query template is not used, or if no language is specified in the query template, then
the language of the query is inherited from the session language. Table 2-14

(page 2-33) lists the supported languages.

Note:

Note that dictionary data will not be processed until index/policy creation
time or ALTER INDEX time. Errors in dictionary data format will be caught at
index/policy creation time or ALTER INDEX time and reported as:
DRG-13710: Syntax Error in Dictionary.

Table 2-14 Languages Supported for AUTO_LEXER

Language Language
ARABIC NYNORSK
BOKMAL PERSIAN
CROATIAN SERBIAN
DANISH SLOVAK
FINNISH SLOVENIAN
HEBREW THAI
CATALAN KOREAN

Oracle Text Indexing Elements 2-33

Lexer Types

Table 2-14 (Cont.) Languages Supported for AUTO_LEXER

Language Language
CZECH POLISH
DUTCH PORTUGUESE
ENGLISH ROMANIAN
FRENCH RUSSIAN
GERMAN SIMPLIFIED CHINESE (See Note)
GREEK SPANISH
HUNGARIAN SWEDISH
ITALIAN TRADITIONAL CHINESE (See Note)
JAPANESE TURKISH
Note:

Due to the limitation of 30 characters for the string, Traditional Chinese must
be specified as trad_chinese. Simplified Chinese must be specified as
simp_chinese.

2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER

The following attributes are used in the same way and have the same effect on the
AUTO_LEXER as their corresponding attributes in BASIC_LEXER:

printjoins

skipjoins

base letter

base_ letter_type
override_base letter
mixed_case

alternate_spelling

See Also:

"BASIC_LEXER (page 2-41)" and Table 2-19 (page 2-41)

2.5.1.3 AUTO_LEXER Language-Independent Attributes

Table 2-15 (page 2-35) lists the language-independent attributes available in the
AUTO_LEXER.

2-34 Oracle Text Reference

Lexer Types

Table 2-15 AUTO_LEXER Language-Independent Attributes
- - - |

Attribute Attribute Value Description
language <characters> (space- Specifies the possible languages of the input
delimited string) documents.

If no language is specified, then AUTO_LEXER
performs auto detection.

If one language is specified, then the language is set
manually and AUTO_LEXER does not perform auto
detection.

If more than one language is specified, then
AUTO_LEXER performs auto detection but limits the
detected language to be among the language set.

Note: The automatic detection of language is
statistically based and, thus, inherently imperfect.

deriv_stems NO (disabled) Specifies whether the derivational stemming should be
used or not. Currently, derivational stemming is only
available for English. Hence, the DER1V_STEMS has no
effect in other languages.

Also, when derivational stemming is performed,
tagging and tag stemming is not used. As a result, the
tagging and tagged stemming client dictionary has no
effect on the stemming result.

deriv_stems YES (default) Specifies whether the derivational stemming should be
used or not. Currently, derivational stemming is only
available for English. Hence, the DER1V_STEMS has no
effect in other languages.

Also, when derivational stemming is performed,
tagging and tag stemming is not used. As a result, the
tagging and tagged stemming client dictionary has no
effect on the stemming result.

german_decompound NO (disabled) Specifies whether German de-compounding should be
performed in the stemmer or not.

german_decompound YES (default, enabled for ~ Specifies whether German de-compounding should be
German only) performed in the stemmer or not.

Oracle Text Indexing Elements 2-35

Lexer Types

Table 2-15 (Cont.) AUTO_LEXER Language-Independent Attributes
. __|

Attribute Attribute Value Description

index_stems NO (disabled) Specifies whether an index stemmer should be used.

If specified as YES, then the stemmer that corresponds
to the document language will be used and the
stemmer will always be configured to maximize
document recall. Note that this means that the
stemmer attribute of BASI1C_WORDLIST will be
ignored, and the stemmer used by the AUTO_LEXER
will be used during query to determine the stem of the
given query term.

If specified as NO, then queries with stem operators
will use the word list stemming to try to stem the
tokens. If word list stemming is not available, then the
stem operator will be ignored.

For documents in Swedish and Dutch, if the
index_stems is set to YES, then compound word
stemming will automatically be performed, and
compounds are always separated into their component
stems.

index_stems YES (default) Specifies whether an index stemmer should be used.

If specified as YES, then the stemmer that corresponds
to the document language will be used and the
stemmer will always be configured to maximize
document recall. Note that this means that the
stemmer attribute of BASIC_WORDLIST will be
ignored, and the stemmer used by the AUTO_LEXER
will be used during query to determine the stem of the
given query term.

If specified as NO, then queries with stem operators
will use the word list stemming to try to stem the
tokens. If word list stemming is not available, then the
stem operator will be ignored.

For documents in Swedish and Dutch, if the
index_stems is set to YES, then compound word
stemming will automatically be performed, and
compounds are always separated into their component
stems.

base_letter NO (disabled) Specify whether characters that have diacritical marks
(umlauts, cedillas, acute accents, and so on) are
converted to their base form before being stored in the
Text index.

base_letter YES (enabled) Specify whether characters that have diacritical marks
(umlauts, cedillas, acute accents, and so on) are
converted to their base form before being stored in the
Text index.

base_letter_type GENERIC (default) The GENERIC value is the default and means that base
letter transformation uses one transformation table that
applies to all languages.

2-36 Oracle Text Reference

Lexer Types

Table 2-15 (Cont.) AUTO_LEXER Language-Independent Attributes
. __|

Attribute

Attribute Value

Description

base_letter_type

SPECIFIC

override_base_ letter TRUE

mixed_case

mixed_case

alternate_spelling

alternate_spelling

alternate_spelling

printjoins

FALSE (default)

NO (disabled)

YES (enabled)

GERMAN (German
alternate spelling)

SWEDISH (Swedish
alternate spelling)

NONE (No alternate
spelling, default)

characters

characters

The GENERIC value is the default and means that base
letter transformation uses one transformation table that
applies to all languages.

When base_letter is enabled at the same time as
alternate_spelling, it is sometimes necessary to
override base_letter to prevent unexpected results
from serial transformations.

Specify whether the lexer leaves the tokens exactly as
they appear in the text or converts the tokens to all
uppercase. The default is NO (tokens are converted to
all uppercase).

Specify whether the lexer leaves the tokens exactly as
they appear in the text or converts the tokens to all
uppercase.

Specifies whether German alternate spelling should be
used or not.

Specifies whether Swedish alternate spelling should be
used or not.

The default is NONE. No alternate spelling is
specified.

Specify the non alphanumeric characters that, when
they appear anywhere in a word (beginning, middle,
or end), are processed as alphanumeric and included
with the token in the Text index. This includes
printjoins that occur consecutively. See Basic Lexer
"printjoins (page 2-44)".

Specify the non-alphanumeric characters that, when
they appear within a word, identify the word as a
single token; however, the characters are not stored
with the token in the Text index. See Basic Lexer
"skipjoins (page 2-45)".

2.5.1.4 AUTO_LEXER Language-Dependent Attributes

AUTO_LEXER provides language-dependent attributes for the languages specified in
Table 2-14 (page 2-33).

Table 2-16 (page 2-38) lists the language-dependent attributes available in the
AUTO_LEXER. The <language> variable in the attribute name refers to any of the
supported language names that are listed in Table 2-14 (page 2-33).

Oracle Text Indexing Elements 2-37

Lexer Types

Note:

Attribute names must not exceed 30 characters. Therefore, where the
<language> variable is specified, the language name may need to be
abbreviated in certain instances. For example, traditional_chinese
should be abbreviated to trad_chinese and simplified_chinese should
be abbreviated to simp_chinese.

Table 2-16 AUTO_LEXER Language-Dependent Attributes
- - - |

Attribute Attribute Value Description
<language>_prefix_m characters (space-delimited Specifies the list of inflectional prefixes that, when
orphemes string) enclosed by parentheses, are kept together with the

base word. For example, (re) analyze.

<language>_suffix_m characters (space-delimited Specifies the list of inflectional suffixes that, when
orphemes string) enclosed by parentheses are kept together with the base
word. For example, file(s).

<language>_punctuat characters (space-delimited Specifies punctuation that breaks sentences.
ions string)

<language>_non_sent characters (space-delimited Specifies abbreviations that do not end sentences.
_end_abbr string)

Table 2-17 Default Values for AUTO_LEXER Language-Dependent Attributes
- - - - - -]

Attribute Language Default Value
<language>_prefix_morphemes All languages None
<language>_suffix_morphemes English seser
<language>_suffix_morphemes Spanish banses
<language>_suffix_morphemes Portuguese s es
<language>_suffix_morphemes German in innen
<language>_suffix_morphemes French nee
<language>_suffix_morphemes All other languages None
<language>_punctuations English .21
<language>_punctuations Catalan, Czech, Dutch, L2l

Greek, Hungarian, Polish,
Romanian, Russian, Turkish

<language>_punctuations French, German, Italian, .2l
Korean, Portuguese,
Spanish, Swedish
<language>_punctuations Japanese
P, 7

2-38 Oracle Text Reference

Lexer Types

Table 2-17 (Cont.) Default Values for AUTO_LEXER Language-Dependent Attributes
. ___|

Attribute

Language

Default Value

<language>_punctuations

<language>_punctuations

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr
<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

<language>_non_sent_end_abbr

Simplified Chinese

Abbreviate to: simp_chinese

Traditional Chinese

Abbreviate to: trad_chinese

Polish, Romanian, Russian,
Turkish

Catalan
Czech, Greek, Hungarian

Dutch

English, Japanese, Simplified
Chinese (abbreviate to
simp_chinese), Traditional
Chinese (abbreviate to
trad_chinese)

French

German

Italian

Korean

Portuguese

Spanish

Swedish

P oI 2 A I

Losnee 21,

L] o

e.g.ie. viz.aka.

R.D. pp.
e.g.ie. viz.aka.

f.eks. f. eks. inkl. sr. skuesp. sekr. prof.
mus. Irs. logr. kgl. insp. hr. hrs. gdr. frk. fr.
forst. forf. fm. fmd. esq. d.ee d.ce. d.y. dr.
dir. dept.chef civiling. bibl. ass. admn. adj.
Skt. HK.H.

e.g.ie.viz. ak.a. Adm. Br. Capt. Cdr.
Cmdr. Col. Comdr. Comdt. Dr. Drs. Fr.
Gen. Gov. Hon. Ins. Lieut. Lt. Maj. Messrs.
Mdm. Mlle. Mlles. Mme. Mmes. Mr. Mrs.
Ms. Pres. Prof. Profs. Pvt. Rep. Rev. Revd.
Secy. Sen. Sgt. Sra. Srta. St. Ste.

c.-a-d. cf. e.g. ex. i.e. Pr. Prof. M. Mr. Mrs.
Mme Mmes Mlle Mlles Mgr. MM. Lieut.
Gén. Dr. Col.

ca. bzw. e.g. i.e. inkl. Fr. Frl. Mme. Mile.
Mag. Stud. Tel. Hr. Hrn. apl.Prof. Prof.

e.g.ie. pag. pagg. tel. T.V.N.H. N.D.
comm. col. cav. cap. geom. gen. ing. jr. mr.
mons. mar. magg. prof. prof.ssa prof.sse
proff. pres. perito ind. p. p.i. sr. s.ten.
sottoten. sig. serg. sen. segr. sac. ten. uff.
vicepres. vesc. 5.5. S.E. avv. app. amm.
arch. on. dir. dott. dott.ssa dr. rag.

e.g.ie. ak.a. Dr. Mr. Mrs. Ms. Prof.

cf. Cf. e.g. E.g.i.6. L.é. p.ex. P.ex. pag. pag.
Pag. Pag. tel. telef. Tel. Telef. sr. srs. sra.
mr. eng. dr. dra. Dr. Dra. V.Ex. V.Exa. S.
N. S. Mrs. Eng. Ex. Exa.

e.g.i.e. €. p.gj. pag. pags. tel. tino. Fr. Ldo.
Lda. Lic. Pbro. D. Diia. Dr. Dres. Dra.
Dras. Dn. Mons. Rvdo. Sto. Sta. Sr. Srs.
Srta. Srtas. Sres. Sra. Sras. Excmo. Excma.
Ilmo. Ilma. Sto. Sta.

inkl. prof. hrr. hr. Hrr. Hr. dr. Dr.

Oracle Text Indexing Elements 2-39

Lexer Types

Examples for AUTO_LEXER Language-Dependent Attributes

Example 2-1 ctx_ddl.create_preference to associate a dictionary with an index

exec CTX_DDL.CREATE_PREFERENCE("A_LEX", “AUTO_LEXER");

exec CTX_ANL. ADD_DICTIONARY("MY_ENGLISH", "ENGLISH", lobloc);

select * from CTX_USR_ANL_DICTS;

exec CTX_DDL.SET_ATTRIBUTE("A_LEX", "english_dictionary®, "MY_ENGLISH"

);
Example 2-2 <language>_prefix_morphemes

ctx_ddl.set_attribute(
"a_lex", "english_prefix_morphemes®,

re”

);
Example 2-3 <language>_suffix_morphemes

ctx_ddl.set_attribute(
"a_lex", "english_suffix_morphemes®,

S es

);
Example 2-4 <language>_punctuations

ctx_ddl.set_attribute(
"a_lex", "english_punctuations®, ". ? I*

);
Example 2-5 <language>_non_sentence_ending_abbrev

ctx_ddl.set_attribute(
"a_lex", "english_non_sentence_ending_abbrev®, "e.g. a.k.a. Dr."

);
2.5.1.5 AUTO_LEXER Dictionary Attribute

The dictionary attribute is language-specific and is used to set the name of the
language dictionary. The <language>_dictionary attribute specifies one language
dictionary for the supported languages as listed in Table 2-18 (page 2-40).

The <language>_dictionary attribute has the following behavior:

* The <language> value of the attribute specifies only the dictionary name, not the
location. For example, dutch_dictionary specifies that the Dutch dictionary is
to be used.

e The set_attribute method does not load the dictionary; it only records the
dictionary name. Therefore, the dictionary must be at the specified location when
the dictionary is needed. Otherwise, an error will be raised.

Table 2-18 Supported Languages for AUTO_LEXER Dictionary Attribute

Language Attribute Language Attribute
Catalan Korean

Czech Polish

Dutch Portuguese

English Romanian

2-40 Oracle Text Reference

Lexer Types

Table 2-18 (Cont.) Supported Languages for AUTO_LEXER Dictionary Attribute

Language Attribute Language Attribute
French Russian

German Simplified Chinese
Greek Spanish

Hungarian Swedish

Italian Traditional Chinese
Japanese Turkish

2.5.2 BASIC_LEXER

Use the BASIC_LEXER type to identify tokens for creating Text indexes for English
and all other supported whitespace-delimited languages.

The BASIC_LEXER also enables base-letter conversion, composite word indexing,
case-sensitive indexing and alternate spelling for whitespace-delimited languages that
have extended character sets.

In English and French, you can use the BASIC_LEXER to enable theme indexing.

Note:

Any processing that the lexer does to tokens before indexing (for example,
removal of characters, and base-letter conversion) are also performed on
query terms at query time. This ensures that the query terms match the form
of the tokens in the Text index.

BASIC_LEXER supports any database character set.

This section contains the following topics.

e BASIC_LEXER Attributes (page 2-41)

¢ Stemming User-Dictionaries (page 2-47)
e BASIC_LEXER Example (page 2-49)

2.5.2.1 BASIC_LEXER Attributes
BASIC_LEXER has the attributes shown in Table 2-19 (page 2-41).

Table 2-19 BASIC_LEXER Attributes

Attribute Attribute Value
continuation characters
numgroup characters
numjoin characters

Oracle Text Indexing Elements 2-41

Lexer Types

Table 2-19 (Cont.) BASIC_LEXER Attributes
. __

Attribute Attribute Value

printjoins characters

punctuations characters

skipjoins characters

startjoins non alphanumeric characters that occur at the beginning of a token
(string)

endjoins non alphanumeric characters that occur at the end of a token (string)

whitespace characters (string)

newline NEWLINE (\n)

base_ letter

base_letter

base_letter_type
base_letter_type

override_base_letter

mixed_case
mixed_case
composite
composite

composite

2-42 Oracle Text Reference

CARRIAGE_RETURN (\r)
NO (disabled)

YES (enabled)

GENERIC (default)
SPECIFIC

TRUE
FALSE (default)

NO (disabled)

YES (enabled)

DEFAULT (no composite word indexing, default)
GERMAN (German composite word indexing)

DUTCH (Dutch composite word indexing)

Lexer Types

Table 2-19 (Cont.) BASIC_LEXER Attributes
. __|

Attribute

Attribute Value

index_stems

Use the numeric value in a
string or the string value.

index_themes
index_themes
index_text
index_text
prove_themes
prove_themes
theme_language

theme_language

NONE

ENGLISH
DERIVATIONAL

DUTCH

FRENCH

GERMAN

ITALIAN

SPANISH

CATALAN

CZECH

GREEK

HUNGARIAN

POLISH

PORTUGUESE
ROMANIAN

RUSSIAN

SWEDISH (see Note)
DERIVATIONAL_NEW (see Note)
DUTCH_NEW (see Note)
ENGLISH_NEW (see Note)
FRENCH_NEW (see Note)
GERMAN_NEW (see Note)
ITALIAN_NEW (see Note)
SPANISH_NEW (see Note)
TURKISH

Note: De-compounding word stemming is automatically
performed when index_stems is set to SWEDISH, or

DUTCH_NEW values.

Note: Seven of the index_stem attributes that are new for this
release have a "_NEW" suffix to enable you to utilize the new
stemmer attributes while maintaining backward compatibility

with previous releases of Oracle Text.

YES (enabled)
NO (disabled, default)
YES (enabled, default)
NO (disabled)
YES (enabled, default)
NO (disabled)

AUTO (default)

(any Globalization Support language)

Oracle Text Indexing Elements 2-43

Lexer Types

Table 2-19 (Cont.) BASIC_LEXER Attributes
. __|

Attribute Attribute Value

alternate_spelling GERMAN (German alternate spelling)
alternate_spelling DANISH (Danish alternate spelling)

alternate_spelling SWEDISH (Swedish alternate spelling)
alternate_spelling NONE (No alternate spelling, default)

new_german_spelling YES
NO (default)

continuation

Specify the characters that indicate a word continues on the next line and should be

indexed as a single token. The most common continuation characters are hyphen '-'
and backslash '\'.

numgroup
Specify a single character that, when it appears in a string of digits, indicates that the
digits are groupings within a larger single unit.

For example, comma ',' might be defined as a numgroup character because it often
indicates a grouping of thousands when it appears in a string of digits.

numjoin
Specify the characters that, when they appear in a string of digits, cause Oracle Text to
index the string of digits as a single unit or word.

For example, period "' can be defined as a numjoin character because it often serves
as a decimal point when it appears in a string of digits.

Note:

The default values for numjoin and numgroup are determined by the
globalization support initialization parameters that are specified for the
database.

In general, a value need not be specified for either numjoin or numgroup
when creating a lexer preference for BASIC_LEXER.

printjoins

Specify the non alphanumeric characters that, when they appear anywhere in a word
(beginning, middle, or end), are processed as alphanumeric and included with the
token in the Text index. This includes printjoins that occur consecutively.

For example, if the hyphen '-' and underscore '_' characters are defined as
printjoins, terms such as pseudo-intellectual and _file_ are stored in the Text index
as pseudo-intellectual and _file_.

2-44 Oracle Text Reference

Lexer Types

Note:

If a printjoins character is also defined as a punctuations character, the
character is only processed as an alphanumeric character if the character
immediately following it is a standard alphanumeric character or has been
defined as a printjoins or skipjoins character.

punctuations

Specify a list of non-alphanumeric characters that, when they appear at the end of a
word, indicate the end of a sentence. The defaults are period ', question mark '?', and
exclamation point '!".

Characters that are defined as punctuations are removed from a token before text
indexing. However, if a punctuations character is also defined as a printjoins
character, then the character is removed only when it is the last character in the token.

For example, if the period (.) is defined as both a printjoins and a punctuations
character, then the following transformations take place during indexing and
querying as well:

Token Indexed Token
.doc .doc

dog.doc dog.doc
dog..doc dog..doc

dog. dog

dog... dog..

In addition, BASIC_LEXER use punctuations characters in conjunction with
newl ine and whitespace characters to determine sentence and paragraph
delimiters for sentence/paragraph searching.

skipjoins

Specify the non-alphanumeric characters that, when they appear within a word,
identify the word as a single token; however, the characters are not stored with the
token in the Text index.

For example, if the hyphen character '-' is defined as a skipjoins, then the word
pseudo-intellectual is stored in the Text index as pseudointellectual.

Note:
Printjoins and skipjoins are mutually exclusive. The same characters
cannot be specified for both attributes.

startjoins/endjoins

For startjoins, specify the characters that when encountered as the first character
in a token explicitly identify the start of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the Text index
entry for the token. In addition, the first startjoins character in a string of
startjoins characters implicitly ends the previous token.

For endjoins, specify the characters that when encountered as the last character in a
token explicitly identify the end of the token. The character, as well as any other

Oracle Text Indexing Elements 2-45

Lexer Types

startjoins characters that immediately follow it, is included in the Text index
entry for the token.

The following rules apply to both startjoins and endjoins:

® The characters specified for startjoins/endjoins cannot occur in any of the
other attributes for BASIC_LEXER.

¢ startjoins/endjoins characters can occur only at the beginning or end of
tokens

Printjoins differ from endjoins and startjoins in that position does not matter. For
example, $35 will be indexed as one token if $ is a startjoin or a printjoin, but as
two tokens if it is defined as an endjoin.

whitespace

Specify the characters that are treated as blank spaces between tokens. BASIC_LEXER
uses Whitespace characters in conjunction with punctuations and newline
characters to identify character strings that serve as sentence delimiters for sentence
and paragraph searching.

The predefined default values for whitespace are space and tab. These values
cannot be changed. Specifying characters as whitespace characters adds to these
defaults.

newline

Specify the characters that indicate the end of a line of text. BASIC_LEXER uses
newl ine characters in conjunction with punctuations and whitespace characters to
identify character strings that serve as paragraph delimiters for sentence and
paragraph searching.

The only valid values for newl ine are NEWLINE and CARRIAGE_RETURN (for
carriage returns). The default is NEWL INE.

base_letter

Specify whether characters that have diacritical marks (umlauts, cedillas, acute
accents, and so on) are converted to their base form before being stored in the Text
index. The default is NO (base-letter conversion disabled). For more information on
base-letter conversions and base letter_type, see Base-Letter Conversion
(page 17-2).

base_letter_type
Specify GENERIC or SPECIFIC.

The GENERIC value is the default and means that base letter transformation uses one
transformation table that applies to all languages. For more information on base-letter
conversions and base_letter_type, see "Base-Letter Conversion (page 17-2)".

override_base_letter

When base_letter is enabled at the same time as alternate_spelling, itis
sometimes necessary to override base_letter to prevent unexpected results from
serial transformations. See "Overriding Alternative Spelling Features (page 17-3)".
Default is FALSE.

mixed_case

Specify whether the lexer leaves the tokens exactly as they appear in the text or
converts the tokens to all uppercase. The default is NO (tokens are converted to all
uppercase).

2-46 Oracle Text Reference

Lexer Types

Note:

Oracle Text ensures that word queries match the case sensitivity of the index
being queried. As a result, if you enable case sensitivity for your Text index,
queries against the index are always case sensitive.

composite
Specify whether composite word indexing is disabled or enabled for either GERMAN or
DUTCH text. The default is DEFAULT (composite word indexing disabled).

Words that are usually one entry in a German dictionary are not split into composite
stems, while words that aren't dictionary entries are split into composite stems.

To retrieve the indexed composite stems, you must enter a stem query, such as
$bahnhof. The language of the wordlist stemmer must match the language of the
composite stems.

2.5.2.2 Stemming User-Dictionaries
You can create a user-dictionary for your own language to customize how words are

decomposed. These dictionaries are shown in Table 2-20 (page 2-47).

Table 2-20 Stemming User-Dictionaries
- -]

Dictionary Stemmer
$ORACLE_HOME/ctx/data/frix/drfr.dct French
$ORACLE_HOME/ctx/data/delx/drde.dct German
$ORACLE_HOME/ctx/data/nlIx/drnl.dct Dutch
$ORACLE_HOME/ctx/data/itIx/drit.dct Italian
$ORACLE_HOME/ctx/data/esIx/dres.dct Spanish
$ORACLE_HOME/ctx/data/enlx/dren.dct English and Derivational

Stemming user-dictionaries are not supported for languages other than those listed in
Table 2-20 (page 2-47).

The format for the user dictionary is as follows:

output term <tab> input term

The individual parts of the decomposed word must be separated by the # character.
The following example entries are for the German word Hauptbahnhof:

Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhofes<tab>Haupt#Bahnhof
Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhoefe<tab>Haupt#Bahnhof

index_themes

Specify YES to index theme information in English or French. This makes ABOUT
queries more precise. The index_themes and index_text attributes cannot both
be NO. The default is NO.

Oracle Text Indexing Elements 2-47

Lexer Types

You can set this parameter to TRUE for any index type, including CTXCAT. To enter an
ABOUT query with CATSEARCH, use the query template with CONTEXT grammar.

prove_themes

Specify YES to prove themes. Theme proving attempts to find related themes in a
document. When no related themes are found, parent themes are eliminated from the
document.

While theme proving is acceptable for large documents, short text descriptions with a
few words rarely prove parent themes, resulting in poor recall performance with
ABOUT queries.

Theme proving results in higher precision and less recall (less rows returned) for
ABOUT queries. For higher recall in ABOUT queries and possibly less precision, you
can disable theme proving. Default is YES.

The prove_themes attribute is supported for CONTEXT and CTXRULE indexes.

theme_language

Specify which knowledge base to use for theme generation when index_themes is
set to YES. When index_themes is NO, setting this parameter has no effect on
anything.

Specify any globalization support language or AUTO. You must have a knowledge
base for the language you specify. This release provides a knowledge base in only
English and French. In other languages, you can create your own knowledge base.

See Also:
"Adding a Language-Specific Knowledge Base (page 16-11)" in Oracle Text
Utilities (page 16-1).

The default is AUTO, which instructs the system to set this parameter according to the
language of the environment.

index_stems

Specify the stemmer to use for stem indexing. Choose one of the following stemmers:
NONE, ARABIC, CATALAN, CROATIAN, CZECH, DANISH, DERIVATIONAL,
DUTCH, ENGLISH, FINNISH, FRENCH, GERMAN, HEBREW, HUNGARIAN,
ITALIAN, NORWEGIAN, POLISH, PORTUGUESE, ROMANIAN, SLOVAK,
SLOVENIAN, SPANISH, and SWEDISH.

Tokens are stemmed to a single base form at index time in addition to the normal
forms. Indexing stems enables better query performance for stem ($) queries, such as
$computed.

Note:

If the index_stems attribute is set to one of the languages with ID 8 to 33,
which are listed Table 2-19 (page 2-41), then the stemmer attribute of
BASIC_WORDLIST will be ignored and the stemmer used by the
BASIC_LEXER will be used during query to determine the stem of the given
query term.

2-48 Oracle Text Reference

Lexer Types

index_text
Specify YES to index word information. The index_themes and index_text
attributes cannot both be NO.

The default is YES.

alternate_spelling

Specify either GERMAN, DANISH, or SWEDISH to enable the alternate spelling in one of
these languages. Enabling alternate spelling enables you to query a word in any of its
alternate forms.

Alternate spelling is off by default; however, in the language-specific scripts that
Oracle provides in admin/defaults (drdefd.sql for German, drdefdk.sql for
Danish, and drdefs.sql for Swedish), alternate spelling is turned on. If your
installation uses these scripts, then alternate spelling is on. However, you can specify
NONE for no alternate spelling. For more information about the alternate spelling
conventions Oracle Text uses, see Alternate Spelling (page 17-2).

new_german_spelling

Specify whether the queries using the BASIC_LEXER return both traditional and
reformed (new) spellings of German words. If new_german_spel ling is set to YES,
then both traditional and new forms of words are indexed. If it is set to NO, then the
word will be indexed only as it as provided in the query. The default is NO.

See Also:
"New German Spelling (page 17-3)"

2.5.2.3 BASIC_LEXER Example

The following example sets printjoin characters and disables theme indexing with the
BASIC_LEXER:

begin

ctx_ddl.create_preference("mylex®, "BASIC_LEXER");
ctx_ddl.set_attribute("mylex", "printjoins®, " _-");
ctx_ddl.set_attribute ("mylex", "index_themes®, "NO");
ctx_ddl.set_attribute ("mylex", "index_text", "YES");
end;

To create the index with no theme indexing and with printjoin characters set as
described, enter the following statement:

create index myindex on mytable (docs)
indextype is ctxsys.context
parameters ("LEXER mylex");

2.5.3 MULTI_LEXER

Use MULT1_LEXER to index text columns that contain documents of different
languages. For example, use this lexer to index a text column that stores English,
German, and Japanese documents.

This lexer has no attributes.

You must have a language column in your base table. To index multi-language tables,
specify the language column when you create the index.

Oracle Text Indexing Elements 2-49

Lexer Types

Create a multi-lexer preference with CTX_DDL . CREATE_PREFERENCE. Add language-
specific lexers to the multi-lexer preference with the CTX_DDL .ADD_SUB_LEXER
procedure.

During indexing, the MULTI_LEXER examines each row's language column value and
switches in the language-specific lexer to process the document.

The WORLD_LEXER lexer also performs multi-language indexing, but without the need
for separate language columns (that is, it has automatic language detection). For more
on WORLD_LEXER, see "WORLD_LEXER (page 2-72)".

This section contains the following topics.

e MULTI_LEXER Restriction (page 2-50)

e MULTI_LEXER Multi-language Stoplists (page 2-50)
¢ MULTI_LEXER Example (page 2-50)

e MULTI_LEXER and Querying Multi-Language Tables (page 2-51)

2.5.3.1 MULTI_LEXER Restriction

MULTI_LEXER must have a sublexer specified for different languages. If you already
know the language, you can use BASIC_LEXER as the sublexer. If the language is not
known, then you use AUTO_LEXER instead of MULTI_LEXER. Hence, using
AUTO_LEXER as a sublexer of MULTI_LEXER is not useful and it is disabled.

Thus, the following statements will not work and throw error DRG-13003.

exec ctx_ddl.create_preference ("multilexer®, "MULTI_LEXER");
exec ctx_ddl..create_preference("autolexer®”, AUTO_LEXER);
exec ctx_ddl.add_sub_lexer("multilexer®, "GERMAN", “autolexer");

2.5.3.2 MULTI_LEXER Multi-language Stoplists

When you use the MULTI_LEXER, you can also use a multi-language stoplist for
indexing.

See Also:

"Multi-Language Stoplists (page 2-100)".

2.5.3.3 MULTI_LEXER Example

Create the multi-language table with a primary key, a text column, and a language
column as follows:

create table globaldoc (
doc_id number primary key,
lang varchar2(3),
text clob

);

Assume that the table holds mostly English documents, with the occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers,
one for English, one for German, and one for Japanese:

ctx_ddl.create_preference("english_lexer", "basic_lexer");
ctx_ddl.set_attribute("english_lexer", "index_themes","yes");

2-50 Oracle Text Reference

Lexer Types

ctx_ddl.set_attribute("english_lexer", "theme_language®, "english™);

ctx_ddl.create_preference("german_lexer","basic_lexer");
ctx_ddl.set_attribute("german_lexer", "composite”, "german®);
ctx_ddl.set_attribute("german_lexer", "mixed_case","yes");
ctx_ddl.set_attribute("german_lexer", "alternate_spelling®, "german®);

ctx_ddl.create_preference("japanese_lexer", "japanese_vgram_lexer");

Create the multi-lexer preference:

ctx_ddl.create_preference("global_lexer®, "multi_lexer");

Because the stored documents are mostly English, make the English lexer the default
using CTX_DDL.ADD_SUB_LEXER (page 8-26):

ctx_ddl.add_sub_lexer("global_lexer","default®, "english_lexer");

Now add the German and Japanese lexers in their respective languages with
CTX_DDL.ADD_SUB_LEXER (page 8-26) procedure. Also assume that the language
column is expressed in the standard ISO 639-2 language codes, so add those as
alternative values.

ctx_ddl.add_sub_lexer("global_lexer®,"german®, "german_lexer","ger");
ctx_ddl.add_sub_lexer("global_lexer","japanese”, "japanese_lexer","jpn*);
Now create the index globalXx, specifying the multi-lexer preference and the

language column in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ("lexer global_lexer language column lang®);

2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables

At query time, the multi-lexer examines the language setting and uses the sub-lexer
preference for that language to parse the query.

If the language is not set, then the default lexer is used. Otherwise, the query is parsed
and run as usual. The index contains tokens from multiple languages, so such a query
can return documents in several languages. To limit your query to a given language,
use a structured clause on the language column.

If the language column is set to AUTO, then the multi-lexer detects the language of the
document for the supported languages shown in Table 2-21 (page 2-51).

Table 2-21 Languages Supported for MULTI_LEXER Auto-detection

Language Language
ARABIC JAPANESE
CATALAN KOREAN
TRADITIONAL CHINESE NORWEGIAN
CROATIAN POLISH
CZECH PORTUGUESE
DANISH ROMANIAN

Oracle Text Indexing Elements 2-51

Lexer Types

Table 2-21 (Cont.) Languages Supported for MULTI_LEXER Auto-detection

Language Language
DUTCH RUSSIAN
ENGLISH LATIN SERBIAN
GERMAN SLOVAK

GREEK SWEDISH
HEBREW THAI
HUNGARIAN TURKISH
ITALIAN

2.5.4 CHINESE_VGRAM_LEXER

The CHINESE_VGRAM_LEXER type identifies tokens in Chinese text for creating Text
indexes.

The CHINESE_VGRAM_LEXER has the following attribute:

Table 2-22 CHINESE_VGRAM_LEXER Attributes
L

Attribute Attribute Value

mixed_case_ASCI17 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO
(default).

You can use this lexer if your database uses one of the following character sets:
e AL32UTF8

e ZHS16CGB231280
e ZHS16GBK

e ZHS32GB18030

e ZHT32EUC

e ZHT16BIG5

e ZHT32TRIS

e ZHT16HKSCS

e ZHT16MSWIN950
e UTE8

2.5.5 CHINESE_LEXER

The CHINESE_LEXER type identifies tokens in traditional and simplified Chinese text
for creating Oracle Text indexes.

2-52 Oracle Text Reference

Lexer Types

This lexer offers the following benefits over the CHINESE_VGRAM_LEXER:
* generates a smaller index

® better query response time

¢ generates real word tokens resulting in better query precision

* supports stop words

Because the CHINESE_LEXER uses a different algorithm to generate tokens, indexing
time is longer than with CHINESE_VGRAM_LEXER.

You can use this lexer if your database character is one of the Chinese or Unicode
character sets supported by Oracle.

The CHINESE_LEXER has the following attribute:

Table 2-23 CHINESE_LEXER Attributes

Attribute Attribute Value

mixed_case_ASCI17 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and
NO (default).

You can modify the existing lexicon (dictionary) used by the Chinese lexer, or create
your own Chinese lexicon, with the ctxlc command.

See Also:

"Lexical Compiler (ctxlc) (page 16-12)" in Oracle Text Utilities (page 16-1)

2.5.6 JAPANESE_VGRAM_LEXER

The JAPANESE_VGRAM_LEXER type identifies tokens in Japanese for creating Text
indexes. This lexer supports the stem ($) operator.

This lexer has the following attributes:

Table 2-24 JAPANESE_VGRAM_LEXER Attributes
I

Attribute Attribute Value

delimiter Specify whether to consider certain Japanese blank characters,
such as a full-width forward slash or a full-width middle dot, as
part of the indexed token. ALL considers these characters as
part of the token while NONE ignores them. The default is NONE.

mixed_case_ASCI17 Enable mixed-case (upper- and lower-case) searches of ASCII7

text (for example, cat and Cat). Allowable values are YES and
NO (default).

Oracle Text Indexing Elements 2-53

Lexer Types

Table 2-24 (Cont.) JAPANESE_VGRAM_LEXER Attributes
. ___|

Attribute Attribute Value

bigram Specify TRUE to enable the bigram mode for the Japanese
VGRAM lexer. In the bigram mode, the Japanese queries run
faster because only 2-gram tokens are generated, thus avoiding
the internal wildcard search. But, in the bigram mode, the index
size needs to be increased to accommodate the large number of
tokens. Enable the bigram mode, if the performance of queries is
of higher importance to you than the disk space. Default is
FALSE.

printjoins Specify the non alphanumeric characters that, when they
appear anywhere in a word (beginning, middle, or end), are
processed as alphanumeric and included with the token in the
Text index. This includes printjoins that occur consecutively.
See Basic Lexer "printjoins (page 2-44)".

skipjoins Specify the non-alphanumeric characters that, when they
appear within a word, identify the word as a single token;
however, the characters are not stored with the token in the
Text index. See Basic Lexer "skipjoins (page 2-45)".

You can use this lexer if your database uses one of the following character sets:

e JA16SJIS

e JAI6EUC
o UTF8

o AL32UTFS8

e JA16EUCTILDE

e JA16EUCYEN

e JA16SJISTILDE

e JA16SJISYEN

Rules for PRINTJOIN and SKIPJOIN Characters

* Only non-alphanumeric ASCII characters that do not include any Chinese,
Japanese, or Korean characters or any full-width non-alphanumeric characters are
accepted.

* You can specify a single non-alphanumeric character or multiple non-
alphanumeric characters at a time.

* The printjoin/skipjoin will be ignored if you enter any characters that are not
allowed. This includes alphanumeric characters, CJK — Chinese, Japanese, Korean
— characters or full-width non-alphanumeric characters.

¢ In case of duplicate non-alphanumeric characters, duplicate entries will be
ignored.

2-54 Oracle Text Reference

Lexer Types

Examples
Example 2-6 Using Printjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as printjoins thereby
indicating that these characters must be included with the token in the Text index.
Therefore, words such as web-site or web_site as indexed as web-site and web_site.
Queries that search for website will not return documents containing web-site or
web_site.

ctx_ddl.create_preference("mylex", "JAPANESE_VGRAM_LEXER");
ctx_ddl.set_attribute("mylex", “printjoins®, " _-");
Example 2-7 Using Skipjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as skipjoins thereby
indicating that these characters must not be included with the token in the Text index.
Therefore, words such as web-site or web_site as indexed as website. Queries that search
for website will return documents containing web-site or web_site.

ctx_ddl.create_preference("mylex", "JAPANESE_VGRAM_LEXER");
ctx_ddl.set_attribute("mylex", “skipjoins®, " _-");

2.5.7 JAPANESE_LEXER

The JAPANESE_LEXER type identifies tokens in Japanese for creating Text indexes.
This lexer supports the stem ($) operator.

This lexer offers the following benefits over the JAPANESE_VGRAM_LEXER:
® generates a smaller index
® Dbetter query response time

¢ generates real word tokens resulting in better query precision

Because the JAPANESE_LEXER uses a new algorithm to generate tokens, indexing
time is longer than with JAPANESE_VGRAM_LEXER.

You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create
your own Japanese lexicon, with the ctxlc command.

See Also:

"Lexical Compiler (ctxlc) (page 16-12)" in Oracle Text Utilities (page 16-1)

This lexer has the following attributes:

Table 2-25 JAPANESE_LEXER Attributes
L

Attribute Attribute Value

delimiter Specify NONE or ALL to ignore certain Japanese blank
characters, such as a full-width forward slash or a full-width
middle dot. Default is NONE.

mixed_case_ASCI17 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and
NO (default).

Oracle Text Indexing Elements 2-55

Lexer Types

The JAPANESE_LEXER supports the following character sets:

e JAI6SJIS

e JAI6EUC
o UTF8

o AL32UTF8

e JA16EUCTILDE
e JA16EUCYEN
e JAI6SJISTILDE

e JAI6SJISYEN

When you specify JAPANESE_LEXER for creating text index, the JAPANESE_LEXER
resolves a sentence into words.

For example, the following compound word (natural language institute)

'BASEEANHE

is indexed as three tokens:

BR, &%, LE

To resolve a sentence into words, the internal dictionary is referenced. When a word
cannot be found in the internal dictionary, Oracle Text uses the
JAPANESE_VGRAM_LEXER to resolve it.

2.5.8 KOREAN_MORPH_LEXER

The KOREAN_MORPH_LEXER type identifies tokens in Korean text for creating Oracle
Text indexes.

This section contains the following topics.

e KOREAN_MORPH_ LEXER Dictionaries (page 2-56)

¢ KOREAN_MORPH_ LEXER Unicode Support (page 2-57)

¢ KOREAN_MORPH_LEXER Attributes (page 2-58)

e KOREAN_MORPH_ LEXER Limitations (page 2-58)

e KOREAN_MORPH_LEXER Example: Setting Composite Attribute (page 2-58)

2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries
The KOREAN_MORPH_LEXER uses four dictionaries:

2-56 Oracle Text Reference

Lexer Types

Table 2-26 KOREAN_MORPH_LEXER Dictionaries
- - - - - |

Dictionary File

System $ORACLE_HOME/ctx/data/kolx/drk2sdic.dat
Grammar $ORACLE_HOME/ctx/data/kolx/drk2gram.dat
Stopword $ORACLE_HOME/ctx/datas/kolx/drk2xdic.dat
User-defined $ORACLE_HOME/ctx/data/kolx/drk2udic.dat

The grammar, user-defined, and stopword dictionaries should be written using the
KSC 5601 or MSWIN949 character sets. You can modify these dictionaries using the
defined rules. The system dictionary must not be modified.

You can add unregistered words to the user-defined dictionary file. The rules for
specifying new words are in the file.

You can use KOREAN_MORPH_LEXER if your database uses one of the following
character sets:

¢ KO16KSC5601

e KO16MSWIN949

e UTF8

e AL32UTF8

The KOREAN_MORPH_LEXER enables mixed-case searches.

2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support

The KOREAN_MORPH_LEXER has the following Unicode support:
e Words in non-KSC5601 Korean characters defined in Unicode

® Supplementary characters

See Also:

For information on supplementary characters, see the Oracle Database
Globalization Support Guide

Some Korean documents may have non-KSC5601 characters in them. As the
KOREAN_MORPH_LEXER can recognize all possible 11,172 Korean (Hangul) characters,
such documents can also be interpreted by using the UTF8 or AL32UTF8 character
sets.

Use the AL32UTES character set for your database to extract surrogate characters. By
default, the KOREAN_MORPH_LEXER extracts all series of surrogate characters in a
document as one token for each series.

Limitations on Korean Unicode Support

For conversion from Hanja to Hangul (Korean), the KOREAN_MORPH_LEXER supports
only the 4,888 Hanja characters defined in KSC5601.

Oracle Text Indexing Elements 2-57

Lexer Types

2.5.8.3 KOREAN_MORPH_LEXER Attributes
When you use the KOREAN_MORPH_LEXER, you can specify the following attributes:

Table 2-27 KOREAN_MORPH_LEXER Attributes
I

Attribute Attribute Value

verb_adjective Specify TRUE or FALSE to index verbs, adjectives, and adverbs.
Default is FALSE.

one_char_word Specify TRUE or FALSE to index one syllable. Default is FALSE.

number Specify TRUE or FALSE to index number. Default is FALSE.

user_dic Specify TRUE or FALSE to index user dictionary. Default is TRUE.

stop_dic Specify TRUE of FALSE to use stop-word dictionary. Default is

TRUE. The stop-word dictionary belongs to
KOREAN_MORPH_LEXER.

composite Specify indexing style of composite noun.
Specify COMPOSITE_ONLY to index only composite nouns.
Specify NGRAM to index all noun components of a composite noun.
Specify COMPONENT_WORD to index single noun components of

composite nouns as well as the composite noun itself. Default is
COMPONENT_WORD.

"KOREAN_MORPH_LEXER Example: Setting Composite Attribute
(page 2-58)" describes the difference between NGRAM and
COMPONENT_WORD.

morpheme Specify TRUE or FALSE for morphological analysis. If set to FALSE,
tokens are created from the words that are divided by delimiters
such as white space in the document. Default is TRUE.

to_upper Specify TRUE or FALSE to convert English to uppercase. Default is
TRUE.
hanja Specify TRUE to index hanja characters. If set to FALSE, hanja

characters are converted to hangul characters. Default is FALSE.

long_word Specify TRUE to index long words that have more than 16 syllables
in Korean. Default is FALSE.

Japanese Specify TRUE to index Japanese characters in Unicode (only in the 2-
byte area). Default is FALSE.

english Specify TRUE to index alphanumeric strings. Default is TRUE.

2.5.8.4 KOREAN_MORPH_ LEXER Limitations
Sentence and paragraph sections are not supported with the KOREAN_MORPH_LEXER.

2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute

Use the composite attribute to control how composite nouns are indexed.

2-58 Oracle Text Reference

Lexer Types

NGRAM Example

When you specify NGRAM for the composite attribute, composite nouns are indexed
with all possible component tokens. For example, the following composite noun
(information processing institute)

HEAR =R

is indexed as six tokens:

dE AR, =E dH AR

H2atE) H B A2l 5k

Specify NGRAM indexing as follows:

begin

ctx_ddl.create_preference("my_lexer", *KOREAN_MORPH_LEXER™);
ctx_ddl.set_attribute("my_lexer®, *"COMPOSITE", "NGRAM™);

end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ("lexer my_lexer®);

COMPONENT_WORD Example

When you specify COMPONENT_WORD for the composite attribute, composite nouns
and their components are indexed. For example, the following composite noun
(information processing institute)

HHAREE

is indexed as four tokens:

HY, A, T

Specify COMPONENT_WORD indexing as follows:

begin

ctx_ddl.create_preference("my_lexer", "KOREAN_MORPH_LEXER");
ctx_ddl.set_attribute("my_lexer®, "COMPOSITE", "COMPONENT_WORD");
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ("lexer my lexer®);

2.5.9 USER_LEXER

Use USER_LEXER to plug in your own language-specific lexing solution. This enables
you to define lexers for languages that are not supported by Oracle Text. It also
enables you to define a new lexer for a language that is supported but whose lexer is
inappropriate for your application.

Oracle Text Indexing Elements 2-59

Lexer Types

This section contains the following topics.

USER_LEXER Routines (page 2-60)

USER_LEXER Limitations (page 2-60)

USER_LEXER Attributes (page 2-60)

INDEX_PROCEDURE (page 2-61)

INPUT_TYPE (page 2-61)

QUERY_PROCEDURE (page 2-63)

Encoding Tokens as XML (page 2-64)

XML Schema for No-Location_ User-defined Indexing Procedure (page 2-65)
XML Schema for User-defined Indexing Procedure with Location (page 2-67)

XML Schema for User-defined Lexer Query Procedure (page 2-70)

2.5.9.1 USER_LEXER Routines

The user-defined lexer you register with Oracle Text is composed of two routines that
you must supply:

Table 2-28 User-Defined Routines for USER_LEXER

User-Defined Routine Description

Indexing Procedure Stored procedure (PL/SQL) which implements the tokenization

of documents and stop words. Output must be an XML
document as specified in this section.

Query Procedure Stored procedure (PL/SQL) which implements the tokenization

of query words. Output must be an XML document as specified
in this section.

2.5.9.2 USER_LEXER Limitations
The following features are not supported with the USER_LEXER:

CTX_DOC.GIST and CTX_DOC.THEMES
CTX_QUERY .HFEEDBACK

ABOUT query operator

CTXRULE index type

VGRAM indexing algorithm

2.5.9.3 USER_LEXER Attributes
USER_LEXER has the following attributes:

2-60 Oracle Text Reference

Lexer Types

Table 2-29 USER_LEXER Attributes
- - ___|

Attribute Attribute Value
INDEX_PROCEDURE Name of a stored procedure. No default provided.
INPUT_TYPE VARCHAR2, CLOB. Default is CLOB.
QUERY_PROCEDURE Name of a stored procedure. No default provided.

2.5.9.4 INDEX_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize a
document or a stop word found in the stoplist object.

Requirements
This procedure can be a PL/SQL stored procedure.
The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or dropped after the index is created. You
can replace or drop this stored procedure after the index is dropped.

Parameters

Two different interfaces are supported for the user-defined lexer indexing procedure:
e VARCHAR? Interface (page 2-62)

¢ CLOB Interface (page 2-62)

Restrictions

This procedure must not perform any of the following operations:

¢ Rollback

¢ Explicitly or implicitly commit the current transaction

¢ Enter any other transaction control statement

® Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be
in the same order as the tokens occur in the document or stop word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all
parameters.

2.5.9.5 INPUT_TYPE

Two different interfaces are supported for the User-defined lexer indexing procedure.
One interface enables the document or stop word and the corresponding tokens
encoded as XML to be passed as VARCHAR2 datatype whereas the other interface uses
the CLOB datatype. This attribute indicates the interface implemented by the stored
procedure specified by the INDEX_PROCEDURE attribute.

¢ VARCHAR? Interface (page 2-62)
e CLOB Interface (page 2-62)

Oracle Text Indexing Elements 2-61

Lexer Types

2.5.9.5.1 VARCHAR?2 Interface

Table 2-30 (page 2-62) describes the interface that enables the document or stop word
from stoplist object to be tokenized to be passed as VARCHAR2 from Oracle Text to the
stored procedure and for the tokens to be passed as VARCHARZ as well from the stored
procedure back to Oracle Text.

Your user-defined lexer indexing procedure should use this interface when all
documents in the column to be indexed are smaller than or equal to 32512 bytes and
the tokens can be represented by less than or equal to 32512 bytes. In this case the
CLOB interface given in Table 2-31 (page 2-63) can also be used, although the
VARCHAR2 interface will generally perform faster than the CLOB interface.

This procedure must be defined with the following parameters:

Table 2-30 VARCHAR?2 Interface for INDEX_PROCEDURES

Parameter Parameter Parameter Description
Position Mode Datatype
1 IN VARCHAR2 Document or stop word from stoplist object to be tokenized.

If the document is larger than 32512 bytes then Oracle Text
will report a document level indexing error.

2 IN OUT VARCHAR2 Tokens encoded as XML.

If the document contains no tokens, then either NULL must
be returned or the tokens element in the XML document
returned must contain no child elements.

Byte length of the data must be less than or equal to 32512.

To improve performance, use the NOCOPY hint when
declaring this parameter. This passes the data by reference,
rather than passing data by value.

The XML document returned by this procedure should not
include unnecessary whitespace characters (typically used to
improve readability). This reduces the size of the XML
document which in turn minimizes the transfer time.

To improve performance, index_procedure should not
validate the XML document with the corresponding XML
schema at run-time.

Note that this parameter is IN OUT for performance
purposes. The stored procedure has no need to use the IN
value.

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text
needs the character offset and character length of the tokens
as found in the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of the
tokens as found in the document being tokenized. This
implies that the XML attributes off and len must not be used.

2.5.9.5.2 CLOB Interface

Table 2-31 (page 2-63) describes the CLOB interface that enables the document or stop
word from stoplist object to be tokenized to be passed as CLOB from Oracle Text to the
stored procedure and for the tokens to be passed as CLOB as well from the stored
procedure back to Oracle Text.

2-62 Oracle Text Reference

Lexer Types

The user-defined lexer indexing procedure should use this interface when at least one
of the documents in the column to be indexed is larger than 32512 bytes or the
corresponding tokens are represented by more than 32512 bytes.

Table 2-31 CLOB Interface for INDEX_PROCEDURE
- - - - __|

Parameter Parameter Parameter Datatype Description

Position Mode

1 IN CLOB Document or stop word from stoplist object to be
tokenized.

2 INOUT CLOB Tokens encoded as XML.

If the document contains no tokens, then either
NULL must be returned or the tokens element in the
XML document returned must contain no child
elements.

To improve performance, use the NOCOPY hint when
declaring this parameter. This passes the data by
reference, rather than passing data by value.

The XML document returned by this procedure
should not include unnecessary whitespace
characters (typically used to improve readability).
This reduces the size of the XML document which in
turn minimizes the transfer time.

To improve performance, index_procedure should
not validate the XML document with the
corresponding XML schema at run-time.

Note that this parameter is IN OUT for performance
purposes. The stored procedure has no need to use
the IN value. The IN value will always be a
truncated CLOB.

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle
Text needs the character offset and character length
of the tokens as found in the document being
tokenized.

Oracle Text sets this parameter to FALSE when Text
is not interested in the character offset and character
length of the tokens as found in the document being
tokenized. This implies that the XML attributes off
and len must not be used.

The first and second parameters are temporary CLOBS. Avoid assigning these CLOB
locators to other locator variables. Assigning the formal parameter CLOB locator to
another locator variable causes a new copy of the temporary CLOB to be created
resulting in a performance hit.

2.5.9.6 QUERY_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize words in
the query. A space-delimited group of characters (excluding the query operators) in
the query will be identified by Oracle Text as a word.

Requirements
This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

Oracle Text Indexing Elements 2-63

Lexer Types

This stored procedure must not be replaced or be dropped after the index is created.
You can replace or drop this stored procedure after the index is dropped.

Restrictions

This procedure must not perform any of the following operations:
* Rollback

e Explicitly or implicitly commit the current transaction

¢ Enter any other transaction control statement

® Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be
in the same order as the tokens occur in the query word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all
parameters.

Parameters

Table 2-32 (page 2-64) describes the interface for the user-defined lexer query
procedure:

Table 2-32 User-defined Lexer Query Procedure XML Schema Attributes

Parameter

Position

Parameter Parameter Datatype Description
Mode

1

2

IN VARCHAR2 Query word to be tokenized.

IN CTX_ULEXER.WILDCARD_TAB Character offsets of wildcard characters (%
and _) in the query word. If the query word
passed in by Oracle Text does not contain any
wildcard characters then this index-by table
will be empty.

The wildcard characters in the query word
must be preserved in the tokens returned in
order for the wildcard query feature to work
properly.

The character offset is 0 (zero) based. Offset
information follows USC-2 codepoint
semantics.

INOUT VARCHAR2 Tokens encoded as XML.

If the query word contains no tokens then
either NULL must be returned or the tokens
element in the XML document returned must
contain no child elements.

The length of the data must be less-than or
equal to 32512 bytes.

2.5.9.7 Encoding Tokens as XML

The sequence of tokens returned by your stored procedure must be represented as an
XML 1.0 document. The XML document must be valid with respect to the XML
Schemas given in the following sections.

2-64 Oracle Text Reference

Lexer Types

e XML Schema for No-Location_ User-defined Indexing Procedure (page 2-65)
* XML Schema for User-defined Indexing Procedure with Location (page 2-67)
* XML Schema for User-defined Lexer Query Procedure (page 2-70)

Limitations

To boost performance of this feature, the XML parser in Oracle Text will not perform

validation and will not be a full-featured XML compliant parser. This implies that only

minimal XML features will be supported. The following XML features are not
supported:

¢ Document Type Declaration (for example, <IDOCTYPE [...]>) and therefore
entity declarations. Only the following built-in entities can be referenced: 1t, gt,
amp, quot, and apos.

e CDATA sections.

e Comments.

* Processing Instructions.

* XML declaration (for example, <?xml version="1.0" ...?>).
* Namespaces.

¢ Use of elements and attributes other than those defined by the corresponding
XML Schema.

e Character references (for example ট).

¢ xml:space attribute.

xml:lang attribute

2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer indexing procedure when the third parameter is FALSE. The
XML document returned must be valid with respect to the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="tokens">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="eos" type="EmptyTokenType"/>
<xsd:element name="eop" type="EmptyTokenType"/>
<xsd:element name="num" type="xsd:token"/>
<xsd:group ref="IndexCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<I--

Enforce constraint that compMem element must be preceded by word element
or compMem element for indexing

-—>

<xsd:group name="'IndexCompositeGroup'>

Oracle Text Indexing Elements 2-65

Lexer Types

<xsd:sequence>
<xsd:element name="word" type='"xsd:token"/>
<xsd:element name="compMem" type="xsd:token" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

<I-- EmptyTokenType defines an empty element without attributes -->
<xsd:complexType name="EmptyTokenType"/>

</xsd:schema>
Here are some of the constraints imposed by this XML Schema:
¢ The root element is tokens. This is mandatory. It has no attributes.

e The root element can have zero or more child elements. The child elements can be
one of the following elements: eos, eop, num, word, and compMem. Each of these
represent a specific type of token.

¢ The compMem element must be preceded by a word element or a compMem
element.

* The eos and eop elements have no attributes and must be empty elements.

¢ The num, word, and compMem elements have no attributes. Oracle Text will
normalize the content of these elements as follows: convert whitespace characters
to space characters, collapse adjacent space characters to a single space character,
remove leading and trailing spaces, perform entity reference replacement, and
truncate to 64 bytes.

Table 2-33 (page 2-66) describes the element names defined in the preceding XML
Schema.

Table 2-33 User-defined Lexer Indexing Procedure XML Schema Element Names
- - -~ |

Element Description

word This element represents a simple word token. The content of the element is
the word itself. Oracle Text does the work of identifying this token as being a
stop word or non-stop word and processing it appropriately.

num This element represents an arithmetic number token. The content of the
element is the arithmetic number itself. Oracle Text treats this token as a stop
word if the stoplist preference has NUMBERS added as the stopclass.
Otherwise this token is treated the same way as the word token.

Supporting this token type is optional. Without support for this token type,
adding the NUMERBS stopclass will have no effect.

eos This element represents end-of-sentence token. Oracle Text uses this
information so that it can support WITHIN SENTENCE queries.

Supporting this token type is optional. Without support for this token type,
queries against the SENTENCE section will not work as expected.

eop This element represents end-of-paragraph token. Oracle Text uses this
information so that it can support WITHIN PARAGRAPH queries.

Supporting this token type is optional. Without support for this token type,
queries against the PARAGRAPH section will not work as expected.

2-66 Oracle Text Reference

Lexer Types

Table 2-33 (Cont.) User-defined Lexer Indexing Procedure XML Schema Element

Names
|

Element Description

compMem Same as the word element, except that the implicit word offset is the same as
the previous word token.

Support for this token type is optional.

Examples
Document: Vom Nordhauptbahnhof und aus der Innenstadt zum Messegelande.
Tokens:

<tokens>
<word> VOM </word>
<word> NORDHAUPTBAHNHOF </word>
<compMem>NORD</compMem>
<compMem>HAUPT </compMem>
<compMem>BAHNHOF </compMem>
<compMem>HAUPTBAHNHOF </compMem>
<word> UND </word>
<word> AUS </word>
<word> DER </word>
<word> INNENSTADT </word>
<word> ZUM </word>
<word> MESSEGELANDE </word>
<eos/>

</tokens>

Document: Oracle Database 11g Release 1
Tokens:

<tokens>
<word> ORACLE11G</word>
<word> RELEASE </word>
<num> 1 </num>
</tokens>

Document: WHERE salary<25000.00 AND job = 'F&B Manager'
Tokens:

<tokens>
<word> WHERE </word>
<word> salary<2500.00 </word>
<word> AND </word>
<word> job </word>
<word> F&B </word>
<word> Manager </word>
</tokens>

2.5.9.9 XML Schema for User-defined Indexing Procedure with Location

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer indexing procedure when the third parameter is TRUE. The
XML document returned must be valid according to the following XML schema:

Oracle Text Indexing Elements 2-67

Lexer Types

<xsd:schema xmlIns:xsd="http://ww.w3.0rg/2001/XMLSchema'">

<xsd:element name="tokens'>
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eos" type="EmptyTokenType"/>
<xsd:element name="eop" type="EmptyTokenType"/>
<xsd:element name="num" type="DocServiceTokenType"/>
<xsd:group ref="DocServiceCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<I--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for document service
-—>
<xsd:group name="DocServiceCompositeGroup>
<xsd:sequence>
<xsd:element name="word" type="DocServiceTokenType"/>
<xsd:element name="compMem" type="DocServiceTokenType" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

<I-- EmptyTokenType defines an empty element without attributes -->
<xsd:complexType name="EmptyTokenType"/>

<I--
DocServiceTokenType defines an element with content and mandatory attributes
-—>
<xsd:complexType name="DocServiceTokenType'>
<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="off" type="0ffsetType" use="required"/>
<xsd:attribute name="len" type="xsd:unsignedShort" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="0ffsetType'>
<xsd:restriction base="xsd:unsignedInt">
<xsd:maxInclusive value="2147483647"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>
Some of the constraints imposed by this XML Schema are as follows:

¢ The root element is tokens. This is mandatory. It has no attributes.

e The root element can have zero or more child elements. The child elements can be
one of the following elements: eos, eop, num, word, and compMem. Each of these
represent a specific type of token.

¢ The compMem element must be preceded by a word element or a compMem
element.

2-68 Oracle Text Reference

Lexer Types

* The eos and eop elements have no attributes and must be empty elements.

¢ The num, word, and compMem elements have two mandatory attributes: off and
len. Oracle Text will normalize the content of these elements as follows: convert
whitespace characters to space characters, collapse adjacent space characters to a
single space character, remove leading and trailing spaces, perform entity
reference replacement, and truncate to 64 bytes.

* The off attribute value must be an integer between 0 and 2147483647 inclusive.

¢ The len attribute value must be an integer between 0 and 65535 inclusive.

Table 2-33 (page 2-66) describes the element types defined in the preceding XML

Schema.

Table 2-34 (page 2-69) describes the attributes defined in the preceding XML Schema.

Table 2-34 User-defined Lexer Indexing Procedure XML Schema Attributes
-~~~ |

Attribute

Description

off

len

This attribute represents the character offset of the token as it appears in
the document being tokenized.

The offset is with respect to the character document passed to the user-
defined lexer indexing procedure, not the document fetched by the
datastore. The document fetched by the datastore may be pre-processed
by the filter object or the section group object, or both, before being
passed to the user-defined lexer indexing procedure.

The offset of the first character in the document being tokenized is 0
(zero). Offset information follows USC-2 codepoint semantics.

This attribute represents the character length (same semantics as SQL
function LENGTH) of the token as it appears in the document being
tokenized.

The length is with respect to the character document passed to the user-
defined lexer indexing procedure, not the document fetched by the
datastore. The document fetched by the datastore may be pre-processed
by the filter object or the section group object before being passed to the
user-defined lexer indexing procedure.

Length information follows USC-2 codepoint semantics.

Sum of off attribute value and len attribute value must be less than or equal to the
total number of characters in the document being tokenized. This is to ensure that the
document offset and characters being referenced are within the document boundary.

Example

Document: User-defined Lexer.

Tokens:

<tokens>

<word off="0" len="4"> USE </word>
<word off="5" len="7"> DEF </word>
<word off="13" len="5"> LEX </word>

<eos/>

</tokens>

Oracle Text Indexing Elements 2-69

Lexer Types

2.5.9.10 XML Schema for User-defined Lexer Query Procedure

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer query procedure. The XML document returned must be
valid with respect to the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema'>

<xsd:element name="tokens">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="num" type="QueryTokenType"/>
<xsd:group ref="QueryCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<l--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for query
-
<xsd:group name="QueryCompositeGroup'>
<xsd:sequence>
<xsd:element name="word" type="QueryTokenType"/>
<xsd:element name="compMem" type="QueryTokenType" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

<I--
QueryTokenType defines an element with content and with an optional attribute
-—>
<xsd:complexType name="QueryTokenType'>
<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="wildcard" type="WildcardType" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="WildcardType">
<xsd:restriction base="WildcardBaseType'>
<xsd:minLength value="1"/>
<xsd:maxLength value="64"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="WildcardBaseType">
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
<xsd:maxInclusive value="378"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:list>
</xsd:simpleType>

</xsd:schema>

2-70 Oracle Text Reference

Lexer Types

Here are some of the constraints imposed by this XML Schema:

The root element is tokens. This is mandatory. It has no attributes.

The root element can have zero or more child elements. The child elements can
be one of the following elements: num and word. Each of these represent a specific
type of token.

The compMem element must be preceded by a word element or a compMem
element.

The purpose of compMem is to enable USER_LEXER queries to return multiple
forms for a single query. For example, if a user-defined lexer indexes the word
bank as BANK(FINANCIAL) and BANK(RIVER), the query procedure can return
the first term as a word and the second as a compMem element:

<tokens>
<word>BANK(RIVER)</word>
<compMem>BANK(F INANCIAL)</compMem>
</tokens>

See Table 2-35 (page 2-71), "Table 2-35 (page 2-71)" for more on the compMem
element.

The num and word elements have a single optional attribute: wildcard. Oracle
Text will normalize the content of these elements as follows: convert whitespace
characters to space characters, collapse adjacent space characters to a single space
character, remove leading and trailing spaces, perform entity reference
replacement, and truncate to 64 bytes.

The wildcard attribute value is a white-space separated list of integers. The
minimum number of integers is 1 and the maximum number of integers is 64. The
value of the integers must be between 0 and 378 inclusive. The intriguers in the
list can be in any order.

Table 2-33 (page 2-66) describes the element types defined in the preceding XML
Schema.

Table 2-35 (page 2-71) describes the attribute defined in the preceding XML Schema.

Table 2-35 User-defined Lexer Query Procedure XML Schema Attributes
- - - |

Attribute Description

compMem Same as the word element, but its implicit word offset is the same as the

previous word token. Oracle Text will equate this token with the previous
word token and with subsequent compMem tokens using the query EQUIV
operator.

Oracle Text Indexing Elements 2-71

Lexer Types

Table 2-35 (Cont.) User-defined Lexer Query Procedure XML Schema Attributes
___|

Attribute Description

wildcard Any % or _ characters in the query which are not escaped by the user are
considered wildcard characters because they are replaced by other
characters. These wildcard characters in the query must be preserved during
tokenization in order for the wildcard query feature to work properly. This
attribute represents the character offsets (same semantics as SQL function
LENGTH) of wildcard characters in the content of the element. Oracle Text
will adjust these offsets for any normalization performed on the content of
the element. The characters pointed to by the offsets must either be % or _
characters.

The offset of the first character in the content of the element is 0. Offset
information follows USC-2 codepoint semantics.

If the token does not contain any wildcard characters then this attribute must
not be specified.

Examples
Query word: pseudo-%morph%
Tokens:

<tokens>

<word> PSEUDO </word>

<word wildcard="1 7> %MORPH% </word>
</tokens>

Query word: <%>
Tokens:

<tokens>
<word wildcard="5"> &It;%> </word>
</tokens>

2.5.10 WORLD_LEXER

Use the WORLD_LEXER to index text columns that contain documents of different
languages. For example, use this lexer to index a text column that stores English,
Japanese, and German documents.

WORLD_LEXER differs from MULTI_LEXER in that WORLD_LEXER automatically
detects the language(s) of a document. Unlike MULT1_LEXER, WORLD_LEXER does not
require you to have a language column in your base table nor to specify the language

column when you create the index. Moreover, it is not necessary to use sub-lexers, as
with MULTI_LEXER. (See "MULTI_LEXER (page 2-49)".)

WORLD_LEXER supports all database character sets, and for languages whose character
sets are Unicode-based, it supports the Unicode 5.0 standard. For a list of languages
that WORLD_LEXER can work with, see "World Lexer Features (page D-5)".

The WORLD_LEXER has the following attributes:

2-72 Oracle Text Reference

Wordlist Type

Table 2-36 WORLD_LEXER Attributes
- - - |

Attribute Attribute Value

mixed_case Enables mixed-case (upper- and lower-case) searches of text
(for example, cat and Cat). Allowable values are YES and NO
(default).

printjoins Specify the non alphanumeric characters that, when they

appear anywhere in a word (beginning, middle, or end), are
processed as alphanumeric and included with the token in the
Text index. This includes printjoins that occur consecutively.
See Basic Lexer "printjoins (page 2-44)".

skipjoins Specify the non-alphanumeric characters that, when they
appear within a word, identify the word as a single token;
however, the characters are not stored with the token in the
Text index. See Basic Lexer "skipjoins (page 2-45)".

Rules for PRINTJOIN and SKIPJOIN Characters

Refer to “Rules for PRINTJOIN and SKIPJOIN Characters” in
JAPANESE_VGRAM_LEXER (page 2-53).

WORLD_LEXER Example
The following is an example of creating an index using WORLD_LEXER.

exec ctx_ddl.create_preference("MYLEXER", “world_lexer®);
create index doc_idx on doc(data)
indextype is CONTEXT
parameters ("lexer MYLEXER
stoplist CTXSYS.EMPTY_STOPLIST");

2.6 Wordlist Type

Use the wordlist preference to enable the query options such as stemming, fuzzy
matching for your language. You can also use the wordlist preference to enable
substring and prefix indexing, which improves performance for wildcard queries with
CONTAINS and CATSEARCH.

To create a wordlist preference, you must use BASIC_WORDL I ST, which is the only
type available.

e BASIC_WORDLIST (page 2-73)
e BASIC_WORDLIST Example (page 2-81)

2.6.1 BASIC_WORDLIST

Use BASIC_WORDLIST type to enable stemming and fuzzy matching or to create
prefix indexes with Text indexes.

See Also:

Oracle Text CONTAINS Query Operators (page 3-1)

The following table lists the attributes for BASIC_WORDLIST.

Oracle Text Indexing Elements 2-73

Wordlist Type

Table 2-37 BASIC_WORDLIST Attributes
- - - ___|

Attribute Attribute Values

stemmer Specify which language stemmer to use. You can specify one of the
following stemmers:

NULL (no stemming)

ENGLISH (English inflectional)
DERIVATIONAL (English derivational)
DUTCH

FRENCH

GERMAN

ITALIAN

SPANISH

AUTO (Automatic language-detection for stemming, derived from
the database session language. If the database session language is
AMERICAN or ENGLISH, then the ENGLISH stemmer is used.
Does not auto-detect JAPANESE.)

JAPANESE

fuzzy_match Specify which fuzzy matching cluster to use. You can specify one of
the following types:

AUTO (Automatic language detection for stemming.)
CHINESE_VGRAM
DUTCH

ENGLISH

FRENCH

GENERIC

GERMAN

ITALIAN
JAPANESE_VGRAM
KOREAN

OCR

SPANISH

fuzzy_score Specify a default lower limit of fuzzy score. Specify a number
between 1 and 80. Text with scores below this number is not
returned. Default is 60.

fuzzy_numresults Specify the maximum number of fuzzy expansions. Use a number
between 0 and 5,000. Default is 100.

substring_index Specify TRUE for Oracle Text to create a substring index. A substring
index improves left-truncated and double-truncated wildcard
queries such as %ing or %benz%. Default is FALSE.

prefix_index Specify TRUE to enable prefix indexing. Prefix indexing improves
performance for right truncated wildcard searches such as TO%.
Default is FALSE.

prefix_min_length Specify the minimum length of indexed prefixes. Default is 1. Length
information must follow USC-2 codepoint semantics.

2-74 Oracle Text Reference

Wordlist Type

Table 2-37 (Cont.) BASIC_WORDLIST Attributes
. ___|

Attribute

Attribute Values

prefix_max_length

wildcard_maxterms

ndata_base_letter

ndata_alternate_spelling

ndata_thesaurus

ndata_join_particles

reverse_index

Specify the maximum length of indexed prefixes. Default is 64.
Length information must follow USC-2 codepoint semantics.

Specify the maximum number of terms in a wildcard expansion. The
maximum value is 50000 and the default value is 20000. If you
specify a value of 0, then the number of wildcard expansions will be
unbounded. Note that when set to 0, the system may run out of
memory due to the high number of wildcard expansions.

Specify whether characters that have diacritical marks are converted
to their base form before being stored in the Text index or queried by
the NDATA operator.

FALSE (default) or TRUE

When set to FALSE, no base lettering is used.

Specify whether to enable alternate spelling for German, Danish, and
Swedish. Enabling alternate spelling allows you to index NDATA
section data and query using the NDATA operator in alternate form.

FALSE (default) or TRUE
When set to FALSE, no alternate spelling is used.

Name of the thesaurus used for alternate name expansion.

A list of colon-separated name particles that can be joined with a
name that follows them.

Specify whether to enable the creation of another index on $1 to
provide better performance for left truncated queries. These are
queries where one or more tokens have a leading wildcard and no
trailing wildcard, for example, the %racle %atabase.

When set to TRUE, it creates a new index $V on $1 on reverse
(token_text). Default is FALSE.

stemmer

Specify the stemmer used for word stemming in Text queries. When you do not
specify a value for STEMMER, the default is ENGL I1SH.

Specify AUTO for the system to automatically set the stemming language according to
the language setting of the database session. If the database language is AMERICAN or
ENGLISH, then the ENGL I SH stemmer is automatically used. Otherwise, the stemmer
that maps to the database session language is used.

When there is no stemmer for a language, the default is NULL. With the NULL
stemmer, the stem operator is ignored in queries.

You can create your own stemming user-dictionary. See "Stemming User-Dictionaries
(page 2-47)" for more information.

Oracle Text Indexing Elements 2-75

Wordlist Type

Note:
The STEMMER attribute of BASIC_WORDLIST preference will be ignored if:

1. INDEX_STEMS attribute of BASIC_LEXER preference is set to BOKMAL,
CATALAN, CROAT IAN, CZECH, DANISH, FINNISH, GREEK, HEBREW,
HUNGARIAN, NYNORSK, POL1SH, PORTUGUESE, ROMANITAN, RUSSIAN,
SERBIAN, SLOVAK, SLOVENIAN, SWEDISH, ENGL ISH_NEW,
DERIVATIONAL_NEW, DUTCH_NEW, FRENCH_NEW, GERMAN_NEW,
ITALIAN_NEW, or SPANISH_NEW.

Or

2. INDEX_STEMS attribute of AUTO_LEXER preference is set to YES.
Or

3. The database session language causes MULTI_LEXER to choose a
SUB_LEXER with the same setting as 1 or 2 above.

In these cases, the same stemmer that is used by the BASIC_LEXER or
AUTO_LEXER during indexing will be used to determine the stem of the
query term during query.

fuzzy_match

Specify which fuzzy matching routines are used for the column. Fuzzy matching is
currently supported for English, Japanese, and, to a lesser extent, the Western
European languages.

Note:

The fuzzy_match attributes value for Chinese and Korean are dummy
attribute values that prevent the English and Japanese fuzzy matching
routines from being used on Chinese and Korean text.

The default for fuzzy match is GENERIC.

Specify AUTO for the system to automatically set the fuzzy matching language
according to language setting of the session.

fuzzy_score
Specify a default lower limit of fuzzy score. Specify a number between 0 and 80. Text
with scores below this number are not returned. The default is 60.

Fuzzy score is a measure of how close the expanded word is to the query word. The
higher the score the better the match. Use this parameter to limit fuzzy expansions to
the best matches.

fuzzy_numresults
Specify the maximum number of fuzzy expansions. Use a number between 0 and
5000. The default is 100.

Setting a fuzzy expansion limits the expansion to a specified number of the best
matching words.

2-76 Oracle Text Reference

Wordlist Type

substring_index

Specify TRUE for Oracle Text to create a substring index. A substring index improves
performance for left-truncated or double-truncated wildcard queries such as %ing or
%benz%. The default is false.

Substring indexing has the following impact on indexing and disk resources:
® Index creation and DML processing is up to 4 times slower

¢ Index creation with substring_index enabled requires more rollback segments
during index flushes than with substring index off. Oracle recommends that you
do either of the following when creating a substring index:

— Make available double the usual rollback or
— Decrease the index memory to reduce the size of the index flushes to disk
prefix_index

Specify yes to enable prefix indexing. Prefix indexing improves performance for right
truncated wildcard searches such as TO%. Default is NO.

Note:
Enabling prefix indexing increases index size.

Prefix indexing chops up tokens into multiple prefixes to store in the $I table. For
example, words TOKEN and TOY are normally indexed as follows in the $I table:

Token Type Information
TOKEN 0 DOCID 1 POS 1
TOY 0 DOCID 1 POS 3

With prefix indexing, Oracle Text indexes the prefix substrings of these tokens as
follows with a new token type of 6:

Token Type Information

TOKEN 0 DOCID 1 POS 1

TOY 0 DOCID 1 POS 3

T 6 DOCID 1 POS 1 POS 3
TO 6 DOCID 1 POS 1 POS 3
TOK 6 DOCID 1 POS 1
TOKE 6 DOCID 1 POS 1
TOKEN 6 DOCID 1 POS 1

TOY 6 DOCID 1 POS 3

Wildcard searches such as TO% are now faster because Oracle Text does no expansion
of terms and merging of result sets. To obtain the result, Oracle Text need only
examine the (TO,6) row.

Oracle Text Indexing Elements 2-77

Wordlist Type

prefix_min_length
Specify the minimum length of indexed prefixes. Default is 1.

For example, setting prefix_min_JIlength to 3 and prefix_max_length to 5
indexes all prefixes between 3 and 5 characters long.

Note:

A wildcard search whose pattern is below the minimum length or above the
maximum length is searched using the slower method of equivalence
expansion and merging.

prefix_max_length
Specify the maximum length of indexed prefixes. Default is 64.

For example, setting prefix_min_»length to 3 and prefix_max_length to 5
indexes all prefixes between 3 and 5 characters long.

Note:

A wildcard search whose pattern is below the minimum length or above the
maximum length is searched using the slower method of equivalence
expansion and merging.

wildcard_maxterms

Specify the maximum number of terms in a wildcard (%) expansion. Use this
parameter to keep wildcard query performance within an acceptable limit. When the
wildcard query expansion exceeds this number, Oracle Text returns the following
error:

ORA-29902: error in executing ODClIndexStart() routine
ORA-20000: Oracle Text error:
DRG-51030: wildcard query expansion resulted in too many terms

In such cases, use a more restrictive query so that it results in fewer matches or
increase the value of wi ldcard_maxterms. You can also set wi ldcard_maxterms
to 0 to ignore the limit.

Note:

If the value of wi ldcard_maxterms is set as 0, the query might fail and
returns the above error again if too many terms are matched by the wildcard
search term.

You can also capture the above error and display your own less terse message.

Note:
Search terms with wildcard queries having only the wildcard character, for
example: %, %_%, and %_, are threaded as stopwords.

2-78 Oracle Text Reference

Wordlist Type

ndata_base_letter

Specify whether characters that have diacritical marks (umlauts, cedillas, acute
accents, and so on) are converted to their base form before being stored in the Text
index or queried by the NDATA operator. The default is FALSE (base-letter conversion
disabled). For more information on base-letter conversions, see "Base-Letter
Conversion (page 17-2)".

ndata_alternate_spelling

Specify whether to enable alternate spelling for German, Danish, and Swedish.
Enabling alternate spelling allows you to index NDATA section data and query using
the NDATA operator in alternate form.

When ndata_base letter is enabled at the same time as
ndata_alternate_spelling, NDATA section data is serially transformed first by
alternate spelling and then by base lettering. For more information about the alternate
spelling conventions Oracle Text uses, see "Alternate Spelling (page 17-2)".

ndata_thesaurus

Specify a name of the thesaurus used for alternate name expansion. The indexing
engine expands names in documents using synonym rings in the thesaurus. A user
should make use of homographic disambiguating feature of the thesaurus to
distinguish common nicknames.

An example is:

Albert
SYN Al
SYN Bert
Alfred
SYN Al
SYN Fred

A simple definition such as the above will put Albert, Alfred, Al, Bert, and Fred into
the same synonym ring. This will cause an unexpected expansion such that the
expansion of Bert includes Fred. To prevent this, you can use homographic
disambiguation as in:

Albert
SYN Al (Albert)
SYN Bert (Albert)
Alfred
SYN Al (Alfred)
SYN Fred (Alfred)

This forms two synonym rings, Albert-Al-Bert and Alfred-Al-Fred. Thus, the
expansion of Bert no longer includes Fred. A more detailed example is:

begin
ctx_ddl.create_preference("NDAT_PREF", "BASIC_WORDLIST");
ctx_ddl.set_attribute("NDATA_PREF", "NDATA ALTERNATE_SPELLING®, "FALSE");
ctx_ddl.set_attribute("NDATA_PREF", "NDATA BASE LETTER", "TRUE");
ctx_ddl.set_attribute("NDATA_PREF", "NDATA_ THESAURUS", "NICKNAMES®");

end;

Oracle Text Indexing Elements 2-79

Wordlist Type

Note:
A sample thesaurus for names can be found in the $ORACLE_HOME/ctx/
sample/thes directory. This file is drOthsnames . txt.

ndata_join_particles

Specify a list of colon-separated name particles that can be joined with a name that
follows them. A name particle, such as da, is written separately from or joined with its
following name like da Vinci or daVinci. The indexing engine generates index data
for both separated and join versions of a name when it finds a name particle specified
in this preference. The same happens in the query processing for better recall.

reverse_index
Reverse index allows for fast searches on left-truncated search terms.

Indexed words are stored in the token table ($1) which has an index ($X) on it.
Normally, if a search term such as “%xxx” is used in a query, the $X index cannot be
used. So, a full table scan of the $1 table is necessary, which can lead to poor search
performance.

Setting REVERSE__INDEX to TRUE creates an extra index ($V) on a reverse form of
the tokens. This allows for indexed lookups for left-truncated terms, leading to much
better query performance for such terms.

REVERSE_INDEX speeds up searching of tokens with leading wildcards such as the
second word in the search "oracle %base". If the token has both leading and trailing
wildcards such as "oracle %bas%" this attribute will not help and the
SUBSTRING_INDEX option should be used instead.

Specify the attribute as a part of the wordlist preference and set it to TRUE or FALSE.
Default is FALSE. Set this attribute using CTX_DDL . SET_ATTRIBUTE procedure or
using ALTER INDEX REBUILD statement as used in any wordlist preference.

Syntax
ctx_ddl.set_attribute(worlist_pref name, "REVERSE_INDEX", BOOLEAN);

worlist_pref name
Specify the first argument as the wordlist preference name.

REVERSE_INDEX
Specify the wordlist preference name as REVERSE_ INDEX.

BOOLEAN
The attribute can be set to TRUE or FALSE. By default, the value is FALSE.

The following example creates a wordlist preference and sets REVERSE__ INDEX to
TRUE :

exec ctx_ddl.create_preference(“wrdlst”, “BASIC_WORDLIST?);
exec ctx_ddl.set_attribute(“wrdlst”, “REVERSE_INDEX”, “TRUE”);

The following traces are added for the Reverse Index $V which can be used to track
timing and usage of this index at query time.

Trace ID Trace Name Description
37 TRACE_QRY_VV_TIM Time spent in
E executing the $V cursor

2-80 Oracle Text Reference

Wordlist Type

Trace ID Trace Name Description

38 TRACE_QRY_VF_TIM Time spent in fetching
E rows from $V

39 TRACE_QRY_V_ROW Number of rows with
S $V fetched metadata

2.6.2 BASIC_WORDLIST Example
The following example shows the use of the BASIC_WORDLIST type.

* Enabling Fuzzy Matching and Stemming (page 2-81)
¢ Enabling Sub-string and Prefix Indexing (page 2-81)

¢ Setting Wildcard Expansion Limit (page 2-81)

2.6.2.1 Enabling Fuzzy Matching and Stemming

The following example enables stemming and fuzzy matching for English. The
preference STEM_FUZZY_PREF sets the number of expansions to the maximum
allowed. This preference also instructs the system to create a substring index to
improve the performance of double-truncated searches.

begin
ctx_ddl.create_preference("STEM_FUZZY_PREF", "BASIC_WORDLIST");
ctx_ddl.set_attribute("STEM_FUZZY_PREF",*FUZZY_MATCH",*ENGLISH");
ctx_ddl.set_attribute(*STEM_FUZZY_PREF",*FUZZY_SCORE",*0");
ctx_ddl.set_attribute("STEM_FUZZY_PREF",*FUZZY_NUMRESULTS","5000%);
ctx_ddl.set_attribute(*STEM_FUZZY_PREF",*SUBSTRING_INDEX",*TRUE");
ctx_ddl.set_attribute(*STEM_FUZZY_PREF",*STEMMER",*ENGLISH");

end;

To create the index in SQL, enter the following statement:
create index fuzzy stem subst_idx on mytable (docs)

indextype is ctxsys.context parameters ("Wordlist STEM_FUZZY PREF");
2.6.2.2 Enabling Sub-string and Prefix Indexing

The following example sets the wordlist preference for prefix and sub-string indexing.
For prefix indexing, it specifies that Oracle Text create token prefixes between 3 and 4
characters long;:

begin

ctx_ddl.create_preference("mywordlist®, "BASIC_WORDLIST");
ctx_ddl.set_attribute("mywordlist®, "PREFIX_INDEX",*TRUE");
ctx_ddl.set_attribute("mywordlist®, "PREFIX_MIN_LENGTH",3);
ctx_ddl.set_attribute("mywordlist®, "PREFIX_MAX_LENGTH", 4);
ctx_ddl.set_attribute("mywordlist®, "SUBSTRING_INDEX", "YES");

end;

2.6.2.3 Setting Wildcard Expansion Limit

Use the wildcard_maxterms attribute to set the maximum allowed terms in a wildcard
expansion.

--- create a sample table
drop table quick ;

Oracle Text Indexing Elements 2-81

Storage Types

create table quick
(
quick_id number primary key,
text varchar(80)
);

-——insert a row with 10 expansions for "tire%"
insert into quick (quick_id, text)

values (1, "tire tirea tireb tirec tired tiree tiref tireg tireh tirei tirej");
commit;

--- create an index using wildcard_maxterms=100
begin
Ctx_Ddl.Create_Preference("wildcard_pref®, "BASIC_WORDLIST");
ctx_ddl.set_attribute("wildcard _pref®, "wildcard _maxterms®, 100) ;
end;
/
create index wildcard_idx on quick(text)
indextype is ctxsys.context
parameters (“Wordlist wildcard_pref") ;

-—-— query on "tire%" - should work fine
select quick_id from quick
where contains (text, "tire%") > 0;

--- now re-create the index with wildcard_maxterms=5
drop index wildcard_idx ;

begin
Ctx_Ddl.Drop_Preference("wildcard_pref*®);
Ctx_Ddl.Create_Preference("wildcard_pref®, "BASIC_WORDLIST");
ctx_ddl.set_attribute("wildcard _pref®, “wildcard maxterms®, 5) ;

end;

/

create index wildcard_idx on quick(text)
indextype is ctxsys.context
parameters (“Wordlist wildcard_pref") ;

-—- query on "tire%" gives "wildcard query expansion resulted in too many terms"
select quick_id from quick
where contains (text, "tire%") > 0;

2.7 Storage Types

Use the storage preference to specify tablespace and creation parameters for tables
associated with a Text index. The system provides a single storage type called
BASIC_STORAGE:

Table 2-38 Storage Types
- __|

Type Description

BASIC_STORAGE Indexing type used to specify the tablespace and creation

(page 2-83) parameters for the database tables and indexes that constitute a
Text index.

2-82 Oracle Text Reference

Storage Types

2.7.1 BASIC_STORAGE

The BASIC_STORAGE indexing type specifies the tablespace and creation parameters
for the database tables and indexes that constitute a Text index.

The clause you specify is added to the internal CREATE TABLE (CREATE INDEX for the
i_index_clause) statement at index creation. You can specify most allowable
clauses, such as storage, LOB storage, or partitioning. However, you cannot specify an
index organized table clause.

You can store Text index tables in the In-Memory Column Store (IM column store) by
specifying inmemory in the storage clause for that table. IM column store is supported
for the types of tables represented by the following storage attributes:
I_TABLE_CLAUSE, R_TABLE_CLAUSE, G_TABLE_CLAUSE, O_TABLE_CLAUSE,
D_TABLE_CLAUSE, SN_TABLE_CLAUSE, and E_TABLE_CLAUSE.

This section contains the following topics.
e BASIC_STORAGE Attributes (page 2-83)
e BASIC_STORAGE Default Behavior (page 2-90)

e BASIC_STORAGE Examples (page 2-90)

See Also:

e Oracle Database SQL Language Reference for more information about how to
specify CREATE INDEX statement

* Oracle Database SQL Language Reference for more information about how to
specify CREATE TABLE statement

2.7.1.1 BASIC_STORAGE Attributes
BASIC_STORAGE has the attributes specified in Table 2-39 (page 2-83).

Table 2-39 BASIC_STORAGE Attributes

Attribute

Attribute Value

big_io

Parameter clause to improve the query performance for the CONTEXT
index that is extensively used for IO operations. It uses SECUREFILES, and
hence the tablespace must use automatic segment space management
(ASSM). This clause mainly improves the query performance for rotational
disks, where seeks are expensive compared to serial reads. Creating an
index with the BIG_10 index option requires the CREATE TRIGGER
privilege, as a temporary trigger is created during the indexing process.

There is not much of a query performance improvement when the data
storage is on solid state disks.

Set it to YES to enable the BIG_10 index option for the CONTEXT index.
The default is NO.

Oracle Text Indexing Elements 2-83

Storage Types

Table 2-39 (Cont.) BASIC_STORAGE Attributes
. __|

Attribute Attribute Value

d_table_clause Parameter clause to specify the storage clause for the $D table.

This clause may be specified if the forward index feature is being used.
The forward index feature is used to increase the query performance while
calculating snippets.

If the d_table_clause is manually set, then it is recommended that you
choose SecureFiles with high compression for the document blob column
doc of the $D table. If the d_table_clause is not set, then the document
blob uses SecureFiles by default, if the index owner's default tablespace is
ASSM and the database compatible parameter is 11.0 or higher.

The $D table is created to save a copy of a document into the index by

either specifying a save_copy column or by specifying the save_copy
storage attribute.

e_table_clause Parameter clause for dr$indexname$E table creation. Used to specify the
storage and tablespace clauses to add to the end of the internal CREATE
TABLE statement.

forward_index Parameter clause to improve the performance of the following CTX_DOC
package procedures:
e ctx_doc.snippet
e ctx_doc.highlight
e ctx_doc.markup
Set it to TRUE to enable the forward index feature. This creates the $O
table. The $O table stores the mapping information from the token offsets
in the $I table to character offsets in the indexed documents.

The default is FALSE.

g_index_clause Parameter clause for the $H btree index on the $G table.

Specify the storage and tablespace clauses to add to the end of the internal
CREATE INDEX statement.

When a CONTEXT index is created with the STAGE_ITAB index option,
an empty $G table is created with the $H btree index on it. Use the
g_index_clause clause in conjunction with the STAGE_ITAB index
option for improving the query performance for the CONTEXT index that is
extensively used for DML operations.

g_table_clause Parameter clause for the $G table.

Specify the storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement.

When a CONTEXT index is created with the STAGE_ITAB index option,
an empty $G table is created with the $H btree index on it. Use the
g_table_clause clause in conjunction with the STAGE_ITAB index
option for improving the query performance for the CONTEXT index that is
extensively used for DML operations.

i_index_clause Parameter clause for dr$indexname$X index creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE INDEX
statement. The default clause is: "COMPRESS 2%, which instructs Oracle
Text to compress this index table.

If you choose to override the default, Oracle recommends including
COMPRESS 2 in your parameter clause to compress this table, because
such compression saves disk space and helps query performance.

2-84 Oracle Text Reference

Storage Types

Table 2-39 (Cont.) BASIC_STORAGE Attributes
. __|

Attribute

Attribute Value

i_rowid_index_clause

i_table_clause

k _table_clause

n_table_clause

o_table_clause

p_table_clause

query_Tfilter_cache_size

Parameter clause to specify the storage clause for the $R index on dr$rowid
column of the $I table. Specify storage and tablespace clauses to add to the
end of the internal CREATE INDEX statement.

This clause is only used by the CTXCAT index type.

Parameter clause for dr$indexname$l table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement.

The I table is the index data table.

Note: Oracle strongly recommends that you do not specify "disable storage
in row" for $I LOBs, as this will greatly degrade the query performance.

Parameter clause for dr$indexname$K table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement.

The K table is the keymap table.

Parameter clause for dr$indexname$N table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement.

The N table is the negative list table.

Parameter clause to specify the storage clause for the $O table.

This clause may be specified if the forward index feature is being used.
The forward index feature is used to increase the query performance while
calculating snippets.

If the o_table_clause is manually set, then it is recommended that you
choose SecureFiles with high compression for the document blob column
mapping of the $O table. If the o_table_clause is not set, then the
document blob uses SecureFiles by default, if the index owner's default
tablespace is ASSM and the database compatible parameter is 11.0 or
higher.

The $0 table is created when the forward index feature is enabled by
specifying the forward_index storage attribute. The $O table stores the
mapping information from the token offsets in the $I table to character
offsets in the indexed documents.

Parameter clause for the substring index if you have enabled
SUBSTRING_INDEX in the BASIC_WORDLIST.

Specify storage and tablespace clauses to add to the end of the internal
CREATE INDEX statement. The P table is an index-organized table so the
storage clause you specify must be appropriate to this type of table.

Parameter clause to specify the maximum size of the query filter cache in
bytes. The query filter cache is allocated out of the shared pool, so its
maximum size must be smaller than the shared pool size. When this
storage preference is set at the partition level, it is implicitly set at the
index level.

The default is 0.

Oracle Text Indexing Elements 2-85

Storage Types

Table 2-39 (Cont.) BASIC_STORAGE Attributes
. __|

Attribute Attribute Value

r_table_clause Parameter clause for dr$indexname$R table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement.

The R table is the rowid table.
The default clause is: "LOB(DATA) STORE AS (CACHE)".

If you modify this attribute, always include this clause for good
performance.

s_table_clause Parameter clause for dr$indexname$S table creation*. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement. The default clause is nocompress.

* For performance reasons, $S table must be created on a tablespace with
db block size >= 4K without overflow segment and without a
PCTTHRESHOLD clause. If $S is created on a tablespace with db block size <
4K, or is created with an overflow segment or with PCTTHRESHOLD clause,
then appropriate errors will be raised during CREATE INDEX.

The S table is the table that stores SDATA section values.

If this clause is specified for a storage preference in an index without
SDATA, then it will have no effect on the index, and index creation will still
succeed.

save_copy Parameter clause to specify saving the document to the $D index table.

Specify this clause to use the forward index feature for increasing the
query performance while calculating snippets.

Set it to PLAINTEXT to save the copy of a document in the $D table in the
plaintext format. This improves the performance of snippet generation,
since it does not invoke the datastore or filter to fetch the text. This also
improves the performance of highlight.

Set it to FILTERED to save the copy of a document in the $D table in the
filtered (HTML) format. This improves the performance of highlight and
markup, but requires more disk space than plaintext format. It is less
efficient for snippets generation, since the HTML markup must be
removed during the creation of snippets.

The default is NONE, and the copy of a document is not saved in the $D
table.

save_copy_max_size Parameter clause to specify the maximum size of a document to save in the
$D table using a basic_storage attribute.
If the document size is greater than the size specified in this attribute, the
truncated version of the document having the size specified in this
attribute is saved in the $D table.
If the $D table is using SecureFiles with compression for the document
blob, then the save_copy_max_size restriction is applied on the
document size before compression.
The default is 0, and the whole document is saved in the $D table
irrespective of its size.
Note: The save_copy_max_size parameter clause is effective only when
the save_copy parameter clause is specified.

2-86 Oracle Text Reference

Storage Types

Table 2-39 (Cont.) BASIC_STORAGE Attributes
. __|

Attribute

Attribute Value

separate_offsets

single_byte

small_r_row

sn_table_clause

sn_index_clause

sd_table_clause

sd_index_clause

sv_table_clause

sv_index_clause

sr_table_clause

sr_index_clause

Parameter clause to improve the query performance for the CONTEXT
index that is extensively used for IO operations, and whose queries are
mainly single-word or boolean queries.

Set it to T to enable the SEPARATE_OFFSETS index option for the
CONTEXT index. The default is F.

Storage option for better performance if all the indexed data that is known
in advance is single-byte.

When set to TRUE, all the data is treated as a single-byte (8-bit) data and
the character set is irrelevant during indexing and querying. Ensure that
no character in the data set crosses the single-byte (8-bit) limit. The default
is FALSE.

Storage attribute to reduce the size of $R row. It improves DML and query
performance during parallel DML and query workload. It reduces lock
contention during DMLs, thus improving the DML performance.

Parameter clause for dr$indexname$SN table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: “LOB(VAL_INFO) STORE AS
(CACHE)".

Parameter clause for dr$indexname$SNI table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

Parameter clause for dr$indexname$SD table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: “LOB(VAL_INFO) STORE AS
(CACHE)".

Parameter clause for dr$indexname$SDI table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

Parameter clause for dr$indexname$SV table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: “LOB(VAL_INFO) STORE AS
(CACHE)".

Parameter clause for dr$indexname$SV1 table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

Parameter clause for dr$indexname$SR table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: “LOB(VAL_INFO) STORE AS
(CACHE)".

Parameter clause for dr$indexname$SRI table creation. Specify the storage

and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

Oracle Text Indexing Elements 2-87

Storage Types

Table 2-39 (Cont.) BASIC_STORAGE Attributes
. __|

Attribute Attribute Value

sbd_table_clause Parameter clause for dr$indexname$SBD table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: “LOB(VAL_INFO) STORE AS

(CACHE)".

sbd_index_clause Parameter clause for dr$indexname$SBDI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

sbf_table_clause Parameter clause for dr$indexname$SBF table creation. Specify the storage

and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: “LOB(VAL_INFO) STORE AS
(CACHE)~.

sbf_index_clause Parameter clause for dr$indexname$SBF 1 table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

st_table_clause Parameter clause for dr$indexname$ST table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: “LOB(VAL_INFO) STORE AS

(CACHE)”.

st_index_clause Parameter clause for dr$indexname$ST1 table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

stz_table_clause Parameter clause for dr$indexname$STZ table creation. Specify the storage

and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: “LOB(VAL_INFO) STORE AS

(CACHE)".

stz_index_clause Parameter clause for dr$indexname$STZ1 table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

sid_table_clause Parameter clause for dr$indexname$S DS table creation. Specify the

storage and tablespace clauses to add at the end of the internal CREATE
TABLE statement. The default clause is: “LOB(VAL_INFO) STORE AS
(CACHE)”.

sid_index_clause Parameter clause for dr$indexname$SIDS| table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

siym_table_clause Parameter clause for dr$indexname$S1YM table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
TABLE statement. The default clause is: “LOB(VAL_INFO) STORE AS
(CACHE)".

siym_index_clause Parameter clause for dr$indexname$S1YMI table creation. Specify the

storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

2-88 Oracle Text Reference

Storage Types

Table 2-39 (Cont.) BASIC_STORAGE Attributes
. __|

Attribute

Attribute Value

stage_itab

stage_itab_max_rows

stage_itab_max_parallel

Switch to improve the query performance for the CONTEXT index that is
extensively used for DML operations.

When the STAGE_1TAB index option is disabled, then when a new
document is added to the index, SYNC__INDEX is called to make the
documents searchable. This creates new rows in the $I table, thus
increasing the fragmentation in the $I table. This leads to the deterioration
of the query performance.

When the STAGE_ 1 TAB index option is enabled, the information about the
new documents is stored in the $G staging table, and not in the $I table.
This ensures that the $I table does not get fragmented, and thus does not
deteriorate the query performance.

When the STAGE_ITAB index option is enabled, the $H btree index is also
created on the $G table. The $G table and $H btree index are equivalent to
the $I table and $X btree index.

Set stage_itab to YES to enable the STAGE_ 1 TAB index option for the
CONTEXT index. The default is NO.

Storage option to ensure that the $G (stage_itab) table fits into the
KEEP pool and also that the $G table does not get filled up too frequently.
This option is also required to ensure that $G does not grow too big and
start slowing down the query and the index synchronization performance.

When the number of rows in the $G table exceeds this setting, a process is
started to move all data from the $G table to the $I table, optimizing the
data as it is moved. Note that this may cause certain SYNC operations or
commits if SYNC(ON COMMIT) is used to take an unexpectedly long time
because they may be moving many $G rows which have been inserted by
other processes. If this is unacceptable, set stage_itab_max_rows to O
and use an auto optimization job instead.

When scheduling an auto optimization job, set stage_itab_max_rows
to 0 to disable the automatic merging that now happens through sync
index.

If stage_itab_max_rows is not set to 0 and an attempt is made to
schedule an auto optimization job, then an error occurs.

You can set stage_itab_max_rows to either 0 or any value greater than
or equal to 1000. The default value is 1 million. Oracle recommends a value
of 100K to 1 million for optimal merge performance during sync index.

With stage_itab, when queries are run during heavy DML operations,
Oracle Database can issue the following error: ORA-08176 consistent
read failure; rollback data not available.In such cases,
increase the size of the UNDO tablespace and the UNDO_RETENTION
initialization parameter.

See Also: SYNC_INDEX (page 8-70)

New storage option controls the degree of parallelism used to merge rows
from the stage_itab ($G table) back to the $1 table when the
stage_itab_max_rows limit is hit.

The default value is 16 for the degree of parallelism.

Oracle Text Indexing Elements 2-89

Storage Types

Table 2-39 (Cont.) BASIC_STORAGE Attributes
. __|

Attribute Attribute Value

u_table_clause Specify the storage and tablespace clauses to add at the end of the internal
CREATE TABLE statement. The $U table keeps track of concurrent
updates.

2.7.1.2 BASIC_STORAGE Default Behavior

By default, BASIC_STORAGE attributes are not set. In such cases, the Text index tables
are created in the index owner's default tablespace. Consider the following statement,
entered by user IUSER, with no BASIC_STORAGE attributes set:

create index IOWNER.idx on TOWNER.tab(b) indextype is ctxsys.context;
In this example, the text index is created in IOWNER"s default tablespace.

2.7.1.3 BASIC_STORAGE Examples

The following examples specify that the index tables are to be created in the foo
tablespace with an initial extent of 1K:

begin
ctx_ddl.create_preference("mystore®, *BASIC_STORAGE®);
ctx_ddl.set_attribute("mystore®, "I _TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "K_TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "R_TABLE_CLAUSE",

"tablespace users storage (initial 1K) lob

(data) store as (disable storage in row cache)®);
ctx_ddl.set_attribute("mystore®, *N_TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "I_INDEX_CLAUSE",

"tablespace foo storage (initial 1K) compress 2%);
ctx_ddl.set_attribute("mystore®, "P_TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, *S TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "U_TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");end;

The following example adds to the end of the internal table that is created.

exec ctx_ddl.create_preference("sto”, "basic_storage");
exec ctx_ddl.set_attribute("sto”, "e_table _clause®, "tablespace foo");

The following example uses query_Filter_cache_size storage parameter for a
partitioned index:

exec ctx_ddl.create_preference("fcs", "basic_storage®);
exec ctx_ddl.set_attribute("fcs", "query_filter_cache_size®, "100000000%);

create table fc(id number primary key, txt varchar2(64))
partition by range (id)
(

partition pl values less than (25),

partition p2 values less than (50),

partition p3 values less than (75)

2-90 Oracle Text Reference

Storage Types

);

create index fci on fc(txt) indextype is ctxsys.context
local (
partition pl,
partition p2,
partition p3) parameters(“storage fcs memory 49M sync (on commit)*);

The query filter cache is an index level storage preference. The storage preference for
the query filter cache can be set at partition level only if this is also set at the index
level.

select count(*) from fc partition (pl) where
contains(txt, *ctxfiltercache((hello))*)>0;

SINGLE_BYTE Data Indexing Storage Attribute
Syntax
ctx_ddl.set_attribute(storage_pref _name, "SINGLE_BYTE", BOOLEAN);

storage_pref_name
Specify the first argument as the storage preference name.

SINGLE_BYTE
Specify the storage attribute name as SINGLE_BYTE or single_byte.

BOOLEAN

Indicate whether the attribute is set. By default, the value is FALSE. It implies that the
database character set identifies whether the documents are stored as single-byte or
multi-byte.

The following example sets the storage preference and enables the single_byte
storage attribute:

exec ctx_ddl.create_preference("mysto®, "basic_storage®);
ctx_ddl.set_attribute("mysto®, "single_byte", "TRUE");

SMALL_R_ROW Storage Attribute
Syntax
ctx_ddl.set_attribute(storage_pref _name, "SMALL_R_ROW®", BOOLEAN);

storage_pref_name
Specify the first argument as the storage preference name.

SMALL_R_ROW
Specify the storage attribute name as SMALL_R_ROW or small_r_row..

BOOLEAN
Indicate whether the attribute is set. By default, the value is TRUE.

The following example sets the storage preference and enables the small_r_row
storage attribute:

begin
ctx_ddl.create_preference("sto", “"basic_storage®);

Oracle Text Indexing Elements 2-91

Section Group Types

ctx_ddl.set_attribute("sto®, “"small_r_row®, "T",
end;

To enable or disablesmal 1_r_row feature on an existing index:

ALTER INDEX index_nanme rebuild PARAMETERS("replace storage sto");

By default, small_r_row=TRUE , however, for earlier releases,
small_r_row=FALSE.

2.8 Section Group Types

To enter WITHIN queries on document sections, you must create a section group
before you define your sections. Specify your section group in the parameter clause of
CREATE INDEX (page 1-41).

This section contains the following topics.
¢ Section Group Types for Creating a Section Group (page 2-92)
® Section Group Examples for HTML, XML, and JSON Enabled Documents
(page 2-93)
2.8.1 Section Group Types for Creating a Section Group
To create a section group, you can specify one of the following group types with the

CTX_DDL.CREATE_SECTION_GROUP (page 8-36) procedure.

Table 2-40 Section Group Types
- ___|

Type Description

NULL_SECTION_GROUP Use this group type when you define no sections or when you
define only SENTENCE or PARAGRAPH sections. This is the
default.

BASIC_SECTION_GROUP Use this group type for defining sections where the start and
end tags are of the form <A> and .

Note: This group type does not support input such as
unbalanced parentheses, comments tags, and attributes. Use
HTML_SECT ION_GROUP for this type of input.

HTML_SECT ION_GROUP Use this group type for indexing HTML documents and for
defining sections in HTML documents.

JSON_SECT ION_GROUP Use this group to create a JSON enabled context index. The
JSON ENABLE attribute cannot be used with XML ENABLE. A
section group can only be marked as JSON ENABLE. If it is
already marked with XML ENABLE, then the path section group
cannot be used for JSON ENABLE and vice versa.

XML_SECTION_GROUP Use this group type for indexing XML documents and for

defining sections in XML documents. All sections to be indexed
must be manually defined for this group.

2-92 Oracle Text Reference

Section Group Types

Table 2-40 (Cont.) Section Group Types
___|

Type

Description

AUTO_SECTION_GROUP

PATH_SECTION_GROUP

NEWS_SECT ION_GROUP

Use this group type to automatically create a zone section for
each start-tag/end-tag pair in an XML document. The section
names derived from XML tags are case sensitive as in XML.

Attribute sections are created automatically for XML tags that
have attributes. Attribute sections are named in the form
tag@attribute.

Special sections can be added to AUTO_SECT I0N_GROUP for
WITHIN SENTENCE and WITHIN PARAGRAPH searches. Once a
sentence or paragraph section is added to the

AUTO_SECT ION_GROUP, sections with corresponding tag
names 'sentence’ or 'paragraph’ (case insensitive) are treated
as stop sections.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section groups:

* You cannot add zone, field, sdata, or special sections to an
automatic section group.

* You can define a stop section that applies only to one
particular type; that is, if you have two different XML
DTDs, both of which use a tag called FOO, you can define
(TYPE1)FOO to be stopped, but(TYPE2)FOO to not be
stopped.

e The length of the indexed tags, including prefix and
namespace, cannot exceed 64 bytes. Tags longer than this
are not indexed.

Use this group type to index XML documents. Behaves like the
AUTO_SECTION_GROUP.

The difference is that with this section group you can do path
searching with the INPATH and HASPATH operators. Queries
are also case-sensitive for tag and attribute names. Stop sections
are not allowed.

Use this group for defining sections in newsgroup formatted
documents according to RFC 1036.

2.8.2 Section Group Examples for HTML, XML, and JSON Enabled Documents

The examples show the use of section groups in HTML and XML documents, and in
JSON enabled documents. See Table 2-40 (page 2-92) for a summary.

This section contains the following examples:

Creating Section Groups in HTML Documents (page 2-94)

Creating Sections Groups in XML Documents (page 2-94)

Automatic Sectioning in XML Documents (page 2-94)

Creating JSON Section Groups for JSON Search Index (page 2-95)

Using JSON Search Index with JSON_TEXTCONTAINS (page 2-95)

Using JSON Search Index with JSON_EXISTS (page 2-95)

Oracle Text Indexing Elements 2-93

Section Group Types

2.8.2.1 Creating Section Groups in HTML Documents

The following statement creates a section group called htmgroup with the HTML
group type.

begin
ctx_ddl.create_section_group(“htmgroup®, "HTML_SECTION_GROUP®");
end;

You can optionally add sections to this group using the procedures in the CTX_DDL
package, such as CTX_DDL . ADD_SPECIAL_SECTION or
CTX_DDL.ADD_ZONE_SECTION. To index your documents, enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters("filter ctxsys.null_filter section group htmgroup®);

See Also:

For more information on section groups, see CITX_DDL Package (page 8-1)

2.8.2.2 Creating Sections Groups in XML Documents

The following statement creates a section group called xmlgroup with the
XML_SECTION_GROUP group type.

begin
ctx_ddl.create_section_group("xmlgroup®, "XML_SECTION_GROUP™);
end;

You can optionally add sections to this group using the procedures in the CTX_DDL
package, such as CTX_DDL .ADD_ATTR_SECTION or CTX_DDL.ADD_STOP_SECTION.
To index your documents, enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters("filter ctxsys.null_filter section group xmlgroup®);

See Also:

For more information on section groups, see CITX_DDL Package (page 8-1)

2.8.2.3 Automatic Sectioning in XML Documents

The following statement creates a section group called auto with the
AUTO_SECT ION_GROUP group type. This section group automatically creates sections
from tags in XML documents.

begin
ctx_ddl.create_section_group("auto®, "AUTO_SECTION_GROUP*");
end;

CREATE INDEX myindex on docs(htmlfile) INDEXTYPE IS ctxsys.context
PARAMETERS("Ffilter ctxsys.null_filter section group auto");

2-94 Oracle Text Reference

Classifier Types

2.8.2.4 Creating JSON Section Groups for JSON Search Index
The following example creates a JSON enabled text index.

create index json_ctx_idx on customers (customer
_info)

indextype is ctxsys.context

parameters ("section group CTXSYS.JSON_SECTION_GROUP®);

2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS

The following example searches for customers having keyword "gold" in the
description.

select customer_info
from customers
where JSON_TEXTCONTAINS(customer_info, "$.description®, "gold");

2.8.2.6 Using JSON Search Index with JSON_EXISTS
Find JSON enabled data.

select customer_info from customers
where JSON_EXISTS(customer_info, "$.dataplan®);

2.9 Classifier Types

The following classifier types are used to create preferences for CTS_CLS.TRAIN and
CTXRULE index creation:

e RULE_CLASSIFIER (page 2-95)
e SVM_CLASSIFIER (page 2-96)
e SENTIMENT_CLASSIFIER (page 2-97)

Note:

In Oracle Database Express Edition (Oracle Database XE),
RULE_CLASSIFIER, SYM_CLASSIFIER, and SENTIMENT_CLASSIFIER are
not supported because the Data Mining option is not available. This is also
true for KMEAN_CLUSTERING.

2.9.1 RULE_CLASSIFIER

Use the RULE_CLASSIFIER type for creating preferences for the query rule
generating procedure, CTX_CLS.TRAIN and for CTXRULE creation. The rules
generated with this type are essentially query strings and can be easily examined. The
queries generated by this classifier can use the AND, NOT, or ABOUT operators. The
WITHIN operator is supported for queries on field sections only.

Table 2-41 (page 2-96) lists the attributes for the RULE_CLASSIFIER type.

Oracle Text Indexing Elements 2-95

Classifier Types

Table 2-41 RULE_CLASSIFIER Attributes
- - - - __|

Attribute Data Default Min Max Description
Type Value Value
THRESHOLD I 50 1 99 Specify threshold (in percentage) for rule

generation. One rule is output only when
its confidence level is larger than threshold.

MAX_TERMS I 100 20 2000 For each class, a list of relevant terms is
selected to form rules. Specify the
maximum number of terms that can be
selected for each class.

MEMORY_SIZE I 500 10 4000 Specify memory usage for training in MB.
Larger values improve performance.

NT_THRESHOLD F 0.001 0 0.90 Specify a threshold for term selection.
There are two thresholds guiding two steps
in selecting relevant terms. This threshold
controls the behavior of the first step. At
this step, terms are selected as candidate
terms for the further consideration in the
second step. The term is chosen when the
ratio of the occurrence frequency over the
number of documents in the training set is
larger than this threshold.

TERM_THRESHOLD I 10 0 100 Specify a threshold as a percentage for term
selection. This threshold controls the
second step term selection. Each candidate
term has a numerical quantity calculated to
imply its correlation with a given class. The
candidate term will be selected for this class
only when the ratio of its quantity value
over the maximum value for all candidate
terms in the class is larger than this
threshold.

PRUNE_LEVEL I 75 0 100 Specify how much to prune a built decision
tree for better coverage. Higher values
mean more aggressive pruning and the
generated rules will have larger coverage
but less accuracy.

2.9.2 SVM_CLASSIFIER

Use the SVM_CLASSIFIER type for creating preferences for the rule generating
procedure, CTX_CLS.TRAIN, and for CTXRULE creation. This classifier type
represents the Support Vector Machine method of classification and generates rules in
binary format. Use this classifier type when you need high classification accuracy.

This type has the following attributes:

2-96 Oracle Text Reference

Classifier Types

Table 2-42 SVM_CLASSIFIER Attributes
- - - - |

Attribute Name Data Default Min Max Description
Type Value Value
MAX_DOCTERMS I 50 10 8192 Specify the maximum

number of terms representing
one document.

MAX_FEATURES I 3,000 1 100,000 Specify the maximum
number of distinct features.

THEME_ON B FALSE NULL NULL Specify TRUE to use themes
as features.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM_ON B FALSE NULL NULL Specify TRUE to use stemmed
tokens as features. This only
works when turning
INDEX_STEM on for the lexer.

MEMORY_SIZE 1 500 10 4000 Specify approximate memory
size in MB.
SECTION_WEIGHT 1 2 0 100 Specify the occurrence

multiplier for adding a term
in a field section as a normal
term. For example, by
default, the term cat in
"<A>cat"is a field
section term and is treated as
a normal term with
occurrence equal to 2, but
you can specify that it be
treated as a normal term with
a weight up to 100.
SECTION_WEIGHT is only
meaningful when the index
policy specifies a field
section.

2.9.3 SENTIMENT_CLASSIFIER

Use the SENTIMENT_CLASSIFIER type to create a preference for sentiment analysis
queries. This classifier specifies preferences associated with a user-defined sentiment
classifier preference. You must define a preference of this type before you use the
CTX_CLS.SA_TRAIN_MODEL procedure to train the user-defined sentiment classifier.

Table 2-43 (page 2-98) lists the attributes for the SENTIMENT_CLASSIFIER type.

Oracle Text Indexing Elements 2-97

Cluster Types

Table 2-43 SENTIMENT_CLASSIFIER Attributes
I

Attribute Data Default Minimum Maximu Description
Type Value m Value

MAX_DOCTERMS I 50 10 8192 Specify the maximum number of distinct
terms representing one document

MAX_FEATURES I 3000 1 100000 Specify the maximum number of distinct
features used to build a sentiment classifier

THEME_ON B False Specify if themes must be extracted as
features

TOKEN_ON B True Specify if tokens must be extracted as
features

STEM_ON B True Specify if stemmed tokens must be extracted

as features

MEMORY_SIZE I 500 10 4000 Specify the typical memory size, in MB, used
to build the sentiment classifier.

SECTION_WEIGHT I 2 0 100 Specify the integer multiplier for term
occurrence within a field section

NUM_ITERATIONS I 600 Specify the maximum number of iterations
for which the sentiment classifier is run
before it converges

See Also:

Oracle Text Application Developer’s Guide for an example of using the
SENTIMENT_CLASSIFIER type

2.10 Cluster Types

This section describes the cluster types used for creating preferences for the
CTX_CLS.CLUSTERING procedure.

e KMEAN_CLUSTERING (page 2-99)

Note:

In Oracle Database Express Edition (Oracle Database XE),
KMEAN_CLUSTERING is not supported because the Data Mining option is not
available. This is also true for RULE_CLASSIFIER and SVM_CLASSIFIER.

See Also:

For more information about clustering, see "CLUSTERING (page 7-5)" in
CTX_CLS Package (page 7-1) as well as the Oracle Text Application
Developer’s Guide

2-98 Oracle Text Reference

Stoplists

2.10.1 KMEAN_CLUSTERING

The KMEAN_CLUSTERING clustering type has the attributes listed in Table 2-44

(page 2-99).

Table 2-44 KMEAN_CLUSTERING Attributes

Attribute Name Data
Type

Default

Min
Value

Max
Value

Description

MAX_DOCTERMS I

MAX_FEATURES I

THEME_ON B

TOKEN_ON B

STEM_ON B

MEMORY_SIZE I

SECTION_WEIGHT 1

CLUSTER_NUM I

50

3,000

FALSE

TRUE

FALSE

500

200

10

NULL

NULL

NULL

10

2

8192

500,000

NULL

NULL

NULL

4000

100

20000

Specify the maximum
number of distinct terms
representing one document.

Specify the maximum
number of distinct features.

Specify TRUE to use themes
as features.

Specify TRUE to use regular
tokens as features.

Specify TRUE to use
stemmed tokens as features.
This only works when
turning INDEX_STEM on for
the lexer.

Specify approximate
memory size in MB.

Specify the occurrence
multiplier for adding a term
in a field section as a normal
term. For example, by
default, the term cat in
"<A>cat"is a field
section term and is treated as
a normal term with
occurrence equal to 2, but
you can specify that it be
treated as a normal term
with a weight up to 100.
SECTION_WEIGHT is only
meaningful when the index
policy specifies a field
section.

Specify the total number of
leaf clusters to be generated.

2.11 Stoplists

Stoplists identify the words in your language that are not to be indexed. In English,
you can also identify stopthemes that are not to be indexed. By default, the system
indexes text using the system-supplied stoplist that corresponds to your database

language.

Oracle Text Indexing Elements 2-99

Stoplists

Oracle Text provides default stoplists for most common languages including English,
French, German, Spanish, Chinese, Dutch, and Danish. These default stoplists contain
only stopwords.

¢ Multi-Language Stoplists (page 2-100)
e Creating Stoplists (page 2-100)
¢ Modifying the Default Stoplist (page 2-100)

See Also:

For more information about the supplied default stoplists, see Oracle Text
Supplied Stoplists (page E-1)

2.11.1 Multi-Language Stoplists

You can create multi-language stoplists to hold language-specific stopwords. A multi-
language stoplist is useful when you use the MULTI_LEXER to index a table that
contains documents in different languages, such as English, German.

To create a multi-language stoplist, use the CTX_DLL .CREATE_STOPLIST
(page 8-41) procedure and specify a stoplist type of MULTI_STOPLIST. Add
language specific stopwords with CTX_DDL . ADD_STOPWORD (page 8-25).

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when using
the multi-lexer.

2.11.2 Creating Stoplists

Create your own stoplists using the CTX_DLL .CREATE_STOPLIST (page 8-41)
procedure. With this procedure you can create a BASIC_STOPLIST for single
language stoplist, or you can create a MULTI_STOPLIST for a multi-language stoplist.

When you create your own stoplist, you must specify it in the parameter clause of
CREATE INDEX.

To create stoplists for Chinese or Japanese languages, use the CHINESE_LEXER or
JAPANESE_LEXER respectively, and update the appropriate lexicon to be
@contained_such_stopwords.

2.11.3 Modifying the Default Stoplist

The default stoplist is always named .CTXSYS.DEFAULT_STOPLIST. Use the
following procedures to modify this stoplist:

e CTX_DDL.ADD_STOPWORD (page 8-25)
e CTX_DDL.REMOVE_STOPWORD (page 8-64)
e CTX_DDL.ADD_STOPTHEME (page 8-24)

e CTX_DDL.ADD_STOPCLASS (page 8-21)

When you modify CTXSYS.DEFAULT_STOPLIST with the CTX_DDL package, you
must re-create your index for the changes to take effect.

2-100 Oracle Text Reference

System-Defined Preferences

Dynamic Addition of Stopwords

You can add stopwords dynamically to a default or custom stoplist with ALTER
INDEX (page 1-1). When you add a stopword dynamically, you need not re-index,
because the word immediately becomes a stopword and is removed from the index.

Note:

Even though you can dynamically add stopwords to an index, you cannot
dynamically remove stopwords. To remove a stopword, you must use
CTX_DDL.REMOVE_STOPWORD (page 8-64), drop your index and re-
create it.

See Also:

"ALTER INDEX (page 1-1)" in Oracle Text SQL Statements and Operators
(page 1-1)

2.12 System-Defined Preferences

When you install Oracle Text, some indexing preferences are created. You can use
these preferences in the parameter clause of CREATE INDEX (page 1-41) or define
your own.

The default index parameters are mapped to some of the system-defined preferences
described in this section.

See Also:

For more information about default index parameters, see "Default Index
Parameters (page 2-106)"

System-defined preferences are divided into the following categories:
* Data Storage Preferences (page 2-101)

e Filter Preferences (page 2-102)

* Lexer Preferences (page 2-102)

e Section Group Preferences (page 2-103)

¢ Stoplist Preferences (page 2-104)

e Storage Preferences (page 2-104)

e Wordlist Preferences (page 2-105)

2.12.1 Data Storage Preferences

This section discusses the types associated with data storage preferences.

Oracle Text Indexing Elements 2-101

System-Defined Preferences

® The CTXSYS.DEFAULT_DATASTORE preference uses the DIRECT_DATASTORE
(page 2-3) type. Use this preference to create indexes for text columns in which the
text is stored directly in the column.

e The CTXSYS.FILE_DATASTORE preference uses the FILE_DATASTORE
(page 2-9) type.

® The CTXSYS.URL_DATASTORE preference uses the URL_DATASTORE
(page 2-11) type.
2.12.2 Filter Preferences
This section discusses the types associated with filtering preferences.
e The CTXSYS_NULL_FILTER preference uses the NULL_FILTER (page 2-22) type.

¢ The CTXSYS.AUTO_FILTER preference uses the AUTO_FILTER (page 2-19) type.

2.12.3 Lexer Preferences
This section discusses the types associated with lexer preferences.
e CTXSYS.DEFAULT_LEXER (page 2-102)
e CTXSYS.DEFAULT_EXTRACT_LEXER (page 2-103)
e CTXSYS.BASIC_LEXER (page 2-103)

2.12.3.1 CTXSYS.DEFAULT_LEXER

The CTXSYS.DEFAULT_LEXER default lexer depends on the language used at install
time. The following sections describe the default settings for
CTXSYS.DEFAULT_LEXER for each language.

¢ American and English Language Settings

If your language is English, this preference uses the BASIC_LEXER (page 2-41)
with the Index_themes attribute disabled.

¢ Danish Language Settings

If your language is Danish, this preference uses the BASIC_LEXER (page 2-41)
with the following option enabled:

— Alternate spelling (alternate_spelling attribute set to DANISH)

e Dutch Language Settings

If your language is Dutch, this preference uses the BASIC_LEXER (page 2-41) with
the following options enabled:

- composite indexing (composite attribute set to DUTCH)

¢ German and German DIN Language Settings

If your language is German, then this preference uses the BASIC_LEXER
(page 2-41) with the following options enabled:

- Case-sensitive indexing (mixed_case attribute enabled)

- Composite indexing (composi te attribute set to GERMAN)

2-102 Oracle Text Reference

System-Defined Preferences

— Alternate spelling (al ternate_spelling attribute set to GERMAN)

¢ Finnish, Norwegian, and Swedish Language Settings

If your language is Finnish, Norwegian, or Swedish, this preference uses the
BASIC_LEXER (page 2-41) with the following option enabled:

— Alternate spelling (alternate_spelling attribute set to SWED 1SH)

¢ Japanese Language Settings

If your language is Japanese, this preference uses the
JAPANESE_VGRAM_LEXER (page 2-53).

e Korean Language Settings

If your language is Korean, this preference uses the KOREAN_MORPH_LEXER
(page 2-56). All attributes for the KOREAN_MORPH_LEXER are enabled.

* Chinese Language Settings

If your language is Simplified or Traditional Chinese, this preference uses the
CHINESE_VGRAM_LEXER (page 2-52).

e Other Languages

For all other languages not listed in this section, this preference uses the
BASIC_LEXER (page 2-41) with no attributes set.

See Also:

To learn more about these options, see "BASIC_LEXER (page 2-41)"

2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER

The CTXSYS.DEFAULT_EXTRACT_LEXER preference uses AUTO_LEXER (page 2-33)
and includes all Oracle-supplied features (rules, dictionary, etc.).
CTXSYS.DEFAULT_EXTRACT_LEXER uses AUTO_LEXER with the following options:

e alternate_spelling is NONE

* base_letter is NO

e mixed_case is YES

* <> printjoinis '-*' <>

2.12.3.3 CTXSYS.BASIC_LEXER

The CTXSYS.BASIC_LEXER preference uses the BASIC_LEXER (page 2-41).

2.12.4 Section Group Preferences

This section discusses the types associated with section group preferences.

® The CTXSYS.NULL_SECTION_GROUP preference uses the
NULL_SECTION_GROUP type.

e The CTXSYS_HTML_SECTION_GROUP preference uses the
HTML_SECT ION_GROUP type.

Oracle Text Indexing Elements 2-103

System-Defined Preferences

® The CTXSYS.JSON_SECTION_GROUP preference uses the
PATH_SECT ION_GROUP type.

e The CTXSYS._AUTO_SECTION_GROUP preference uses the
AUTO_SECTION_GROUP type.

® The CTXSYS.PATH_SECTION_GROUP preference uses the
PATH_SECT ION_GROUP type.

Here is the list of default section groups that are created:

® The CTXSYS.XQUERY_SEC_GROUP preference evaluates not only xquery full text
expressions but also the xquery range expressions.

e The CTXSYS._XQFT_SEC_GROUP preference evaluates only xquery full text
expressions.

2.12.5 Stoplist Preferences

This section discusses the types associated with stoplist preferences.

e The CTXSYS.DEFAULT_STOPLIST stoplist preference defaults to the stoplist of
your database language.

e The CTXSYS.EMPTY_STOPLIST stoplist has no words.

See Also:

For a complete list of the stop words in the supplied stoplists, see Oracle Text
Supplied Stoplists (page E-1)

2.12.6 Storage Preferences
This section discusses the types associated with storage preferences.

The CTXSYS.DEFAULT_STORAGE storage preference uses the BASIC_STORAGE
(page 2-83) type.

Here are the storage preferences:

¢ The CTXSYS.XQFT_LOW preference disables the persistence of secondary XML
representation into $D table to save index storage space.

- xml_save copy = FALSE
- xml_forward_enable = FALSE

e The CTXSYS._XQFT_MEDIUM preference enables the persistence of secondary XML
representation into $D table to reduce the time spent on post index xquery
evaluation, if needed.

— xml_save_copy = TRUE
- xml_forward_enable = FALSE

* The CTXSYS.XQFT_HIGH preference enables the persistence of secondary XML
representation into $D table and forwards the index into $0 to reduce the time
spent on post index xquery and xquery full text expression evaluation, if needed.

2-104 Oracle Text Reference

System Parameters

— xml_save_copy = TRUE

- xml_forward_enable = TRUE

2.12.7 Wordlist Preferences

This section discusses the types associated with wordlist preferences.

The CTXSYS.DEFAULT_WORDLIST preference uses the language stemmer for your
database language. If your language is not listed in Table 2-37 (page 2-74), then this
preference defaults to the NULL stemmer and the GENERIC fuzzy matching attribute.

2.13 System Parameters

This section describes the Oracle Text system parameters, which are divided into the
following categories:

¢ General System Parameters (page 2-105)
® Default Index Parameters (page 2-106)

® Default Policy Parameters (page 2-109)

See Also:

"System-Defined Preferences (page 2-101)"

2.13.1 General System Parameters

When you install Oracle Text, in addition to the system-defined preferences, the
following system parameters are set:

Table 2-45 General System Parameters
-]

System Parameter Description

MAX_INDEX_MEMORY This is the maximum indexing memory that can be specified in
the parameter clause of CREATE INDEX and ALTER INDEX. The
maximum value for this parameter is 256 GB.

DEFAULT_INDEX_MEMORY This is the default indexing memory used with CREATE INDEX
and ALTER INDEX. The maximum value for this parameter is 64

MB.
LOG_DIRECTORY This is the directory for CTX_OUTPUT log files.
CTX_DOC_KEY_TYPE This is the default input key type, either ROWID or

PRIMARY_KEY, for the CTX_DOC procedures. Set to ROWID at
install time.

See Also: CTX_DOC.SET_KEY_TYPE (page 9-43).

View system defaults by querying the CTX_PARAMETERS (page G-10) view. Change
defaults using the CTX_ADM.SET_PARAMETER (page 5-3) procedure.

Oracle Text Indexing Elements 2-105

System Parameters

2.13.2 Default Index Parameters

This section describes the index parameters that you can use when you create
CONTEXT and CTXCAT indexes.

This section contains the following topics:
e CONTEXT Index Parameters (page 2-106)
e CTXCAT Index Parameters (page 2-107)

e CTXRULE Index Parameters (page 2-108)

Viewing Default Values

View system defaults by querying the CTX_PARAMETERS (page G-10) view. For
example, to see all parameters and values, enter the following statement:

SQL> SELECT par_name, par_value from ctx_parameters;

Changing Default Values

Change a default value using the CTX_ADM.SET_PARAMETER (page 5-3)
procedure to name another custom or system-defined preference to use as default.

2.13.2.1 CONTEXT Index Parameters

The following default parameters are used when you create a CONTEXT index and do
not specify preferences in the parameter clause of CREATE INDEX (page 1-41). Each
default parameter names a system-defined preference to use for data storage, filtering,
lexing, and so on.

Table 2-46 Default CONTEXT Index Parameters
]

Parameter Used When Default Value

DEFAULT_DATASTORE No datastore preference specified in CTXSYS.DEFAULT_DATASTORE
parameter clause of CREATE INDEX.

DEFAULT_FILTER_FILE No filter preference specified in CTXSYS.AUTO_FILTER
parameter clause of CREATE INDEX,
and either of the following
conditions is true:

e Your files are stored in external
files (BFILES) or

e Specify a datastore preference
that uses FILE_DATASTORE

DEFAULT_FILTER_BINARY No filter preference specified in CTXSYS.AUTO_FILTER
parameter clause of CREATE INDEX,
and Oracle Text detects that the text
column datatype is RAW, LONG RAW,
or BLOB.

DEFAULT_FILTER_TEXT No filter preference specified in CTXSYS.NULL_FILTER
parameter clause of CREATE INDEX,
and Oracle Text detects that the text
column datatype is either LONG,
VARCHAR2, VARCHAR, CHAR, or
CLOB.

2-106 Oracle Text Reference

System Parameters

Table 2-46 (Cont.) Default CONTEXT Index Parameters
. __|

Parameter

Used When

Default Value

DEFAULT_SECTION_HTML

DEFAULT_SECTION_TEXT

DEFAULT_STORAGE

DEFAULT_LEXER

DEFAULT_STOPLIST

DEFAULT_WORDLIST

No section group specified in
parameter clause of CREATE INDEX,
and when either of the following
conditions is true:

* Your datastore preference uses
URL_DATASTORE or

* Your filter preference uses
AUTO_FILTER.

No section group specified in
parameter clause of CREATE INDEX,
and when you do not use either
URL_DATASTORE or AUTO_FILTER.

No storage preference specified in
parameter clause of CREATE INDEX.

No lexer preference specified in
parameter clause of CREATE INDEX.

No stoplist specified in parameter
clause of CREATE INDEX.

No wordlist preference specified in
parameter clause of CREATE INDEX.

CTXSYS.HTML_SECTION_GROUP

CTXSYS._NULL_SECTION_GROUP

CTXSYS.DEFAULT_STORAGE

CTXSYS.DERAULT_LEXER

CTXSYS.DEFAULT_STOPLIST

CTXSYS.DEFAULT_WORDLIST

See Also:

"System-Defined Preferences (page 2-101)"

2.13.2.2 CTXCAT Index Parameters

The following default parameters are used when you create a CTXCAT index with
CREATE INDEX and do not specify any parameters in the parameter string. The
CTXCAT index supports only the index set, lexer, storage, stoplist, and wordlist
parameters. Each default parameter names a system-defined preference.

Table 2-47 Default CTXCAT Index Parameters

Parameter

Used When

Default Value

DEFAULT_CTXCAT_INDEX_SET

DEFAULT_CTXCAT_STORAGE

DEFAULT_CTXCAT_LEXER

DEFAULT_CTXCAT_STOPLIST

No index set specified in parameter
clause of CREATE INDEX.

No storage preference specified in
parameter clause of CREATE INDEX.

No lexer preference specified in
parameter clause of CREATE INDEX.

No stoplist specified in parameter
clause of CREATE INDEX.

n/a

CTXSYS.DEFAULT_STORAGE

CTXSYS.DERAULT_LEXER

CTXSYS.DEFAULT_STOPLIST

Oracle Text Indexing Elements 2-107

System Parameters

Table 2-47 (Cont.) Default CTXCAT Index Parameters
. __|

Parameter Used When Default Value

DEFAULT_CTXCAT_WORDLIST No wordlist preference specified in ~ CTXSYS._DEFAULT_WORDLIST
parameter clause of CREATE INDEX.

Note that while you can specify a
wordlist preference for CTXCAT
indexes, most of the attributes do
not apply, because the catsearch
query language does not support
wildcarding, fuzzy, and stemming.
The only attribute that is useful is
PREF IX_INDEX for Japanese data.

See Also:

"System-Defined Preferences (page 2-101)"

2.13.2.3 CTXRULE Index Parameters

Table 2-48 (page 2-108) lists the default parameters that are used when you create a
CTXRULE index with CREATE INDEX and do not specify any parameters in the
parameter string. The CTXRULE index supports only the lexer, storage, stoplist, and
wordlist parameters. Each default parameter names a system-defined preference.

Table 2-48 Default CTXRULE Index Parameters
- - - - - -~ - "~]

Parameter Used When Default Value

DEFAULT_CTXRULE_LEXER No lexer preference specified in CTXSYS.DERAULT_LEXER
parameter clause of CREATE INDEX.

DEFAULT_CTXRULE_STORAGE No storage preference specified in CTXSYS.DEFAULT_STORAGE
parameter clause of CREATE INDEX.

DEFAULT_CTXRULE_STOPLIST No stoplist specified in parameter CTXSYS.DEFAULT_STOPLIST
clause of CREATE INDEX.

DEFAULT_CTXRULE_WORDLIST No wordlist preference specified in ~ CTXSYS.DEFAULT_WORDLIST
parameter clause of CREATE INDEX.

DEFAULT_CLASSIFIER No classifier preference is specified =~ RULE_CLASSIFIER
in parameter clause.

See Also:

"System-Defined Preferences (page 2-101)"

CTXRULE Index Limitations
The CTXRULE index does not support the following query operators:

e TFuzzy

2-108 Oracle Text Reference

System Parameters

e Soundex

It also does not support the following BASIC_WORDLIST attributes:

e SUBSTRING_INDEX

e PREFIX_INDEX

2.13.3 Default Policy Parameters

Policies in Oracle Text enable you to use document services without creating an index.
For example, the document services might be filtering to generate a plain text or
HTML version of a document, generating theme summaries or lists of themes, and

highlighting.

Table 2-49 (page 2-109) lists the default parameters when you create a policy and do
not specify preferences when using CTX_DDL.CREATE_POLICY (page 8-32). Each
default parameter names a system-defined preference to use for filtering, lexing, and

SO Oon.

Table 2-49 Default Policy Parameters for CTX_DDL.CREATE_POLICY
- - - - -]

Parameter

Used When

Default Value

DEFAULT_FILTER_BINARY

DEFAULT_FILTER_TEXT

DEFAULT_SECTION_HTML

DEFAULT_SECTION_TEXT

DEFAULT_LEXER

DEFAULT_STOPLIST

DEFAULT_WORDLIST

No filter preference specified for
CREATE_POLICY, and the
document parameter of the
document service is VARCHAR2 or
CLOB datatype; BLOB or BFILE
datatype.

No filter preference specified for
CREATE_POLICY, and the
document parameter of the
document service is VARCHAR2 or
CLOB datatype; BLOB or BFILE
datatype.

No section group specified for
CREATE_POLICY, and when your
filter preference uses
AUTO_FILTER.

No section_group specified for
CREATE_POLICY, and when you do
not use AUTO_FILTER.

No lexer preference specified for
CREATE_POLICY.

No stoplist specified for
CREATE_POLICY.

No wordlist preference specified for
CREATE_POLICY.

CTXSYS.AUTO_FILTER

CTXSYS_.NULL_FILTER

CTXSYS.HTML_SECTION_GROUP

CTXSYS.NULL_SECTION_GROUP

CTXSYS.DERAULT_LEXER

CTXSYS.DEFAULT_STOPLIST

CTXSYS.DEFAULT_WORDLIST

Oracle Text Indexing Elements 2-109

Token Limitations

See Also:

¢ '"System-Defined Preferences (page 2-101)"
e "CREATE_POLICY (page 8-32)" for complete information

2.14 Token Limitations

All Oracle Text index types store tokens in a table column of type VARCHAR2 (64
BYTE) . This means that the maximum size of an indexed token is 64 characters for
single-byte character sets, and is less with multibyte or variable-length character sets.
Any longer tokens are truncated at 64 bytes. That does not mean that the token cannot
be searched for, but rather that the system cannot distinguish between the two tokens
which have the same first 64 bytes.

2-110 Oracle Text Reference

3

Oracle Text CONTAINS Query Operators

This chapter describes operator precedence and provides descriptions, syntax, and
examples for every CONTAINS (page 1-30) operator.

This chapter contains the following topics:
® Operator Precedence (page 3-2)

e ABOUT (page 3-4)

e ACCUMulate (_) (page 3-7)

e AND (&) (page 3-8)

® Broader Term (BT_BTG_ BTP_ BTI) (page 3-9)
e CTXFILTERCACHE (page 3-11)

e DEFINEMERGE (page 3-14)

e DEFINESCORE (page 3-15)

e EQUlValence (=) (page 3-19)

¢ Fuzzy (page 3-20)

e HASPATH (page 3-21)

e INPATH (page 3-23)

e MDATA (page 3-29)

e MINUS (-) (page 3-31)

e MNOT (page 3-31)

e Narrower Term (NT_NTG_ NTP_ NTI) (page 3-32)
e NDATA (page 3-34)

e NEAR () (page 3-36)

e NEAR?2 (page 3-40)

e NOT (~) (page 3-41)

e OR(!) (page 3-42)

* Preferred Term (PT) (page 3-42)

® Related Term (RT) (page 3-43)

Oracle Text CONTAINS Query Operators 3-1

Operator Precedence

SDATA (page 3-44)

soundex (!) (page 3-46)

stem ($) (page 3-47)

Stored Query Expression (SQE) (page 3-48)
SYNonym (SYN) (page 3-49)

threshold (>) (page 3-49)

Translation Term (TR) (page 3-50)
Translation Term Synonym (TRSYN) (page 3-51)
Top Term (TT) (page 3-52)

weight (*) (page 3-53)

wildcards (% _) (page 3-54)

WITHIN (page 3-56)

3.1 Operator Precedence

Operator precedence determines the order in which the components of a query
expression are evaluated. Text query operators can be divided into two sets of
operators that have their own order of evaluation. These two groups are described
later as Group 1 and Group 2.

In all cases, query expressions are evaluated in order from left to right according to the
precedence of their operators. Operators with higher precedence are applied first.
Operators of equal precedence are applied in order of their appearance in the
expression from left to right.

Group 1 Operators (page 3-2)

Group 2 Operators and Characters (page 3-3)
Procedural Operators (page 3-3)

Precedence Examples (page 3-3)

Altering Precedence (page 3-4)

3.1.1 Group 1 Operators

Within query expressions, the Group 1 operators have the following order of
evaluation from highest precedence to lowest:

1.

2.

3.

EQUlValence (=) (page 3-19)

NEAR (;) (page 3-36)

weight (*) (page 3-53), threshold (>) (page 3-49)
MINUS (-) (page 3-31)

NOT (~) (page 3-41)

3-2 Oracle Text Reference

Operator Precedence

6. MNOT (page 3-31)

7. WITHIN (page 3-56)

8. AND (&) (page 3-8)

9. OR(!) (page 3-42)

10. ACCUMulate (_) (page 3-7)

3.1.2 Group 2 Operators and Characters

Within query expressions, the Group 2 operators have the following order of
evaluation from highest to lowest:

1. Wildcard Characters
2. stem ($) (page 3-47)
3. Fuzzy (page 3-20)

4. soundex (!) (page 3-46)

3.1.3 Procedural Operators

Other operators not listed under Group 1 or Group 2 are procedural. These operators
have no sense of precedence attached to them. They include the SQE and thesaurus
operators.

3.1.4 Precedence Examples

Table 3-1 Query Expression Precedence Examples

Query Expression Order of Evaluation
wl | w2 & w3 (wl) | (w2 & w3)

wl & w2 | w3 (wl & w2) | w3

wl, w2 | w3 & w4 ?w1), (W2 | (W3 & w4))

abc = def ghi & jkl = mno ((abc = def) ghi) & (jkl=mno)

dog and cat WITHIN body dog and (cat WITHIN body)

In the first example, because AND has a higher precedence than OR, the query returns
all documents that contain w1 and all documents that contain both w2 and w3.

In the second example, the query returns all documents that contain both w1 and w2
and all documents that contain w3.

In the third example, the fuzzy operator is first applied to w1, then the AND operator is
applied to arguments w3 and w4, then the OR operator is applied to term w2 and the
results of the AND operation, and finally, the score from the fuzzy operation on w1 is
added to the score from the OR operation.

The fourth example shows that the equivalence operator has higher precedence than
the AND operator.

Oracle Text CONTAINS Query Operators 3-3

ABOUT

The fifth example shows that the AND operator has lower precedence than the WITHIN
operator.

3.1.5 Altering Precedence

3.2 ABOUT

Precedence is altered by grouping characters as follows:

e Within parentheses, expansion or execution of operations is resolved before other
expansions regardless of operator precedence.

¢ Within parentheses, precedence of operators is maintained during evaluation of
expressions.

e Within parentheses, expansion operators are not applied to expressions unless the
operators are also within the parentheses.

See Also:

"Grouping Characters (page 4-1)" in Special Characters in Oracle Text
Queries (page 4-1)

General Behavior

Use the ABOUT operator to return documents that are related to a query term or
phrase. In English and French, ABOUT enables you to query on concepts, even if a
concept is not actually part of a query. For example, an ABOUT query on heat might
return documents related to temperature, even though the term temperature is not part
of the query.

In other languages, using ABOUT will often increase the number of returned
documents and may improve the sorting order of results. For all languages, Oracle
Text scores results for an ABOUT query with the most relevant document receiving the
highest score.

English and French Behavior

In English and French, use the ABOUT operator to query on concepts. The system looks
up concept information in the theme component of the index. Create a theme
component to your index by setting the INDEX_THEMES BASIC_LEXER (page 2-41)
attribute to YES.

Note:

You need not have a theme component in the index to enter ABOUT queries in
English and French. However, having a theme component in the index yields
the best results for ABOUT queries.

Oracle Text retrieves documents that contain concepts that are related to your query
word or phrase. For example, if you enter an ABOUT query on California, the system
might return documents that contain the terms Los Angeles and San Francisco, which
are cities in California.The document need not contain the term California to be
returned in this ABOUT query.

3-4 Oracle Text Reference

ABOUT

The word or phrase specified in your ABOUT query need not exactly match the themes
stored in the index. Oracle Text normalizes the word or phrase before performing
lookup in the index.

You can use the ABOUT operator with the CONTAINS and CATSEARCH SQL operators.
In the case of CATSEARCH, you must use query templating with the CONTEXT
grammar to query on the indexed themes. See ABOUT Query with CATSEARCH
(page 3-6) in the Examples section.

Syntax
Syntax Description
about(phrase) In all languages, increases the number of relevant documents returned

for the same query without the ABOUT operator.The phrase parameter
can be a single word or a phrase, or a string of words in free text
format.

In English and French, returns documents that contain concepts
related to phrase, provided the BASIC_LEXER INDEX_THEMES
attribute is set to YES at index time.

The score returned is a relevance score.
Oracle Text ignores any query operators that are included in phrase.

If your index contains only theme information, an ABOUT operator and
operand must be included in your query on the text column or else
Oracle Text returns an error.

The phrase you specify cannot be more than 4000 characters.

Case-Sensitivity

ABOUT queries give the best results when your query is formulated with proper case.
This is because the normalization of your query is based on the knowledge catalog
which is case-sensitive.

However, you need not type your query in exact case to obtain results from an ABOUT
query. The system does its best to interpret your query. For example, if you enter a
query of CISCO and the system does not find this in the knowledge catalog, the
system might use Cisco as a related concept for look-up.

Improving ABOUT Results

The ABOUT operator uses the supplied knowledge base in English and French to
interpret the phrase you enter. Your ABOUT query therefore is limited to knowing and
interpreting the concepts in the knowledge base.

Improve the results of your ABOUT queries by adding your application-specific
terminology to the knowledge base.

See Also:

"Extending the Knowledge Base (page 16-10)" in Oracle Text Utilities
(page 16-1)

Oracle Text CONTAINS Query Operators 3-5

ABOUT

Limitations

The phrase you specify in an ABOUT query cannot be more than 4000 characters.

Examples for ABOUT Operator
Single Words
To search for documents that are about soccer, use the following syntax:

"about(soccer)*

Phrases

Further refine the query to include documents about soccer rules in international
competition by entering the phrase as the query term:

"about(soccer rules in international competition)®

In this English example, Oracle Text returns all documents that have themes of soccer,
rules, or international competition.

In terms of scoring, documents which have all three themes will generally score higher
than documents that have only one or two of the themes.

Unstructured Phrases
You can also query on unstructured phrases, such as the following;

"about(japanese banking investments in indonesia)*

Combined Queries

Use other operators, such as AND or NOT, to combine ABOUT queries with word
queries. For example, enter the following combined ABOUT and word query:

"about(dogs) and cat”

Combine an ABOUT query with another ABOUT query as follows:

"about(dogs) not about(labradors)*®

Note:

You cannot combine ABOUT with the WITHIN operator, as for example
'ABOUT (xyz) WITHIN abc’.

ABOUT Query with CATSEARCH

Enter ABOUT queries with CATSEARCH using the query template method with
grammar set to CONTEXT as follows:

select pk||* ==> "||text from test
where catsearch(text,
"<query>
<textquery grammar="context'>
about(California)
</textquery>
<score datatype="integer"/>
</query>","")>0
order by pk;

3-6 Oracle Text Reference

ACCUMulate ()

3.3 ACCUMulate (,)

Use the ACCUM operator to search for documents that contain at least one occurrence of
any query terms, with the returned documents ranked by a cumulative score based on
how many query terms are found (and how frequently).

Syntax
Syntax Description
term1,term2 Returns documents that contain terml or term2. Ranks documents

term1 ACCUM term2 according to document term weight, with the highest scores assigned
to documents that have the highest total term weight.

ACCUMulate Scoring

ACCUMulate first scores documents on how many query terms a document matches.
A document that matches more terms will always score higher than a document that
matches fewer terms, even if the terms appear more frequently in the latter. In other
words, if you search for dog ACCUM cat, you'll find that

the dog played with the cat

scores higher than

the big dog played with the little dog while a third dog ate the dog food

Scores are divided into ranges. In a two-term ACCUM, hits that match both terms will
always score between 51 and 100, whereas hits matching only one of the terms will
score between 1 and 50. Likewise, for a three-term ACCUM, a hit matching one term will
score between 1 and 33; a hit matching two terms will score between 34 and 66, and a
hit matching all three terms will score between 67 and 100. Within these ranges, normal
scoring algorithms apply.

See Also:

The Oracle Text Scoring Algorithm (page F-1) for more information on how
scores are calculated

You can assign different weights to different terms. For example, in a query of the
form

soccer, Brazil*3

the term Brazil is weighted three times as heavily as soccer. Therefore, the document

people play soccer because soccer is challenging and fun

will score lower than

Brazil is the largest nation in South America

but both documents will rank below

soccer is the national sport of Brazil

Oracle Text CONTAINS Query Operators 3-7

AND (&)

3.4 AND (&)

Note that a query of soccer ACCUM Brazil*3 is equivalent to soccer ACCUM Brazil
ACCUM Brazil ACCUM Brazil. Because each query term Brazil is considered
independent, the entire query is scored as though it has four terms, not two, and thus
has four scoring ranges. The first Brazil-and-soccer example document shown above
scores in the first range (1-25), the second scores in the third range (51-75), and the
third scores in the fourth range (76-100). (No document scores in the second range,
because any document with Brazil in it will be considered to match at least three query
terms.)

Example for ACCUM Operator

set serveroutput on;
DROP TABLE accumtbl;
CREATE TABLE accumtbl (id NUMBER, text VARCHAR2(4000));

INSERT INTO accumtbl VALUES (1, "the little dog played with the big dog
while the other dog ate the dog food");
INSERT INTO accumtbl values (2, "the cat played with the dog");

CREATE INDEX accumtbl_idx ON accumtbl (text) indextype is ctxsys.context;

PROMPT dog ACCUM cat
SELECT SCORE(10) FROM accumtbl WHERE CONTAINS (text, "dog ACCUM cat®, 10)
> 0;

PROMPT dog*3 ACCUM cat
SELECT SCORE(10) FROM accumtbl WHERE CONTAINS (text, "dog*3 ACCUM cat”, 10)
> 0;

This produces the following output. Note that the document with both dog and cat
scores highest.

dog ACCUM cat
ID SCORE(10)

dog*3 ACCUM cat
ID SCORE(10)

1 53
2 76

Related Topics
weight (*) (page 3-53)

Use the AND operator to search for documents that contain at least one occurrence of
each of the query terms. The AND operator returns documents that contain all of the
query terms, while OR operator returns documents that contain any of the query terms.

3-8 Oracle Text Reference

Broader Term (BT, BTG, BTP, BTI)

Syntax

Syntax Description
term1&term?2 Returns documents that contain term1 and term2. Returns the minimum
terml and term? score of its operands. All query terms must occur; lower score taken.

Example for AND Operator

To obtain all the documents that contain the terms blue and black and red, enter the
following query:

"blue & black & red”

In an AND query, the score returned is the score of the lowest query term. In this
example, if the three individual scores for the terms blue, black, and red is 10, 20 and 30
within a document, the document scores 10.

Related Topics
"OR (1) (page 3-42)"

3.5 Broader Term (BT, BTG, BTP, BTI)

Use the broader term operators (BT, BTG, BTP, BTI) to expand a query to include the
term that has been defined in a thesaurus as the broader or higher level term for a
specified term. They can also expand the query to include the broader term for the
broader term and the broader term for that broader term, and so on up through the
thesaurus hierarchy.

Syntax
Syntax Description
BT(term[(qualifier)][,level][,thes]) Expands a query to include the term defined in the

thesaurus as a broader term for term.

BTG(term[(qualifier)][level][,thes]) Expands a query to include all terms defined in the
thesaurus as broader generic terms for term.

BTP(term|[(qualifier)][level][,thes]) Expands a query to include all the terms defined in the
thesaurus as broader partitive terms for term.

BTI(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in the
thesaurus as broader instance terms for term.

term

Specify the operand for the broader term operator. Oracle Text expands term to
include the broader term entries defined for the term in the thesaurus specified by
thes. For example, if you specify BTG(dog), the expansion includes only those terms
that are defined as broader term generic for dog. You cannot specify expansion
operators in the term argument.

Oracle Text CONTAINS Query Operators 3-9

Broader Term (BT, BTG, BTP, BTI)

The number of broader terms included in the expansion is determined by the value
for level.

qualifier

Specify a qualifier for term, if termis a homograph (word or phrase with multiple
meanings, but the same spelling) that appears in two or more nodes in the same
hierarchy branch of thes.

If a qualifier is not specified for a homograph in a broader term query, the query
expands to include the broader terms of all the homographic terms.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the
broader terms for the specified term. For example, a level of 1 in a BT query returns
the broader term entry, if one exists, for the specified term. A level of 2 returns the
broader term entry for the specified term, as well as the broader term entry, if one
exists, for the broader term.

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes

Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. A
thesaurus named DEFAULT must exist in the thesaurus tables if you use this default
value.

Note:
If you specify thes, then you must also specify level.

Examples for Broader Term Operators

The following query returns all documents that contain the term tutorial or the BT term
defined for tutorial in the DEFAULT thesaurus:

"BT(tutorial)*®
When you specify a thesaurus name, you must also specify level as in:
"BT(tutorial, 2, mythes)"”

Broader Term Operator on Homographs

If machine is a broader term for crane (building equipment) and bird is a broader term for
crane (waterfowl) and no qualifier is specified for a broader term query, the query

BT(crane)

expands to:

“{crane} or {machine} or {bird}"

If waterfowl is specified as a qualifier for crane in a broader term query, the query

BT(crane{(waterfowl)})

expands to the query:
“{crane} or {bird}"

3-10 Oracle Text Reference

CTXFILTERCACHE

Note:

When specifying a qualifier in a broader or narrower term query, the qualifier
and its notation (parentheses) must be escaped, as is shown in this example.

Related Topics

CTX_THES.BT (page 14-4) in CTX_THES Package (page 14-1) for more information
on browsing the broader terms in your thesaurus

3.6 CTXFILTERCACHE

Oracle Text provides a cache layer called query filter cache that can be used to cache
the query results. Query filter cache is sharable across queries. Thus, the cached query
results can be reused by multiple queries, improving the query response time. The
CTXFILTERCACHE operator is used to specify which query results or part of query
results to cache in the query filter cache.

CTXFILTERCACHE only supports CONTEXT grammar queries. CONTAINER queries
like template queries are not supported. If you execute it with a template query, then
errors are raised.

Caution:

Before using CTXFILTERCACHE, you must run PURGE recyclebin as
follows:

SQL> PURGE recylebin;

See Oracle Database Administrator’s Guide for complete information about
purging objects in the recycle bin.

Syntax
ctxfiltercache((query_text) [, save_score] [, topN])

query_text
Specify the query whose results need to be stored in the cache.

save_score
Specify TRUE if you want to cache all the query results along with their scores in the
cache.

The default is FALSE. In this case, a score of 100 is returned for each query result, and
these scores are not stored in the cache. Only the query results are stored in the cache.

Specify FALSE when you want to reuse the query results and not their scores in other
queries. This is particularly useful when you use the query text as a filter, such as a
security filter, where the relevance of the cached part of the query does not affect the
relevance of the query as a whole. Thus, when used with the AND operator (which
returns a lower score of its operands), a score of 100 does not affect the score of a
query as a whole.

Oracle Text CONTAINS Query Operators 3-11

CTXFILTERCACHE

topN

Specify TRUE if you want only the highest scoring query results to be stored in the
cache. Oracle Text internally determines how many highest scoring query results to
store in the cache. This helps in reducing the memory consumption of the cache.

Note:
If you specify TRUE for topN, then save_score should also be TRUE.

Examples for CTXFILTERCACHE
Stored Query Results and TopN Examples

The following example stores the query results of the common_predicate query in
the cache:

select * from docs where contains(txt, "ctxfiltercache((common_predicate),
FALSE)*)>0;

Here, save_score is FALSE, and hence the score of 100 is returned for each query
result, and the scores are not stored in the cache.

In the following example, the cached results of the common_predicate query are
reused by the new_query query.

select * from docs where contains(txt, "new_query &
ctxfiltercache((common_predicate), FALSE)")>0;

Set save_score to TRUE as shown in the following example to store all the query
results of the common_predicate query, along with the actual scores, in the cache.

select * from docs where contains(txt, "ctxfiltercache((common_predicate), TRUE)")>0;

Set topN to TRUE if you want to store only the highest scoring query results of the
common_predicate query in the cache as described in the following example.

select id, score(1l) from docs where contains(txt,
"ctxfiltercache((common_predicate), TRUE, TRUE)", 1)>0 order by score(l) desc;

Set topN to TRUE for the main part of the query and FALSE for the filter part, when
the score is relevant only for the main part of the query. The following example shows
a query with two ctxFfi ltercache clauses. It performs a free-text search for "cat
AND dog" and then applies a security filter to the search operation. Results of both the
parts of this query are separately cached so that they can be reused, but the score is
relevant only for the first part of the query.

select id, score(1l) from docs where contains(txt, "ctxfiltercache((cat AND dog),
TRUE, TRUE) AND ctxfiltercache((john WITHIN allowedUsers), FALSE, FALSE)", 1) > 0;

Cached Score Example

CTXFILTERCACHE stores one query result for score at a time in the cache. Hence,
two similar queries executed serially are considered the same query, and there is only
one such query stored in the cache.

The following examples, query A and query B, show two similar queries. The hit score
for A is 100, and the hit score for B is 5. Assume the cache is empty and you execute
query A first. The computed score 100 is stored in the cache for this query. When you
execute query B subsequently now, the cache contains the stored score of 100, and

3-12 Oracle Text Reference

CTXFILTERCACHE

therefore, query B returns the cached score of 100. Conversely, if you execute query B
before query A, then the cached computed score that gets returned is 5.

Query A:

select /*+ DOMAIN_INDEX_SORT */ id, score(1l) as ORADD from mydocs where contains
(txt , "ctxfiltercache((DEFINEMERGE
(((definescore(Oracle,relevance)), (definescore(Java,discrete)))
,OR,ADD
)),T,T)",1)>0 order by score(l) desc;

Query B:

select /*+ DOMAIN_INDEX_SORT */ id, score(l) as ORAVG from docs where contains
(txt , "ctxfiltercache((DEFINEMERGE
(((definescore(Oracle,relevance)), (definescore(Java,discrete)))
,OR,AVG
)),T,T)",1)>0 order by score(l) desc;

Notes

The query filter cache is an index level storage preference.

The storage preference for the query filter cache can be set at partition level only if this
is also set at index level. If a filter cache preference is set at partition level without any
filter cache preference being set at index level, then an error is thrown as follows:
"[llegal syntax for index, preference, source or section name."

Note that CTXFILTERCACHE is not utilized with:
e INPATH/HASPATH queries

¢ First query after syncindex for NDATA and SDATA

When topN is FALSE, the CTXFILTERCACHE operator can be either a top-level
operator or a child of the following operators:

e AND

e ACCUM
e NOT

e OR

® THRESHOLD (left side operand only)

e WEIGHT (left side operand only)
When topN is TRUE:

* The ctxfiltercache operator can be either a top-level operator or a child of the
following operators:

- AND
— THRESHOLD (left side operand only)
— WEIGHT (left side operand only)

¢ TopNis enabled only when the ctxfi I tercache operator is used with the
order key ORDER BY SCORE(n) DESC and Oracle hint DOMAIN_INDEX_SORT for
global index. Additionally, for a partitioned index, be sure to have partition

Oracle Text CONTAINS Query Operators 3-13

DEFINEMERGE

pruning in your query. Otherwise, although topN is set to TRUE, normal mode
will be used instead of topN mode.

Note:

The ctxfi ltercache operator only supports a CONTEXT grammar query.
This means that container queries like template queries are not supported.

If ctxfiltercache is used with a query template, then the following type of
error will occur:

ERROR at line 1:

ORA-29902: error in executing ODCIIndexStart() routine
ORA-20000: Oracle Text error:

DRG-50900: text query parser error on line 1, column 8
DRG-50905: invalid score threshold <textquery

An example of a query that results in this error is as follows:

select score(1), id, txt from tdrbgfc45 where contains(txt,
"ctxfiltercache((<query><textquery>near2((a,b,c,d))
</textquery><score datatype="FLOAT"/>

</query>),true)", 1)>0 order by id;

To use ctxfi ltercache you must specify a size for the query filter cache using the
basic storage attribute query_TFilter_cache_size. The default size is O, which
means that ctxfi ltercache is disabled by default.

The view ctx_Filter_cache_statistics provides various statistics about the
query filter cache.

The query filter cache does not differentiate queries that only vary in how the score is
computed. Score is never computed on the fly within the query filter cache. See
"Cached Score Example (page 3-12)" for an illustration of how this works.

Related Topics

"CTX_FILTER_CACHE_STATISTICS (page G-4)" for more information about the
ctx_Ffilter_cache_statistics view

"BASIC_STORAGE (page 2-83)" for more information about the
query_Tilter_cache_size basic storage attribute

3.7 DEFINEMERGE

Use the DEF INEMERGE operator to define how the score of child nodes of the AND and
OR should be merged. The DEFINEMERGE operator can be used as operand(s) of any
operators that allow AND or OR as operands. The score can be merged in three ways:
picking the minimum value, picking the maximum value, or calculating the average
score of all child nodes.

Use DEFINESCORE (page 3-15) before using DEF INEMERGE.

Syntax
DEFINEMERGE (((text_queryl), (text_query2?), ..) , operator, merge_method)

3-14 Oracle Text Reference

DEFINESCORE

Syntax Description

text_queryl,2 ... Defines the search criteria. These parameters can have any value that is
valid for the AND/OR operator.

operator Defines the relationship between the two text_query parameters.

merge_method Defines how the score of the text_query should be merged. Possible
values: MIN, MAX, AVG, ADD

Example for DEFINEMERGE Operator
"DEFINEMERGE (((dog , cat) , (blue or black)), AND, MIN)*

Queries for the expression "dog ACCUM cat" and "blue OR black," using the default
scoring schemes and then using the minimum score of the two as the merged-score.

*DEFINEMERGE(((DEFINESCORE(dog, DISCRETE)) , (cat)), AND, MAX)"

Queries for the term "dog" using the DISCRETE scoring, and for the term "cat" using
the default relevant scoring, and then using the maximum score of the two as the
merged-score.

Example 3-1 DEFINEMERGE and text_query
The following examples show only the text_query part of a CONTAINS query:
"DEFINEMERGE (((dog), (cat)), OR, AVG)"

Queries for the term "dog" or "cat," using the average relevance score of both terms as
the merged score.

Related Topic
DEFINESCORE (page 3-15).

3.8 DEFINESCORE

Use the DEF INESCORE operator to define how a term or phrase, or a set of term
equivalences will be scored. The definition of a scoring expression can consist of an
arithmetic expression of predefined scoring components and numeric literals.

DEFINEMERGE (page 3-14) can be used after DEF INESCORE.

Syntax

DEFINESCORE (query_term, scoring_expression)

query_term
The query term or phrase. Expressions containing the following operators are also
allowed:

Operators Operators

ABOUT EQUIV(=)

Oracle Text CONTAINS Query Operators 3-15

DEFINESCORE

Operators Operators

Fuzzy Soundex (1)
Stem (%) Wildcards (% _)
SDATA MDATA

scoring_expression
An arithmetic expression that describes how the query_term should be scored. This
operand is a string that contains the following components:

® Arithmetic operators: + - * /. The precedence is multiplication and division
(*, /) first before addition and subtraction (+, -).

* Grouping operators: (). Parentheses can be used to alter the precedence of the
arithmetic operators.

* Absolute function: ABS(n) returns the absolute value of n; where n is any
expression that returns a number.

* Logarithmic function: LOG(N) returns the base-10 logarithmic value of n ; where
n is any expression that returns a number.

® Predefined scoring components: Each of the following scoring components
returns a value of 0 - 100, depending on different criteria:

Name Description

DISCRETE If the term exists in the document, score =
100. Otherwise, score = 0.

OCCURRENCE Score based on the number of occurrences.

RELEVANCE Score based on the document's relevance.

COMPLETION Score based on coverage. Documents will

score higher if the ratio between the
number of the matching terms and the
number of all terms in the section
(counting stop words) is higher. The
COMPLET ION scoring is only applicable
when used with the WITHIN operator to
search in zone sections.

1GNORE Ignore the scoring of this term. This
component should be used alone.
Otherwise, the query will return a syntax
error. If the scoring of the only term in the
query is set to IGNORE, then all the
matching documents should be returned
with the same score of 100.

3-16 Oracle Text Reference

DEFINESCORE

Note:

For numeric literals, any number literal can be used that conforms to the SQL
pattern of number literal, and is within the range of the double precision
floating point (-3.4e38 to 3.4e38).

scoring_expression Syntax

<Exp> = <Exp> + <Term> | <Exp> - <Term> | <Term>
<Term> := <Term> * <Factor> | <Term> / <Factor> | <Factor>
<Factor> := <<NumericLiterals >>] DISCRETE | OCCURRENCE | RELEVANCE |

COMPLETION | IGNORE | (<Exp>) | -<Factor> | Abs(<Exp>) | Log(<Exp>)

Examples for DEFINESCORE Operator

*DEFINESCORE (dog, OCCURRENCE)"

Queries for the word dog, and scores each document using the occurrence score.
Returns the score as integer.

"DEFINESCORE (Labradors are big dog, RELEVANCE)®"

Queries for the phrase Labradors are big dogs, and scores each document using the
relevance score.

*cat and DEFINESCORE (dog, IGNORE)"

Queries for the words dog and cat, using only the default relevance score of cat as the
overall score of the document. Returns the score as integer.

*DEFINESCORE (dog, IGNORE)"

Queries for the word dog, and returns all documents with the word dog. The result is
the same as if all documents get a score of 100. Returns the score as integer.
*DEFINESCORE (dog, ABS (100-RELEVANCE))"

Queries for the word dog, and scores each document using the absolute value of 100
minus the relevance score. Returns the score as integer.

"cat and DEFINESCORE (dog, RELEVANCE*5 - OCCURRENCE)"

Returns a syntax error: Two predefined components are used.

When DEF INESCORE is used with query templates, the scoring_expression
overrides the values specified by the template. The following example queries for
"dog" and "cat," scores "cat” using OCCURRENCE(COUNT) and scores "dog" based on
RELEVANCE.

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE(dog, RELEVANCE) and cat
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Oracle Text CONTAINS Query Operators 3-17

DEFINESCORE

Limitations

If the ABOUT operator is used in query_term, the OCCURRENCE and
COMPLETION scoring will not be applicable. If used, the query will return a syntax
error.

The IGNORE score cannot be used as right hand of the minus operator. If used,
then a syntax error will occur.

The COMPLET ION score is only applicable if the DEF INESCORE is used with a
WITHIN operator to search in zone sections, for example:

"DEFINESCORE (dog, COMPLETION) within zonesection®

otherwise, the query will return a syntax error.

For the left hand operand of WITHIN:

— All nodes must use the same predefined-scoring component. (If not specified,
then the predefined scoring is RELEVANCE.)

— If the nodes use DISCRETE or COMPLETION, then only the AND and OR
operator is allowed as the left hand children of WITHIN.

— If the nodes use DISCRETE or COMPLETION, then WITHIN will use the max
score of all section instances as the score.

— If the nodes use RELEVANCE or OCCURRENCE, then WITHIN will use the
summation of the score of all section instances as the score.

Only one predefined scoring component can be used in the
scoring_expression at one time. If more than one predefined scoring
component is used, then a syntax error will occur.

See Also:

Oracle Database SQL Language Reference

Notes

The DEFINESCORE operator, the absolute function, the logarithmic function, and
the predefined scoring components are case-insensitive.

The query_term and the scoring_expression parameters are mandatory.

The final score of the DEF INESCORE operator will be truncated to be in the 0 — 100
range. If the data type is INTEGER, then the score is rounded up.

The intermediate data type of the scoring value is a double precision float. As a
result, the value is limited to be in the -3.4e38 to 3.4e38 range. If the
intermediate scoring of any document exceeds the value, then the score will be
truncated. If an integer scoring is required, then the score will always be rounded
up after the score is calculated.

The DEFINESCORE operator can be used as an operand of the following operators:

- AND

3-18 Oracle Text Reference

EQUIValence (=)

- NOT

- INPATH

— THRESHOLD

- WITHIN

- SQE

- OR

— DEFINEMERGE

- MINUS

- WEIGHT

- ACCUM

For example, the following statement is valid:
DEFINESCORE("dog*, OCCURRENCE) AND DEFINESCORE("cat”, RELEVANCE)

Queries for the term "dog" using occurrence scoring, and the term "cat" using
relevance scoring.

e If DEFINESCORE is used as a parameter of other operators, then an error will be
returned. For example, the following example returns an error:

SYN(DEFINESCORE("cat", OCCURRENCE))

* When used with query templates, the scoring_expression overrides the
values specified by the template. For example,

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE(dog, RELEVANCE) and cat
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Queries for "dog" and "cat", scores "cat" using OCCURRENCE (COUNT), and scores
"dog" based on RELEVANCE.

Related Topic
DEFINEMERGE (page 3-14).

3.9 EQUIValence (=)

Use the EQUIV operator to specify an acceptable substitution for a word in a query.

Syntax
Syntax Description
terml=term?2 Specifies that t€Irm2 is an acceptable substitution for terml. Score

term1 equiv term2 calculated as the sum of all occurrences of both terms.

Oracle Text CONTAINS Query Operators 3-19

Fuzzy

3.10 Fuzzy

Example for EQUIV Operator

The following example returns all documents that contain either the phrase alsatians
are big dogs or labradors are big dogs:

"labradors=alsatians are big dogs®

Operator Precedence

The EQUIV operator has higher precedence than all other operators except the
expansion operators (fuzzy, soundex, stem).

Use the fuzzy operator to expand queries to include words that are spelled similarly
to the specified term. This type of expansion is helpful for finding more accurate
results when there are frequent misspellings in your document set.

The fuzzy syntax enables you to rank the result set so that documents that contain
words with high similarity to the query word are scored higher than documents with
lower similarity. You can also limit the number of expanded terms.

Unlike stem expansion, the number of words generated by a fuzzy expansion
depends on what is in the index. Results can vary significantly according to the
contents of the index.

Supported Languages

Oracle Text supports fuzzy definitions for English, French, German, Italian, Dutch,
Spanish, Portuguese, Japanese, OCR, and auto-language detection.

Stopwords

If the Fuzzy expansion returns a stopword, the stopword is not included in the query
or highlighted by CTX_DOC.HIGHLIGHT or CTX_DOC.MARKUP.

Base-Letter Conversion

If base-letter conversion is enabled for a text column and the query expression
contains a fuzzy operator, Oracle Text operates on the base-letter form of the query.

Syntax

fuzzy(term, score, numresults, weight)

Parameter Description

term Specify the word on which to perform the fuzzy expansion. Oracle
Text expands term to include words only in the index. The word
needs to be at least 3 characters for the fuzzy operator to process it.

score Specify a similarity score. Terms in the expansion that score below this
number are discarded. Use a number between 1 and 80. The default is
60.

numresults Specify the maximum number of terms to use in the expansion of

term. Use a number between 1 and 5000. The default is 100.

3-20 Oracle Text Reference

HASPATH

Parameter Description

weight Specify WEIGHT or W for the results to be weighted according to their
similarity scores.

Specify NOWEIGHT or N for no weighting of results.

Examples for Fuzzy Operator
Consider the CONTAINS query:

.. .CONTAINS(TEXT, "fuzzy(government, 70, 6, weight)", 1) > 0;

This query expands to the first six fuzzy variations of government in the index that
have a similarity score over 70.

In addition, documents in the result set are weighted according to their similarity to
government. Documents containing words most similar to government receive the
highest score.

Skip unnecessary parameters using the appropriate number of commas. For example:

"fuzzy(government, , ,weight)"

Backward Compatibility Syntax

The old fuzzy syntax from previous releases is still supported. This syntax is as

follows:
Parameter Description
?term Expands term to include all terms with similar spellings as the

specified term. Te@rmneeds to be at least 3 characters for the fuzzy
operator to process it.

3.11 HASPATH

Use the HASPATH operator to find all XML documents that contain a specified section
path. You can also use this operator to do section equality testing.

Your index must be created with the PATH_SECTI0ON_GROUP for this operator to

work.
Syntax
Syntax Description
HASPATH(path) Searches an XML document set and returns a score

of 100 for all documents where path exists. Separate
parent and child paths with the / character. For
example, you can specify A/B/C.

See example.

Oracle Text CONTAINS Query Operators 3-21

HASPATH

Syntax Description

HASPATH(A="value") Searches an XML document set and returns a score
of 100 for all documents that have the element A
with content value and only value.

See example.

Using Special Characters with HASPATH and INPATH

The following rules govern the use of special characters with regard to both the
HASPATH and INPATH operators:

e Left-brace ({) and right-brace (}) characters are not allowed inside HASPATH or
INPATH expressions unless they are inside the equality operand enclosed by
double quotes. So both 'HASPATH({/A/B})' and 'HASPATH(/A/{B})' will return
errors. However, 'HASPATH(/A[B=""{author}'])' will be parsed correctly.

e With exception of the backslash (\), special characters, such as dollar sign ($),
percent sign (%), underscore (_), left brace ({), and right brace (}), when inside the
equality operand enclosed by double or single quotes, have no special meaning,.
(That is, no stemming, wildcard expansion, or similar processing will be
performed on them.) However, they are still subject to regular text lexing and will
be translated to whitespace, with the exception of characters declared as
printjoins. A backslash will still escape any character that immediately follows it.

For example, if the hyphen (-) and the double quote character (") are defined as
printjoins in a lexer preference, then:

— The string B_TEXT inside HASPATH(/A[B=""B_TEXT"") will be lexed as the
phrase B TEXT.

— The string B-TEXT inside HASPATH(/A[B=""B-TEXT"") will be lexed as the
word B-TEXT.

- The string B'TEXT inside HASPATH(/A[B="B"TEXT"") will be lexed as the
word B"TEXT. You must use a backslash to escape the double quote between
B and TEXT, or you will get a parsing error.

— The string {B_TEXT} inside HASPATH(/A[B="{B_TEXT}"") will be lexed as a
phrase B TEXT.

Examples for HASPATH Operator
Path Testing

The query

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.
Section Equality Testing
The query

3-22 Oracle Text Reference

INPATH

dog INPATH A

finds

<A>dog

but it also finds

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality test
with the HASPATH operator. For example,

HASPATH(A="dog")

finds and returns a score of 100 only for the first document, and not the second.

Limitations

Because of how XML section data is recorded, false matches might occur with XML
sections that are completely empty as follows:

<A><C></C><D><E></E></D>

A query of HASPATH(A/B/E) or HASPATH(A/D/C) falsely matches this document.
This type of false matching can be avoided by inserting text between empty tags.

False matches might also occur when the document has empty elements but has
values in attributes, as in the following example document:

<Test>

<Client id="1">
<Info infoid="1"/>
</Client>

<Client id="2">
<Info infoid="2"/>
</Client>

</Test>

When searching with the following query, the query returns the document shown in
the example, which is a false match.
The following query was used to return the example document, which is a false match:

SELECT main_detail_logging_id, t.xml_data.getstringval () xml_data FROM
TEST_XMLTYPE t

WHERE CONTAINS(t.xml_data,
"HASPATH(/Test/Client[@id="1"]/Info[@infoid="2"])") > O;

3.12 INPATH

Use the INPATH operator to do path searching in XML documents. This operator is
like the WITHIN operator except that the right-hand side is a parentheses enclosed
path, rather than a single section name.

Your index must be created with the PATH_SECTION_GROUP for the INPATH operator
to work.

Syntax
The INPATH operator has the following syntax:
Top-Level Tag Searching

Oracle Text CONTAINS Query Operators 3-23

INPATH

Syntax Description
term INPATH (/A) Returns documents that have term within the <A>
term INPATH (A) and tags.

Any-Level Tag Searching

Syntax Description

term INPATH (//A) Returns documents that have term in the <A> tag at

any level. This query is the same as "term WITHIN

A

Direct Parentage Path Searching

Syntax Description
term INPATH (A/B)

Returns documents where term appears in a B

element which is a direct child of a top-level A
element.

For example, a document containing
<A>term

is returned.

Single-Level Wildcard Searching

Syntax Description

term INPATH (A/*/B) Returns documents where term appears in a B

element which is a grandchild (two levels down) of
a top-level A element.

For example a document containing
<A><D>term</D>

is returned.

Multi-level Wildcard Searching

Syntax Description

term INPATH (A/*/B/*/*/C) Returns documents where term appears ina C

element which is 3 levels down from a B element

which is two levels down (grandchild) of a top-level
A element.

Any-Level Descendant Searching

3-24 Oracle Text Reference

INPATH

Syntax Description
term INPATH(A/ /B) Returns documents where term appears in a B
element which is some descendant (any level) of a
top-level A element.
Attribute Searching
Syntax Description
term INPATH (//A/@B) Returns documents where term appears in the B

attribute of an A element at any level. Attributes
must be bound to a direct parent.

Descendant/ Attribute Existence Testing

Syntax

Description

term INPATH (A[B])

term INPATH (A[./ /B])

term INPATH (//A[@B])

Returns documents where term appears in a top-
level A element which has a B element as a direct
child.

Returns documents where term appears in a top-
level A element which has a B element as a
descendant at any level.

Finds documents where term appears in an A
element at any level which has a B attribute.
Attributes must be tied to a direct parent.

Attribute Value Testing

Syntax

Description

term INPATH (A[@B = "value"])

term INPATH (A[@B != "value"])

Finds all documents where term appears in a top-
level A element which has a B attribute whose
value is value.

Finds all documents where term appears in a top-
level A element which has a B attribute whose
value is not value.

Tag Value Testing

Syntax

Description

term INPATH (A[B = "value"]))

Returns documents where term appears in an A tag
which has a B tag whose value is value.

NOT Testing

Oracle Text CONTAINS Query Operators 3-25

INPATH

Syntax Description

term INPATH (A[NOT(B)]) Finds documents where term appears in a top-level
A element which does not have a B element as an
immediate child.

AND and OR Testing
Syntax Description
term INPATH (A[B and C]) Finds documents where term appears in a top-level

A element which has a B and a C element as an
immediate child.

term INPATH (A[B and @C="value"]]) Finds documents where term appears in a top-level
A element which has a B element and a C attribute
whose value is value.

term INPATH (A [B OR C]) Finds documents where term appears in a top-level
A element which has a B element or a C element.

Combining Path and Node Tests

Syntax Description

term INPATH (A[@B = "value"]/C/D) Returns documents where term appears in aD
element which is the child of a C element, which is
the child of a top-level A element with a B attribute
whose value is value.

Nested INPATH
Nest the entire INPATH expression in another INPATH expression as follows:

(dog INPATH (//A/B/C)) INPATH (D)

When you do so, the two INPATH paths are completely independent. The outer
INPATH path does not change the context node of the inner INPATH path. For
example:

(dog INPATH (A)) INPATH (D)

never finds any documents, because the inner INPATH is looking for dog within the
top-level tag A, and the outer INPATH constrains that to document with top-level tag
D. A document can have only one top-level tag, so this expression never finds any
documents.

Case-Sensitivity
Tags and attribute names in path searching are case-sensitive. That is,

dog INPATH (A)

finds <A>dog but does not find <a>dog. Instead use

3-26 Oracle Text Reference

INPATH

dog INPATH (a)

Using Special Characters with INPATH

See "Using Special Characters with HASPATH and INPATH (page 3-22)" for
information on using special characters, such as the percent sign (%) or the backslash
(\), with INPATH.

Examples for INPATH Operator
Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)

or

dog INPATH(A)

Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

<C><A>dog</C>

Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a
top-level A element:

dog INPATH(A/B)

This query finds the following XML document:

<A>My dog is friendly.<A>

but does not find:

<C>My dog is friendly.</C>

Tag Value Testing
You can test the value of tags. For example, the query:

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

Attribute Searching

Oracle Text CONTAINS Query Operators 3-27

INPATH

You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document

<C> </C>

Attribute Value Testing

You can test the value of attributes. For example, the query
California INPATH (//A[@B = "home address'])

Finds the document:

San Francisco, California, USA
But does not find:

San Francisco, California, USA
Path Testing

You can test if a path exists with the HASPATH operator. For example, the query:
HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Limitations

Testing for Equality

The following is an example of an INPATH equality test.
dog INPATH (A[@B = "f00"])

The following limitations apply for these expressions:

* Only equality and inequality are supported. Range operators and functions are
not supported.

¢ The left hand side of the equality must be an attribute. Tags and literals here are
not enabled.

® The right hand side of the equality must be a literal. Tags and attributes here are
not allowed.

¢ The test for equality depends on your lexer settings. With the default settings, the
query
dog INPATH (A[@B= "pot of gold"])

matches the following sections:

dog

and

3-28 Oracle Text Reference

MDATA

3.13 MDATA

dog

because lexer is case-insensitive by default.

dog

because of and is are default stopwords in English, and a stopword matches any
stopword word.

dog

because the underscore character is not a join character by default.

Use the MDATA operator to query documents that contain MDATA sections. MDATA
sections are metadata that have been added to documents to speed up mixed

querying.
MDATA queries are treated exactly as literals. For example, with the query:

MDATA(price, $1.24)

the § is not interpreted as a stem operator, nor is the . (period) transformed into
whitespace. A right (close) parenthesis terminates the MDATA operator, so that MDATA
values that have close parentheses cannot be searched.

Syntax

MDATA(sect i onnane, val ue)

sectionname

The name of the MDATA section(s) to search. MDATA will also search DATE or
numerical equality if the sectionname parameter is mapped to a FILTER BY
column of DATE or some numerical type.

value
The value of the MDATA section. For example, if an MDATA section called Booktype
has been created, it might have a value of paperback.

For MDATA operator on MDATA sections that are mapped to a DATE FILTER BY
column, the MDATA value must follow the Date format: YYYY-MM-DD HH24:MI :SS.
Otherwise, the expected rows will not be returned. If the time component is omitted,
it will default to 00:00:00, according to SQL semantics.

Example for MDATA Operator

Suppose you want to query for books written by the writer Nigella Lawson that contain
the word summer. Assuming that an MDATA section called AUTHOR has been declared,
you can query as follows:

SELECT id FROM idx_docs
WHERE CONTAINS(text, "summer AND MDATA(author, Nigella Lawson)®)>0

This query will only be successful if an AUTHOR tag has the exact value Nigella Lawson
(after simplified tokenization). Nigella or Ms. Nigella Lawson will not work.

Oracle Text CONTAINS Query Operators 3-29

MDATA

Notes

MDATA query values ignore stopwords.

The MDATA operator returns an unlimited number of results or 0, depending on
whether the document is a match. You can set the maximum.

The MDATA operator is not supported for CTXCAT and CTXRULE indexes.

Table 3-2 (page 3-30) shows how MDATA interacts with some other query operators:

Table 3-2 MDATA and Other Query Operators

Operator Example Allowed?

AND dog & MDATA(a, b) yes

OR dog | MDATA(a, b) yes

NOT dog ~ MDATA(a, b) yes

MINUS dog - MDATAC(a, b) yes

ACCUM dog , MDATAC(a, b) yes

PHRASE MDATA(a, b) dog no

NEAR MDATA(a, b) ; dog no

WITHIN, HASPATH, MDATA(a, b) WITHIN ¢ no

INPATH

Thesaurus MDATA(a, SYN(b)) no

expansion MDATA(a, $b) no (syntactically allowed,
MDATA (a, b%) but the inner operator is
MDATA(a, 1b) treated as literal text)
MDATA(a, ?b)

ABOUT ABOUT(MDATAC(a,b)) no (syntactically allowed,
MDATA(ABOUT(a)) but the inner operator is

treated as literal text)

When MDATA sections repeat, each instance is a separate and independent value. For

instance, the document

<AUTHOR>Terry Pratchett</AUTHOR><AUTHOR>Douglas Adams</AUTHOR>

can be found with any of the following queries:

MDATA(author, Terry Pratchett)

MDATA(author, Douglas Adams)

MDATA(author, Terry Pratchett) and MDATA(author, Douglas Adams)

but not any of the following:

MDATA(author, Terry Pratchett Douglas Adams)
MDATA(author, Terry Pratchett & Douglas Adams)
MDATA(author, Pratchett Douglas)

3-30 Oracle Text Reference

MINUS (-)

Related Topics
"ADD_MDATA (page 8-10)"
"ADD_MDATA_SECTION (page 8-13)"

See Also:

Oracle Text Application Developer’s Guide for information about section
searching

3.14 MINUS (-)

3.15 MNOT

Use the MINUS operator to lower the score of documents that contain unwanted noise
terms. MINUS is useful when you want to search for documents that contain one query
term but want the presence of a second term to cause a document to be ranked lower.

Syntax

Syntax Description
term1-term2 Returns documents that contain term1. Calculates score by subtracting
term1 minus term? the score of ferm2 from the score of term1. Only documents with

positive score are returned.

Example for MINUS Operator

Suppose a query on the term cars always returned high scoring documents about Ford
cars. You can lower the scoring of the Ford documents by using the expression:

"cars - Ford"

In essence, this expression returns documents that contain the term cars and possibly

Ford. However, the score for a returned document is the score of cars minus the score
of Ford.

Related Topics
"NOT (~) (page 3-41)"

The Mild Not (MNOT) operator is similar to the NOT and MINUS operators. The Mild
Not operator returns hits where the the left child is not contained by the right child.
Both children can only be TERM or PHRASE nodes.

The semantics can be illustrated with a query of "term1 mnot term1 term2", where the
hits for "term1 term?2" will be filtered out. For example:

* A document with only term1 will be returned, with score unchanged.
¢ A document with only term1 term2 will not be returned.

e A document with term1 term1 term2 will be returned, but the score will be
calculated using just the first term1 hit.

Oracle Text CONTAINS Query Operators 3-31

Narrower Term (NT, NTG, NTP, NTI)

The behavior described in the third bullet is different from the behavior of NOT, which
does not return this type of document.

The MNOT operator is more specific than the MINUS operator, in that the left child must
be contained by the right child. If it is not, the Mild Not operator ignores the right
child. Also, for Mild Not, the right child is a true filter, that is, it does not simply
subtract the scores of left child and right child.

The MNOT operator has precedence lower than NOT and higher than WITHIN.

Syntax

Syntax

Description

term1 mnot term1 term2

term1 mnot term?2

Returns docs that contain ferm1 unless it is
part of the phrase term1 term2.

Returns all documents that contain ferm1. It
will be the same query as just term1.

Example for MNOT Operator

The children of the MNOT operator must be a TERM or PHRASE.

SELECT * FROM docs

WHERE CONTAINS(txt, "terml mnot terml term2®) >0

Related Topic
"NOT (~) (page 3-41)"

3.16 Narrower Term (NT, NTG, NTP, NTI)

Use the narrower term operators (NT, NTG, NTP, NT1) to expand a query to include all
the terms that have been defined in a thesaurus as the narrower or lower level terms
for a specified term. They can also expand the query to include all of the narrower
terms for each narrower term, and so on down through the thesaurus hierarchy.

Syntax

Syntax

Description

NT(term[(qualifier)][,level][,thes])

NTG(term[(qualifier)][level][,thes])

NTP(term[(qualifier)][,level][,thes])

3-32 Oracle Text Reference

Expands a query to include all the lower level terms
defined in the thesaurus as narrower terms for term.

Expands a query to include all the lower level terms
defined in the thesaurus as narrower generic terms for
term.

Expands a query to include all the lower level terms
defined in the thesaurus as narrower partitive terms
for term.

Narrower Term (NT, NTG, NTP, NTI)

Syntax Description
NTI(term[(qualifier)][level][, thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower instance terms for
term.
term

Specify the operand for the narrower term operator. term is expanded to include the
narrower term entries defined for the term in the thesaurus specified by thes. The
number of narrower terms included in the expansion is determined by the value for
level. You cannot specify expansion operators in the term argument.

qualifier

Specify a qualifier for term, if termis a homograph (word or phrase with multiple
meanings, but the same spelling) that appears in two or more nodes in the same
hierarchy branch of thes.

If a qualifier is not specified for a homograph in a narrower term query, the query
expands to include all of the narrower terms of all homographic terms.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the
narrower terms for the specified term. For example, a level of 1 in an NT query returns
all the narrower term entries, if any exist, for the specified term. A level of 2 returns
all the narrower term entries for the specified term, as well as all the narrower term
entries, if any exist, for each narrower term.

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes

Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. A
thesaurus named DEFAULT must exist in the thesaurus tables if you use this default
value.

Note:
If you specify thes, then you must also specify level.

Examples for Narrower Term Operators

The following query returns all documents that contain either the term cat or any of
the NT terms defined for cat in the DEFAULT thesaurus:

“NT(cat)"

If you specify a thesaurus name, then you must also specify level as in:

"NT(cat, 2, mythes)"

The following query returns all documents that contain either fairy tale or any of the
narrower instance terms for fairy tale as defined in the DEFAULT thesaurus:

“NTI(fairy tale)”

Oracle Text CONTAINS Query Operators 3-33

NDATA

That is, if the terms cinderella and snow white are defined as narrower term instances
for fairy tale, Oracle Text returns documents that contain fairy tale, cinderella, or snow
white.

Notes

Each hierarchy in a thesaurus represents a distinct, separate branch, corresponding to
the four narrower term operators. In a narrower term query, Oracle Text only expands
the query using the branch corresponding to the specified narrower term operator.

Related Topic

CTX_THES.NT (page 14-19) in CTX_THES Package (page 14-1) for more information
on browsing the narrower terms in your thesaurus

3.17 NDATA

Use the NDATA operator to find matches that are spelled in a similar way or where
rearranging the terms of the specified phrase is useful. It is helpful for finding more
accurate results when there are frequent misspellings (or inaccurate orderings) of
name data in the document set. This operator can be used only on defined NDATA
sections. The NDATA syntax enables you to rank the result set so that documents that
contain words with high orthographic similarity are scored higher than documents
with lower similarity.

Normalization

A lexer does not process NDATA query phrases. Users can, however, set base letter and
alternate spelling attributes for a particular section group containing NDATA sections.
Query case is normalized and non-character data (except for white space) is removed
(for example, numerical or punctuation).

Syntax
ndata(sectionname, phrase [,order][,proximity][,threshold])

Parameter Default Value Parameter Description
Name
sectionname Specify the name of a defined NDATA sections to query

(that is, section_name)

phrase Specify the phrase for the name data query.

The phrase parameter can be a single word or a phrase, or
a string of words in free text format.

The score returned is a relevant score.

Oracle Text ignores any query operators that are included
in phrase.

The phrase should be a minimum of two characters in
length and should not exceed 4000 characters in length.

3-34 Oracle Text Reference

NDATA

Parameter Default Value Parameter Description
Name
order NOORDER Specify whether individual tokens (terms) in a query

should be matched in-order or in any order. The order
parameter provides a primary filter for matching candidate
documents.

ORDER or O - The query terms are matched in-order.

NOORDER o N [DEFAULT] - The query terms are matched
in any order.

proximity NOPROXIMITY Specify whether the proximity of terms should influence
the similarity score of candidate matches. That is, if the
proximity parameter is enabled, non-matching additional
terms between matching terms reduces the similarity score
of candidate matches.

PROXIMITY or P - The similarity score influenced by the
proximity of query terms in candidate matches.

NOPROXIMITY or N [DEFAULT] - The similarity score is
not influenced by the proximity of query terms in
candidate matches.

threshold 20 Starting with Oracle Database 12c Release 2 (12.2), you can
provide a threshold value as part of the NDATA operator.
Specify a threshold value for percentage of matching
grams. The section values containing low percentage of
matching grams are ignored. If the threshold value is 20,
sections with less than 20% of matching grams are ignored.
If this value is lowered, fewer sections are ignored and this
leads to a better recall. This threshold value promotes
recall over precision as the value is lowered. For example:

NDATA(author, LAST First, x, proximity, 10)

Examples for NDATA Operator

An NDATA query on an indexed surname section name that matches terms in the query
phrase in any order without influencing the similarity score by the proximity of the
black and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, “NDATA(surname, black smith)*,1)>0;

An NDATA query on an indexed surname section name that matches terms in the query
phrase in any order and in which similarity scores are influenced by the proximity of
the black and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, “NDATA(surname, black smith,,proximity)”,1)>0;

An NDATA query on an indexed surname section name that matches terms in the query
phrase in-order without influencing the similarity score by the proximity of the black
and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, “NDATA(surname, black smith, order)®,1)>0;

Oracle Text CONTAINS Query Operators 3-35

NEAR ()

An NDATA query on an indexed surname section name that matches terms in the query
phrase in-order and in which similarity scores are influenced by the proximity of the
black and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, "NDATA(surname, black smith, order, proximity)",1)>0;

Notes

The NDATA query operator does not provide offset information. As such, it cannot be
used as a child of WITHIN, NEAR(;), or EQUIV(=), and NDATA sections will be
ignored by CTX_DOC.HIGHLIGHT, CTX_DOC.SNIPPET, and CTX_DOC.MARKUP. The
NDATA operator also is not supported in the CTXCAT grammar. It can be used with
other operators, including OR and query templates.

A use case of the NDATA operator may involve finding a particular entry based on an
approximate spelling of a person's full-name and an estimated date-of-birth.
Supposing the entries' date-of-births are stored as an SDATA section, user-defined
scoring's alternate scoring template can be used to combine the scores of the full-
name's NDATA section data and the date-of-birth's SDATA section data.

The name john smith is queried for the section specified by the fullname
section_name. Altering the NDATA operator's score based on the closeness of the
SDATA section's date-of-birth to the date 08-NOV-2012 modifies the ranking of
matching documents as follows:

<query>
<textquery grammar="CONTEXT" lang="english">
NDATA(fulIname, john smith)
</textquery>
<score algorithm="COUNT" normalization_expr =
"doc_score-(DATE(8-NOV-2012)-sdata:dob)"/>
</query>

Restrictions

The NDATA query operator does not work with CTX_DOC Package (page 9-1)
procedures. Attempting to use NDATA with CTX_DOC procedures will return an
error stating that this is not supported.

3.18 NEAR (;)

Use the NEAR operator to return a score based on the proximity of two or more query
terms. Oracle Text returns higher scores for terms closer together and lower scores for
terms farther apart in a document. If a word or term appears more than once in a NEAR
query, then the word must appear more than once in the document in order to match.

Note:

The NEAR operator works with only word queries. You cannot use NEAR in
ABOUT queries.

Syntax
NEAR((word1,word2,...,wordn) [, max_span [, order [, maxreqd]1])

Backward compatibility syntax:

3-36 Oracle Text Reference

NEAR ()

wor d1;wor d2

word1-n

Specify the terms in the query separated by commas. The query terms can be single
words or phrases and may make use of other query operators (see "NEAR with Other
Operators (page 3-38)").

max_span
Optionally specify the size of the biggest clump. The default is 100. Oracle Text
returns an error if you specify a number greater than 100.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term.

For near queries with two terms, max_span is the maximum distance allowed
between the two terms. For example, to query on dog and cat where dog is within 6
words of cat, enter the following query:

"near((dog, cat), 6)"
order

Specify TRUE for Oracle Text to search for terms in the order you specify. The default
is FALSE.

For example, to search for the words monday, tuesday, and wednesday in that order
with a maximum clump size of 20, enter the following query:

"near((monday, tuesday, wednesday), 20, TRUE)"

Note:
To specify order, then you must always specify a number for max_span.

Oracle Text might return different scores for the same document when you use
identical query expressions that have the order flag set differently. For example,
Oracle Text might return different scores for the same document when you enter the
following queries:

"near((dog, cat), 50, FALSE)"
"near((dog, cat), 50, TRUE)"

maxreqd

This new argument is available starting with Oracle Database 12c Release 2 (12.2).
Specify the number of terms that must be near each other resulting in a match. If the
number of terms that must be near each other for a match is not specified, all terms
must match. For example, the following query matches documents that contain
clusters of words pertaining to fish:

"near((fish, shark, ocean, scales, fishing), 10, FALSE, 3)*
Here, only three of the query terms must be within a distance of 10 from each other
for a match.

NEAR Scoring

The scoring for the NEAR operator combines frequency of the terms with proximity of
terms. For each document that satisfies the query, Oracle Text returns a score between
1 and 100 that is proportional to the number of clumps in the document and inversely

Oracle Text CONTAINS Query Operators 3-37

NEAR ()

proportional to the average size of the clumps. This means many small clumps in a
document result in higher scores, because small clumps imply closeness of terms.

The number of terms in a query also affects score. Queries with many terms, such as
seven, generally need fewer clumps in a document to score 100 than do queries with
few terms, such as two.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term. Define clump size with the max_span parameter, as
described in this section.

The size of a clump does not include the query terms themselves. So for the query
NEAR((DOG, CAT), 1),dog cat will be a match, and dog ate cat will be a match, but
dog sat on cat will not be a match.

NEAR with Other Operators

You can use the NEAR operator with other operators such as AND and OR. Scores are
calculated in the regular way.

For example, to find all documents that contain the terms tiger, lion, and cheetah where
the terms lion and tiger are within 10 words of each other, enter the following query:

“near((lion, tiger), 10) AND cheetah"

The score returned for each document is the lower score of the near operator and the
term cheetah.

You can also use the equivalence operator to substitute a single term in a near query:

"near((stock crash, Japan=Korea), 20)"

This query asks for all documents that contain the phrase stock crash within twenty
words of Japan or Korea.

The following NEAR syntax is now valid:

SELECT * FROM docs WHERE CONTAINS(txt, “near((aterml aterm2 ... aterml
OR bterml bterm2 ... btermJ
OR cterml cterm2 ... ctermK, dterm))®) >0

There can be any number of ORs in a given NEAR child, and the OR can appear in any
of the NEAR children.

The NEAR within NEAR feature allows users to use nested proximity queries. Starting
with Oracle Database 12c Release 2 (12.2), the distance between phrases is measured
from the closest words in the phrases. For example, if the document contains the
phrases * Lorem ipsum dolor sit amet” and ~ Sed ut perspiciatis unde omnis’, rather
than measuring the distance of these two phrases as the distance between “Lorem’ and
*Sed’, the first two words in the phrases, the distance is measured from “amet’ and
‘Sed’. The distance between phrases is the so-called Hausdorff measure.

SELECT * FROM docs
WHERE CONTAINS(txt, "near((near((terml, term2),5), term3), 100)")>0

This query returns documents where term1, term2, and term3 are near within a 100
token window and, additionally, the tokens ferm1 and term2 are near within a 5 token
window.

Mixing the semicolon and NEAR syntax is not supported and throws an error. That is,
the queries ""near((a;b,c),3)" or "near((a,b));c" will be disallowed.

3-38 Oracle Text Reference

NEAR ()

The following operators also work with NEAR and ; :
e EQUIV
e All expansion operators that produce words, phrases, or EQUIV. These include:

— soundex

fuzzy

wildcards

— stem

Backward Compatibility NEAR Syntax

You can write near queries using the syntax of previous Oracle Text releases.
However, in a nested NEAR query, the semicolon operator cannot be used as the inner
NEAR. That is, the query "near(((a;d) ,T),3)" produces a syntax error. The
semicolon operator can be used as the outermost NEAR in a nested NEAR query.

For example, to find all documents where lion occurs near tiger, write:

"lion near tiger”

or with the semi-colon as follows:

"lion;tiger”

This query is equivalent to the following query:

"near((lion, tiger), 100, FALSE)"

Note:

Only the syntax of the NEAR operator is backward compatible. In the example,
the score returned is calculated using the clump method as described in this
section.

Highlighting with the NEAR Operator

When you use highlighting and your query contains the near operator, all
occurrences of all terms in the query that satisfy the proximity requirements are
highlighted. Highlighted terms can be single words or phrases.

For example, assume a document contains the following text:

Chocolate and vanilla are my favorite ice cream flavors. |1 like chocolate served
in a waffle cone, and vanilla served in a cup with caramel syrup.

If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. 1 like
<<chocolate>> served in a waffle cone, and <<vanilla>> served in a cup with
caramel syrup.

However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is
highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. 1 like
chocolate served in a waffle cone, and vanilla served in a cup with caramel syrup.

Oracle Text CONTAINS Query Operators 3-39

NEAR2

3.19 NEAR2

See Also:

CTX_DOC Package (page 9-1) for more information about the procedures
for highlighting

Section Searching and NEAR
Use the NEAR operator with the WITHIN operator for section searching as follows:
"near((dog, cat), 10) WITHIN Headings"

When evaluating expressions such as these, Oracle Text looks for clumps that lie
entirely within the given section.

In this example, only those clumps that contain dog and cat that lie entirely within the
section Headings are counted. That is, if the term dog lies within Headings and the term
cat lies five words from dog, but outside of Headings, this pair of words does not satisfy
the expression and is not counted.

Use the NEAR?2 operator to perform position-based scoring and length normalization
to help improve relevancy.

The NEAR2 operator divides a document into segments based on the given query.
Then, it classifies each segment based on the primary features and scores them based
on the secondary features. The primary features that are used are as follows:

e Phrase Hits

e Partial Phrase Hits

e Ordered Near Hits

¢ Unordered Near Hits

e AND Hits

The secondary features are as follows:
* Excess Span
e Start Position

* Longest Partial Phrase

Syntax

NEAR2((wor d1, word2,...,wordn),max_span, phrase_weight, partial_phrase weight,
ordered_near_weight, unordered near_weight, and_weight)

All or none of the weights must be provided. When the weights are provided, the
NEAR2 operator works in the weighted-average mode. The weights are integers
between 0 and 10.

word1-n

Specify the terms in the query separated by commas. The query terms can be single
words or phrases and can use other query operators (see "NEAR with Other
Operators (page 3-38)"). Only the word list is mandatory.

3-40 Oracle Text Reference

NOT (~)

max_span
Optionally, specify the size of the biggest clump. The default is 50. Oracle Text returns
an error if you specify a number greater than 50.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term.

For near queries with two terms, max_span is the maximum distance allowed
between the two terms. For example, to query on dog and cat where dog is within 6
words of cat, enter the following query:

"near((dog, cat), 6)"

phrase_weight
Determine the weight of the phrase primary feature when in weighted-average mode.
This is a qualitative weight, which is mapped to an internal weight.

partial_phrase_weight
Determine the weight of the partial phrase primary feature when in weighted-average
mode. This is a qualitative weight.

ordered_near_weight
Determine the weight of the ordered near primary feature when in weighted-average
mode. This is a qualitative weight.

unordered_near_weight
Determine the weight of the unordered near primary feature when in weighted-
average mode. This is a qualitative weight.

and_weight
Determine the weight of the AND primary feature when in weighted average mode.
This is a qualitative weight.

See Also: Oracle Text Application Developer’s Guide

3.20 NOT (~)

Use the NOT operator to search for documents that contain one query term and not

another.
Syntax
Syntax Description
term1~term?2 Returns documents that contain term1 and not term2.

term1 not term2

Examples for NOT Operator

To obtain the documents that contain the term animals but not dogs, use the following
expression:

"animals ~ dogs"

Oracle Text CONTAINS Query Operators 3-41

OR (1)

3.21 OR (1)

Similarly, to obtain the documents that contain the term transportation but not
automobiles or trains, use the following expression:

"transportation not (automobiles or trains)®

Note:

The NOT operator does not affect the scoring produced by the other logical
operators.

Related Topics
"MINUS (-) (page 3-31)"

Use the OR operator to search for documents that contain at least one occurrence of any
of the query terms. The OR operator returns documents that contain any of the query
terms, while the AND operator returns documents that contain all query terms.

Syntax

Syntax Description
term1 | term2 Returns documents that contain term1 or term2. Returns the
terml or term? maximum score of its operands. At least one term must exist;

higher score taken.

Examples for OR Operator

To obtain the documents that contain the term cats or the term dogs, use either of the
following expressions:

"cats | dogs"
"cats OR dogs”
Scoring

In an OR query, the score returned is the score for the highest query term. In the
example, if the scores for cats and dogs is 30 and 40 within a document, the document
scores 40.

Related Topics
"AND (&) (page 3-8)"

3.22 Preferred Term (PT)

Use the preferred term operator (PT) to replace a term in a query with the preferred
term that has been defined in a thesaurus for the term.

3-42 Oracle Text Reference

Related Term (RT)

Syntax
Syntax Description
PT(term][,thes]) Replaces the specified word in a query with the preferred term
for term.
term

Specify the operand for the preferred term operator. term is replaced by the
preferred term defined for the term in the specified thesaurus. However, if no PT
entries are defined for the term, term is not replaced in the query expression and
termis the result of the expansion.

You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. As a result,
a thesaurus named DEFAULT must exist in the thesaurus tables before using any of the
thesaurus operators.

Example for PT Operator

The term automobile has a preferred term of car in a thesaurus. A PT query for
automobile returns all documents that contain the word car. Documents that contain the
word automobile are not returned.

Related Topics

CTX_THES.PT (page 14-25) in CTX_THES Package (page 14-1) form more
information on browsing the preferred terms in your thesaurus

3.23 Related Term (RT)

Use the related term operator (RT) to expand a query to include all related terms that
have been defined in a thesaurus for the term.

Syntax
Syntax Description
RT(term][,thes]) Expands a query to include all the terms defined in the
thesaurus as a related term for term.
term

Specify the operand for the related term operator. termis expanded to include term
and all the related entries defined for term in thes.

You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. As a result,

Oracle Text CONTAINS Query Operators 3-43

SDATA

a thesaurus named DEFAULT must exist in the thesaurus tables before using any of the
thesaurus operators.

Example for RT Operator

The term dog has a related term of wolf. An RT query for dog returns all documents that
contain the word dog and wolf.

Related Topics

CTX_THES.RT (page 14-27) in CTX_THES Package (page 14-1) for more information
on browsing the related terms in your thesaurus

3.24 SDATA

Use the SDATA operator to perform tests on SDATA sections and columns, which
contain structured data values. SDATA sections speed up mixed querying and
ordering. This operator provides structured predicate support for CONTAINS, which
extends non-SQL interfaces such as count_hits or the result set interface.

SDATA operators should only be used as descendants of AND operators that also have
non-SDATA children.

SDATA queries perform on string or numeric literals, and on date strings. The string
literal and date string are enclosed within single or double quote characters. The
numeric value is not enclosed in quote characters, and must conform to the SQL
format of NUMBER. For example:

CONTAINS(text, "dog and SDATA(category = ""news"")'")>0 ...
SDATA(rating between 1.2 and 3.4) ...

SDATA(author LIKE "FFORDE%") ...

SDATA(date >="2005-09-18") ...

Closed parentheses are permitted, as long as they are enclosed in single or double
quotes.

The SDATA operator can be used in query templates.

Syntax

Syntax Operators

SData :="SDATA" "(" SDataPredicate ")"

SDataPredicate := section_name SDataTest

SDataTest := <SDataSingleOp SDatalLiteral> | SDataBetweenOp | <"is" ("not")?
"null">

SDataSingleOp =< =" " S S] =" | "> | like") SDataLiteral

SDataBetweenOp :="between" SDataLiteral "and" SDataLiteral

SDatalLiteral = numeric_literal | """ string_literal "™ | """ date_string """

3-44 Oracle Text Reference

SDATA

section_name
The name of the SDATA section(s) on which to search and perform the test, or check.

SDatalLiteral
The value of the SDATA section. This must be either a string literal, numeric literal, or
a date string.

The SDATA operator returns a score of 100 if the enclosed predicate returns TRUE, and
returns O otherwise. In the case of a NULL value, the SDATA operator returns a score of
0 (since in SQL it would not return TRUE).

Multi-valued semantics are not defined, as multi-valued SDATA sections are not
supported.

Comparison of strings is case sensitive. The BINARY collation is always used.

Note:

For the SDATA operator on SDATA sections that are mapped to a DATE
FILTER BY column, the SDATA value must follow the Date format: YYYY-
MM-DD or YYYY-MM-DD HH24 :MI :SS. Otherwise, the expected rows will not
be returned. If the time component is omitted, it will default to 00:00:00,
according to SQL semantics. This Date format is always used, regardless of
the setting of the NLS_DATE_FORMAT environment variable.

Example for SDATA Operator

Suppose that you want to query for books in the fiction category that contain the word
summer. Assuming that an SDATA section called CATEGORY has been declared, you can
query as follows:

SELECT id FROM idx_docs
WHERE CONTAINS(text, "summer AND SDATA(category = "fiction')")>0

Restrictions

e An error is raised if the section name is not a defined SDATA section. The source of
the section (for example, tag versus column) is not important.

* The syntax precludes RHS SDATA and expressions.
* SDATA operators cannot be children of WITHIN, INPATH, HASPATH, or NEAR.

* The data type of the named SDATA section must be compatible with the literal
provided (and the operator, for example, LIKE) or an error is raised.

* SDATA operators are not supported in CTXRULE query documents.

® SDATA operators have no effect on highlighting.

Notes

Oracle recommends using SDATA operators only as descendants of AND operators that
also have non-SDATA children. Essentially, use SDATA operators as secondary (that is,
checking or non-driving) criteria. For instance, "find documents with DOG that also
have price > 5", rather than "find documents with rating > 4". Other usage may operate
properly, but may not have optimal performance.

The following examples are consistent with recommended use:

Oracle Text CONTAINS Query Operators 3-45

soundex (!)

dog & SDATA(foo = 5)

The SDATA is a child of an AND operator that also has non-SDATA children.

dog & (SDATA(foo = 5) | SDATA(x = 1))

Although the SDATA operators here are children of OR, they are still descendants of an
AND operator with non-SDATA children.

The following examples show use that is not recommended:

SDATA(foo = 5)

Here, SDATA is the only criteria and, therefore, the driving criteria.

dog | SDATA(bar = 9)

The SDATA in this example is a child of an OR operator rather than an AND.
SDATA(foo = 5) & SDATA(bar = 7)

While both SDATA operators in this example are descendants of AND, this AND operator
does not have non-SDATA children.

Related Topics

"ADD_SDATA_COLUMN (page 8-15)"
"ADD_SDATA_SECTION (page 8-16)"

"UPDATE_SDATA (page 8-75)"

"CTX_SECTIONS (page G-12)" in Oracle Text Views (page G-1)

See Also:

® Oracle Database SQL Language Reference

® Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer’s Guide

3.25 soundex (!)

Use the soundex (!) operator to expand queries to include words that have similar
sounds; that is, words that sound like other words. This function enables comparison
of words that are spelled differently, but sound alike in English.

Syntax
Syntax Description
Iterm Expands a query to include all terms that sound the same

as the specified term (English-language text only).

3-46 Oracle Text Reference

stem ($)

Example for Soundex (!) Operator

SELECT 1D, COMMENT FROM EMP_RESUME
WHERE CONTAINS (COMMENT, ®ISMYTHE®") > O ;

ID COMMENT

23 Smith is a hard worker who..

Language

Soundex works best for languages that use a 7-bit character set, such as English. It can
be used, with lesser effectiveness, for languages that use an 8-bit character set, such as
many Western European languages.

If you have base-letter conversion specified for a text column and the query expression
contains a soundex operator, then Oracle Text operates on the base-letter form of the

query.

3.26 stem ($)

Use the stem ($) operator to search for terms that have the same linguistic root as the
query term.

If you use the BASIC_LEXER to index your language, stemming performance can be
improved by using the index_stems attribute.

The Oracle Text stemmer, licensed from XSoft Division of Xerox Corporation, supports
the following languages with the BASIC_LEXER (page 2-41): English, French, Spanish,
Italian, German, and Dutch.

Japanese stemming is supported with the JAPANESE_LEXER (page 2-55).
Specify your stemming language with the BASIC_WORDLIST (page 2-73) wordlist

preference.
Syntax
Syntax Description
$term Expands a query to include all terms having the same

stem or root word as the specified term.

Examples for Stem ($) Operator

Input Expands To

$scream scream screaming screamed
$distinguish distinguish distinguished distinguishes
$guitars guitars guitar

$commit commit committed

$cat cat cats

Oracle Text CONTAINS Query Operators 3-47

Stored Query Expression (SQE)

Input Expands To

$sing sang sung sing

Behavior with Stopwords

If stem returns a word designated as a stopword, the stopword is not included in the
query or highlighted by CTX_QUERY _.HIGHLIGHT or CTX_QUERY . MARKUP.

Related Topics

For more information about enabling the stem operator with BASIC_LEXER, see
"BASIC_LEXER (page 2-41)" in Oracle Text Indexing Elements (page 2-1)

3.27 Stored Query Expression (SQE)

Use the SQE operator to call a stored query expression created with the
CTX_QUERY.STORE_SQE (page 12-21) procedure.

Stored query expressions can be used for creating predefined bins for organizing and
categorizing documents or to perform iterative queries, in which an initial query is
refined using one or more additional queries.

Syntax
Syntax Description
SQE(SQE_name) Returns the results for the stored query expression

SQE_name.

Examples for SQE Operator

To create an SQE named disasters, use CTX_QUERY.STORE_SQE (page 12-21) as
follows:

begin
ctx_query.store_sqge("disasters”, "hurricane or earthquake or blizzard");
end;

This stored query expression returns all documents that contain either hurricane,
earthquake or blizzard.
This SQE can then be called within a query expression as follows:

SELECT SCORE(1), docid FROM news
WHERE CONTAINS(resume, "sge(disasters)”, 1)> 0
ORDER BY SCORE(1);

Limitations

Up to 100 stored query expressions (SQEs) can be stored in a single Text query. If a
Text query has more than 100 SQEs, including nested SQEs, then the query fails and
error DRG-50949 is raised.

3-48 Oracle Text Reference

SYNonym (SYN)

Related Topic
"STORE_SQE (page 12-21)"

3.28 SYNonym (SYN)

Use the synonym operator (SYN) to expand a query to include all the terms that have
been defined in a thesaurus as synonyms for the specified term.

Syntax
Syntax Description
SYN(term|,thes]) Expands a query to include all the terms defined in the
thesaurus as synonyms for term.
term

Specify the operand for the synonym operator. term is expanded to include term
and all the synonyms defined for term in thes.

You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. A

thesaurus named DEFAULT must exist in the thesaurus tables if you use this default
value.

Examples for SYN Operator

The following query expression returns all documents that contain the term dog or any
of the synonyms defined for dog in the DEFAULT thesaurus:

"SYN(dog) "

Compound Phrases in Synonym Operator

Expansion of compound phrases for a term in a synonym query are returned as AND
conjunctives.

For example, the compound phrase temperature + measurement + instruments is defined
in a thesaurus as a synonym for the term thermometer. In a synonym query for
thermometer, the query is expanded to:

{thermometer} OR ({temperature}&{measurement}&{instruments})

Related Topics

CTX_THES.SYN (page 14-28) in CTX_THES Package (page 14-1) for more
information on browsing the synonym terms in your thesaurus

3.29 threshold (>)

Use the threshold operator (>) in two ways:

® at the expression level

Oracle Text CONTAINS Query Operators 3-49

Translation Term (TR)

* at the query term level

The threshold operator at the expression level eliminates documents in the result set
that score below a threshold number.

The threshold operator at the query term level selects a document based on how a
term scores in the document.

Syntax
Syntax Description
expression>n Returns only those documents in the result set that score
above the threshold 7.
term>n

Within an expression, returns documents that contain
the query term with score of at least n.

Examples for Threshold (>) Operator

At the expression level, to search for documents that contain relational databases and to
return only documents that score greater than 75, use the following expression:

"relational databases > 75°

At the query term level, to select documents that have at least a score of 30 for lion and
contain tiger, use the following expression:

"(lion > 30) and tiger”

3.30 Translation Term (TR)

Use the translation term operator (TR) to expand a query to include all defined foreign
language equivalent terms.

Syntax
Syntax Description
TR(term|, lang, [thes]]) Expands term to include all the foreign equivalents that are
defined for term.
term

Specify the operand for the translation term operator. term is expanded to include all
the foreign language entries defined for termin thes. You cannot specify expansion
operators in the term argument.

lang

Optionally, specify which foreign language equivalents to return in the expansion.
The language you specify must match the language as defined in thes. (You may
specify only one language at a time.) If you omit this parameter or specify it as ALL,
the system expands to use all defined foreign language terms.

3-50 Oracle Text Reference

Translation Term Synonym (TRSYN)

thes

Optionally, specify the name of the thesaurus used to return the expansions for the
specified term. The thes argument has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before you can use any
of the thesaurus operators.

Note:
If you specify thes, then you must also specify lang.

Examples for TR Operator
Consider a thesaurus MY_THES with the following entries for cat:

cat
SPANISH: gato
FRENCH: chat

To search for all documents that contain cat and the spanish translation of cat, enter the
following query:

"tr(cat, spanish, my_thes)"
This query expands to:
"{cat}|{gato}"

Related Topics

CTX_THES.TR (page 14-31) in CTX_THES Package (page 14-1) for more information
on browsing the related terms in your thesaurus

3.31 Translation Term Synonym (TRSYN)

Use the translation term synonym operator (TRSYN) to expand a query to include all
the defined foreign equivalents of the query term, the synonyms of query term, and
the foreign equivalents of the synonyms.

Syntax

Syntax Description

TRSYN(term[, lang, [thes]]) ~ Expands term to include foreign equivalents of term, the
synonyms of term, and the foreign equivalents of the
synonyms.

term

Specify the operand for this operator. term is expanded to include all the foreign
language entries and synonyms defined for term in thes. You cannot specify
expansion operators in the term argument.

lang

Optionally, specify which foreign language equivalents to return in the expansion.
The language you specify must match the language as defined in thes. If you omit
this parameter, the system expands to use all defined foreign language terms.

Oracle Text CONTAINS Query Operators 3-51

Top Term (TT)

thes

Optionally, specify the name of the thesaurus used to return the expansions for the
specified term. The thes argument has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before you can use any
of the thesaurus operators.

Note:
If you specify thes, then you must also specify lang.

Examples for TRSYN Operator
Consider a thesaurus MY_THES with the following entries for cat:

cat
SPANISH: gato
FRENCH: chat
SYN lion
SPANISH: leon

To search for all documents that contain cat, the spanish equivalent of cat, the
synonym of cat, and the spanish equivalent of lion, enter the following query:

"trsyn(cat, spanish, my_thes)"

This query expands to:
"{cat}|{gato}|{lion}|{leon}"

Related Topics

CTX_THES.TRSYN (page 14-32) in CTX_THES Package (page 14-1) for more
information on browsing the translation and synonym terms in your thesaurus

3.32 Top Term (TT)

Use the top term operator (TT) to replace a term in a query with the top term that has
been defined for the term in the standard hierarchy (Broader Term [BT], Narrower
Term [NT]) in a thesaurus. A top term is the broadest conceptual term related to a
given query term. For example, a thesaurus might define the following hierarchy:

DOG
BT1 CANINE
BT2 MAMMAL
BT3 VERTEBRATE
BT4 ANIMAL

The top term for dog in this thesaurus is animal.

Top terms in the generic (BTG, NTG), partitive (BTP, NTP), and instance (BTI, NTI)
hierarchies are not returned.

3-52 Oracle Text Reference

weight (*)

Syntax
Syntax Description
TT(term][,thes]) Replaces the specified word in a query with the top term in the
standard hierarchy (BT, NT) for term.
term

Specify the operand for the top term operator. term is replaced by the top term
defined for the term in the specified thesaurus. However, if no TT entries are defined
for term, termis not replaced in the query expression and term is the result of the
expansion.

You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. A
thesaurus named DEFAULT must exist in the thesaurus tables if you use this default
value.

Example for TT Operator

The term dog has a top term of animal in the standard hierarchy of a thesaurus. A TT
query for dog returns all documents that contain the phrase animal. Documents that
contain the word dog are not returned.

Related Topics

CTX_THES.TT (page 14-34) for more information on browsing the top terms in your
thesaurus

3.33 weight (*)

The weight operator multiplies the score by the given factor, topping out at 100 when
the score exceeds 100. For example, the query cat, dog*2 sums the score of cat with
twice the score of dog, topping out at 100 when the score is greater than 100.

In expressions that contain more than one query term, use the weight operator to
adjust the relative scoring of the query terms. Reduce the score of a query term by
using the weight operator with a number less than 1; increase the score of a query
term by using the weight operator with a number greater than 1 and less than 10.

The weight operator is useful in ACCUMulate (_) (page 3-7), AND (&) (page 3-8), or
OR (1) (page 3-42) queries when the expression has more than one query term. With
no weighting on individual terms, the score cannot tell which of the query terms
occurs the most. With term weighting, you can alter the scores of individual terms and
hence make the overall document ranking reflect the terms you are interested in.

Oracle Text CONTAINS Query Operators 3-53

wildcards (% _)

Syntax
Syntax Description
term*n Returns documents that contain term. Calculates score by multiplying

the raw score of term by N, where N is a number from 0.1 to 10.

Examples for Weight (*) Operator

Suppose you have a collection of sports articles. You are interested in the articles about
Brazilian soccer. It turns out that a regular query on soccer or Brazil returns many high
ranking articles on US soccer. To raise the ranking of the articles on Brazilian soccer,
enter the following query:

"soccer or Brazil*3"

Table 3-3 (page 3-54) illustrates how the weight operator can change the ranking of
three hypothetical documents A, B, and C, which all contain information about soccer.
The columns in the table show the total score of four different query expressions on
the three documents.

Table 3-3 Score Samples
__|

Document soccer Brazil soccer or Brazil soccer or Brazil*3
A 20 10 20 30
B 10 30 30 90
C 50 20 50 60

The score in the third column containing the query soccer or Brazil is the score of the
highest scoring term. The score in the fourth column containing the query soccer or
Brazil*3 is the larger of the score of the first column soccer and of the score Brazil
multiplied by three, Brazil*3.

With the initial query of soccer or Brazil, the documents are ranked in the order C B A.
With the query of soccer or Brazil*3, the documents are ranked B C A, which is the
preferred ranking.

Weights can be added to multiple terms. The query Brazil OR (soccer AND Brazil)*3
will increase the relative scores for documents that contain both soccer and Brazil.

3.34 wildcards (% _)

Wildcard characters can be used in query expressions to expand word searches into
pattern searches. When a wildcard is used on its own, for example, "DOG %" or ".%"
or "%" by itself, it is treated as a stopword.

The wildcard characters are as follows:

3-54 Oracle Text Reference

wildcards (% _)

Wildcard Character Description

% The percent wildcard can appear any number of times at any part of
the search term. The search term will be expanded into an equivalence
list of terms. The list consists of all terms in the index that match the
wildcarded term, with zero or more characters in place of the percent
character.

The underscore wildcard specifies a single position in which any
character can occur.

The total number of wildcard expansions from all words in a query containing
unescaped wildcard characters cannot exceed the maximum number of expansions
specified by the BASIC_WORDLIST attribute WILDCARD_MAXTERMS. For more
information, see "BASIC_WORDLIST (page 2-73)".

Note:

* When a wildcard is used on its own, it is treated as a stopword.

¢ When a wildcard expression translates to a stopword, the stopword is not
included in the query and not highlighted by CTX_DOC.HIGHLIGHT
(page 9-9) or CTX_DOC.MARKUP (page 9-14).

Right-Truncated Queries

Right truncation involves placing the wildcard on the right-hand-side of the search
string.

For example, the following query expression finds all terms beginning with the
pattern scal:

"scal%"®

Left- and Double-Truncated Queries

Left truncation involves placing the wildcard on the left-hand-side of the search string.
To find words such as king, wing or sing, write the query as follows:

" ing"
For all words that end with ing, enter:

"%ing"

Combine left-truncated and right-truncated searches to create double-truncated

searches. The following query finds all documents that contain words that contain the
substring %benz%

"lbenz%"

Improving Wildcard Query Performance

Improve wildcard query performance by adding a substring or prefix index.

Oracle Text CONTAINS Query Operators 3-55

WITHIN

When your wildcard queries are left- and double-truncated, you can improve query
performance by creating a substring index. Substring indexes improve query
performance for all types of left-truncated wildcard searches such as %ed, _ing, or
Yobenz%.

When your wildcard queries are right-truncated, you can improve performance by
creating a prefix index. A prefix index improves query performance for wildcard
searches such as t0%.

See Also:

"BASIC_WORDLIST (page 2-73)" in Oracle Text Indexing Elements (page 2-1)
for more information about creating substring and prefix indexes

3.35 WITHIN

Use the WITHIN operator to narrow a query down into document sections. Document
sections can be one of the following:

e Zone sections
e Field sections
e Attribute sections

¢ Special sections (sentence or paragraph)

Syntax

Syntax Description

expression WITHIN section Searches for expression within the predefined
zone, field, or attribute Section.

If section is a zone, €XPression can contain one or
more WITHIN operators (nested WITHIN) whose
section is a zone or special section.

If section is a field or attribute section, expression
cannot contain another WITHIN operator.

expression WITHIN SENTENCE Searches for documents that contain eXxpression
within a sentence. Specify an AND or NOT query for
expression.

The eXpression can contain one or more WITHIN

operators (nested WITHIN) whose section is a zone or
special section.

expression WITHIN PARAGRAPH Searches for documents that contain expression
within a paragraph. Specify an AND or NOT query for
expression.

The expression can contain one or more WITHIN
operators (nested WITHIN) whose section is a zone or
special section.

3-56 Oracle Text Reference

WITHIN

WITHIN Limitations
The WITHIN operator has the following limitations:

* You cannot embed the WITHIN clause in a phrase. For example, you cannot write:
term1 WITHIN section term2

® Because WITHIN is a reserved word, you must escape the word with braces to
search on it.

WITHIN Operator Examples
Querying Within Zone Sections

To find all the documents that contain the term San Francisco within the section
Headings, write the query as follows:

"San Francisco WITHIN Headings®

To find all the documents that contain the term sailing and contain the term San
Francisco within the section Headings, write the query in one of two ways:

"(San Francisco WITHIN Headings) and sailing”

"sailing and San Francisco WITHIN Headings®

Compound Expressions with WITHIN

To find all documents that contain the terms dog and cat within the same section
Headings, write the query as follows:

"(dog and cat) WITHIN Headings"

This query is logically different from:
"dog WITHIN Headings and cat WITHIN Headings"

This query finds all documents that contain dog and cat where the terms dog and cat
are in Headings sections, regardless of whether they occur in the same Headings section
or different sections.

Near with WITHIN

To find all documents in which dog is near cat within the section Headings, write the
query as follows:

"dog near cat WITHIN Headings®

Note:

The near operator has higher precedence than the WITHIN operator so braces
are not necessary in this example. This query is equivalent to (dog near cat)
WITHIN Headings.

Nested WITHIN Queries

You can nest the within operator to search zone sections within zone sections.

Oracle Text CONTAINS Query Operators 3-57

WITHIN

For example, assume that a document set had the zone section AUTHOR nested within
the zone BOOK section. Write a nested WITHIN query to find all occurrences of scott
within the AUTHOR section of the BOOK section as follows:

"(scott WITHIN AUTHOR) WITHIN BOOK®

Querying Within Field Sections

The syntax for querying within a field section is the same as querying within a zone
section. The syntax for most of the examples given in the previous section, "Querying
Within Zone Sections (page 3-57)", apply to field sections.

However, field sections behave differently from zone sections in terms of
* Visibility: Make text within a field section invisible.
* Repeatability: WITHIN queries cannot distinguish repeated field sections.

® Nestability: You cannot enter a nested WITHIN query with a field section.

The following sections describe these differences.

Visible Flag in Field Sections

When a field section is created with the visible flag set to FALSE in
CTX_DDL.ADD_FIELD_SECTION, the text within a field section can only be queried
using the WITHIN operator.

For example, assume that TITLE is a field section defined with visible flag set to
FALSE. Then the query dog without the WITHIN operator will not find a document
containing:

<TITLE>The dog</TITLE> | like my pet.

To find such a document, use the WITHIN operator as follows:

"dog WITHIN TITLE"

Alternatively, set the visible flag to TRUE when you define TITLE as a field section
with CTX_DDL.ADD_FIELD_SECTION.

See Also:

"ADD_FIELD_SECTION (page 8-5)" in CTX_DDL Package (page 8-1) for
more information about creating field sections

Repeated Field Sections

WITHIN queries cannot distinguish repeated field sections in a document. For example,
consider the document with the repeated section <author>:

<author> Charles Dickens </author>
<author> Martin Luther King </author>

Assuming that <author> is defined as a field section, a query such as (charles and
martin) within author returns the document, even though these words occur in separate
tags.

To have WITHIN queries distinguish repeated sections, define the sections as zone
sections.

3-58 Oracle Text Reference

WITHIN

Nested Field Sections

You cannot enter a nested WITHIN query with field sections. Doing so raises an error.

Querying Within Sentence or Paragraphs

Querying within sentence or paragraph boundaries is useful to find combinations of
words that occur in the same sentence or paragraph. To query sentence or paragraphs,
you must first add the special section to your section group before you index. Do so
with CTX_DDL .ADD_SPECIAL_SECTION.

To find documents that contain dog and cat within the same sentence:

*(dog and cat) WITHIN SENTENCE®

To find documents that contain dog and cat within the same paragraph:

*(dog and cat) WITHIN PARAGRAPH"

To find documents that contain sentences with the word dog but not cat:

*(dog not cat) WITHIN SENTENCE®

Querying Within Attribute Sections

Query within attribute sections when you index with either XML_SECT ION_GROUP or
AUTO_SECTION_GROUP as your section group type.

Assume you have an XML document as follows:
<book title="Tale of Two Cities">It was the best of times.</book>
Define the section title@book to be the attribute section title. Do so with the

CTX_DLL.ADD_ATTR_SECTION procedure or dynamically after indexing with ALTER
INDEX.

Note:

When you use the AUTO_SECT ION_GROUP to index XML documents, the
system automatically creates attribute sections and names them in the form
attribute@tag.

If you use the XML_SECTION_GROUP, you can name attribute sections
anything with CTX_DDL.ADD_ATTR_SECTION.

To search on Tale within the attribute section title, enter the following query:

"Tale WITHIN title”
Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:

* Regular queries on attribute text do not hit the document unless qualified in a
within clause. Assume you have an XML document as follows:

<book title="Tale of Two Cities'">It was the best of times.</book>

Oracle Text CONTAINS Query Operators 3-59

WITHIN

A query on Tale by itself does not produce a hit on the document unless qualified with
WITHIN title@book. (This behavior is like field sections when you set the visible
flag set to false.)

* You cannot use attribute sections in a nested WITHIN query.

® Phrases ignore attribute text. For example, if the original document looked like:

Now is the time for all good <word type="noun"> men </word> to come to the aid.

Then this document would hit on the regular query good men, ignoring the intervening
attribute text.

¢ WITHIN queries can distinguish repeated attribute sections. This behavior is like
zone sections but unlike field sections. For example, you have a document as
follows:

<book title="Tale of Two Cities">It was the best of times.</book>
<book title="0f Human Bondage">The sky broke dull and gray.</book>

Assume that book is a zone section and book@author is an attribute section.
Consider the query:

"(Tale and Bondage) WITHIN book@author*®

This query does not hit the document, because tale and bondage are in different
occurrences of the attribute section book@author.

Notes
Section Names

The WITHIN operator requires you to know the name of the section you search. A list
of defined sections can be obtained using the CTX_SECTIONS (page G-12) or
CTX_USER_SECTIONS (page G-23) views.

Section Boundaries

For special and zone sections, the terms of the query must be fully enclosed in a
particular occurrence of the section for the document to satisfy the query. This is not a
requirement for field sections.

For example, consider the query where bold is a zone section:
"(dog and cat) WITHIN bold"

This query finds:

dog cat

but it does not find:

dogcat

This is because dog and cat must be in the same bold section.
This behavior is especially useful for special sections, where

"(dog and cat) WITHIN sentence”

means find dog and cat within the same sentence.

3-60 Oracle Text Reference

WITHIN

Field sections on the other hand are meant for non-repeating, embedded metadata
such as a title section. Queries within field sections cannot distinguish between
occurrences. All occurrences of a field section are considered to be parts of a single
section. For example, the query:

(dog and cat) WITHIN title

can find a document like this:
<TITLE>dog</TITLE><TITLE>cat</TITLE>

In return for this field section limitation and for the overlap and nesting limitations,
field section queries are generally faster than zone section queries, especially if the
section occurs in every document, or if the search term is common.

Oracle Text CONTAINS Query Operators 3-61

WITHIN

3-62 Reference

A

Special Characters in Oracle Text Queries

This chapter describes the special characters that can be used in Text queries. In
addition, it provides a list of the words and characters that Oracle Text treats as
reserved words and characters.

The following topics are covered in this chapter:
* Grouping Characters (page 4-1)
* Escape Characters (page 4-1)

® Reserved Words and Characters (page 4-2)

4.1 Grouping Characters

The grouping characters control operator precedence by grouping query terms and
operators in a query expression. The grouping characters are described in Table 4-1
(page 4-1).

Table 4-1 Characters for Grouping Query Terms

Grouping Character Description

O The parentheses characters serve to group terms and operators
found between the characters

[] The bracket characters serve to group terms and operators
found between the characters; however, they prevent
penetrations for the expansion operators (fuzzy, soundex,
stem).

The beginning of a group of terms and operators is indicated by an open character
from one of the sets of grouping characters. The ending of a group is indicated by the
occurrence of the appropriate close character for the open character that started the
group. Between the two characters, other groups may occur.

For example, the open parenthesis indicates the beginning of a group. The first close
parenthesis encountered is the end of the group. Any open parentheses encountered
before the close parenthesis indicate nested groups.

4.2 Escape Characters

To query on words or symbols that have special meaning in query expressions such as
and & or | accum, you must escape them. There are two ways to escape characters in a
query expression, as described in Table 4-2 (page 4-2).

Special Characters in Oracle Text Queries 4-1

Reserved Words and Characters

Table 4-2 Characters for Escaping Query Terms
- - |

Escape Character Description

{} Use braces to escape a string of characters or symbols.
Everything within a set of braces in considered part of the
escape sequence.

When you use braces to escape a single character, the escaped
character becomes a separate token in the query.

\ Use the backslash character to escape a single character or
symbol. Only the character immediately following the
backslash is escaped. For example, a query of blue\-green
matches blue-green and blue green.

In the following examples, an escape sequence is necessary because each expression
contains a Text operator or reserved symbol:

“high\-voltage®
"{high-voltage}"

XY\&Z"
"{XY&z}"

In the first example, the query matches high-voltage or high voltage.

Note that in the second example, a query on XY&Z will return 'XY Z', 'XY-Z', 'XY*Z',
and so forth, as well as 'XY&Z'. This is because non-alphabetic characters are treated
as whitespace (so XY&Z is treated as 'XY Z'). To match only XY&Z, you must declare
& as a printjoin. (If you do, however, XY&Z will not match XY & Z'.) For more on
printjoins, see BASIC_LEXER (page 2-41).

Note:

If you use braces to escape an individual character within a word, the
character is escaped, but the word is broken into three tokens. For example, a
query written as high{-}voltage searches for high - voltage, with the space on
either side of the hyphen.

Querying Escape Characters

The open brace { signals the beginning of the escape sequence, and the closed brace }
indicates the end of the sequence. Everything between the opening brace and the
closing brace is part of the escaped query expression (including any open brace
characters). To include the close brace character in an escaped query expression,

use }}. To escape the backslash escape character, use \\.

4.3 Reserved Words and Characters

Table 4-3 (page 4-3) lists the Oracle Text reserved words and characters that must be
escaped when you want to search them in CONTAINS queries. Refer to Table 4-2
(page 4-2) for the rule for when to use braces {} or the backslash \ for the escape
sequence.

4-2 Oracle Text Reference

Reserved Words and Characters

Table 4-3 Reserved Words and Characters
- - - - - - - -~

Reserved Words Reserved Characters Operator

ABOUT (none) ABOUT

ACCUM , Accumulate

AND & And

BT (none) Broader Term

BTG (none) Broader Term Generic
BTI (none) Broader Term Instance
BTP (none) Broader Term Partitive
EQUIV = Equivalence

FUzZzZY ? fuzzy

(none) {} escape characters (multiple)
(none) \ escape character (single)
(none) () grouping characters
(none) [1 grouping characters
HASPATH (none) HASPATH

INPATH (none) INPATH

MDATA (none) MDATA

MINUS - MINUS

NEAR ; NEAR

NOT ~ NOT

NT (none) Narrower Term

NTG (none) Narrower Term Generic
NTI (none) Narrower Term Instance
NTP (none) Narrower Term Partitive
OR | OR

PT (none) Preferred Term

RT (none) Related Term

(none) $ stem

(none) ! soundex

SQE (none) Stored Query Expression

Special Characters in Oracle Text Queries 4-3

Reserved Words and Characters

Table 4-3 (Cont.) Reserved Words and Characters
___|

Reserved Words Reserved Characters Operator

SYN (none) Synonym

(none) > threshold

TR (none) Translation Term

TRSYN (none) Translation Term Synonym
TT (none) Top Term

(none) * weight

(none) Y% wildcard character (multiple)
(none) _ wildcard character (single)

WITHIN (none) WITHIN

4-4 Oracle Text Reference

5

CTX_ADM Package

This chapter contains the following topics.

About CTX_ADM Package Procedures (page 5-1)
MARK_FAILED (page 5-1)

RECOVER (page 5-2)
RESET_AUTO_OPTIMIZE_STATUS (page 5-3)
SET_PARAMETER (page 5-3)

5.1 About CTX_ADM Package Procedures

The CTX_ADM PL/SQL package provides administrative procedures for managing
index preferences.

The CTX_ADM package contains the following stored procedures.

Name

Description

MARK_FAILED (page 5-1)

RECOVER (page 5-2)

Changes an index's status from LOADING to FAILED.

Cleans up database objects for deleted Text tables.

RESET_AUTO_OPTIMIZE_STATUS (page 5-3) Resets the CTX_AUTO_OPTIMIZE_STATUS

SET_PARAMETER (page 5-3)

(page G-3) view.

Sets system-level defaults for index creation.

Note:

Only the CTXSYS user can use the procedures in the CTX_ADM package.

The APIs in the CTX_ADM package do not support identifiers that are prefixed
with the schema or the owner name.

5.2 MARK_FAILED

Use the MARK_FAILED procedure to change the status of an index from LOADING to
FAILED.

Under rare circumstances, if CREATE INDEX or ALTER [INDEX fails, an index may be
left with the status LOADING. When an index is in LOAD ING status, any attempt to
recover using RESUME INDEX is blocked. For this situation, use

CTX_ADM Package 5-1

RECOVER

CTX_ADM.MARK_FAILED to forcibly change the status from LOADING to FAILED so
that you can recover the index with RESUME INDEX.

You must log on as CTXSYS to run CTX_ADM.MARK_FAILED.

WARNING:

Use CTX_ADM.MARK_FAILED with caution. It should only be used as a last
resort and only when no other session is touching the index. Normally,
CTX_ADM.MARK_FAILED does not succeed if another session is actively
building the index with CREATE or ALTER INDEX. However, index creation or
alteration may include windows of time during which
CTX_ADM.MARK_FAILED can succeed, marking the index as failed even as it
is being built by another session.

CTX_ADM.MARK_FAILED works with local partitioned indexes. However, it changes
the status of all partitions to FAILED. Therefore, you should rebuild all index
partitions with ALTER INDEX REBUILD PARTITION PARAMETERS ("RESUME®)
after using CTX_ADM.MARK_FAILED. If you run ALTER INDEX PARAMETER
("RESUME™) after this operation, then Oracle resets the index partition status to valid.
Oracle does not rebuild the index partitions that were successfully built before the
MARK_FAILED operation.

Syntax

CTX_ADM.MARK_FAILED(
owner_name in VARCHAR2,
index_name in VARCHAR2) ;

owner_name
The name of the owner of the index whose status is to be changed.

index_name
The name of the index whose status is to be changed.

Note:
The index_name must not be prefixed by the schema or the owner name.

Example
begin

CTX_ADM.MARK_FAILED("owner_1*, "index_1%);
end;

5.3 RECOVER

The RECOVER procedure cleans up the Text data dictionary, deleting objects such as
leftover preferences.

Syntax
CTX_ADM.RECOVER;

5-2 Oracle Text Reference

RESET_AUTO_OPTIMIZE_STATUS

Example

begin
ctx_adm.recover;
end;

5.4 RESET_AUTO_OPTIMIZE_STATUS

Use the RESET_AUTO_OPTIMIZE_STATUS procedure to reset (or delete the contents
of) the CTX_AUTO_OPTIMIZE_STATUS (page G-3) view.

You must log on as CTXSYS to run CTX_ADM.RESET_AUTO_OPTIMIZE_STATUS.

Syntax
CTX_ADM.RESET_AUTO_OPTIMIZE_STATUS;

Example

begin
ctx_adm.reset_auto_optimize_status;
end;

5.5 SET_PARAMETER

The SET_PARAMETER procedure sets system-level parameters for index creation and
for near real-time indexes.

Syntax

CTX_ADM.SET_PARAMETER(param_name IN VARCHAR2,
param_value IN VARCHAR2);

param_name
Specify the name of the parameter to set, which can be one of the following
parameters:

e max_index_memory (maximum memory allowed for indexing)
e default_index_memory (default memory allocated for indexing)
e ctx_doc_key_type (default input key type for CTX_DOC procedures)

e Tile_access_role (default database role name for index creation when using
FILE or URL datastores)

e auto_optimize (ENABLE or DISABLE for auto optimization)

¢ default_datastore (default datastore preference)

o default_filter_file (default filter preference for data stored in files)
e default_fFilter_text (default text filter preference)

e default_filter_binary (default binary filter preference)

e default_section_html (default html section group preference)

e default_section_xml (default xml section group preference)

CTX_ADM Package 5-3

SET_PARAMETER

e default_section_text (default text section group preference)

e default_lexer (default lexer preference)

e default_wordlist (default wordlist preference)

e default_stoplist (default stoplist preference)

e default_storage (default storage preference)

e default_ctxcat_lexer (default lexer preference for CTXCAT index)

e default_ctxcat_stoplist (default stoplist preference for CTXCAT index)
e default_ctxcat_storage (default CTXCAT index storage

e default_ctxcat_wordlist (default wordlist preference for CTXCAT index)
e default_ctxrule_lexer (default lexer for CTXRULE index)

e default_ctxrule_stoplist (default stoplist for CTXRULE index)

e default_ctxrule_storage (default storage for CTXRULE index)

e default_ctxrule_wordlist (default wordlist for CTXRULE index)

See Also:

To learn more about the default values for these parameters, see "System
Parameters (page 2-105)" in Oracle Text Indexing Elements (page 2-1)

Note: log_directory (directory for CTX_OUTPUT files) and
auto_optimize_logfile (the base file name for the auto optimization log
file) can no longer be modified. Any call to the APl is ignored for these
parameters.

param_value
Specify the value to assign to the parameter. For max_index_memory and
default_index_memory, the value you specify must have the following syntax:

number [K|M]G]

where K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

For each of the other parameters, specify the name of a preference to use as the default
for indexing.

For auto_optimize, the value you specify must be either ENABLE or DISABLE.
When you set this parameter to ENABLE, auto optimization jobs can be started. When
you set this parameter to DISABLE, no auto optimization jobs can be started and all
the currently-running optimization jobs are terminated.

Example
To modify the MAX_INDEX_MEMORY value:
exec ctx_adm.set_parameter(“MAX_INDEX_MEMORY~”, 1006G);

5-4 Oracle Text Reference

SET_PARAMETER

The memory parameter in the indexing statements can be as high as 256 GB (if the
MAX_INDEX_MEMORY parameter is not explicitly specified to a lower value).

create index myindexl on mytab(textcol) indextype is ctxsys.context parameters
("memory 256G");
exec ctx_ddl.sync_index(" myindex2®, memory=> "256G");

Example

begin
ctx_adm.set_parameter(“default_lexer®, "my_lexer");
end;

CTX_ADM Package 5-5

SET_PARAMETER

5-6 Reference

6

CTX_ANL Package

This chapter contains the following topics.

* About CTX_ANL Package Procedures (page 6-1)
e ADD_DICTIONARY (page 6-1)

¢ DROP_DICTIONARY (page 6-4)

6.1 About CTX_ANL Package Procedures

The CTX_ANL PL/SQL package is used with AUTO_LEXER (page 2-33) and provides
procedures for adding and dropping a custom dictionary from the lexer. A custom
dictionary might be one that you develop for a special field of study or for your
industry. In most cases, the dictionaries supplied with Oracle Text are more than
sufficient to handle your requirements.

See Also:

"AUTO_LEXER (page 2-33)" for a discussion of AUTO_LEXER and supported
languages

The CTX_ANL package contains the following stored procedures.

Name Description
ADD_DICTIONARY Adds a custom dictionary to the lexer.
(page 6-1)
DROP_DICTIONARY Drops a custom dictionary from the lexer.
(page 6-4)

Note:

Only the CTXSYS user can use the procedures in CTX_ANL.

The APIs in the CTX_ANL package do not support identifiers that are prefixed
with the schema or the owner name.

6.2 ADD_DICTIONARY

Use the CTX_ANL.ADD_DICTIONARY procedure to add a custom dictionary to be
used by "AUTO_LEXER (page 2-33)".

CTX_ANL Package 6-1

ADD_DICTIONARY

Note:

The dictionary data is not processed until index/policy creation time or
ALTER INDEX time. Errors in dictionary data format are detected at index/
policy creation time or ALTER INDEX time and result in error: DRG-13710:
Syntax Error in Dictionary.

Syntax
CTX_ANL.ADD_DICTIONARY(
name in VARCHAR2,
language in VARCHAR2,
dictionary in CLOB
);
name

The unique name for the user-created custom dictionary.

Note:
The unique name may not be prefixed by the schema or the owner name as
this syntax is not supported.

language
The language used by the custom dictionary.

dictionary

The CLOB containing the custom dictionary. The custom dictionary comprises a list
of definitions, which are declared separated by a tab or one per line as described in
"Custom Dictionary Format and Syntax (page 6-2)".

Custom Dictionary Format and Syntax

The custom dictionary enables you to define a new stem or redefine an existing stem
to add words to AUTO_LEXER (page 2-33) for your language.

Define a new stem or redefine an existing one using the following syntax:

COMPOUND<tab>wor d Jwor d<tab>STEM<tab>wor d<tab>part s- of - speech<tab>f eat ur es

COMPOUND

Use COMPOUND to create a compound word by joining two whole words with a pipe
(1). The wor d is a simple text string that you want to join to another word to create
one compound word to add to the language you specify in AUTO_LEXER

(page 2-33).

Note that COMPOUND supports a maximum of 8 component words for a compound
word.

STEM
Use STEM to add the root for a new word.

6-2 Oracle Text Reference

ADD_DICTIONARY

word

For COMPOUND and STEM, the wor d value is a simple text string respresenting a word
that you want to join with another word to create a new word; or a word root or stem
that you want to add to the language dictionary in AUTO_LEXER.

parts-of-speech

The par t s- of - speech value is a list of valid parts of speech, separated by a
comma. Table 6-1 (page 6-3) lists the names for par t s- of - speech value. At least
one part s- of - speech value is required.

features

The f eat ur es represent a list of valid linguistic features, as shown in Table 6-2
(page 6-3). Multiple features are separated by a comma. Features are optional. If the
word is already defined in the supplied language dictionary, then this definition
overrides it. It is an error to have an invalid value for par t s- of - speech or
features.

Table 6-1 Custom Dictionary Valid Parts-of-Speech (case sensitive)

Part-of-Speech Description
noun A simple noun, like table, book, or procedure.
nounProper A proper name, for person, place, etc., typically capitalized, like

Zachary, Supidito, Susquehanna

adjective Modifiers of nouns, which typically can be compared (green,
greener, greenest), like fast, trenchant, pendulous.

adverb Any general modifier of a sentence that may modify an
adjective or verb or may stand alone, like slowly, yet, perhaps.

preposition A word that forms a prepositional phrase with a noun, like off,
beside, from. Used for postpositions too, in languages that have
postpositions of similar function.

Table 6-2 (page 6-3) lists the features and their usage. The specified language
determines whether these are relevant and necessary. Note that declension refers to the
inflection some languages use to determine number (singular or plural), case, and
gender. The features are relevant depending on the language for the custom
dictionary.

Table 6-2 Custom Dictionary Valid Features

Feature (case sensitive) Description

genderMasculine masculine
genderFeminine feminine
genderNeuter neuter
declensionHard hard declension
declensionSoft soft declension

CTX_ANL Package 6-3

DROP_DICTIONARY

Examples

exec CTX_DDL.CREATE_PREFERENCE("A_LEX", *AUTO_LEXER");

exec CTX_ANL. ADD_DICTIONARY("my dictl*, "ENGLISH", |obloc);

select * from CTX_USR_ANL_DICTS;

exec CTX_DDL.SET_ATTRIBUTE("A_LEX", *english_dictionary®, *MY_ENGLISH");

The following example creates a custom dictionary named d1 to be added to
AUTO_LEXER for the English language.

declare

dict clob;

begin

dict := "# compounds
COMPOUND help|desk
COMPOUND help|desks
COMPOUND book|shelf
COMPOUND book|shelves
COMPOUND back |woods|man

11

"# define company abbreviations
STEM comp. noun

STEM Itd. noun

STEM co. noun

STEM oracle nounProper

STEM make verb

STEM unkword noun

STEM unkword verb

ctx_anl.add_dictionary("dl®, "ENGLISH" ,dict);
end;
/

Related Topics
"AUTO_LEXER (page 2-33)"
"CREATE_PREFERENCE (page 8-33)"

"SET_ATTRIBUTE (page 8-66)"
"DROP_DICTIONARY (page 6-4)"

6.3 DROP_DICTIONARY

Use this procedure to drop a custom dictionary from AUTO_LEXER (page 2-33).

Syntax

CTX_ANL.DROP_DICTIONARY(
name in VARCHAR2,
language in VARCHAR2,
dictionary in CLOB
):

name

The unique name for the user-created custom dictionary.

6-4 Oracle Text Reference

DROP_DICTIONARY

Note:
The unique name may not be prefixed by the schema or the owner name as
this syntax is not supported.

language
The language for the custom dictionary.

dictionary
The CLOB representing the custom dictionary.

Example
begin
CTX_ANL.DROP_DICTIONARY("dictl", "english®, “dictionary”);
end;
Related Topic
"AUTO_LEXER (page 2-33)"
"ADD_DICTIONARY (page 6-1)"

CTX_ANL Package 6-5

DROP_DICTIONARY

6-6 Reference

v

CTX_CLS Package

This chapter contains the following topics.

e About CTX_CLS Package Procedures (page 7-1)
e TRAIN (page 7-1)

e CLUSTERING (page 7-5)

7.1 About CTX_CLS Package Procedures

The CTX_CLS PL/SQL package provides procedures for generating rules that define
document categories, and enables you to perform document classification.

The following procedures are in the CTX_CLS PL/SQL package.

Name Description

TRAIN (page 7-1) Generates rules that define document categories. Output based on
input training document set.

CLUSTERING Generates clusters for a document collection.

(page 7-5)

SA_TRAIN_MODEL Trains a sentiment classifier.

(page 7-8)

SA_DROP_MODEL Drops an existing sentiment classifier.

(page 7-10)

Note:

The APIs in the CTX_CLS package do not support identifiers that are prefixed
with the schema or the owner name.

See Also:

Oracle Text Application Developer’s Guide for more information on document
classification

7.2 TRAIN

Use this procedure to generate query rules that select document categories. You must
supply a training set consisting of categorized documents. Documents can be in any
format supported by Oracle Text and must belong to one or more categories. This

CTX_CLS Package 7-1

TRAIN

procedure generates the queries that define the categories and then writes the results
to a table.

You must also have a document table and a category table. The category table must
contain at least two categories.

For example, your document and category tables can be defined as:

create table trainingdoc(

docid number primary key,
text varchar2(4000));

create table category (

docid trainingdoc(docid),
categoryid number);

You can use one of two syntaxes depending on the classification algorithm you need.
The query compatible syntax uses the RULE_CLASSIFIER preference and generates
rules as query strings. The Support Vector Machine syntax uses the SVM_CLASSIFER
preference and generates rules in binary format. The SVM_CLASSIFIER is good for
high classification accuracy, but because its rules are generated in binary format, they
cannot be examined like the query strings generated with the RULE_CLASSIFIER.
Note that only those document ids that appear in both the document table and the
category table will impact RULE_CLASSIFIER and SVM_CLASSIFIER learning.

The CTX_CLS. TRAIN procedure requires that your document table have an associated
context index. For best results, the index should be synchronized before running this
procedure. SVM_CLASSIFIER syntax enables the use of an unpopulated context
index, while query-compatible syntax requires that the context index be populated.

Note:

When downgrading the database, you must drop any models that were
created in Oracle Database 12c Release 2 (12.2) using TRAIN. These models are
not compatible with earlier releases. The following error occurs if the models
are not dropped before the downgrade: ORA-40350: One or more models exist
that cannot be downgraded.

See Also:

Oracle Text Application Developer’s Guide for more on document classification

Query Compatible Syntax

The following syntax generates query-compatible rules and is used with the
RULE_CLASSIFIER (page 2-95) preference. Use this syntax and preference when
different categories are separated from others by several key words. An advantage of
generating your rules as query strings is that you can easily examine the generated
rules. This is different from generating SVM rules, which are in binary format.

CTX_CLS.TRAIN(

index_name in varchar2,
docid in varchar2,
cattab in varchar2,

7-2 Oracle Text Reference

TRAIN

catdocid in varchar2,
catid in varchar2,
restab in varchar2,
rescatid in varchar2,
resquery in varchar2,
resconfid in varchar2,

preference in varchar2 DEFAULT NULL

);

index_name
Specify the name of the context index associated with your document training set.

docid
Specify the name of the document ID column in the document table. The document
IDs in this column must be unique, and this column must be of datatype NUMBER. The

values for this column must be stored in an unsigned 32-bit integer and must be in the
range 0-4294967295.

cattab

Specify the name of the category table. You must have the READ or SELECT privilege
on this table. (See Oracle Database Security Guide for information about the READ
privilege.)

catdocid
Specify the name of the document ID column in the category table. The document IDs
in this table must also exist in the document table. This column must be a NUMBER.

The values for this column must be stored in an unsigned 32-bit integer and must be
in the range 0-4294967295.

catid

Specify the name of the category ID column in the category table. This column must
be a NUMBER. The values for this column must be stored in an unsigned 32-bit integer
and must be in the range 0-4294967295.

restab
Specify the name of the result table. You must have INSERT privilege on this table.

rescatid

Specify the name of the category ID column in the result table. This column must be a
NUMBER. The values for this column must be stored in an unsigned 32-bit integer and
must be in the range 0-4294967295.

resquery
Specify the name of the query column in the result table. This column must be
VARACHAR2, CHAR, CLOB, NVARCHAR2, or NCHAR.

The queries generated in this column connects terms with AND or NOT operators, such
as:

"T1 & T2 ~ T3"

Terms can also be theme tokens and be connected with the ABOUT operator, such as:

"about(T1) & about(T2) ~ about(T3)"

Generated rules also support WITHIN queries on field sections.

CTX_CLS Package 7-3

TRAIN

resconfid

Specify the name of the confidence column in result table. This column contains the
estimated probability from training data that a document is relevant if that document
satisfies the query.

preference

Specify the name of the preference. For classifier types and attributes, see "Classifier
Types (page 2-95)" in Oracle Text Indexing Elements (page 2-1).

Syntax for Support Vector Machine (SVM) Rules

The Support Vector Machine, or SVM, rules preference generates rules in binary
format. Use this syntax when your application requires high classification accuracy.

The following syntax generates Support Vector Machine (SVM) rules with the
SVM_CLASSIFIER (page 2-96) preference.

CTX_CLS.TRAIN(
index_name in varchar2,

docid in varchar2,
cattab in varchar2,
catdocid in varchar2,
catid in varchar2,
restab in varchar2,

preference in varchar2);

index_name
Specify the name of the text index.

docid
Specify the name of docid column in document table.

cattab
Specify the name of category table.

catdocid
Specify the name of docid column in category table.

catid
Specify the name of category ID column in category table.

restab
Specify the name of result table.

The result table has the following format:

Column Name Datatype Description

CAT_ID NUMBER The ID of the category.

TYPE NUMBER(3) NOT 0 for the actual rule or
NULL catid; 1 for other.

RULE BLOB The returned rule.

preference
Specify the name of user preference. For classifier types and attributes, see "Classifier
Types (page 2-95)" in Oracle Text Indexing Elements (page 2-1).

7-4 Oracle Text Reference

CLUSTERING

Note:

Column names must not be prefixed by the owner, schema or table name.

Example

The CTX_CLS. TRAIN procedure is used in supervised classification. For an extended
example, see Oracle Text Application Developer’s Guide.

7.3 CLUSTERING

Use this procedure to cluster a collection of documents. A cluster is a group of
documents similar to each other in content.

A clustering result set is composed of document assignments and cluster descriptions:

* A document assignment result set shows how relevant each document is to all
generated leaf clusters.

* A cluster description result set contains information about what topic a cluster is
about. This result set identifies the cluster and contains cluster description text, a
suggested cluster label, and a quality score for the cluster.

Cluster output is hierarchical. Only leaf clusters are scored for relevance to documents.
Producing more clusters requires more computing time. Indicate the upper limit for
generated clusters with the CLUSTER_NUM attribute of the KMEAN_CLUSTERING
cluster type (see "Cluster Types (page 2-98)" in this chapter).

There are two versions of this procedure: one with a table result set, and one with an
in-memory result set.

Clustering is also known as unsupervised classification.

See Also:

For more information about clustering and relevant preferences, see Cluster
Types (page 2-98) in Oracle Text Indexing Elements (page 2-1), as well as the
Oracle Text Application Developer’s Guide

Syntax: Table Result Set

ctx_cls.clustering (

index_name IN VARCHAR2,

docid IN VARCHAR2,

doctab_name IN VARCHAR2,

clstab_name IN VARCHAR2,

pref_name IN VARCHAR2 DEFAULT NULL

);

index_name
Specify the name of the context index on collection table.

docid
Specify the name of document ID column of the collection table.

CTX_CLS Package 7-5

CLUSTERING

doctab_name

Specify the name of document assignment table. This procedure creates the table with
the following structure:

doc_assign(
docid number,
clusterid number,
score number

);
Column Description
DOCID Document ID to identify document.
CLUSTERID ID of a leaf cluster associated with this document. If

CLUSTERID is -1, then the cluster contains
"miscellaneous" documents; for example, documents
that cannot be assigned to any other cluster category.

SCORE The associated score between the document and the
cluster.

If you require more columns, then create the table before you call this procedure.

clstab_name

Specify the name of the cluster description table. This procedure creates the table with
the following structure:

cluster_desc(
clusterid NUMBER,
descript VARCHAR2(4000),
label VARCHAR2(200),
sze NUMBER,
quality_score NUMBER,
parent NUMBER

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1,
then the cluster contains "miscellaneous" documents;
for example, documents that cannot be assigned to
any other cluster category.

DESCRIPT String to describe the cluster.
LABEL A suggested label for the cluster.
SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number
indicates greater coherence.

PARENT The parent cluster ID. Zero means no parent cluster.

If you require more columns, then create the table before you call this procedure.

pref_name
Specify the name of the preference.

7-6 Oracle Text Reference

CLUSTERING

Syntax: In-Memory Result Set

Put the result set into in-memory structures for better performance. Two in-memory
tables are defined in CTX_CLS package for document assignment and cluster
description respectively.

CTX_CLS.CLUSTERING(

index_name IN VARCHARZ2,
docid IN VARCHARZ2,
dids IN DOCID_TAB,

doctab_name IN OUT NOCOPY DOC_TAB,
clstab_name IN OUT NOCOPY CLUSTER_TAB,
pref_name IN VARCHAR2 DEFAULT NULL

);

index_name
Specify the name of context index on the collection table.

docid
Specify the document ID column of the collection table.

dids
Specify the name of the in-memory docid_tab.

TYPE docid_tab IS TABLE OF number INDEX BY BINARY_INTEGER;

doctab_name

Specify name of the document assignment in-memory table. This table is defined as
follows:

TYPE doc_rec 1S RECORD (
docid NUMBER,
clusterid NUMBER,
score NUMBER

)
TYPE doc_tab IS TABLE OF doc_rec INDEX BY BINARY_INTEGER;
Column Description
DOCID Document ID to identify document.
CLUSTERID ID of a leaf cluster associated with this document. If

CLUSTERID is -1, then the cluster contains
"miscellaneous” documents; for example, documents
that cannot be assigned to any other cluster category.

SCORE The associated score between the document and the
cluster.

cls_tab
Specify the name of cluster description in-memory table.

TYPE cluster_rec 1S RECORD(
clusterid NUMBER,
descript VARCHAR2(4000),
label VARCHAR2(200),
sze NUMBER,
quality_score NUMBER,

CTX_CLS Package 7-7

SA_TRAIN_MODEL

parent NUMBER

);
TYPE cluster_tab IS TABLE OF cluster_rec INDEX BY BINARY_INTEGER;
Column Description
CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then

the cluster contains "miscellaneous" documents; for
example, documents that cannot be assigned to any
other cluster category.

DESCRIPT String to describe the cluster.
LABEL A suggested label for the cluster.
SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number
indicates greater coherence.

PARENT The parent cluster ID. Zero means no parent cluster.

pref_name
Specify the name of the preference. For cluster types and attributes, see Cluster Types
(page 2-98) in Oracle Text Indexing Elements (page 2-1).

Example

See Also:

The Oracle Text Application Developer’s Guide for an example of using clustering

7.4 SA_TRAIN_MODEL

Use this procedure to train a sentiment classifier. You must provide a training set
consisting of categorized documents to train the sentiment classifier. Documents can
be in any format supported by Oracle Text and must belong to one or more categories.

Oracle Text first validates the training set table and the categories that are provided.
Features extracted from the training set documents are used to train the sentiment
classifier. A rule table is created and populated with rules that are generated after the
sentiment classifier is trained. The sentiment classifier uses these rules to perform
sentiment analysis. The CTXRULE index on the rule table is also built.

Note:

When downgrading the database, you must drop any models that were
created in Oracle Database 12c Release 2 (12.2) using SA_TRAIN_MODEL.
These models are not compatible with earlier releases. The following error
occurs if the models are not dropped before the downgrade: ORA-40350: One
or more models exist that cannot be downgraded.

7-8 Oracle Text Reference

SA_TRAIN_MODEL

Syntax

SA_TRAIN_MODEL(
clsfier_name IN VARCHAR2,
index_name IN VARCHARZ2,
docid IN VARCHAR2,
cattab IN VARCHAR2,
cat_docid IN VARCHARZ2,
catid IN VARCHAR2,
pref_name IN VARCHAR2

clsfier name
Specify the name of the sentiment classifier that must be trained. The maximum
length of the sentiment classifier name is 24 bytes.

index_name

Specify the name of text index associated with the document training set. This is a
CONTEXT index that must be created on the training data before the sentiment
classifier is trained.

docid

Specify the name of the document ID column in the document training set. The
document IDs in this column must be unique, and this column must be of data type
NUMBER. The values for this column must be stored in an unsigned 32-bit integer and
must be in the range 0 to 4294967295.

cattab

Specify the name of the category table that contains the true labels for the training set
documents. This table should contain the docid to catid mappings for training the
sentiment classifier.

catdocid
Specify the name of document ID column in the category table. The document IDs in
this table must also exist in the document table. This column must be a NUMBER. The

values for this column must be stored in an unsigned 32-bit integer and must be in the
range 0 to 4294967295.

catid

Specify the name of the category ID column in the category table. This column must
be a NUMBER. The values for this column can be either 0, 1, or 2. 0 stands for neutral, 1
stands for positive, and 2 stands for negative.

pref_name

Specify the name of sentiment classifier preference, of type
SENTIMENT_CLASSIFIER, which is used to train the sentiment classifier. If no name
is provided, then the default sentiment classifier,
CTXSYS.DEFAULT_SENT_CLASSIFIER, is used.

See Also:

Oracle Text Application Developer’s Guide for an example of using the
SA_TRAIN_MODEL procedure

CTX_CLS Package 7-9

SA_DROP_MODEL

7.5 SA_DROP_MODEL

Use this procedure to drop an existing sentiment classifier.

Syntax
SA_DROP_MODEL (

clsfier_name IN VARCHAR2
);

clsfier_name
Specify the name of the sentiment classifier that must be dropped.

7-10 Oracle Text Reference

8

CTX_DDL Package

The CTX_DDL PL/SQL package provides procedures to create and manage the
preferences, section groups, and stoplists required for Text indexes.

CTX_DDL contains the following stored procedures and functions:

Name

Description

ADD_ATTR_SECTION (page 8-3)

ADD_AUTO_OPTIMIZE (page 8-4)

ADD_FIELD_SECTION (page 8-5)

ADD_INDEX (page 8-8)
ADD_MDATA (page 8-10)

ADD_MDATA_COLUMN (page 8-12)

ADD_MDATA_SECTION (page 8-13)
ADD_NDATA_SECTION (page 8-14)

ADD_SDATA_COLUMN (page 8-15)

ADD_SDATA_SECTION (page 8-16)

ADD_SEC_GRP_ATTR_VAL (page 8-19)

ADD_SPECIAL_SECTION (page 8-20)
ADD_STOPCLASS (page 8-21)
ADD_STOP_SECTION (page 8-23)
ADD_STOPTHEME (page 8-24)
ADD_STOPWORD (page 8-25)
ADD_SUB_LEXER (page 8-26)

ADD_ZONE_SECTION (page 8-28)

COPY_POLICY (page 8-31)

Adds an attribute section to an XML section group.

Adds an index or partition to the list of indexes subject to
auto optimization.

Creates a field section and assigns it to the specified
section group.

Adds an index to a catalog index preference.
Changes the MDATA value of a document.

Maps a FILTER BY column to the specified MDATA
section.

Adds an MDATA metadata section to a document.
Adds an NDATA section to a document.

Maps a FILTER BY column to the specified SDATA
section.

Adds an SDATA structured data section to a document.

Adds a section group attribute value to the list of values
of an already existing section group attribute.

Adds a special section to a section group.

Adds a stopclass to a stoplist.

Adds a stop section to an automatic section group.
Adds a stoptheme to a stoplist.

Adds a stopword to a stoplist.

Adds a sub-lexer to a multi-lexer preference.

Creates a zone section and adds it to the specified section
group.

Creates a copy of a policy.

CTX_DDL Package 8-1

Name

Description

CREATE_INDEX_SET (page 8-31)
CREATE_POLICY (page 8-32)
CREATE_PREFERENCE (page 8-33)
CREATE_SECTION_GROUP (page 8-36)

CREATE_SHADOW_INDEX (page 8-39)

CREATE_STOPLIST (page 8-41)
DROP_INDEX_SET (page 8-42)
DROP_POLICY (page 8-42)
DROP_PREFERENCE (page 8-43)
DROP_SECTION_GROUP (page 8-43)
DROP_SHADOW_INDEX (page 8-44)
DROP_STOPLIST (page 8-44)
EXCHANGE_SHADOW_INDEX (page 8-45)
OPTIMIZE_INDEX (page 8-46)

POPULATE_PENDING (page 8-52)

PREFERENCE_IMPLICIT_COMMIT (page 8-52)

RECREATE_INDEX_ONLINE (page 8-53)

REM_SEC_GRP_ATTR_VAL (page 8-60)

REMOVE_AUTO_OPTIMIZE (page 8-60)

REMOVE_INDEX (page 8-61)
REMOVE_MDATA (page 8-61)
REMOVE_SECTION (page 8-62)
REMOVE_STOPCLASS (page 8-63)
REMOVE_STOPTHEME (page 8-63)
REMOVE_STOPWORD (page 8-64)
REMOVE_SUB_LEXER (page 8-65)

REPLACE_INDEX_METADATA (page 8-65)

8-2 Oracle Text Reference

Creates an index set for CTXCAT index types.
Creates a policy to use with ORAZCONTAINS().
Creates a preference in the Text data dictionary.
Creates a section group in the Text data dictionary.

Creates a policy for the passed-in index. For
nonpartitioned index, also creates an index table.

Creates a stoplist.

Drops an index set.

Drops a policy.

Deletes a preference from the Text data dictionary.
Deletes a section group from the Text data dictionary.
Drops a shadow index.

Drops a stoplist.

Swaps the shadow index metadata and data.
Optimizes the index.

Populates the pending queue with every rowid in the base
table or table partition.

Specifies whether procedures related to CTX_DDL
preferences issue an implicit commit.

Recreates the passed-in index.

Removes a specific section group attribute value from the
list of values of an existing section group attribute.

Removes an index or partition from the list of indexes
subject to auto optimization

Removes an index from a CTXCAT index preference.
Removes MDATA values from a document.

Deletes a section from a section group.

Deletes a stopclass from a stoplist.

Deletes a stoptheme from a stoplist.

Deletes a stopword from a stoplist.

Deletes a sub-lexer from a multi-lexer preference.

Replaces metadata for local domain indexes.

ADD_ATTR_SECTION

Name

Description

SET_ATTRIBUTE (page 8-66)

SET_SEC_GRP_ATTR (page 8-68)

SET_SECTION_ATTRIBUTE (page 8-68)
SYNC_INDEX (page 8-70)
UNSET_ATTRIBUTE (page 8-73)
UPDATE_SUB_LEXER (page 8-74)
UNSET_SEC_GRP_ATTR (page 8-73)
UPDATE_POLICY (page 8-74)

UPDATE_SDATA (page 8-75)

Sets a preference attribute.

Adds a section group-specific attribute to a section group
identified by name.

Sets a section attribute.

Synchronizes the index.

Removes a set attribute from a preference.
Updates a sub-lexer.

Removes a section group specific attribute.
Updates a policy.

Updates an SDATA section.

Note:

Except CREATE_PREFERENCE and CREATE_SECTION_GROUP, the APIs in the
CTX_DDL package do not support identifiers that are prefixed with the schema

Oor owner name.

8.1 ADD_ATTR_SECTION

Adds an attribute section to an XML section group. This procedure is useful for
defining attributes in XML documents as sections. This enables you to search XML
attribute text with the WITHIN operator.

Note:

When you use AUTO_SECT ION_GROUP, attribute sections are created
automatically. Attribute sections created automatically are named in the form

tag@attribute.

Syntax
CTX_DDL.ADD_ATTR_SECTION(
group_name IN
section_name IN
tag IN

group_name

Specify the name of the XML section group. You can add attribute sections only to

XML section groups.

section_name

Specify the name of the attribute section. This is the name used for WITHIN queries on

the attribute text.

CTX_DDL Package 8-3

ADD_AUTO_OPTIMIZE

The section name you specify cannot contain the colon (:), comma (,), or dot (.)
characters. The section name must also be unique within group_name. Section names
are case-insensitive.

Attribute section names can be no more than 64 bytes long.

tag
Specify the name of the attribute in tag@attr form. This parameter is case-sensitive.

Examples
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
It was the best of times.
</B0O0OK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP
and define the attribute section as follows:

begin

ctx_ddl.create_section_group("myxmlgroup®, “XML_SECTION_GROUP");
ctx_ddl.add_attr_section("myxmlgroup®, "booktitle®, "BOOK@TITLE");
end;

When you define the TITLE attribute section as such and index the document set, you
can query the XML attribute text as follows:

"Cities within booktitle”

Related Topic
"PREFERENCE_IMPLICIT_COMMIT (page 8-52)"

8.2 ADD_AUTO_OPTIMIZE

Adds an index or partition to the list of indexes subject to auto optimization. For
partitioned indexes, the name of the partition must be specified, or else an error
occurs. For global indexes, STAGE_ 1 TAB must be enabled, or else an error occurs.

The AUTO_OPTIMIZE feature improves the manageability of indexes that use the
STAGE_ I TAB feature. The STAGE_ 1 TAB feature introduces a staging $G table to
collect postings from newly synced documents.

The AUTO_OPT IMIZE feature has the following goals:

¢ Enables you to register indexes and partitions to a background AUTO_OPTIMIZE
process.

* Automatically moves rows from the $G table to $I at appropriate times.

e Movement of rows from $G to $I is done in a way to maximize query
performance.

This procedure starts the background process if it has not already been started. The
progress of the auto optimization is tracked by CTX logging.

The changes made by this procedure take effect immediately.

8-4 Oracle Text Reference

ADD_FIELD_SECTION

Note:

The init.ora parameter JOB_QUEUE_PROCESSES must be set to one or higher.
See Oracle Database Reference for more information about
JOB_QUEUE_PROCESSES.

Syntax
CTX_DDL.ADD_AUTO_OPTIMIZE(

idx_name IN VARCHAR2,

part_name IN VARCHAR2 default NULL,

optlevel IN VARCHAR2 default CTX_DDL.OPTLEVEL_MERGE
):
idx_name

Specify the name of the index to add.

part_name
Specify the name of the partition to add.

optlevel
Specifies the optlevel of the CTX_DDL.OPTIMIZE_INDEX (page 8-46)
procedure. The only valid value for this parameter is merge.

Notes

The recommended sequence of steps for using auto optimization is:
1. Create the required indexes.

2. Add these indexes to the auto optimization list by using the
CTX_DDL.ADD_AUTO_OPTIMIZE procedure.

The synchronize index operation automatically begins executing an auto optimization
job (unless it is already running). This job continues until it runs out of work. Future
synchronize index operations will automatically start executing the auto optimization
job, if it is not already running.

Related Topics
"REMOVE_AUTO_OPTIMIZE (page 8-60)"

Oracle Text Application Developer’s Guide for information about using STAGE_1TAB
with CONTEXT indexes

SYNC_INDEX (page 8-70)

8.3 ADD_FIELD_SECTION

Creates a field section and adds the section to an existing section group. This enables
field section searching with the WITHIN (page 3-56) operator. You can add an
unlimited number of field sections.

Field sections are delimited by start and end tags. By default, the text within field
sections are indexed as a sub-document separate from the rest of the document.

CTX_DDL Package 8-5

ADD_FIELD_SECTION

Unlike zone sections, field sections cannot nest or overlap. As such, field sections are
best suited for non-repeating, non-overlapping sections such as TITLE and AUTHOR
markup in e-mail- or news-type documents.

Because of how field sections are indexed, WITHIN (page 3-56) queries on field
sections are usually faster than WITHIN queries on zone sections.

Syntax
CTX_DDL.ADD_FIELD_SECTION(
group_name IN VARCHARZ2,
section_name IN VARCHAR2,
tag IN VARCHAR2,
visible IN BOOLEAN default FALSE
)E

group_name

Specify the name of the section group to which section_name is added. You can
add an unlimited number of field sections to a single section group. Within the same
group, section zone names and section field names cannot be the same.

section_name

Specify the name of the section to add to the group_name. Use this name to identify
the section in queries. Avoid using names that contain non-alphanumeric characters
such as _, because these characters must be escaped in queries. Section names are
case-insensitive.

Note:
The section_name may not be prefixed by the schema or the owner name
as this syntax is not supported.

Within the same group, zone section names and field section names cannot be the
same. The terms Paragraph and Sentence are reserved for special sections.

Section names need not be unique across tags. You can assign the same section name
to more than one tag, which makes details transparent to searches.

tag
Specify the tag that marks the start of a section. For example, if the tag is <H1>, then
specify H1. The start tag you specify must be unique within a section group.

Note:
The tag may not be prefixed by the schema or the owner name as this syntax
is not supported.

If group_name is an HTML_SECT ION_GROUP, then you can create field sections for
the META tag's NAME/CONTENT attribute pairs. To do so, specify tag as
meta@namevalue where namevalue is the value of the NAME attribute whose
CONTENT attribute is to be indexed as a section. Refer to the example "Creating
Sections for <META> Tags (page 8-7)".

Oracle Text knows what the end tags look like from the group_type parameter you
specify when you create the section group.

8-6 Oracle Text Reference

ADD_FIELD_SECTION

visible
Specify TRUE to make the text visible within the rest of the document.

By default the visible flag is FALSE. This means that Oracle Text indexes the text
within field sections as a sub-document separate from the rest of the document.
However, you can set the visible flag to TRUE if you want text within the field section
to be indexed as part of the enclosing document.

Examples
Visible and Invisible Field Sections

The following example defines a section group basicgroup of the
BASIC_SECTION_GROUP type. (See "Section Group Types (page 2-92)" for information
about the BASIC_SECTION_GROUP type.) The example then creates a field section in
basicgroup called Author for the <A> tag.

The example also sets the visible flag to FALSE:
begin

ctx_ddl.create_section_group(“basicgroup®, "BASIC_SECTION_GROUP");
ctx_ddl.add_field_section("basicgroup®, "Author®, "A", FALSE);

end;

Because the Author field section is not visible, to find text within the Author section,
you must use the WITHIN (page 3-56) operator as follows:

"(Martin Luther King) WITHIN Author®

A query of Martin Luther King without the WITHIN operator does not return instances
of this term in field sections. To query text within field sections without specifying
WITHIN, you must set the visible flag to TRUE when you create the section as follows:

begin
ctx_ddl.add_field_section("basicgroup®, "Author®, "A", TRUE);
end;

Creating Sections for <META> Tags
When you use the HTML_SECTION_GROUP, you can create sections for META tags.
Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken'>

To create a field section that indexes the CONTENT attribute for the <META
NAME="author"> tag:

begin

ctx_ddl.create_section_group("myhtmlgroup®, "HTML_SECTION_GROUP");

ctx_ddl.add_field_section("myhtmlgroup®, "author®, "META@AUTHOR");
end

After indexing with section group mygroup, query the document as follows:

“ken WITHIN author*®

Limitations

Nested Sections

CTX_DDL Package 8-7

ADD_INDEX

Field sections cannot be nested. For example, if you define a field section to start with
<TITLE> and define another field section to start with <FO0>, the two sections cannot
be nested as follows:

<TITLE> dog <FOO> cat </FO0> </TITLE>

To work with nested section define them as zone sections.
Repeated Sections

Repeated field sections are allowed, but WITHIN queries treat them as a single section.
The following is an example of repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query (dog and cat) within title returns the document, even though these words
occur in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

Related Topics

"WITHIN (page 3-56)"

"Section Group Types (page 2-92)"
"CREATE_SECTION_GROUP (page 8-36)"
"ADD_ZONE_SECTION (page 8-28)"
"ADD_SPECIAL_SECTION (page 8-20)"
"REMOVE_SECTION (page 8-62)"
"DROP_SECTION_GROUP (page 8-43)"

8.4 ADD_INDEX

Use this procedure to add a subindex to a catalog index preference. Create this
preference by naming one or more columns in the base table.

Because you create subindexes to improve the response time of structured queries, the
column you add should be used in the structured_guery clause of the CATSEARCH
operator at query time.

Syntax

CTX_DDL .ADD_INDEX(
set_name IN VARCHARZ2,
column_list IN VARCHAR2,
storage_clause IN VARCHAR2

);

set_name

Specify the name of the index set.

column_list

Specify a comma-delimited list of columns to index. At index time, any column listed
here cannot have a NULL value in any row in the base table. If any row is NULL
during indexing, then an error is raised.

8-8 Oracle Text Reference

ADD_INDEX

Always ensure that your columns have non-NULL values before and after indexing.

Note:
A column name in column_1 ist must not be prefixed by the owner, schema
or table name.

storage_clause
Specify a storage clause.

Example
Consider a table called AUCT 10N with the following schema:

create table auction(

item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on category_id. Results must be sorted based on bid_close.

You can create a catalog index to support the different types of structured queries a
user might enter.

To create the indexes, first create the index set preference then add the required
indexes to it:

begin
ctx_ddl.create_index_set("auction_iset");
ctx_ddl.add_index("auction_iset","bid_close®);
ctx_ddl.add_index("auction_iset", "category_id, bid_close");
end;

Create the combined catalog index with CREATE INDEX as follows:

create index auction_titlex on AUCTION(title) indextype is CTXCAT parameters
("index set auction_iset");

Querying

To query the title column for the word pokemon, enter regular and mixed queries as
follows:

select * from AUCTION where CATSEARCH(title, "pokemon®,NULL)> 0;

select * from AUCTION where CATSEARCH(title, "pokemon®, "category_id=99 order by
bid_close desc")> 0;

Notes

VARCHAR2 columns in the column list of a CTXCAT index of an index set cannot exceed
30 bytes.

Related Topic
"REMOVE_INDEX (page 8-61)"

CTX_DDL Package 8-9

ADD_MDATA

8.5 ADD_MDATA

Use this procedure to change the metadata of a document that has been specified as an
MDATA section. After this call, MDATA queries involving the named MDATA value will
find documents with the given MDATA value.

There are two versions of CTX_DDL . ADD_MDATA: one for adding a single metadata
value to a single rowid, and one for handing multiple values, multiple rowids, or both.

CTX_DDL.ADD_MDATA is transactional; it takes effect immediately in the calling
session, can be seen only in the calling session, can be reversed with a ROLLBACK
command, and must be committed to take permanent effect.

Use CTX_DDL.REMOVE_MDATA (page 8-61) to remove metadata values from
already-indexed documents. Only the owner of the index is allowed to call
ADD_MDATA and REMOVE_MDATA.

Syntax
This is the syntax for adding a single value to a single rowid:

CTX_DDL.ADD_MDATA(

idx_name IN VARCHARZ2,
section_name IN VARCHARZ2,
mdata_value IN VARCHARZ2,
mdata_rowid IN VARCHARZ2,
[part_name] IN VARCHAR2]
)E
idx_name

Name of the text index that contains the named rowid.

section_name
Name of the MDATA section.

mdata_value
The metadata value to add to the document.

mdata_rowid
The rowid to which to add the metadata value.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes
and must be NULL for global, nonpartitioned indexes.

This is the syntax for handling multiple values, multiple rowids, or both. This version
is more efficient for large numbers of new values or rowids.

CTX_DDL.ADD_MDATA(

idx_name IN VARCHARZ2,
section_name IN VARCHARZ2,
mdata_values SYS.ODCIVARCHAR2LIST,
mdata_rowids SYS.ODCIRIDLIST,
[part_name] IN VARCHAR2]

8-10 Oracle Text Reference

ADD_MDATA

idx_name
Name of the text index that contains the named rowids.

section_name
Name of the MDATA section.

mdata_values
List of metadata values. If a metadata value contains a comma, the comma must be
escaped with a backslash.

mdata_rowids
The rowids to which to add the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes
and must be NULL for global, nonpartitioned indexes.

Example
This example updates a single value:

select rowid from mytab where contains(text, "MDATA(sec, value®)>0;
No rows returned

exec ctx_ddl.add_mdata(*my_index", "sec®, "value", "ABC");

select rowid from mytab where contains(text, *MDATA(sec, value®)>0;
ROWID

This example updates multiple values:

begin

ctx_ddl.add_mdata("my_index", "sec”,
sys.odcivarchar2list("valuel®, "value2®,"value3"),
sys.odciridlist(*ABC*, "DEF"));

end;

This is equivalent to:

begin

ctx_ddl.add_mdata("my_index", "sec®, "valuel®, "ABC");
ctx_ddl.add_mdata("my_index", "sec®, "valuel®, "DEF");
ctx_ddl.add_mdata("my_index", "sec®, "value2®, "ABC");
ctx_ddl.add_mdata("my_index", "sec®, "value2®, "DEF");
ctx_ddl.add_mdata("my_index", "sec”, "value3", "ABC");
ctx_ddl.add_mdata("my_index", "sec®, "value3", "DEF");
end;

Notes

If a rowid is not yet indexed, CTX_DDL . ADD . MDATA completes without error, but an
error is logged in CTX_USER_ INDEX_ERRORS.

These updates are updates directly on the index itself, not on the actual contents
stored in the base table. Therefore, they will not survive when the Text index is rebuilt.

Related Topics
"ADD_MDATA_SECTION (page 8-13)"

CTX_DDL Package 8-11

ADD_MDATA_COLUMN

"REMOVE_MDATA (page 8-61)"
"MDATA (page 3-29)"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer’s Guide

8.6 ADD_MDATA_COLUMN

Use this procedure to map the FILTER BY column named in column_name to the
MDATA section named in section_name.

Syntax
The syntax is as follows:

CTX_DDL.ADD_MDATA_COLUMN(

group_name IN VARCHAR2,
section_name IN VARCHAR2,
column_name IN VARCHAR2,

group_name
Name of the group that contains the section.

section_name
Name of the MDATA section.

column_name
Name of the FILTER BY column to add to the MDATA section.

Note:
The column_name must not be prefixed by the owner, schema or table name.

Restrictions

MDATA sections that are created with CTX_DDL.ADD_MDATA_COLUMN cannot have
their values changed using CTX_DDL . ADD_MDATA or CTX_DDL .REMOVE_MDATA.

Doing so will result in errors being returned. The section values must be updated
using SQL.

Notes

® The stored datatype for MDATA sections is text. Therefore, the value of the
FILTER BY column is converted to text during indexing. For non-text datatypes,
the FILTER BY columns are normalized to an internal format during indexing. If
the section is queried with an MDATA operator, then the MDATA query string will
also be normalized to the internal format before processing.

¢ When a FILTER BY column is mapped as MDATA, the cost-based optimizer in
Oracle Text tries to avoid using the Oracle Text composite domain index to
process range predicate(s) on that FILTER BY column. This is because range

8-12 Oracle Text Reference

ADD_MDATA_SECTION

predicates on MDATA FILTER BY columns are processed less efficiently than if
they were declared as SDATA. For this reason, you should not add a FILTER BY
column as MDATA if you plan to do range searches on the column.

Related Topics

"MDATA (page 3-29)"
"ADD_MDATA_SECTION (page 8-13)"
"REMOVE_MDATA (page 8-61)"
"ADD_SDATA_COLUMN (page 8-15)"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer’s Guide

8.7 ADD_MDATA_SECTION

Use this procedure to add an MDATA section, with an accompanying value, to an
existing section group. MDATA sections cannot be added to Null Section groups, Path
Section groups, or Auto Section groups.

Section values undergo a simplified normalization:
¢ Leading and trailing whitespace on the value is removed.
e The value is truncated to 64 bytes.

* The value is indexed as a single value; if the value consists of multiple words, it is
not broken up.

® Caseis preserved. If the document is dynamically generated, then implement
case-insensitivity by uppercasing MDATA values and making sure to search only in
uppercase.

Use CTX_DDL.REMOVE_SECTION (page 8-62) to remove sections.

Syntax

CTX_DDL.ADD_MDATA_SECTION(
group_name IN VARCHAR2,
section_name IN VARCHARZ2,
tag IN VARCHAR2,
read_only IN BOOLEAN default FALSE);

group_name
Name of the section group that will contain the MDATA section.

section_name
Name of the MDATA section.

CTX_DDL Package 8-13

ADD_NDATA_SECTION

tag

The value of the MDATA section. For example, if the section is <AUTHOR>, the value
could be Cynthia Kadohata (author of the novel The Floating World). More than one fag
can be assigned to a given MDATA section.

read_only

FALSE (default) if you want to allow calling CTX_DDL . ADD_MDATA() and
CTX_DDL .REMOVE_MDATA(Q) for this MDATA section, and TRUE otherwise. When
set to FALSE, the queries on the MDATA section run less efficiently because a cursor
needs to be opened on the index table to track the deleted values for that MDATA
section.

Example

This example creates an MDATA section called auth.
ctx_ddl.create_section_group("htmgroup®, "HTML_SECTION_GROUP");
ctx_ddl.add_mdata_section("htmgroup®, "auth®, "author®, READ_ONLY);
Related Topics

"ADD_MDATA (page 8-10)"

"REMOVE_MDATA (page 8-61)"

"MDATA (page 3-29)"

"CREATE_SECTION_GROUP (page 8-36)"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer’s Guide

8.8 ADD_NDATA_SECTION

Use this procedure to find matches that are spelled in a similar way. The value of an
NDATA section is extracted from the document text like other sections, but is indexed
as name data. NDATA sections are stored in the CTX_USER_SECTIONS view.

Syntax

CTX_DDL.ADD_NDATA_SECTION(
group_name IN VARCHAR2,
section_name IN VARCHARZ2,
tag IN VARCHAR2

);

group_name
Name of the group that contains the section.

section_name
Name of the NDATA section.

8-14 Oracle Text Reference

ADD_SDATA_COLUMN

tag
Name of the tag that marks the start of a section. For example, if the tag is <H1>,
specify H1. The start tag you specify must be unique within a section group.

Notes

NDATA sections support both single and multi-byte data, however, there are character-
and term-based limitations. NDATA section data that is indexed is constrained as
follows:

* number of characters in a single, white space delimited term

511

e number of white space delimited terms

255

e total number of characters, including white spaces

511

NDATA section data that exceeds these constraints are truncated.

Example

The following example defines a section group namegroup of the
BASIC_SECTION_GROUP type. It then creates an NDATA section in namegroup called
firstname.

begin
ctx_ddl.create_section_group(“namegroup®, "BASIC_SECTION_GROUP®);
ctx_ddl.add_ndata_section("namegroup®, "firstname®, "fnamel®);
end;

8.9 ADD_SDATA_COLUMN

Use this procedure to map the FILTER BY or ORDER BY column named in
column_name to the SDATA section named in section_name. By default, all FILTER BY
columns are mapped as SDATA.

Syntax
The syntax is as follows:

CTX_DDL.ADD_SDATA_COLUMN(

group_name IN VARCHAR2,
section_name IN VARCHAR2,
column_name IN VARCHAR2,

group_name
Name of the group that contains the section.

section_name
Name of the SDATA section.

column_name
Name of the FILTER BY column to add to the SDATA section.

CTX_DDL Package 8-15

ADD_SDATA_SECTION

Notes

Mapping FILTER BY columns to sections is optional. If no section mapping exists
for a FILTER BY column, then it is mapped to an SDATA section, and the section
name will be the name of the FILTER BY column.

If a section group is not specified during CREATE INDEX of a composite domain
index, then system default section group settings will be used, and a SDATA
section will be created for each of the FILTER BY and ORDER BY columns.

Note:

Because section name does not allow certain special characters and is case
insensitive, if the column name is case sensitive or contains special characters,
then an error will be raised. To work around this problem, you need to map
the column to an MDATA or SDATA section before creating the index. Refer to
CTX_DDL.ADD_MDATA_COLUMN (page 8-12) or
CTX_DDL.ADD_SDATA_COLUMN (page 8-15) in this chapter.

An error will be raised if a column mapped to MDATA also appears in the ORDER
BY column clause.

Column section names are unique to their section group. That is, you cannot have
an MDATA column section named FOO if you already have an MDATA column
section named FOO. Furthermore, you cannot have a field section named FOO if
you already have an SDATA column section named FOO. This is true whether it is
implicitly created (by CREATE INDEX for FILTER BY or ORDER BY clauses) or
explicitly created (by CTX_DDL.ADD_SDATA_COLUMN).

One section name can only be mapped to one FILTER BY column, and vice versa.
For example, mapping a section to more than one column or mapping a column to
more than one section is not allowed.

Column sections can be added to any type of section group, including the NULL
section group.

99 is the maximum number for SDATA sections and columns.

Related Topics

"SDATA (page 3-44)"
"ADD_SDATA_SECTION (page 8-16)"
"UPDATE_SDATA (page 8-75)"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer’s Guide

8.10 ADD_SDATA_SECTION

This procedure adds an SDATA section to a section group. By default, all FILTER BY
columns are mapped as SDATA.

8-16 Oracle Text Reference

ADD_SDATA_SECTION

Starting with Oracle Database 12c Release 2 (12.2), searchable multi-valued SDATA
sections are supported. There is no restriction on the number of SDATA sections that
can be created for an index. That is, the sum total of SDATA sections for an index,
created implicitly with FILTER BY and ORDER BY, and explicitly with the
CTX_DDL.ADD_SDATA_SECTION() procedure is not restricted anymore. The total
number of CDI, including FILTER BY and ORDER BY is 32, but the number of SDATA
sections supported is unlimited. There are two types of SDATA sections:

® Searchable: Creates optimized for search SDATA sections which support multiple
values per document for the section and efficient range search capability.

® Sortable: Creates optimized for sort SDATA sections which support a single value
per document for the section. If the optimized_for attribute is not set, then the
default type of section is Sortable. The Composite Domain Index uses Sortable
SDATA internally for efficient FILTER BY or ORDER BY evaluation.

Syntax
The syntax is as follows:

CTX_DDL.ADD_SDATA_SECTION(

group_name IN VARCHAR2,
section_name IN VARCHARZ2,
tag IN VARCHARZ,
datatype IN VARCHAR2 default NULL,

);

group_name
Name of the group that contains the section.

section_name
Name of the SDATA section.

tag
Name of the tag to add to the SDATA section.

datatype
Specifies the stored format for the data, as well as the semantics of comparison in later
use in SDATA operators. The Sortable SDATA sections support the following data

types:

e VARCHAR2
e CHAR

e RAW

e NUMBER

e DATE

The VARCHAR2 datatype stores up to 249 bytes of character data in the database
character set. Values larger than this result in a per-document indexing error. Note
that leading and trailing whitespace are always trimmed from SDATA section values
when extracted by the sectioner. This is different than SDATA columns. Column
values are never trimmed. No lexing is performed on the value from either kind of
SDATA.

CTX_DDL Package 8-17

ADD_SDATA_SECTION

The CHAR datatype stores up to 249 bytes of character data in the database character
set. Values larger than this result in a per-document indexing error. Note that leading
and trailing whitespace are always trimmed from SDATA section values when
extracted by the sectioner. This is different than SDATA columns. Column values are
never trimmed. No lexing is performed on the value from either kind of SDATA. To be
consistent with SQL, the comparisons of CHAR datatype SDATA values are blank-
padded comparisons.

The RAW datatype stores up to 249 bytes of binary data. Values larger than this result
in a per-document indexing error. The value is converted from hexadecimal string
representation. That is, to store a value of 65, the document should look like
<TAG>40</TAG>, and not <TAG>65</TAG> or <TAG>A</TAG>.

The DATE datatype values must conform to the following format: YYYY-MM-DD or
YYYY-MM-DD HH24:MI:SS. That is, to store a DATE value of "Nov. 24, 2006 10:32 pm
36 sec", the document should look like <TAG>2006-11-24 22:32:36</TAG>.

The Searchable SDATA sections support the following data types, in addition to the
data types supported by the Sortable SDATA sections:

e BINARY_FLOAT

e BINARY_DOUBLE

e TIMESTAMP

e TIMESTAMP_WITH_TIMEZONE

The BINARY_FLOAT datatype stores 32-bit floating point number.
The BINARY_DOUBLE datatype stores 64-bit floating point number.

The TIMESTAMP datatype is an extension of the DATE datatype. It stores year, month,
and day values of date, as well as hour, minute, and second values of time. It also
stores fractional seconds, which are not stored by the DATE datatype. The fractional
seconds precision can be no more than 9. The TIMESTAMP values must follow the ISO
format. You can specify the TIMESTAMP literal in the following format: YYYY-MM-DD
HH24:M1 :SS.FF. An example of TIMESTAMP value is <TAG>1997-01-31
09:26:50.12</TAG>.

The TIMESTAMP_WITH_TIMEZONE datatype is a variant of TIMESTAMP datatype that
includes a time zone offset or a time zone region name in its value. The fractional
seconds prevision can be no more than 9. The TIMESTAMP_WITH_TIMEZONE values
must follow the ISO format. An example of TIMESTAMP_WITH_TIMEZONE value is
<TAG>1997-01-31 09:26:56.66 +02:00</TAG>

Example
The following example demonstrates how to create a SDATA section:

create table tab(id number, info varchar2(100));

insert into tab values(l,"Hello World<fruit>apple</fruit><price>3</

price>");

insert into tab values(2, "Hello World<fruit>orange</fruit><price>5</price>");
The preceding statements create a table named tab with two rows of data.

The following statements create a basic section group named sg, add SDATA sections
to it and mark the SDATA to be searchable:

8-18 Oracle Text Reference

ADD_SEC_GRP_ATTR_VAL

exec ctx_ddl.create_section_group("sg®, "basic_section_group®);

exec ctx_ddl.add_sdata_section("sg", "fruit","fruit", "varchar2");

exec ctx_ddl.set_section_attribute("sg”, "fruit”, "optimized_for","search");
exec ctx_ddl.add_sdata_section("sg","price","price”, "number");

exec ctx_ddl.set_section_attribute("sg","price”, "optimized_for","search");

The following statement creates an index on sgQ:

create index idx on tab(info) indextype is ctxsys.context parameters ("section group
SO

The following statements query tab to demonstrate searchable SDATA:

Query 1

select id from tab where CONTAINS(info, "SDATA(fruit = "apple')"); return id 1

Query 2
select id from tab where CONTAINS(info, "Hello and SDATA(price > 4)"); return id 2
Limitations

e Ifno SDATA tag occurs in a given document, then this is treated as an SDATA
value of NULL.

e Empty SDATA tags are treated as NULL values.

® SDATA sections cannot be nested. Sections that are nested inside are ignored.

Related Topics

"SDATA (page 3-44)"
"ADD_SDATA_COLUMN (page 8-15)"
"UPDATE_SDATA (page 8-75)"

See Also:
e Oracle Database SQL Language Reference

e Oracle Text Application Developer’s Guide

8.11 ADD_SEC_GRP_ATTR_VAL

Adds a section group attribute value to the list of values of an already existing section
group attribute.

Syntax

CTX_DDL.ADD_SEC_GRP_ATTR_VAL(
group_name IN VARCHAR2,
attribute_name IN VARCHAR2,
attribute_value IN VARCHAR2

);

CTX_DDL Package 8-19

ADD_SPECIAL_SECTION

group_name
Specify the section group name.

attribute_name
Specify the name of the section group attribute.

attribute_value
Specify the section group attribute value.

8.12 ADD_SPECIAL_SECTION

Adds a special section, either SENTENCE or PARAGRAPH, to a section group. This
enables searching within sentences or paragraphs in documents with the WITHIN
(page 3-56) operator.

A special section in a document is a section which is not explicitly tagged like zone
and field sections. The start and end of special sections are detected when the index is
created. Oracle Text supports two such sections: paragraph and sentence.

The sentence and paragraph boundaries are determined by the lexer. For example, the
lexer recognizes sentence and paragraph section boundaries as follows:

Table 8-1 Paragraph and Sentence Section Boundaries
- |

Special Section Boundary

SENTENCE WORD/PUNCT /WHITESPACE

SENTENCE WORD/PUNCT/NEWLINE

PARAGRAPH WORD/PUNCT/NEWLINE/WHITESPACE (indented paragraph)
PARAGRAPH WORD/PUNCT/NEWLINE/NEWLINE (block paragraph)

The punctuation, whitespace, and newline characters are determined by your lexer
settings and can be changed.

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are
indexed.

Syntax

CTX_DDL.ADD_SPECIAL_SECTION(
group_name IN VARCHAR2,
section_name IN VARCHAR2

);

group_name
Specify the name of the section group.

section_name
Specify SENTENCE or PARAGRAPH.

Example

The following example enables searching within sentences within HTML documents:

8-20 Oracle Text Reference

ADD_STOPCLASS

begin

ctx_ddl.create_section_group("htmgroup®, "HTML_SECTION_GROUP");
ctx_ddl.add_special_section("htmgroup®, "SENTENCE");

end;

Add zone sections to the group to enable zone searching in addition to sentence
searching. The following example adds the zone section Headl ine to the section
group htmgroup:

begin

ctx_ddl.create_section_group(“htmgroup®, "HTML_SECTION_GROUP");
ctx_ddl.add_special_section("htmgroup®, "SENTENCE");
ctx_ddl.add_zone_section("htmgroup®, "Headline®, "H1");

end;

If you are only interested in sentence or paragraph searching within documents and
not interested in defining zone or field sections, then use the NULL_SECTION_GROUP
as follows:

begin

ctx_ddl.create_section_group("nullgroup®, "NULL_SECTION_GROUP");
ctx_ddl.add_special_section("nullgroup®, "SENTENCE");

end;

Related Topics

"WITHIN (page 3-56)"

"Section Group Types (page 2-92)"
"CREATE_SECTION_GROUP (page 8-36)"
"ADD_ZONE_SECTION (page 8-28)"
"ADD_FIELD_SECTION (page 8-5)"
"REMOVE_SECTION (page 8-62)"
"DROP_SECTION_GROUP (page 8-43)"

8.13 ADD_STOPCLASS

Adds a stopclass to a stoplist. A stopclass is a class of tokens that is not to be indexed.
A stoplist cannot have more than 250 stopclasses with stoppatterns. This does not
include the NUMBERS stopclass. When indexing with Stop Patterns, the recommended
memory setting is at least 500 MB to 1 GB to optimize the performance of indexing.

English is the only language supported for stopclasses.

Syntax
CTX_DDL.ADD_STOPCLASS(
stoplist_name IN VARCHAR2,
stopclass IN VARCHAR2,
stoppattern IN VARCHAR2 default NULL

);

stoplist_name
Specify the name of the stoplist.

CTX_DDL Package 8-21

ADD_STOPCLASS

stopclass
Specify the stopclass to be added to stoplist_name. It can be either the NUMBERS
stopclass or else it is considered as the pattern stopclass.

NUMBERS includes tokens that follow the number pattern: digits, numgroup, and
numjoin only. Therefore, 123ABC is not a number, nor is A123. These are labeled as
MIXED. $123 is not a number (this token is not common in a text index because non-
alphanumerics become whitespace by default). In the United States, 123.45 is a
number, but 123.456.789 is not; in Europe, where numgroup may be "', the reverse is
true.

If NUMBERS is not specified for the stopclass parameter, then it is treated as a
pattern stopclass, and you can provide any name to the stopclass parameter. If you
specify stopclass as a pattern class, then you need to specify the pattern in the
stoppattern parameter. The pattern includes any string pattern that may contain
numbers and dates as well.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

stoppattern

Specify the stop pattern to add to the stoplist. If the stopclass is specified as a pattern
class, then the stop pattern must be specified. You can use the Oracle Regular
Expression to specify the stop pattern.

Call the ADD_STOPCLASS procedure multiple times to add multiple stop patterns to a
stoplist. You must specify different stopclass names for adding multiple stop patterns
to a stoplist.

A stop pattern is not case-sensitive by default, but acts as case-sensitive when the
MIXED_CASE lexer preference is enabled. The stop pattern can have the maximum
length of 512 characters. When indexing with Stop Patterns, the recommended
memory setting is at least 500 MB to 1 GB to optimize the performance of indexing.

See Also:

Oracle Database Development Guide for more information about the syntax of
the Oracle Regular Expression.

Example
The following example adds a stopclass of NUMBERS to the stoplist mystoplist:

begin
ctx_ddl.add_stopclass("mystoplist®, "NUMBERS");
end;

The following example adds the pattern stopclass of SSN to the stoplist mystoplist:

begin
ctx_ddl.add_stopclass("mystoplist®, "SSN", "\d{3}-\d{2}-\d{4}");
end;

In this example, the stopclass SSN matches all the tokens of the form <3 digit
number>-<2 digit number>-<4 digit number>, example, 234-11-8902.

Related Topics
"CREATE_STOPLIST (page 8-41)"

8-22 Oracle Text Reference

ADD_STOP_SECTION

"REMOVE_STOPCLASS (page 8-63)"
"DROP_STOPLIST (page 8-44)"

8.14 ADD_STOP_SECTION

Adds a stop section to an automatic section group. Adding a stop section causes the
automatic section indexing operation to ignore the specified section in XML
documents.

Note:

Adding a stop section causes no section information to be created in the index.
However, the text within a stop section is always searchable.

Adding a stop section is useful when your documents contain many low information
tags. Adding stop sections also improves indexing performance with the automatic
section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section
views.

Syntax

CTX_DDL.ADD_STOP_SECTION(
section_group IN VARCHARZ2,
tag IN VARCHAR2

section_group
Specify the name of the automatic section group. If you do not specify an automatic
section group, then this procedure returns an error.

tag
Specify the tag to ignore during indexing. This parameter is case-sensitive. Defining a
stop tag as such also stops the tag's attribute sections, if any.

Qualify the tag with document type in the form (doctype)tag. For example, if you
wanted to make the <Fluff> tag a stop section only within the mydoc document
type, specify (mydoc) Fluff for tag.

Example
Defining Stop Sections

The following example adds a stop section identified by the tag <Fluff> to the
automatic section group myauto:

begin
ctx_ddl.add_stop_section("myauto®, "fluff®);
end;

This example also stops any attribute sections contained within <fluff>. For
example, if a document contained:

<fluff type="computer">

CTX_DDL Package 8-23

ADD_STOPTHEME

Then the preceding example also stops the attribute section Fluff@type.
Doctype Sensitive Stop Sections

The following example creates a stop section for the tag <Fluff> only in documents
that have a root element of mydoc:

begin

ctx_ddl.add_stop_section("myauto®, "(mydoc)fluff");
end;

Related Topics

"ALTER INDEX (page 1-1)"
"CREATE_SECTION_GROUP (page 8-36)"

8.15 ADD_STOPTHEME

Adds a single stoptheme to a stoplist. A stoptheme is a theme that is not to be indexed.

In English, query on indexed themes using the ABOUT (page 3-4) operator.

Syntax

CTX_DDL .ADD_STOPTHEME(
stoplist_name IN VARCHAR2,
stoptheme IN VARCHAR2

);

stoplist_name
Specify the name of the stoplist.

stoptheme

Specify the stoptheme to be added to stoplist_name. The system normalizes the
stoptheme you enter using the knowledge base. If the normalized theme is more

than one theme, then the system does not process your stoptheme. For this reason,
Oracle recommends that you submit single stopthemes.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

Example

The following example adds the stoptheme banking to the stoplist mystop:
begin

ctx_ddl.add_stoptheme("mystop®, "banking");

end;

Related Topics

"CREATE_STOPLIST (page 8-41)"

"REMOVE_STOPTHEME (page 8-63)"

"DROP_STOPLIST (page 8-44)"

"ABOUT (page 3-4)"

8-24 Oracle Text Reference

ADD_STOPWORD

8.16 ADD_STOPWORD

Use this procedure to add a single stopword to a stoplist.

To create a list of stopwords, you must call this procedure once for each word.

Syntax
CTX_DDL.ADD_STOPWORD(

stoplist_name IN VARCHARZ2,
stopword IN VARCHARZ2,
language IN VARCHAR2 default NULL,

language_dependent IN BOOLEAN default TRUE

);

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be added.

Language-specific stopwords must be unique across the other stopwords specific to
the language. For example, it is valid to have a German die and an English die in the
same stoplist.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

language

Specify the language of stopword when the stoplist you specify with
stoplist_name is of type MULTI_STOPLIST. You must specify the globalization
support name or abbreviation of an Oracle Text-supported language.

To make a stopword active in multiple languages, specify ALL for this parameter. For
example, defining ALL stopwords is useful when you have international documents
that contain English fragments that need to be stopped in any language.

An ALL stopword is active in all languages. If you use the multi-lexer, the language-
specific lexing of the stopword occurs, just as if it had been added multiple times in
multiple specific languages.

Otherwise, specify NULL.

language_dependent
Set this parameter to FALSE to indicate that any user-defined string can be specified
for the language parameter.

Example
Single Language Stoplist

The following example adds the stopwords because, notwithstanding, nonetheless, and
therefore to the stoplist mystop:

begin

CTX_DDL Package 8-25

ADD_SUB_LEXER

ctx_ddl.add_stopword("mystop®, "because");
ctx_ddl.add_stopword("mystop®, "notwithstanding”);
ctx_ddl.add_stopword("mystop®, "nonetheless™);
ctx_ddl.add_stopword("mystop®, "therefore®);

end;
Multi-Language Stoplist

The following example adds the German word die to a multi-language stoplist:

begin
ctx_ddl.add_stopword("mystop®, "Die","german®);

end;

Note:
Add stopwords after you create the index with ALTER INDEX.

Adding An ALL Stopword

The following adds the word the as an ALL stopword to the multi-language stoplist
globallist:

begin
ctx_ddl.add_stopword("globallist®,"the","ALL");

end;

Related Topics

"CREATE_STOPLIST (page 8-41)"
"REMOVE_STOPWORD (page 8-64)"
"DROP_STOPLIST (page 8-44)"

"ALTER INDEX (page 1-1)"

Oracle Text Supplied Stoplists (page E-1)

8.17 ADD_SUB_LEXER

Adds a sub-lexer to a multi-lexer preference. A sub-lexer identifies a language in a
multi-lexer (multi-language) preference. Use a multi-lexer preference when you want
to index more than one language.

Syntax
CTX_DDL.ADD_SUB_LEXER(
lexer_name IN VARCHAR2,
language IN VARCHARZ2,
sub_lexer IN VARCHAR2,
alt value IN VARCHAR2 default NULL,
language_dependent IN BOOLEAN default TRUE
):

8-26 Oracle Text Reference

ADD_SUB_LEXER

lexer_name
Specify the name of the multi-lexer preference.

language
Specify the globalization support language name or abbreviation of the sub-lexer. For
example, specify JAPANESE or JA for Japanese.

The sub-lexer you specify with sub_lexer is used when the language column has a
value case-insensitive equal to the globalization support name of abbreviation of
language.

Specify DEFAULT to assign a default sub-lexer to use when the value of the language
column in the base table is null, invalid, or unmapped to a sub-lexer. The DEFAULT
lexer is also used to parse stopwords.

If a sub-lexer definition for language already exists, then it is replaced by this call.

sub_lexer
Specify the name of the sub-lexer to use for this language.

alt_value
Optionally specify an alternate value for language.

If you specify DEFAULT for language, then you cannot specify an alt_value.

The alt_value is limited to 30 bytes and cannot be a globalization support language
name, abbreviation, or DEFAULT.

language_dependent

Set this parameter to FALSE to indicate that any user-defined string can be specified
for the language parameter. If set to FALSE, then the lexing applied to the search
expression will not be dependent on the query language. The FALSE option can only
be used when a BASIC_SECTION_GROUP is in use for the index.

Example

This example shows how to create a multi-language text table and how to set up the
multi-lexer to index the table.

Create the multi-language table with a primary key, a text column, and a language
column as follows:

create table globaldoc (
doc_id number primary key,
lang varchar2(3),
text clob

);

Assume that the table holds mostly English documents, with an occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers:
one for English, one for German, and one for Japanese as follows:

ctx_ddl.create_preference("english_lexer*", "basic_lexer");
ctx_ddl.set_attribute("english_lexer", "index_themes”,"yes®);
ctx_ddl.set_attribtue("english_lexer", "theme_language®, "english™);

ctx_ddl.create_preference("german_lexer®,"basic_lexer");
ctx_ddl.set_attribute("german_lexer", "composite”, "german®);
ctx_ddl.set_attribute("german_lexer", "mixed_case","yes");
ctx_ddl.set_attribute("german_lexer®,"alternate_spelling”,"german®);

CTX_DDL Package 8-27

ADD_ZONE_SECTION

ctx_ddl.create_preference("japanese_lexer", "japanese_vgram_lexer");

Create the multi-lexer preference:

ctx_ddl.create_preference("global_lexer®, "multi_lexer");

Because the stored documents are mostly English, make the English lexer the default:

ctx_ddl.add_sub_lexer("global_lexer","default®, "english_lexer");

Add the German and Japanese lexers in their respective languages. Also assume that
the language column is expressed in ISO 639-2, so add those as alternative values.

ctx_ddl.add_sub_lexer("global_lexer®,"german®, "german_lexer","ger");
ctx_ddl.add_sub_lexer("global_lexer","japanese”, "japanese_lexer","jpn*);

Create the index globalXx, specifying the multi-lexer preference and the language
column in the parameters string as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ("lexer global_lexer language column lang*);

You can specify a user-defined string for the language paramater as follows:
ctx_ddl.add_sub_lexer("global_lexer®, "mysymbol*, "german_lexer", "my_alt_symbol®,
language_dependent => FALSE);

Restrictions

The following restrictions apply to using CTX_DDL .ADD_SUB_LEXER:

¢ The invoking user must be the owner of the multi-lexer or CTXSYS.

¢ The lexer_name parameter must name a preference which is a multi-lexer lexer.
* Alexer for default must be defined before the multi-lexer can be used in an index.

¢ The sub-lexer preference owner must be the same as multi-lexer preference
owner.

® The sub-lexer preference must not be a multi-lexer lexer.

* A sub-lexer preference cannot be dropped while it is being used in a multi-lexer
preference.

e CTX_DDL.ADD_SUB_LEXER records only a reference. The sub-lexer values are
copied at create index time to index value storage.

8.18 ADD_ZONE_SECTION

Creates a zone section and adds the section to an existing section group. This enables
zone section searching with the WITHIN (page 3-56) operator.

Zone sections are sections delimited by start and end tags. The and tags in
HTML, for instance, marks a range of words which are to be rendered in boldface.

Zone sections can be nested within one another, can overlap, and can occur more than
once in a document.

8-28 Oracle Text Reference

ADD_ZONE_SECTION

Syntax

CTX_DDL.ADD_ZONE_SECTION(
group_name IN VARCHARZ2,
section_name IN VARCHAR2,
tag IN VARCHAR2

);

group_name
Specify the name of the section group to which section_name is added.

section_name

Specify the name of the section to add to the group_name. Use this name to identify
the section in WITHIN queries. Avoid using names that contain non-alphanumeric
characters such as _, because most of these characters are special must be escaped in
queries. Section names are case-insensitive.

Within the same group, zone section names and field section names cannot be the
same. The terms Paragraph and Sentence are reserved for special sections.

Section names need not be unique across tags. You can assign the same section name
to more than one tag, making details transparent to searches.

tag

Specify the pattern which marks the start of a section. For example, if <H1> is the
HTML tag, specify H1 for tag. The start tag you specify must be unique within a
section group.

Oracle Text knows what the end tags look like from the group_type parameter you
specify when you create the section group.

If group_name is an HTML_SECTION_GROUP, you can create zone sections for the
META tag's NAME/CONTENT attribute pairs. To do so, specify tag as
meta@namevalue where namevalue is the value of the NAME attribute whose
CONTENT attributes are to be indexed as a section. Refer to the example.

If group_name is an XML_SECTION_GROUP, you can optionally qualify tag with a
document type (root element) in the form (doctype)tag. Doing so makes
section_name sensitive to the XML document type declaration. Refer to the
example.

Examples
Creating HTML Sections

The following example defines a section group called htmgroup of type
HTML_SECTION_GROUP. It then creates a zone section in htmgroup called headl ine
identified by the <H1> tag:

begin

ctx_ddl.create_section_group(“htmgroup®, "HTML_SECTION_GROUP®);
ctx_ddl.add_zone_section("htmgroup®, "heading®, "H1");

end;

After indexing with section group htmgroup, query within the heading section by
issuing a query as follows:

"Oracle WITHIN heading"

Creating Sections for <META NAME> Tags

CTX_DDL Package 8-29

ADD_ZONE_SECTION

You can create zone sections for HTML META tags when you use the
HTML_SECTION_GROUP.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken'>

To create a zone section that indexes all CONTENT attributes for the META tag whose
NAME value is author:

begin

ctx_ddl.create_section_group("htmgroup®, "HTML_SECTION_GROUP");
ctx_ddl.add_zone_section("htmgroup®, "author®, "meta@author™);
end

After indexing with section group htmgroup, query the document as follows:

"ken WITHIN author*®

Creating Document Type Sensitive Sections (XML Documents Only)

You have an XML document set that contains the <book> tag declared for different
document types (DTDs). You want to create a distinct book section for each document

type.
Assume that myDTDname is declared as an XML document type as follows:

<IDOCTYPE myDTDname>
<myDTDname>

(Note: the DOCTYPE must match the top-level tag.)

Within myDTDname, the element <book> is declared. For this tag, create a section
named mybooksec that is sensitive to the tag's document type as follows:

begin

ctx_ddl.create_section_group("myxmlgroup®, “XML_SECTION_GROUP");
ctx_ddl.add_zone_section("myxmlgroup®, "mybooksec®, "(myDTDname)book");
end;

Notes

Repeated Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For example,
if <H1> denotes a heading section, they can repeat in the same documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading, the query Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN
Heading does not.

Overlapping Sections

Zone sections can overlap each other. For example, if and <1> denote two
different zone sections, they can overlap in document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Sections

8-30 Oracle Text Reference

COPY_POLICY

Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within
sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as
follows in documents docl and doc2:

docl:

<book1> <author>Scott Tiger</author> This is a cool book to read.</bookl>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

"(Scott within author) within bookl®

This query returns only docl.

Related Topics

"WITHIN (page 3-56)"

"Section Group Types (page 2-92)"
"CREATE_SECTION_GROUP (page 8-36)"
"ADD_FIELD_SECTION (page 8-5)"
"ADD_SPECIAL_SECTION (page 8-20)"
"REMOVE_SECTION (page 8-62)"
"DROP_SECTION_GROUP (page 8-43)"

8.19 COPY_POLICY

Creates a new policy from an existing policy or index.

Syntax

ctx_ddl.copy_policy(
source_policy VARCHAR2,
policy_name VARCHAR2);

source_policy
The name of the policy or index being copied.

policy_name
The name of the new policy copy.

The preference values are copied from the source_policy. Both the source policy or
index and the new policy must be owned by the same database user.

8.20 CREATE_INDEX_SET

Creates an index set for CTXCAT index types. Name this index set in the parameter
clause of CREATE INDEX when you create a CTXCAT index.

CTX_DDL Package 8-31

CREATE_POLICY

Syntax
CTX_DDL.CREATE_INDEX_SET(set_name in varchar2);

set_name
Specify the name of the index set. Name this index set in the parameter clause of
CREATE INDEX when you create a CTXCAT index.

8.21 CREATE_POLICY

Creates a policy to use with the CTX_DOC.POLICY_* procedures and the
ORAZCONTAINS function. ORA-CONTAINS is a function you use within an XPATH
query expression with existsNode().

See Also:

Oracle XML DB Developer’s Guide

Syntax

CTX_DDL.CREATE_POLICY(
policy_name IN VARCHAR2,
filter IN VARCHAR2 DEFAULT NULL,
section_group IN VARCHAR2 DEFAULT NULL,
lexer IN VARCHAR2 DEFAULT NULL,
stoplist IN VARCHAR2 DEFAULT NULL,
wordlist IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the name for the new policy. Policy names and Text indexes share the same
namespace.

filter
Specify the filter preference to use.

section_group

Specify the section group to use. You can specify any section group that is supported
by CONTEXT index.

lexer
Specify the lexer preference to use. Your INDEX_THEMES attribute must be disabled.

stoplist
Specify the stoplist to use.

wordlist
Specify the wordlist to use.

Example
Create mylex lexer preference named mylex.

begin
ctx_ddl.create_preference("mylex", "BASIC_LEXER");
ctx_ddl.set_attribute("mylex®, "printjoins®, "_-");

8-32 Oracle Text Reference

CREATE_PREFERENCE

ctx_ddl.set_attribute ("mylex", "index_themes®, "NO");
ctx_ddl.set_attribute ("mylex", "index_text", "YES");
end;

Create a stoplist preference named mystop.

begin
ctx_ddl.create_stoplist("mystop®, "BASIC_STOPLIST");
ctx_ddl.add_stopword("mystop®, "because®);
ctx_ddl.add_stopword("mystop®, "nonetheless®);
ctx_ddl.add_stopword("mystop®, "therefore™);

end;

Create a wordlist preference named 'mywordlist'.

begin
ctx_ddl.create_preference("mywordlist®, "BASIC_WORDLIST");
ctx_ddl.set_attribute(*mywordlist®,*FUZZY_MATCH", "ENGLISH");
ctx_ddl.set_attribute("mywordlist", "FUZZY_SCORE","0");
ctx_ddl.set_attribute("mywordlist®, "FUZZY_NUMRESULTS", "5000");
ctx_ddl.set_attribute(*mywordlist", *SUBSTRING_INDEX", "TRUE");
ctx_ddl.set_attribute(*mywordlist®, *STEMMER", "ENGLISH");

end;

exec ctx_ddl.create_policy("my_policy", NULL, NULL, "mylex®, "mystop®,
"mywordlist");

or

exec ctx_ddl.create_policy(policy _name => "my policy",
lexer => "mylex”,
stoplist => "mystop”,
wordlist => "mywordlist");

Then enter the following existsNode() query with your own defined policy:

select id from xmltab
where existsNode(doc, "/book/chapter[ora:contains(summary,"dog or cat",
"my_policy") >0 1", "xmlns:ora="http://xmlns.example.com/xdb" *)=1;

Update the policy with the following:

exec ctx_ddl.update_policy(policy _name => "my policy", lexer => "my _new_lex");

Drop the policy with the following:

exec ctx_ddl.drop_policy(policy_name => "my _policy");

8.22 CREATE_PREFERENCE

Creates a preference in the Text data dictionary. Specify preferences in the parameter
string of CREATE INDEX (page 1-41) or ALTER INDEX (page 1-1).

CTX_DDL Package 8-33

CREATE_PREFERENCE

Caution:

CTX_DDL.CREATE_PREFERENCE does not respect the current schema as set
by ALTER SESSION SET current_schema. Therefore, if you need to create
or delete a preference owned by another user, then you must explicitly state
this, and you must have the CREATE ANY TABLE system privilege.

See note 249991.1 titled "Oracle Text Overview of New Features in Release
10¢" on My Oracle Support at https://support.oracle.com. This note
provides a technical overview that is relevant to Oracle Database release 10g
and later releases.

Syntax

CTX_DDL.CREATE_PREFERENCE(preference_name in varchar2,
object_name in varchar2);

preference_name
Specify the name of the preference to be created.

object_name
Specify the name of the preference type.

See Also:
For a complete list of preference types and their associated attributes, see
Oracle Text Indexing Elements (page 2-1)

Examples
Creating Text-only Index

The following example creates a lexer preference that specifies a text-only index. It
does so by creating a BASIC_LEXER preference called my_lexer with
CTX_DDL.CREATE_PREFERENCE. It then calls CTX_DDL.SET_ATTRIBUTE

(page 8-66) twice, first specifying YES for the INDEX_TEXT attribute, then specifying
NO for the INDEX_THEMES attribute.

begin

ctx_ddl.create_preference("my_lexer®, *BASIC_LEXER");
ctx_ddl.set_attribute("my_lexer®, "INDEX_TEXT", "YES");
ctx_ddl.set_attribute("my_lexer®, "INDEX_THEMES®, *NO");
end;

Specifying File Data Storage

The following example creates a data storage preference called mypref that tells the
system that the files to be indexed are stored in the operating system. The example
then uses CTX_DDL.SET_ATTRIBUTE (page 8-66) to set the PATH attribute of to the
directory /docs.

begin

ctx_ddl.create_preference("mypref®, "FILE_DATASTORE");
ctx_ddl.set_attribute("mypref®, "PATH", "/docs");

end;

8-34 Oracle Text Reference

https://support.oracle.com

CREATE_PREFERENCE

See Also:

For more information about data storage, see "Datastore Types (page 2-2)"

Creating Master /Detail Relationship

Use CTX_DDL.CREATE_PREFERENCE (page 8-33) to create a preference with
DETAIL_DATASTORE. Use CTX_DDL.SET_ATTRIBUTE (page 8-66) to set the
attributes for this preference. The following example shows how this is done:

begin

ctx_ddl.create_preference("my_detail_pref®, "DETAIL_DATASTORE");
ctx_ddl.set_attribute("my_detail_pref®, “binary", "true");
ctx_ddl.set_attribute("my_detail_pref®, "detail_table®, "my detail");
ctx_ddl.set_attribute("my_detail_pref®, "detail_key", "article_id");
ctx_ddl.set_attribute("my_detail_pref®, "detail_lineno", "seq");
ctx_ddl.set_attribute("my_detail_pref®, "detail_text", "text");

end;

See Also:

For more information about master/detail, see "DETAIL_DATASTORE
(page 2-7)"

Specifying Storage Attributes

The following examples specify that the index tables are to be created in the foo
tablespace with an initial extent of 1K:

begin
ctx_ddl.create_preference("mystore®, "BASIC_STORAGE");
ctx_ddl.set_attribute("mystore®, "I _TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "K TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "R_TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "S TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "N_TABLE_CLAUSE",

"tablespace foo storage (initial 1K)");
ctx_ddl.set_attribute("mystore®, "I _INDEX_CLAUSE",

"tablespace foo storage (initial 1K)");
end;

Note:

If S_TABLE_CLAUSE is specified for a storage preference in an index without
SDATA, then it has no effect on the index, and the index creation will still
succeed.

See Also:

Storage Types (page 2-82)

CTX_DDL Package 8-35

CREATE_SECTION_GROUP

Creating Preferences with No Attributes

When you create preferences with types that have no attributes, you need only create
the preference, as in the following example which sets the filter to the NULL_FILTER:

begin
ctx_ddl.create_preference("my_null_filter®, "NULL_FILTER");
end;

Specifying BIGRAM Mode for Japanese VGRAM Lexer

The following example creates a Japanese VGRAM lexer preference that specifies the
BIGRAM mode of operation for the Japanese queries:

begin

ctx_ddl.create_preference("jp_lexer", "JAPANESE_VGRAM_LEXER");
ctx_ddl.set_attribute("jp_lexer", "BIGRAM", "TRUE");

end;

/* create the index */
create index jp_idx on jp_doc(text) indextype is ctxsys.context
parameters(®lexer jp_lexer®);

Related Topics

"SET_ATTRIBUTE (page 8-66)"
"DROP_PREFERENCE (page 8-43)"
"CREATE INDEX (page 1-41)"

"ALTER INDEX (page 1-1)"
Oracle Text Indexing Elements (page 2-1)

8.23 CREATE_SECTION_GROUP

Creates a section group for defining sections in a text column.

When you create a section group, you can add to it zone, field, or special sections with
ADD_ZONE_SECTION (page 8-28), ADD_FIELD_SECTION (page 8-5),
ADD_MDATA_SECTION (page 8-13), or ADD_SPECIAL_SECTION (page 8-20).

You also use CREATE_SECTION_GROUP with CTX_DDL.SET_SEC_GRP_ATTR
(page 8-68) to set xml_enable to create an Oracle XML Search Index.

When you index, name the section group in the parameter string of CREATE INDEX
(page 1-41) or ALTER INDEX (page 1-1).

After indexing, query within your defined sections with the WITHIN (page 3-56)

operator.

Syntax

CTX_DDL.CREATE_SECTION_GROUP(
group_name in varchar2,
group_type in varchar2

group_name
Specify the section group name to create as section_group_name. This parameter
must be unique within an owner.

8-36 Oracle Text Reference

CREATE_SECTION_GROUP

group_type
Specify section group type. The group_type parameter can be one of the following:

Section Group Preference Description

NULL_SECTION_GROUP Use this group type when you define no
sections or when you define only SENTENCE
or PARAGRAPH sections. This is the default.

BASIC_SECTION_GROUP Use this group type for defining sections
where the start and end tags are of the form
<A>and .

Note: This group type does not support input
such as unbalanced parentheses, comments
tags, and attributes. Use

HTML_SECT ION_GROUP for this type of input.

HTML_SECT 10N_GROUP Use this group type for indexing HTML
documents and for defining sections in HTML
documents.

JSON_SECTION_GROUP Use this group to create a JSON enabled
context index. The JSON ENABLE attribute
cannot be used with XML ENABLE. A section
group can only be marked as JSON ENABLE. If
it is already marked with XML ENABLE, then
the path section group cannot be used for
JSON ENABLE and vice versa.

XML_SECTION_GROUP Use this group type for indexing XML
documents and for defining sections in XML
documents.

AUTO_SECT ION_GROUP Use this group type to automatically create a
zone section for each start-tag/end-tag pair in
an XML document. The section names derived
from XML tags are case sensitive as in XML.
Attribute sections are created automatically for
XML tags that have attributes. Attribute
sections are named in the form attribute@tag.
Stop sections, empty tags, processing
instructions, and comments are not indexed.
The following limitations apply to automatic
section groups:

* You cannot add zone, field, or special
sections to an automatic section group.

¢ Automatic sectioning does not index XML
document types (root elements.)
However, you can define stop sections
with document type.

* Thelength of the indexed tags, including
prefix and namespace, cannot exceed 64
bytes. Tags longer than this are not
indexed.

CTX_DDL Package 8-37

CREATE_SECTION_GROUP

Section Group Preference Description

PATH_SECTION_GROUP Use this group type to index XML documents.
Behaves like the AUTO_SECTION_GROUP.
The difference is that with this section group
you can do path searching with the INPATH
and HASPATH operators. Queries are also case-
sensitive for tag and attribute names.

NEWS_SECTION_GROUP Use this group for defining sections in
newsgroup formatted documents according to

RFC 1036.
Examples
The following command creates a section group called htmgroup with the HTML
group type.
begin

ctx_ddl.create_section_group(“htmgroup®, "HTML_SECTION_GROUP");
end;

The following command creates a section group called auto with the
AUTO_SECT ION_GROUP group type to be used to automatically index tags in XML
documents.

begin
ctx_ddl.create_section_group(“auto®, "AUTO_SECTION_GROUP");

end;

The following example creates an Oracle XML Search index:

exec CTX_DDL.CREATE_SECTION_GROUP("secgroup”, "PATH_SECTION_GROUP®);
exec CTX_DDL.SET_SEC_GRP_ATTR("secgroup”, "xml_enable®,"t");

CREATE INDEX po_ctx_idx on T(X) indextype is ctxsys.context
parameters ("section group SECGROUP™);

Related Topics

"WITHIN (page 3-56)"

"Section Group Types (page 2-92)"
"ADD_ZONE_SECTION (page 8-28)"
"ADD_FIELD_SECTION (page 8-5)"
"ADD_MDATA_SECTION (page 8-13)"
"ADD_SPECIAL_SECTION (page 8-20)"
"REMOVE_SECTION (page 8-62)"
"DROP_SECTION_GROUP (page 8-43)"

8-38 Oracle Text Reference

CREATE_SHADOW_INDEX

8.24 CREATE_SHADOW_INDEX

Creates index metadata (or policy) for the specified index. If the index is not
partitioned, then it also creates the index tables. This procedure is only supported in
Enterprise Edition of Oracle Database.

The following changes are not supported:

¢ Transition from non-composite domain index to composite, or changing the
composite domain index columns.

® Rebuild indexes that have partitioned index tables, for example, $I, $P, $K.

Note:

For a partitioned index, you must first call this procedure to create the shadow
index metadata. This procedure will not create index tables. It has no effect on
query, DML, sync, or optimize operations.

Syntax
CTX_DDL.CREATE_SHADOW_INDEX(
idx_name IN VARCHARZ2,

parameter_string IN VARCHAR2 DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1

);

idx_name
The name of a valid CONTEXT indextype.

parameter_string

For nonpartitioned index, the same string as in ALTER INDEX. For partitioned index,
the same string as in ALTER INDEX PARAMETER.

parallel_degree
Reserved for future use. Specify the degree of parallelism. Parallel operation is not
currently supported.

Example
Example 8-1 Scheduled Global Index RECREATE (Incremental Rebuild)

In this example, you have the finest control over each stage of
RECREATE_INDEX_ONLINE (page 8-53). Since SYNC_ INDEX can take a time limit,
you can limit SYNC_ INDEX during non-business hours and incrementally recreate the
index.

/* create lexer and original index */

exec ctx_ddl.create_preference("us_lexer"®,"basic_lexer");

create index idx on tbl(text) indextype iIs ctxsys.context
parameters("lexer us_lexer®);

/* create a new lexer */

begin
ctx_ddl.create_preference("e_lexer®,"basic_lexer");
ctx_ddl.set_attribute("e_lexer","base_letter","yes");

CTX_DDL Package 8-39

CREATE_SHADOW_INDEX

ctx_ddl.create_preference("m_lexer®, "multi_lexer");
ctx_ddl.add_sub_lexer("m_lexer","default®, "us_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"e","e_lexer");

end;

/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default “us®);

/* create shadow index */
exec ctx_ddl.create_shadow_index("idx",
"replace lexer m_lexer language column lang NOPOPULATE");

declare
idxid integer;
begin
/* Figure out shadow index name */
select idx_id into idxid from ctx_user_indexes
where idx_name ="I1DX";
/* populate pending */
ctx_ddl.populate_pending("R10$" | Jidxid);
/* time limited sync */
ctx_ddl.sync_index(idx_name =>"R10$"|]idxid,
maxtime =>480);
/* more sync until no pending rows for the shadow index */
end;
/* swap in the shadow index */
exec ctx_ddl.exchange_shadow_index("idx");

Notes

The index name for the shadow index is RIO$index_id. By default it will also
populate index tables for nonpartitioned indexes, unless NOPOPULATE is specified in
CREATE INDEX or in ALTER INDEX. For a local partitioned index, it will only create
index metadata without creating the index tables for each partition. Each index can
have only one shadow index.

When building a nonpartitioned index online, you can first call this procedure to
create index metadata and index tables. If you specify POPULATE, then this procedure
will populate the index, but will not do swapping. You can schedule the swapping at a
later, preferred time.

If you specify NOPOPULATE, it will only create metadata for the index tables, but will
not populate them. You must perform POPULATE_PENDING
(CTX_DDL.POPULATE_PENDING (page 8-52)) to populate the pending queues
after running this procedure, and then sync the indexes. This is referred to as
incremental re-create.

Queries are all processed normally when this procedure is running.

If POPULATE is specified, then DML is blocked for a very short time at the beginning
of populate, after which all further DML is logged into an online pending queue and
processed later.

Sync with CTX_DDL.SYNC_INDEX (page 8-70) runs normally on the index.
OPTIMIZE_INDEX (page 8-46) runs without doing anything, but does not return an
error.

Related Topics
POPULATE | NOPOPULATE in ALTER INDEX (page 1-1)

8-40 Oracle Text Reference

CREATE_STOPLIST

CREATE INDEX (page 1-41) in Oracle Text SQL Statements and Operators (page 1-1)
CTX_DDL.DROP_SHADOW_INDEX (page 8-44)
CTX_DDL.EXCHANGE_SHADOW_INDEX (page 8-45)

CTX_DDL.SYNC_INDEX (page 8-70)

CTX_DDL.POPULATE_PENDING (page 8-52)

8.25 CREATE_STOPLIST

Use this procedure to create a new, empty stoplist. Stoplists can contain words or
themes that are not to be indexed.

You can also create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you index a table that contains documents in
different languages, such as English, German, and Japanese. When you do so, the text
table must contain a language column.

Add either stopwords, stopclasses, or stopthemes to a stoplist using
ADD_STOPWORD (page 8-25), ADD_STOPCLASS (page 8-21), or
ADD_STOPTHEME (page 8-24). Specify a stoplist in the parameter string of CREATE
INDEX (page 1-41) or ALTER INDEX (page 1-1) to override the default stoplist
CTXSYS_DEFAULT_STOPLIST.

Syntax
CTX_DDL.CREATE_STOPLIST(

stoplist_name IN VARCHARZ,
stoplist_type IN VARCHAR2 DEFAULT "BASIC_STOPLIST");

stoplist_name
Specify the name of the stoplist to be created.

stoplist_type
Specify BASIC_STOPLIST to create a stoplist for a single language. This is the
default.

Specify MULT1_STOPLIST to create a stoplist with language-specific stopwords.

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when
using the multi-lexer.

Note:
When indexing a multi-language table with a multi-language stoplist, the
table must have a language column.

Examples
Example 8-2 Single Language Stoplist

The following example creates a stoplist called mystop:

CTX_DDL Package 8-41

DROP_INDEX_SET

begin
ctx_ddl.create_stoplist("mystop®, "BASIC_STOPLIST");
end;

Example 8-3 Multi-Language Stoplist

The following example creates a multi-language stoplist called multistop and then
adds tow language-specific stopwords:

begin

ctx_ddl.create_stoplist("multistop®, "MULTI_STOPLIST");
ctx_ddl.add_stopword("mystop®, "Die","german®);
ctx_ddl.add_stopword("mystop®, "Or","english®);
end;

Related Topics

"ADD_STOPWORD (page 8-25)"
"ADD_STOPCLASS (page 8-21)"
"ADD_STOPTHEME (page 8-24)"
"DROP_STOPLIST (page 8-44)"

"CREATE INDEX (page 1-41)"

"ALTER INDEX (page 1-1)"

Oracle Text Supplied Stoplists (page E-1)

8.26 DROP_INDEX_SET

Drops a CTXCAT index set created with CTX_DDL.CREATE_INDEX_SET (page 8-31).

Syntax

CTX_DDL.DROP_INDEX_SET(
set_name IN VARCHAR2

);

set_name
Specify the name of the index set to drop.

Dropping an index set drops all of the sub-indexes it contains.

8.27 DROP_POLICY

Drops a policy created with CTX_DDL.CREATE_POLICY (page 8-32).

Syntax

CTX_DDL.DROP_POLICY(
policy_name IN VARCHAR2

);

policy_name
Specify the name of the policy to drop.

8-42 Oracle Text Reference

DROP_PREFERENCE

8.28 DROP_PREFERENCE

The DROP_PREFERENCE procedure deletes the specified preference from the Text data
dictionary. Dropping a preference does not affect indexes that have already been
created using that preference.

Syntax

CTX_DDL.DROP_PREFERENCE(
preference_name IN VARCHAR2

);

preference_name
Specify the name of the preference to be dropped.

Example
The following example drops the preference my_lexer.

begin
ctx_ddl.drop_preference("my_lexer");
end;

Related Topics
CTX_DDL.CREATE_PREFERENCE (page 8-33)

8.29 DROP_SECTION_GROUP

The DROP_SECT ION_GROUP procedure deletes the specified section group, as well as
all the sections in the group, from the Text data dictionary.

Syntax

CTX_DDL.DROP_SECTION_GROUP(
group_name IN VARCHAR2
);

group_name
Specify the name of the section group to delete.

Example
The following example drops the section group htmgroup and all its sections:

begin
ctx_ddl.drop_section_group(“htmgroup®);
end;

Related Topics
"CREATE_SECTION_GROUP (page 8-36)"
"PREFERENCE_IMPLICIT_COMMIT (page 8-52)"

CTX_DDL Package 8-43

DROP_SHADOW_INDEX

8.30 DROP_SHADOW_INDEX

Drops a shadow index for the specified index. When you drop a shadow index, if it is
partitioned, then its metadata and the metadata of all this shadow index's partitions
are dropped. This procedure also drops all the shadow index tables and cleans up any
online pending queue.

Syntax

CTX_DDL .DROP_SHADOW_INDEX(
idx_name in VARCHAR2

);

idx_name

The name of a valid CONTEXT indextype.

Example

The following example drops the shadow index myshadowidx:
begin

ctx_ddl .drop_shadow_index("myshadowidx");

end;

Related Topics

CTX_DDL.CREATE_SHADOW_INDEX (page 8-39)

8.31 DROP_STOPLIST

Drops a stoplist from the Text data dictionary. When you drop a stoplist, you must re-
create or rebuild the index for the change to take effect.

Syntax
CTX_DDL.DROP_STOPLIST(stoplist_name in varchar2);

stoplist_name
Specify the name of the stoplist.

Example
The following example drops the stoplist mystop:

begin
ctx_ddl.drop_stoplist("mystop®);
end;

Related Topics
CTX_DDL.CREATE_STOPLIST (page 8-41)

8-44 Oracle Text Reference

EXCHANGE_SHADOW_INDEX

8.32 EXCHANGE_SHADOW_INDEX

This procedure swaps the index (or index partition) metadata and index (or index
partition) data.

For nonpartitioned indexes, this procedure swaps both the metadata and the index
data, and processes the online pending queue.

Syntax
CTX_DDL .EXCHANGE_SHADOW_ INDEX(
idx_name IN VARCHAR2
partition_name IN VARCHAR2 default NULL
);
idx_name

Specify the name of the CONTEXT indextype.

partition_name
Specify the name of the shadow index partition. May also be NULL.

Example
Example 8-4 Global Index RECREATE with Scheduled Swap

This example demonstrates running CTX_DDL . EXCHANGE_SHADOW_ INDEX during
non-business hours when query failures and DML blocking can be tolerated.

/* create lexer and original index */

exec ctx_ddl.create_preference("us_lexer”, "basic_lexer");

create index idx on tbl(text) indextype is ctxsys.context
parameters("lexer us_lexer");

/* create a new lexer */

begin
ctx_ddl.create_preference("e_lexer", "basic_lexer™);
ctx_ddl.set_attribute("e_lexer®,"base_letter”,"yes");
ctx_ddl.create_preference("m_lexer", "multi_lexer™);
ctx_ddl.add_sub_lexer("m_lexer", "default”,"us_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"e","e_lexer");

end;

/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default "us");

/* recreate index online with the new multip-lexer */
exec ctx_ddl.create_shadow_index("idx",

"replace lexer m_lexer language column lang");
exec ctx_ddl.exchange_shadow_index("idx");

Notes
Using EXCHANGE_SHADOW_INDEX with Nonpartitioned Indexes

For nonpartitioned indexes, this procedure will swap both metadata and index data,
and will process the online pending queue.

CTX_DDL Package 8-45

OPTIMIZE_INDEX

Queries will return column not indexed errors when swapping metadata and index data,
but queries are processed normally when processing online pending queue. The
period of errors being raised should be short.

If you specify POPULATE when you create the shadow index, and if many DML
operations have been issued since the creation of the shadow index, then there could
be a large pending queue. However, if you use incremental recreate, that is, specify
NOPOPULATE when you create the shadow index, and you then populate the pending
queue and sync, then the online pending queue is always empty no matter how many
DML operations have occurred since CREATE_SHADOW_ INDEX was issued.

When this procedure is running, DML will first fail with an error about index being in
in-progress status. After that DML could be blocked (hang) if there are rows in online
pending queue that need to be reapplied.

Note:

When this procedure is running, DML statements will fail with an error that
the index is in "in-progress status." If, when this error occurs, there are rows in
the online pending queue that need to be reapplied, then the DML could be
blocked and hang.

Using EXCHANGE_SHADOW_INDEX with Partitioned Indexes

For partitions that are recreated with NOSWAP: when the index is partitioned, and if
partition_name is a valid index partition, then this procedure will swap the index
partition data and the index partition metadata, and will process the online pending
queue for this partition.

This procedure swaps only one partition at a time. When you run this procedure on
partitions that are recreated with NOSWAP:

* Queries that span multiple partitions will not return consistent results across all
partitions.

¢ Queries on the partition that is being swapped will return errors.
* Queries on partitions that are already swapped will be based on the new index.

* Queries on the partitions that haven't been swapped will be based on the old
index.

If the partition_name is NULL, then this procedure will swap the index metadata. Run
this procedure as the last step when recreating a local partitioned index online.

Related Topics
CTX_DDL."RECREATE_INDEX_ONLINE (page 8-53)"
CTX_DDL."CREATE_SHADOW_INDEX (page 8-39)"
CTX_DDL."DROP_SHADOW_INDEX (page 8-44)"

8.33 OPTIMIZE_INDEX

Use this procedure to optimize the index. Optimize your index after you synchronize
it. Optimizing an index removes old data and minimizes index fragmentation, which

8-46 Oracle Text Reference

OPTIMIZE_INDEX

can improve query response time. Querying and DML may proceed while
optimization takes place.

You can optimize in fast, full, rebuild, token, token-type, or merge mode.

Fast mode compacts data but does not remove rows.
Full mode compacts data and removes rows.

Optimize in rebuild mode rebuilds the $1 table (the inverted list table) in its
entirety. Rebuilding an index is often significantly faster than performing a full
optimization, and is more likely to result in smaller indexes, especially if the index
is heavily fragmented.

Rebuild optimization creates a more compact copy of the $1 table, and then
switches the original $1 table and the copy. The rebuild operation will therefore
require enough space to store the copy as well as the original. (If redo logging is
enabled, then additional space is required in the redo log as well.) At the end of
the rebuild operation, the original $1 table is dropped, and the space can be
reused. A temporary "change capture trigger" is used to ensure that updates to the
$1 table during the optimization are not lost. For this reason, the user calling
OPTIMIZE_INDEX in REBUILD mode must have the CREATE TRIGGER privilege.

Optimize in rebuild mode supports partitioning on the $1 table via the
i_table_clause attribute of the basic_storage preference with the
following limitations:

— The i_index_clause must specify using a local btree index if the $1 table is
partitioned.

— Partitioning schemes on the token_first, token_last, or token_count
columns are not allowed.

In token mode, specify a specific token to be optimized (for example, all rows with
documents containing the word elections). Use this mode to optimize index tokens

that are frequently searched, without spending time on optimizing tokens that are

rarely referenced. An optimized token can improve query response time (but only

for queries on that token).

Token-type optimization is similar to token mode, except that the optimization is
performed on field, MDATA, or SDATA sections (for example, sections with an <A>
tag). This is useful in keeping critical field or MDATA sections optimal.

Use the merge mode to optimize the $I table for the CONTEXT indexes that are
frequently used for DML operations. The merge operation removes the old data
(deleted rows) from the $G table, compacts the existing data in the $G table, and
then copies that data to the $I table. Using merge optimization for a particular
token copies only that token from the $G table to the $I table.

A common strategy for optimizing indexes is to perform regular token optimizations
on frequently referenced terms, and to perform rebuild optimizations less frequently.
(Use CTX_REPORT.QUERY_LOG_SUMMARY (page 13-11) to find out which queries
are made most frequently.) You can perform full, fast, or token-type optimizations
instead of token optimizations.

Some users choose to perform frequent time-limited full optimizations along with
occasional rebuild optimizations.

CTX_DDL Package 8-47

OPTIMIZE_INDEX

Note:

Optimizing an index can result in better response time only if you insert,
delete, or update documents in the base table after your initial indexing
operation.

Using this procedure to optimize the index is recommended over using the ALTER
INDEX statement.

Optimization of a large index may take a long time. To monitor the progress of a
lengthy optimization, log the optimization with CTX_OUTPUT.START_LOG
(page 11-9) and check the resultant logfile from time to time.

Note that, unlike serial optimize full, CTX_DDL .OPTIMIZE_INDEX() run with
optlevel of FULL and parallel_degree > 1 is not resumable. That is, it will not
resume from where it left after a time-out or failure.

Note:

There is a very small window of time when a query might fail in
CTX_DDL.OPTIMIZE_INDEX REBUILD mode when the $1 table is being
swapped with the optimized shadow $1 table.

Syntax
CTX_DDL.OPTIMIZE_INDEX(

idx_name IN VARCHARZ2,

optlevel IN VARCHAR2,

maxtime IN NUMBER DEFAULT NULL,
token IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
token_type IN NUMBER DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1

);

idx_name

Specify the name of the index. If you do not specify an index name, then Oracle Text
chooses a single index to optimize.

optlevel

Specify optimization level as a string. You can specify one of the following methods
for optimization:

optlevel value Description

FAST or CTX_DDL.OPTLEVEL_FAST This method compacts fragmented rows. However, old data is
not removed.
FAST optimization is not supported for CTXCAT indexes. FAST
optimization will not optimize $S index table.

8-48 Oracle Text Reference

OPTIMIZE_INDEX

optlevel value

Description

FULL or CTX_DDL.OPTLEVEL_FULL

REBUILD or CTX_DDL.OPTLEVEL_REBUILD

TOKEN or CTX_DDL .OPTLEVEL_TOKEN

TOKEN_TYPE or
CTX_DDL.OPTLEVEL_TOKEN_TYPE

MERGE or CTX_DDL .OPTLEVEL_MERGE

In this mode you can optimize the entire index or a portion of
the index. This method compacts rows and removes old data
(deleted rows). Optimizing in full mode runs even when there
are no deleted rows.

Full optimization is not supported for CTXCAT indexes.

This optlevel rebuilds the $1 table (the inverted list table) to
produce more compact token info rows. Like FULL optimize,
this mode also deletes information pertaining to deleted rows of
the base table.

REBUILD is not supported for CTCAT and CTXRULE indexes.
REBUILD is not supported when the $1 table is partitioned.

This method lets you specify a specific token to be optimized.
Oracle Text does a full optimization on the token you specify
with token. If no token type is provided, 0 (zero) will be used
as the default.

Use this method to optimize those tokens that are searched
frequently.

Token optimization is not supported for CTCAT and CTXRULE
indexes.

This optlevel optimizes on demand all tokens in the index
matching the input token type.

When optlevel is TOKEN_TYPE, token_type must be
provided. TOKEN_TYPE performs FULL optimize on any token
of the input token_type. Like a TOKEN optimize, TOKEN_TYPE
optimize does not change the FULL optimize state, and runs to
completion on each invocation.

Token_type optimization is not supported for CTCAT and
CTXRULE indexes.

This optlevel optimizes the $1 table. It removes the old data
(deletes rows) from the $G table, compacts the existing data in
the $G table, and then copies that optimized data to the $1
table.

When this option is used for a particular token, only that token
gets copied from the $G table to the $I table.

Merge optimization should be used for CONTEXT indexes with
the STAGE_ITAB index option enabled.

The behavior of CTX_DDL.OPTIMIZE_INDEX with respect to the $S index table is as

follows:

optlevel value

Will Optimize Notes
$S Index Table
Yes/No

FAST or CTX_DDL.OPTLEVEL_FAST

No

CTX_DDL Package 8-49

OPTIMIZE_INDEX

optlevel value Will Optimize Notes

$S Index Table
Yes/No

FULL or CTX_DDL.OPTLEVEL_FULL Yes U

REBUILD or Yes .
CTX_DDL.OPTLEVEL_REBUILD

TOKEN or CTX_DDL .OPTLEVEL_TOKEN No

The optimize process will optimize $I table
first. Once $I table optimize is finished,
CTX_DDL .OPTIMIZE_INDEX will continue
on to optimize $S index table.

MAXT IME will also be honored. Once
CTX_DDL.OPTIMIZE_INDEX completes
optimizing $S rows for a given SDATA_ 1D,
it will check MAXT IME and exit if total
elapsed time (including time taken to
optimize $I) exceeds specified MAXT IME.
The next CTX_DDL .OPTIMIZE_INDEX with
optlevel=>"FULL" will pick up where it
left off.

$S table optimize will be done in serial.

$S optimize will start after $I rebuild
finishes.

$S optimize in this case will be processed
the same way as $S optimize in FULL mode.
$S table is optimized in place, not rebuilt.
Note: If for some reason $S optimize exits
abnormally, then it is recommended that
you use optleve I=>TOKEN_TYPE to
optimize $S to avoid rebuilding the $I table
again.

$S table optimize will be done in serial.

TOKEN_TYPE or Yes You can optimize $S rows for a given SDATA_1D
CTX_DDL.OPTLEVEL_TOKEN_TYPE by setting optlevel => TOKEN_TYPE and the
TOKEN_TYPE parameter to the target SDATA_ID.

maxtime

Specify maximum optimization time, in minutes, for FULL optimize.

When you specify the symbol CTX_DDL.MAXTIME_UNLIMITED (or pass in NULL),
the entire index is optimized. This is the default.

token
Specify the token to be optimized.

part_name

If your index is a local index, then you must specify the name of the index partition to

synchronize otherwise an error is returned.

If your index is a global, nonpartitioned index, then specify NULL, which is the

default.

token_type
Specify the token_type to be optimized.

8-50 Oracle Text Reference

OPTIMIZE_INDEX

parallel_degree
Specify the parallel degree as a number for parallel optimization. The actual parallel
degree depends on your resources.

Because the optlevel values are executed serially, this setting throws the error
DRG-10598 for the following values:
e TOKEN or CTX_DDL.OPTLEVEL_TOKEN

e FAST or CTX_DDL.OPTLEVEL_FAST

Examples

The following two examples are equivalent ways of optimizing an index using fast
optimization:

begin
ctx_ddl.optimize_index("myidx","FAST");
end;

begin
ctx_ddl.optimize_index("myidx",CTX_DDL.OPTLEVEL FAST);
end;

The following example optimizes the index token Oracle:

begin
ctx_ddl.optimize_index("myidx","token®, TOKEN=>"Oracle");
end;

To optimize all tokens of field section MYSEC in index MY INDEX:

begin
ctx_ddl.optimize_index("myindex", ctx_ddl.optlevel token_type,
token_type=> ctx_report.token_type("myindex”,"field mysec text"));end;

The following two examples are equivalent ways of optimizing an index using merge
optimization:
begin
ctx_ddl.optimize_index("idx", "MERGE");
end;

begin
ctx_ddl.optimize_index("idx",CTX_DDL.OPTLEVEL_MERGE);
end;

Notes

You can run CTX_DDL . SYNC_INDEX and CTX_DDL .OPTIMIZE_INDEX at the same
time. You can also run CTX_DDL .SYNC_ INDEX and CTX_DDL .OPTIMIZE_ INDEX
with parallelism at the same time. However, you should not:

e Run CTX_DDL.SYNC_INDEX with parallelism at the same time as
CTX_DDL.OPTIMIZE_INDEX

® Run CTX_DDL.SYNC_INDEX with parallelism at the same time as
CTX_DDL.OPTIMIZE_INDEX with parallelism.

If you should run one of these combinations, no error is generated; however, one
operation will wait until the other is done.

CTX_DDL Package 8-51

POPULATE_PENDING

Related Topics
CTX_DDL."SYNC_INDEX (page 8-70)"
"ALTER INDEX (page 1-1)"

8.34 POPULATE_PENDING

This procedure populates the pending queue with every rowid in the base table or
table partition. This procedure is only supported for CONTEXT indexes.

This procedure is valuable for large installations that cannot afford to have the
indexing process run continuously, and, therefore, need finer control over creating text
indexes. The preferred method is to create an empty index, place all the rowids into
the pending queue, and build the index through CTX_DDL.SYNC_INDEX

(page 8-70).

Syntax

ctx_ddl .populate_pending(
idx_name IN VARCHAR2,
part_name IN VARCHAR2 DEFAULT NULL

);

idx_name
Name of the CONTEXT indextype.

part_name

Name of the index partition, if any. Must be provided for local partitioned indexes
and must be NULL for global, nonpartitioned indexes.

Notes

The SYNC_INDEX is blocked for the duration of the processing. The index unit must be
totally empty (1dx_docid_count =0, 1dx_nextid = 1). The rowids of rows waiting
to be indexed are inserted into table ctxsys.dr$pending. You should ensure that
there is sufficient space in this table to hold the rowids of the base table.

Related Topics

"SYNC_INDEX (page 8-70)"
"CREATE_SHADOW_INDEX (page 8-39)"
"DROP_SHADOW_INDEX (page 8-44)"
"EXCHANGE_SHADOW_INDEX (page 8-45)"
"RECREATE_INDEX_ONLINE (page 8-53)"

8.35 PREFERENCE_IMPLICIT_COMMIT

This variable, set at the package level for CTX_DDL, determines whether procedures
related to CTX_DDL preferences issue an implicit commit and is session duration.

You can set the PREFERENCE_IMPLICIT_COMMIT variable for the procedures listed
in the following table.

8-52 Oracle Text Reference

RECREATE_INDEX_ONLINE

Procedure Name

Procedure Name

ADD_ATTR_SECTION (page 8-3)
ADD_FIELD_SECTION (page 8-5)
ADD_INDEX (page 8-8)
ADD_MDATA_COLUMN (page 8-12)
ADD_MDATA_SECTION (page 8-13)
ADD_SDATA_COLUMN (page 8-15)
ADD_SDATA_SECTION (page 8-16)
ADD_SPECIAL_SECTION (page 8-20)
ADD_STOPCLASS (page 8-21)
ADD_STOP_SECTION (page 8-23)
ADD_STOPTHEME (page 8-24)
ADD_STOPWORD (page 8-25)
ADD_SUB_LEXER (page 8-26)

ADD_ZONE_SECTION (page 8-28)

CREATE_INDEX_SET (page 8-31)
CREATE_PREFERENCE (page 8-33)
CREATE_SECTION_GROUP (page 8-36)
CREATE_STOPLIST (page 8-41)
DROP_PREFERENCE (page 8-43)
DROP_SECTION_GROUP (page 8-43)
DROP_STOPLIST (page 8-44)
REMOVE_INDEX (page 8-61)
REMOVE_SECTION (page 8-62)
REMOVE_SUB_LEXER (page 8-65)
SET_ATTRIBUTE (page 8-66)
UNSET_ATTRIBUTE (page 8-73)

UPDATE_SUB_LEXER (page 8-74)

Note:

The REMOVE_STOPCLASS, REMOVE_STOPTHEME, and REMOVE_STOPWORD
procedures do not issue an implicit commit, and, therefore, do not use the
PREFERENCE_IMPLICIT_COMMIT flag.

Syntax

exec CTX_DDL.PREFERENCE_IMPLICIT_COMMIT := TRUE|FALSE ;

The default value of the PREFERENCE_ IMPLICIT_COMMIT variable is TRUE. When
this variable is set to FALSE, procedures related to CTX_DDL preferences will not issue
an implicit commit. This enables you to easily rollback multiple preference changes.

This variable is session duration.

Example

The following example turns off implicit commit.

exec CTX_DDL.PREFERENCE_IMPLICIT_COMMIT : update_sub_lexer = FALSE;

8.36 RECREATE_INDEX_ONLINE

Recreates the specified index, or recreates the passed-in index partition if the index is
local partitioned. For global nonpartitioned indexes, this is a one-step procedure. For
local partitioned indexes, this procedure must be run separately on every partition

CTX_DDL Package 8-53

RECREATE_INDEX_ONLINE

after first using CREATE_SHADOW_INDEX (page 8-39) to create a shadow policy (or
metadata). This procedure is only supported in Enterprise Edition of Oracle Database.

The following changes are not supported:

¢ Transitioning from non-composite domain index to composite, or changing the
composite domain index columns.

* Rebuilding indexes that have partitioned index tables, for example, $1, $P, $K.

Syntax

CTX_DDL.RECREATE_INDEX_ONLINE(
idx_name IN VARCHAR2,
parameter_string IN VARCHAR2 default NULL,
parallel_degree IN NUMBER default 1,
partition_name IN VARCHAR2 default NULL

);

idx_name
The name of a valid CONTEXT indextype.

parameter_string

If the index is a global nonpartitioned index, specify the same index-level parameter
string as in ALTER INDEX. Must start with REPLACE, if it is not NULL. Optionally
specify SWAP or NOSWAP. The default is SWAP.

parallel_degree
Reserved for future use. Specify the degree of parallelism. Parallel operation is not
supported in the current release.

partition_name

Specify the name of a valid index partition for a local partitioned index. Otherwise,
the default is NULL. If the index is partitioned, then first pass a partition name, and
then specify the partition-level parameter string for ALTER INDEX REBUILD
PARTITION.

Examples
Example 8-5 Recreate Simple Global Index

The following example creates an index 1dx with a BASIC_LEXER-based preference
us_lexer. It then recreates the index with a new MULTI_LEXER based preference
m_lexer in one step. You can use this one step approach when you do not mind that
a query might fail for a small window of time at the end of the operation, and DML
might get blocked at the beginning for a short time and again at the end.

/* create lexer and original index */

exec ctx_ddl.create_preference("us_lexer”, "basic_lexer");

create index idx on tbl(text) indextype is ctxsys.context
parameters("lexer us_lexer");

/* create a new lexer */

begin
ctx_ddl.create_preference("e_lexer", "basic_lexer™);
ctx_ddl.set_attribute("e_lexer®,"base_letter”,"yes");
ctx_ddl.create_preference("m_lexer”, "multi_lexer™);
ctx_ddl.add_sub_lexer("m_lexer", "default”,"us_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"e","e_lexer");

8-54 Oracle Text Reference

RECREATE_INDEX_ONLINE

end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default “us®);

/* recreate index online with the new multip-lexer */
exec ctx_ddl.recreate_index_online("idx",
"replace lexer m_lexer language column lang®);

Example 8-6 Local Index Recreate with All-At-Once Swap

The following example creates a local partitioned index ¥dxp with a basic lexer
us_lexer. It has two index partitions 1dx_p1l and idx_p2. It then recreates a local
partitioned index 1dxp online with partition ¥dx_p1, which will have a new storage
preference new_store. The swapping of the partition metadata and index partition
data occur at the end. In this example, queries spanning multiple partitions return
consistent results across partitions when recreate is in process, except at the end when
EXCHANGE_SHADOW_INDEX (page 8-45) is running. The extra space required is
the combined index size of partition 1dx_p1 and idx_p2.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference("us_lexer"®,"basic_lexer");
create index idxp on tblp(text) indextype is ctxsys.context local
(partition idx_p1,
partition idx_p2)
parameters("lexer us_lexer");

/* create new preferences */

begin
ctx_ddl.create_preference("my_store®, "basic_storage®);
ctx_ddl.set_attribute("my_store®,"i_table_clause”, "tablespace ths");

end;

/

begin
ctx_ddl.create_preference("e_lexer®,"basic_lexer");
ctx_ddl.set_attribute("e_lexer","base_letter","yes");
ctx_ddl.create_preference("m_lexer®, "multi_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"default®, "us_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"e","e_lexer");

end;

/

/* add new language column */
alter table tblp add column (lang varchar2(10) default "us®);

/* create a shadow policy with a new lexer */
exec ctx_ddl.create_shadow_index("idxp®, null,
"replace lexer m_lexer language column lang®);

/* recreate every index partition online without swapping */
exec ctx_ddl.recreate_index_online("idxp",
"replace storage my_store NOSWAP®, 1, "idx_pl");
exec ctx_ddl.recreate_index_online("idxp", "replace NOSWAP®,1,"idx_p2");

/* exchange in shadow index partition all at once */
exec ctx_ddl.exchange_shadow_index("idxp",

"idx_pl") /* exchange index partition data*/
exec ctx_ddl.exchange_shadow_index("idxp",

"idx_p2") /* exchange index partition data*/

CTX_DDL Package 8-55

RECREATE_INDEX_ONLINE

/* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index("idxp")

Example 8-7 Local Index Recreate with Per-Partition Swap

This example performs the same tasks as Example 8-6 (page 8-55), except that each
index partition is swapped in as it is completed. Queries across all partitions may
return inconsistent results in this example.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference("us_lexer"®,"basic_lexer");
create index idxp on tblp(text) indextype is ctxsys.context local
(partition idx_p1,
partition idx_p2)
parameters("lexer us_lexer");

/* create new preferences */

begin
ctx_ddl.create_preference("my_store®, "basic_storage®);
ctx_ddl.set_attribute("my_store®,"i_table_clause”, "tablespace ths");

end;

/

begin
ctx_ddl.create_preference("e_lexer®,"basic_lexer");
ctx_ddl.set_attribute("e_lexer","base_letter","yes");
ctx_ddl.create_preference("m_lexer®, "multi_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"default®, "us_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"e","e_lexer");

end;

/

/* add new language column */
alter table tblp add column (lang varchar2(10) default "us®);

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index("idxp®,
"replace lexer m_lexer language column lang®);

/* recreate every index partition online and swap (default) */
exec ctx_ddl.recreate_index_online("idxp",
"replace storage my_store", 1, "idx_pl*);
exec ctx_ddl.recreate_index_online("idxp", "replace SWAP", 1, "idx_p2",

/* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index("idxp")

Example 8-8 Scheduled Local Index Recreate with All-At-Once Swap

This example shows the incremental recreation of a local partitioned index, where
partitions are all swapped at the end.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference("us_lexer"®,"basic_lexer");
create index idxp on tblp(text) indextype is ctxsys.context local
(partition idx_p1,
partition idx_p2)
parameters("lexer us_lexer");

/* create new preferences */

begin
ctx_ddl.create_preference("my_store®, "basic_storage®);
ctx_ddl.set_attribute("my_store®,"i_table_clause”, "tablespace ths");

8-56 Oracle Text Reference

RECREATE_INDEX_ONLINE

end;

/

begin
ctx_ddl.create_preference("e_lexer®,"basic_lexer");
ctx_ddl.set_attribute("e_lexer","base_letter","yes");
ctx_ddl.create_preference("m_lexer®, "multi_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"default®, "us_lexer");
ctx_ddl.add_sub_lexer("m_lexer®,"e","e_lexer");

end;

/

/* add new language column */
alter table tblp add column (lang varchar2(10) default "us®);

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index("idxp*,
"replace lexer m_lexer language column lang®);
/* create shadow partition with new storage preference */
exec ctx_ddl.recreate_index_online("idxp", "replace storage ctxsys.default_storage nopopulate®,
1,%idx_p1%);
exec ctx_ddl.recreate_index_online("idxp", "replace storage ctxsys.default_storage nopopulate®,
1,"idx_p2%);

declare
idxid integer;
ixpid integer;
begin
select idx_id into idxid from ctx_user_indexes
where idx_name = "IDXP";
select ixp_id into ixpid from ctx_user_index_partitions
where ixp_index_name = "IDXP"
and ixp_index_partition_name = "IDX_P1";
/* populate pending */
ctx_ddl.populate_pending("R10$" || idxid, "RIO$"||idxid]||"#"|]|ixpid);
/* incremental sync
ctx_ddl.sync_index("R10$" | Jidxid, null, "RIO$"|]idxid]]"#"|]ixpid,
maxtime=>400);
/* more incremental sync until no more pending rows */

select ixp_id into ixpid from ctx_user_index_partitions
where ixp_index_name = "IDXP"
and ixp_index_partition_name = "IDX_P2";
/* populate pending */
ctx_ddl.populate_pending("R10$" || idxid, "RIO$"||idxid]||"#"|]|ixpid);
/* incremental sync
ctx_ddl.sync_index("R10$" | Jidxid, null, "RIO$"|]idxid]]"#"|]ixpid,
maxtime=>400);
/* more incremental sync until no more pending rows */
end;
/

exec ctx_ddl.exchange_shadow_index("idxp", "idx_pl*);
exec ctx_ddl.exchange_shadow_index("idxp", "idx_p2");
exec ctx_ddl.exchange_shadow_index("idxp");

Example 8-9 Schedule Local Index Recreate with Per-Partition Swap

For incremental recreate where partitions are swapped as they becomes available,
follow the steps in example Example 8-8 (page 8-56), except instead of waiting until all
syncs are finished before starting exchange shadow index,

CTX_DDL Package 8-57

RECREATE_INDEX_ONLINE

EXCHANGE_SHADOW_INDEX (page 8-45) is done for each partition right after sync
is finished.

Notes
Using RECREATE_INDEX_ONLINE with Global Nonpartitioned Indexes

For global indexes, this procedure provides a one-step process to recreate an index
online. It recreates an index, with new preference values, while preserving base table
DML and query capability during the recreate process.

Note:

Because the new index is created alongside the existing index, this operation
requires additional storage roughly equal to the size of the existing index.

DML Behavior

Because this procedure is performed online, DML on the base table are permitted
during this operation, and are processed as normal. All DML statements that occur
during RECREATE_ INDEX_ONLINE are logged into an online pending queue.

Towards the end of the recreate operation, there will be a short duration when DML
will fail with an error being raised stating that the index is in an in-progress status.
DML may hang again during the process, and the duration will depend on how many
DML are logged in the online pending queue since the start of the recreate process.

Note that after the recreate index operation is complete, new information, from all the
DML that becomes pending since RECREATE_ INDEX_ONL INE started, may not be
immediately reflected. As with creating an index with INDEXTYPE 1S
ctxsys.context ONLINE, the index should be synchronized after the recreate index
operation is complete, to bring it fully up-to-date.

See Also:

¢ CTX_DDL.CREATE_SHADOW_INDEX (page 8-39) and
CTX_DDL.EXCHANGE_SHADOW_INDEX (page 8-45) for information
about how to manually go through each stage of recreation, and to
schedule each step to run at a preferred time

® The ONLINE parameter under "Syntax for CONTEXT Index Type
(page 1-42)"

Sync and Optimize Behavior

Syncs issued against the index during the recreate operation are processed against the
old, existing data. Syncs are also blocked during the same window when queries
return errors. Optimize commands issued against the index during the recreate
operation return immediately without error and without processing.

Query Behavior

During the recreate operation, the index can be queried normally most of the time.
Queries return results based on the existing index and policy (or metadata) until after
the final swap.

8-58 Oracle Text Reference

RECREATE_INDEX_ONLINE

There is a short interval towards the end of RECREATE_ INDEX_ONL INE when queries
will return an error indicating that the column is not indexed. This duration should be
short for regular queries. It is mainly the time taken for swapping data segments of
the shadow index tables and the index tables, plus the time to delete all the rows in
the pending queue. This is the same window of time when DML will fail.

During RECREATE_ INDEX_ONL INE, if you issue DML statements and synchronize
them, then you will be able to see the new rows when you query on the existing
index. However, after RECREATE_ INDEX_ONL INE finishes (swapping completes and
query is on the new index) and before sync is performed, it is possible that you will
not be able to query on the new rows, which once could be queried on the old index.

Note:

Transactional queries are not supported.

Using RECREATE_INDEX_ONLINE with Local Partitioned Indexes

If the index is local partitioned, you cannot recreate index in one step. You must first
create a shadow policy, and then run this procedure for every partition. You can
specify SWAP or NOSWAP to indicate whether RECREATE_ INDEX_ONLINE partition
will swap the index partition data and index partition metadata or not. If the partition
was built with NOSWAP, then another call to EXCHANGE_SHADOW__ INDEX must be
invoked later against this partition.

This procedure can also be used to update the metadata (for example, storage
preference) of each partition when you specify NOPOPULATE in the parameter string.
This is useful for incremental building of a shadow index through time-limited sync.

If NOPOPULATE is specified, then NOSWAP is silently enforced.

NOSWAP Behavior

During the recreate of the index partition, since no swapping is performed, queries on
the partition are processed regularly. Until the swapping stage is reached, queries
spanning multiple partitions return consistent results across partitions.

DML and sync are processed normally. Running optimize on partitions that are being
recreated, or that have been built (but not swapped), simply returns without doing
anything. Running optimize on a partition that has not been rebuilt processes
normally.

As with a global index, when all of the partitions use NOSWAP, the additional storage
requirement is roughly equal to the size of the existing index.

SWAP Behavior

Because index partition data and metadata are swapped after index recreate, queries
that span multiple partitions will not return consistent results from partition to
partition, but will always be correct with respect to each index partition. There is also
a short interval towards the end of partition recreate, when the index partition is
swapped, during which a query will return a "column not indexed" error.

When partitions are recreated with SWAP, the additional storage requirement for the
operation is equal to the size of the existing index partition.

DML on the partition is blocked. Sync is also blocked during swapping.

CTX_DDL Package 8-59

REM_SEC_GRP_ATTR_VAL

Related Topics
CREATE_SHADOW_INDEX (page 8-39)
DROP_SHADOW_INDEX (page 8-44)
EXCHANGE_SHADOW_INDEX (page 8-45)
Oracle Text Application Developer’s Guide

8.37 REM_SEC_GRP_ATTR_VAL

Removes a specific section group attribute value from the list of values of an existing
section group attribute.

Syntax

CTX_DDL.REM_SEC_GRP_ATTR_VAL(group_name IN VARCHARZ2,
attribute_name IN VARCHAR2,
attribute_value IN VARCHAR2);

group_name
Specify the section group name.

attribute_name
Specify the name of the section group attribute.

attribute_value
Specify the section group attribute value.

8.38 REMOVE_AUTO_OPTIMIZE

Removes an index or partition from the list of indexes subject to auto optimization. No
new auto optimization calls are made to this index. The removal takes effect
immediately.

If the specified index is not in the existing list of indexes, then an error occurs. For
partitioned indexes, an error occurs when the partition name is not specified.

Syntax
CTX_DDL.REMOVE_AUTO_OPTIMIZE(

idx_name IN VARCHARZ2,

part_name IN VARCHAR2 default NULL
):
idx_name

Specify the name of the index to remove.

part_name
Specify the name of the partition to remove.

Related Topic
"ADD_AUTO_OPTIMIZE (page 8-4)"

8-60 Oracle Text Reference

REMOVE_INDEX

8.39 REMOVE_INDEX

Removes the index with the specified column list from a CTXCAT index set preference.

Note:

This procedure does not remove a CTXCAT sub-index from the existing index.
To do so, you must drop your index and re-index with the modified index set
preference.

Syntax
CTX_DDL . REMOVE_INDEX(

set_name IN VARCHARZ2,

column_list IN VARCHAR2

language IN VARCHAR2 default NULL
):
set_name

Specify the name of the index set.

column_list
Specify the name of the column list to remove.

8.40 REMOVE_MDATA

Use this procedure to remove metadata values, which are associated with an MDATA
section, from a document. Only the owner of the index is allowed to call
ADD_MDATA (page 8-10) and REMOVE_MDATA.

CTX_DDL .REMOVE_MDATA is transactional and takes effect immediately in the calling
session. This procedure can be seen only in the calling session and must be committed
to take permanent effect. You can reverse this procedure with a ROLLBACK command.

Syntax

CTX_DDL .REMOVE_MDATA(
idx_name IN VARCHARZ2,
section_name IN VARCHAR2,
values SYS.ODCIVARCHAR2LIST,
rowids SYS.ODCIRIDLIST,
[part_name] IN VARCHAR2

);

idx_name

Name of the text index that contains the named rowids.

section_name
Name of the MDATA section.

CTX_DDL Package 8-61

REMOVE_SECTION

values

List of metadata values. If a metadata value contains a comma, the comma must be
escaped with a backslash.

rowids
Rowids from which to remove the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes
and must be NULL for global, nonpartitioned indexes.

Example
This example removes the MDATA value blue from the MDATA section BGCOLOR.

ctx_ddl.remove_mdata("idx_docs®, "bgcolor®, “blue®, "rows");

Notes

These updates are updates directly on the index itself, not on the actual contents
stored in the base table. Therefore, they will not survive when the Text index is rebuilt.

Related Topics

"ADD_MDATA (page 8-10)"

"ADD_MDATA_SECTION (page 8-13)"

"MDATA (page 3-29)"

The Section Searching chapter of Oracle Text Application Developer’s Guide

8.41 REMOVE_SECTION

The REMOVE_SECT ION procedure removes the specified section from the specified
section group. You can specify the section by name or ID. View section ID with the
CTX_USER_SECTIONS view.

Syntax 1
Use the following syntax to remove a section by section name:

CTX_DDL.REMOVE_SECTION(
group_name IN VARCHARZ2,
section_name IN VARCHAR2

);

group_name
Specify the name of the section group from which to delete section_name.

section_name
Specify the name of the section to delete from group_name.

Syntax 2
Use the following syntax to remove a section by section ID:

CTX_DDL.REMOVE_SECTION(
group_name IN VARCHARZ2,

8-62 Oracle Text Reference

REMOVE_STOPCLASS

section_id IN NUMBER
);

group_name
Specify the name of the section group from which to delete section_id.

section_id
Specify the section ID of the section to delete from group_name.

Example

The following example drops a section called Title from the htmgroup:
begin

ctx_ddl.remove_section(“htmgroup®, "Title");

end;

Related Topics

"ADD_FIELD_SECTION (page 8-5)"

"ADD_SPECIAL_SECTION (page 8-20)"

"ADD_ZONE_SECTION (page 8-28)"

8.42 REMOVE_STOPCLASS

Removes a stopclass from a stoplist.

Syntax

CTX_DDL .REMOVE_STOPCLASS(
stoplist_name IN VARCHAR2,
stopclass IN VARCHAR2

)i

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the name of the stopclass to be removed.

Example

The following example removes the stopclass NUMBERS from the stoplist mystop.
begin

ctx_ddl.remove_stopclass("mystop”, "NUMBERS");

end;

Related Topic

"ADD_STOPCLASS (page 8-21)"

8.43 REMOVE_STOPTHEME

Removes a stoptheme from a stoplist.

CTX_DDL Package 8-63

REMOVE_STOPWORD

Syntax

CTX_DDL . REMOVE_STOPTHEME(
stoplist_name IN VARCHARZ2,
stoptheme IN VARCHAR2

);

stoplist_name
Specify the name of the stoplist.

stoptheme
Specify the stoptheme to be removed from stoplist_name.

Example
The following example removes the stoptheme banking from the stoplist mystop:

begin
ctx_ddl.remove_stoptheme("mystop®, "banking®);
end;

Related Topic
"ADD_STOPTHEME (page 8-24)"

8.44 REMOVE_STOPWORD

Removes a stopword from a stoplist. To have the removal of a stopword be reflected
in the index, you must rebuild your index. You can also remove a language-
independent stopword.

Syntax
CTX_DDL.REMOVE_STOPWORD(

stoplist_name IN VARCHAR2,
stopword IN VARCHARZ2,
language IN VARCHAR2 default NULL

);

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be removed from stoplist_name.

language

Specify the language of stopword to remove when the stoplist you specify with
stoplist_name is of type MULTI_STOPLIST. You must specify the globalization
support name or abbreviation of an Oracle Text-supported language. You can also
remove ALL stopwords.

Example

The following example removes a stopword because from the stoplist mystop:

8-64 Oracle Text Reference

REMOVE_SUB_LEXER

begin
ctx_ddl.remove_stopword("mystop®, "because”);
end;

Related Topic
"ADD_STOPWORD (page 8-25)"

8.45 REMOVE_SUB_LEXER

Removes a sub-lexer from a multi-lexer preference. You cannot remove the lexer for
DEFAULT. You can also remove a language-independent sub-lexer.

Syntax
CTX_DDL .REMOVE_SUB_LEXER(

lexer_name IN VARCHAR2,
language IN VARCHAR2 default NULL

);

lexer_name

Specify the name of the multi-lexer preference or language-independent sub-lexer.
language

Specify the language of the sub-lexer to remove. You must specify the globalization
support name or abbreviation of an Oracle Text-supported language.

Example
The following example removes a sub-lexer german_lexer of language german:

begin
ctx_ddl.remove_sub_lexer("german_lexer®,"german®);

end;

Related Topic
"ADD_SUB_LEXER (page 8-26)"

8.46 REPLACE_INDEX_METADATA

Use this procedure to replace metadata in local domain indexes at the global (index)
level.

CTX_DDL Package 8-65

SET_ATTRIBUTE

Note:

The ALTER INDEX PARAMETERS command performs the same function as
this procedure and can replace more than just metadata. For that reason, using
ALTER INDEX PARAMETERS is the preferred method of replacing metadata
at the global (index) level and should be used in place of this procedure when
possible. For more information, see "ALTER INDEX PARAMETERS Syntax
(page 1-3)".

CTX_REPLACE_ INDEX_METADATA may be deprecated in a future release of
Oracle Text.

Syntax

CTX_DDL.REPLACE_INDEX_METADATA(
idx_name IN VARCHAR2,
parameter_string IN VARCHAR2

):

idx_name
Specify the name of the index whose metadata you want to replace.

parameter_string

Specify the parameter string to be passed to ALTER INDEX. This must begin with
'REPLACE METADATA'"

Notes

ALTER INDEX REBUILD PARAMETERS ("REPLACE METADATA"™) does not work
for a local partitioned index at the index (global) level. You cannot, for example, use
that ALTER INDEX syntax to change a global preference, such as filter or lexer type,
without rebuilding the index. Therefore, CTX_DDL .REPLACE_INDEX_METADATA is
provided as a method of overcoming this limitation of ALTER INDEX. Also, ALTER
INDEX REBUILD PARAMETERS ("REPLACE METADATA™) does not work with
forward_index; instead use "REPLACE STORAGE".

Though it is meant as a way to replace metadata for a local partitioned index,
CTX_DDL.REPLACE_INDEX_METADATA can be used on a global, nonpartitioned
index, as well.

REPLACE_ INDEX_METADATA cannot be used to change the sync type at the partition
level; that is, parameter_string cannot be "REPLACE METADATA SYNC®. For that
purpose, use ALTER INDEX REBUILD PARTITION to change the sync type at the
partition level.

Related Topics
"ALTER INDEX PARAMETERS Syntax (page 1-3)"
"ALTER INDEX REBUILD Syntax (page 1-5)"

8.47 SET_ATTRIBUTE

Sets a preference attribute. Use this procedure after you have created a preference with
CTX_DDL.CREATE_PREFERENCE (page 8-33).

8-66 Oracle Text Reference

SET_ATTRIBUTE

Syntax

CTX_DDL.SET_ATTRIBUTE(
preference_name IN VARCHARZ2,
attribute_name IN VARCHAR2,
attribute_value IN VARCHAR2

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

attribute_value
Specify the attribute value. Specify boolean values as TRUE or FALSE, T or F, YES or
NO, Y or N, ON or OFF, or 1 or O.

Examples
Example 8-10 Specifying File Data Storage

The following example creates a data storage preference called i lepref that tells
the system that the files to be indexed are stored in the operating system. The example
then uses CTX_DDL.SET_ATTRIBUTE (page 8-66) to set the PATH attribute to the
directory /docs.

begin

ctx_ddl.create_preference("filepref®, "FILE_DATASTORE");
ctx_ddl.set_attribute("filepref®, "PATH", "/docs");

end;

See Also:
For more information about data storage, see "Datastore Types (page 2-2)"

For more examples of using SET_ATTRIBUTE, see "CREATE_PREFERENCE
(page 8-33)"

Example 8-11 Storing Text Index Tables in the In-Memory Column Store

This example creates a storage preference called mysto of type BASIC_STORAGE that
specifies that the $1 index table must be stored in the In-Memory Column Store (IM
column store).

exec ctx_ddl.create_preference("mysto”, "basic_storage");
exec ctx_ddl.set_attribute("mysto®, "I1_TABLE CLAUSE", "inmemory”);

See Also:

For more information about the storage attributes that support IM column
store, see BASIC_STORAGE (page 2-83)

CTX_DDL Package 8-67

SET_SEC_GRP_ATTR

8.48 SET_SEC_GRP_ATTR

Adds a section group-specific attribute to a section group identified by name.

Also used to set xml_enable to support XML awareness.

Syntax

CTX_DDL.SET_SEC_GRP_ATTR(
group_name IN VARCHAR2,
attribute_name IN VARCHAR2,
attribute_value IN VARCHAR2
);

group_name
Specify the name of the section group.

attribute_name
Specify the name of the section group attribute.

attribute_value

Specify the section group attribute value. The following are the attributes with their
supported values:

e xml_enable: Specify boolean values as TRUE or FALSE, T or F, YES or NO, Y or
N, ON or OFF, or 1 or O.

Related Topics
"CREATE_SECTION_GROUP (page 8-36)"

8.49 SET_SECTION_ATTRIBUTE

Use SET_SECTION_ATTRIBUTE to specify attributes or properties for a given section.

The attribute names listed under "Syntax (page 8-68)" are supported. Note that some
attributes only apply to sections that are tokenized. The following section types are
tokenized:

e Field sections
e Zone sections

e SDATA sections

Syntax

CTX_DDL.SET_SECTION_ATTRIBUTE(
group_name IN VARCHAR2,
section_name IN VARCHAR2,
attribute IN VARCHARZ2,
value IN VARCHAR2

8-68 Oracle Text Reference

SET_SECTION_ATTRIBUTE

group_name
Specify the name of the section group.

section_name
Specify the name of the section.

attribute
Specify this attribute for SDATA sections:

Visible section attribute
This attribute works with FIELD sections only. For FIELD sections:

Specify TRUE to make the text visible within the rest of the document. By default,
the visible flag is FALSE. This means that Oracle Text indexes the text within
field sections as a sub-document separate from the rest of the document.
However, you can set the visible flag to TRUE if you want text within the field
section to be indexed as part of the enclosing document.

For field sections, attribute will override the value specified in
CTX_DDL.ADD_FIELD_SECTION (page 8-5).

An error is thrown if you try to set the visible attribute for a zone section.

An error is thrown if the visible attribute is set on a non-tokenized section.

save_copy. Set to True or False. The save_copy option is valid for all types of
sections, but only SDATA attributes are fetched from $D table. The rest of the
sections are stored for display purposes only (depending on value of
save_copy). SDATA sections are never stored for display purposes, but are
stored independently (in a separate column of $D table) for efficient fetching
(depending on value of save_copy). For all sections (except for SDATA
sections): A section is either displayed or discarded during document service
procedures (snippet, markup, highlight) depending on the value of save_copy.

optimized_for section attribute

This attribute makes an SDATA section optimal for search, optimal for sort, or
optimal for both search and sort. These are achieved by setting the attribute value
to search, sort, or sort_and_search.

— search provides efficient searching on SDATA sections. The default value
of this attribute is FALSE.

— sort provides efficient sorting on SDATA sections. The default value of this
attribute is TRUE.

- sort_and_search provides efficient searching and sorting on SDATA
sections. The default value of this attribute is FALSE.

value

Specify the attribute value. Specify boolean values as TRUE or FALSE, T or F, YES or
NO, Y or N, ON or OFF, or 1 or O.

Example

The following example creates a basic section group called sg, adds a SDATA section
to it and marks that SDATA section to be searchable by using the
ctx _ddl.set_section_attribute:

CTX_DDL Package 8-69

SYNC_INDEX

begin

exec ctx_ddl.create_section_group("sg", "basic_section_group");

exec ctx_ddl.add_sdata_section("sg", "secl®, "secl®, "varchar2");

exec ctx_ddl.set_section_attribute("sg®, "secl”, "optimized_for", "search");
end;

Notes
Like CTX_DDL.SET_ATTRIBUTE (page 8-66), this procedure issues a commit.

Related Topic

See also the "Searching Document Sections in Oracle Text" chapter of Oracle Text
Application Developer's Guide.

8.50 SYNC_INDEX

Synchronizes the index to process inserts, updates, and deletes to the base table.

Note:

Because CTX_DDL . SYNC_INDEX issues implicit commits, calling
CTX_DDL.SYNC_INDEX in a trigger is strongly discouraged. Doing so can
result in errors being raised, as both SYNC_INDEX and post-commit $R LOB
maintenance try to update the same $R LOB.

Syntax
CTX_DDL.SYNC_INDEX(

idx_name IN VARCHAR2 DEFAULT NULL
memory IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1
maxtime IN NUMBER DEFAULT NULL,
locking IN NUMBER DEFAULT LOCK_WAIT
):

idx_name

Specify the name of the index to synchronize.

Note:

When idx_name is null, all CONTEXT and CTXRULE indexes that have
pending changes are synchronized. You must be connected as Ctxsys to
perform this operation. Each index or index partition is synchronized in
sequence, one after the other. Because of this, the individual syncs are
performed with locking set to NOWAIT and maxtime set to 0. Any values that
you specify for locking or maxtime on the SYNC_ INDEX call are ignored.
However, the nemory and parallel_degree parameters are passed on to
the individual synchronizations.

8-70 Oracle Text Reference

SYNC_INDEX

memory

Specify the runtime memory to use for synchronization. This value overrides the
DEFAULT_INDEX_MEMORY system parameter.

The memory parameter specifies the amount of memory Oracle Text uses for the
synchronization operation before flushing the index to disk. Specifying a large
amount of memory:

* Improves indexing performance because there is less I/O
¢ Improves query performance and maintenance because there is less fragmentation

* The indexing memory size specified in the second argument applies to each
parallel slave. For example, if the memory argument is set to 500M and
parallel_degree is set to 2, then ensure that there is at least 1GB of memory
available on the system used for the parallel SYNC_ INDEX.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when runtime memory is scarce.

part_name
If your index is a local index, then you must specify the name of the index partition to
synchronize otherwise an error is returned.

If your index is a global, nonpartitioned index, then specify NULL, which is the
default.

parallel_degree

Specify the degree to run parallel synchronize. A number greater than 1 turns on
parallel synchronize. The actual degree of parallelism might be smaller depending on
your resources.

maxtime

Indicate a suggested time limit on the operation, in minutes. SYNC_ INDEX will
process as many documents in the queue as possible within the time limit. The
maxtime value of NULL is equivalent to CTX_DDL . MAXT IME_UNL IMITED. This
parameter is ignored when SYNC_ INDEX is invoked without an index name, in which
case maxtime value of 0 is used instead. The locking parameter is ignored for
automatic syncs (that is, SYNC ON COMMIT or SYNC EVERY).

The time limit specified is treated as approximate. The actual time taken may be
somewhat less than or greater than what you specify. The "time clock" for maxtime
does not start until the SYNC lock is acquired.

locking

Configure how SYNC_INDEX deals with the situation where another sync is already
running on the same index or index partition. When locking is ignored because
SYNC_INDEX is invoked without an index name, then locking value of LOCK_NOWAIT
is used instead. The locking parameter is ignored for automatic syncs (that is, SYNC
ON COMMIT or SYNC EVERY).

The options for locking are:

CTX_DDL Package 8-71

SYNC_INDEX

Locking Parameter Description

CTX_DDL.LOCK_WAIT If another sync is running, wait until the running
sync is complete, then begin sync. (In the event of not
being able to get a lock, it will wait forever and
ignore the maxtime setting.)

CTX_DDL .LOCK_NOWAIT If another sync is running, immediately returns
without error.

CTX_DDL .LOCK_NOWAIT_ERROR If another sync is running, error "DRG-51313:
timeout while waiting for DML or optimize lock" is
raised.

Example

The following example synchronizes the index myindex with 2 megabytes of
memory:

begin
ctx_ddl.sync_index("myindex®, "2M%);
end;

The following example synchronizes the partl index partition with 2 megabytes of
memory:

begin
ctx_ddl.sync_index("myindex®, "2M*, "partl®);

end;

Notes

You can run CTX_DDL.SYNC_INDEX and CTX_DDL .OPTIMIZE_INDEX at the same
time. You can also run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX
with parallelism at the same time. However, you should not run
CTX_DDL.SYNC_INDEX with parallelism at the same time as
CTX_DDL.OPTIMIZE_INDEX, nor CTX_DDL .SYNC_ INDEX with parallelism at the
same time as CTX_DDL .OPTIMIZE_INDEX with parallelism. If you should run one of
these combinations, no error is generated; however, one operation will wait until the
other is done.

If the stage_ itab option is in use for the index and stage_itab_max_rows is
greater than 0, SYNC_ INDEX automatically merges data back from the stage_itab
($6) to $1 when stage_itab_max_rows reaches a value of 1 million and degree of
parallelism value of 4. Therefore, it is not necessary to run the optimize job in merge
mode explicitly, or to setup an auto optimize background job.

If you want to schedule an auto optimize background job, then you must explicitly set
the stage_itab_max_rows to a value of 0. This turns off the automatic merge
operation that occurs during SYNC_ INDEX. The rows are instead merged periodically
through the scheduled background process.

8-72 Oracle Text Reference

UNSET_ATTRIBUTE

When stage_itab_max_rows is set to a value greater than 0, it is possible that some
SYNC operations take an unexpectedly long time to compete due to the merging of
rows from $G to $1.

Related Topics
"ALTER INDEX (page 1-1)"

8.51 UNSET_ATTRIBUTE

Removes a set attribute from a preference.

Syntax

CTX_DDL.UNSET_ATTRIBUTE(preference_name varchar2,
attribute_name varchar2);

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

Example
Enabling/Disabling Alternate Spelling

The following example shows how you can enable alternate spelling for German and
disable alternate spelling with CTX_DDL .UNSET_ATTRIBUTE:

begin

ctx_ddl.create_preference("GERMAN_LEX", "BASIC_LEXER");
ctx_ddl.set_attribute("GERMAN_LEX", "ALTERNATE_SPELLING", "GERMAN");
end;

To disable alternate spelling, use the CTX_DDL .UNSET_ATTRIBUTE procedure as
follows:

begin

ctx_ddl.unset_attribute("GERMAN_LEX", "ALTERNATE_SPELLING");
end;

Related Topics
"SET_ATTRIBUTE (page 8-66)"

8.52 UNSET_SEC_GRP_ATTR

Removes a section group-specific attribute.
Syntax

CTX_DDL.UNSET_SEC_GRP_ATTR(group_name varchar2,
attribute_name varchar2);

group_name
Specify the name of the section group.

CTX_DDL Package 8-73

UPDATE_SUB_LEXER

attribute_name
Specify the name of the attribute.

Related Topics
"UNSET_ATTRIBUTE (page 8-73)"

8.53 UPDATE_SUB_LEXER

Updates a sub-lexer and modifies its multi-lexer preference, language, or sub-lexer.
You can also update default sub-lexers using this procedure. This procedure can be
used in conjunction with the CTX_DDL . PREFERENCE_IMPLICIT_COMMIT
(page 8-52) variable.

See Also:

"PREFERENCE_IMPLICIT_COMMIT (page 8-52)" for information about
setting this variable

Syntax

UPDATE_SUB_LEXER (
lexer_name IN VARCHARZ2,
language IN VARCHARZ2,
sub_lexer IN VARCHAR2

);

lexer_name
Specify the name of the multi-lexer preference that needs to be updated.

language
Specify the language name of the sub-lexer. Use DEFAULT for the default sub-lexers.

See "language (page 8-27)" for information on how to specify the globalization
support language name or abbreviation of the sub-lexer.

sub_lexer
Specify the name of the sub-lexer to use for this language.

Related Topics
"ADD_SUB_LEXER (page 8-26)"
"REMOVE_SUB_LEXER (page 8-65)"

8.54 UPDATE_POLICY

Updates a policy created with CREATE_POLICY. Replaces the preferences of the
policy. Null arguments are not replaced.

Syntax
CTX_DDL.UPDATE_POLICY(
policy_name IN VARCHAR2,
filter IN VARCHAR2 DEFAULT NULL,

section_group IN VARCHAR2 DEFAULT NULL,

8-74 Oracle Text Reference

UPDATE_SDATA

lexer IN VARCHAR2 DEFAULT NULL,
stoplist IN VARCHAR2 DEFAULT NULL,
wordlist IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the name of the policy to update.

filter
Specify the filter preference to use.

section_group
Specify the section group to use.

lexer
Specify the lexer preference to use.

stoplist
Specify the stoplist to use.

wordlist
Specify the wordlist to use.

8.55 UPDATE_SDATA

UPDATE_SDATA is an index API that modifies the specified SDATA values in the index.
It does not store or modify column values in a base table, where the base table column
may have been used as an SDATA section.

Export/import operations rebuild the index from the base table using the specified
preferences. Since modifications made using the UPDATE_SDATA API are not present
in the base table, the export/import operation does not preserve these changes.

UPDATE_SDATA modifies temporary metadata it adds in the index table, not the base
table. It cannot be used to directly add metadata. For export/import of metadata that
is persistent, create a base table column that contains the metadata values. You can
then update the metadata through the column in the base table.

UPDATE_SDATA truncates data which is larger than 249 bytes.

Syntax

CTX_DDL.UPDATE_SDATA(
idx_name IN VARCHAR2 DEFAULT NULL,
section_name IN VARCHAR2 DEFAULT NULL,
sdata_value IN sys.anydata,
sdata_rowid IN rowid,
part_name IN VARCHAR2 DEFAULT NULL);

idx_name
Specify the name of the index.

section_name
Specify the name of the SDATA section.

sdata_value
Specify the new SDATA value.

CTX_DDL Package 8-75

UPDATE_SDATA

sdata_rowid
Specify the rowid for which the SDATA value needs to be updated.

part_name
Specify the name of the locally partitioned index, if applicable. Specify NULL for the
global index.

Related Topics

"SDATA (page 3-44)"
"ADD_SDATA_COLUMN (page 8-15)"
"ADD_SDATA_SECTION (page 8-16)"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer’s Guide

8-76 Oracle Text Reference

9

CTX _DOC Package

The CTX_DOC PL/SQL package provides procedures and functions for requesting
document services, such as highlighting extracted text or generating a list of themes

for a document.

* About CTX_DOC Package Procedures (page 9-2)

The CTX_DOC package includes the following procedures and functions:

Name

Description

FILTER (page 9-3)
GIST (page 9-5)

HIGHLIGHT (page 9-9)

IFILTER (page 9-13)

MARKUP (page 9-14)

PKENCODE (page 9-20)

POLICY_FILTER (page 9-20)

POLICY_GIST (page 9-21)

POLICY_HIGHLIGHT

(page 9-23)

POLICY_LANGUAGES
(page 9-25)

POLICY_MARKUP (page 9-26)

POLICY_NOUN_PHRASES
(page 9-29)

POLICY_PART_OF_SPEECH
(page 9-32)

Generates a plain text or HTML version of a document.
Generates a Gist or theme summaries for a document.

Generates plain text or HTML highlighting offset
information for a document.

Generates a plain text version of binary data. Can be
called from a USER_DATASTORE procedure.

Generates a plain text or HTML version of a document
with query terms highlighted.

Encodes a composite textkey string (value) for use in
other CTX_DOC procedures.

Generates a plain text or HTML version of a document,
without requiring an index.

Generates a Gist or theme summaries for a document,
without requiring an index.

Generates plain text or HTML highlighting offset
information for a document, without requiring an index.

Provides the ability to fetch the language for a section of
text.

Generates a plain text or HTML version of a document
with query terms highlighted, without requiring an

index.

Extracts noun phrases for a document.

Extracts the part of speech for each word in a document.

CTX_DOC Package 9-1

About CTX_DOC Package Procedures

Name

Description

POLICY_SNIPPET (page 9-34)

POLICY_STEMS (page 9-36)

POLICY_THEMES (page 9-37)

POLICY_TOKENS (page 9-39)

SENTIMENT (page 9-41)

SENTIMENT_AGGREGATE
(page 9-42)

SET_KEY_TYPE (page 9-43)

SNIPPET (page 9-44)

THEMES (page 9-47)

TOKENS (page 9-50)

Generates a concordance for a document, based on
query terms, without requiring an index.

Extracts stems for each word in a body of text.

Generates a list of themes for a document, without
requiring an index.

Generates all index tokens for a document, without
requiring an index.

Performs sentiment analysis for a single document and
provides a separate sentiment score for each segment
within the document.

Performs sentiment analysis for a single document and
provides an aggregate sentiment score for the entire

document.

Sets CTX_DOC procedures to accept rowid or primary
key document identifiers.

Generates a concordance for a document, based on
query terms.

Generates a list of themes for a document.

Generates all index tokens for a document.

The performance of the procedures SNIPPET (page 9-44), HIGHLIGHT (page 9-9),
and MARKUP (page 9-14) can be improved by using the forward index feature, and
the performance of the procedures FILTER (page 9-3), GIST (page 9-5), THEMES
(page 9-47). TOKENS (page 9-50) can be improved by using the save copy feature of

Oracle Text.

See Also:

Oracle Text Application Developer’s Guide for more information about forward

index and save copy features

9.1 About CTX_DOC Package Procedures

Many of the CTX_DOC PL/SQL package procedures exist in two versions: those that
make use of indexes, and those that do not. Those that do not make use of indexes are
called "policy-based" procedures. They are offered because there are times when you
may want to use document services on a single document without creating a
CONTEXT index in advance. Policy-based procedures enable you to do this.

The policy_* procedures mirror the conventional in-memory document services and
are used with policy_name replacing index_ name, and document of type
VARCHAR2, CLOB, BLOB, or BFILE replacing textkey. Thus, you need not create an
index to obtain document services output with these procedures.

For the procedures that generate character offsets and lengths, such as HIGHLIGHT
and TOKENS, Oracle Text follows USC-2 codepoint semantics.

9-2 Oracle Text Reference

FILTER

9.2 FILTER

Note:

The APIs in the CTX_DOC package do not support identifiers that are prefixed
with the schema or the owner name.

Use the CTX_DOC.FILTER procedure to generate either a plain text or HTML version
of a document. You can store the rendered document in either a result table or in
memory. This procedure is generally called after a query, from which you identify the
document to be filtered.

Note:

The resultant HTML document does not include graphics.

Syntax 1: In-memory Result Storage

exec CTX_DOC.FILTER(
index_name IN VARCHARZ2,
textkey IN VARCHAR2,
restab IN OUT NOCOPY CLOB,
plaintext IN BOOLEAN DEFAULT FALSE,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
index_name IN VARCHARZ2,
textkey IN VARCHARZ2,
text_query IN CLOB,
restab IN OUT NOCOPY HIGHLIGHT_TAB,
plaintext IN BOOLEAN DEFAULT FALSE,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

exec CTX_DOC.FILTER(
index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT O,
plaintext IN BOOLEAN DEFAULT FALSE,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
index_name IN VARCHARZ2,
textkey IN VARCHAR2,
text_query IN CLOB,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT O,
plaintext IN BOOLEAN DEFAULT FALSE,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

CTX_DOC Package 9-3

FILTER

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:
* asingle column primary key value

* encoded specification for a composite (multiple column) primary key. Use
CTX_DOC.PKENCODE (page 9-20)

e the rowid of the row containing the document

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE (page 9-43).

restab

You can specify that this procedure store the marked-up text to either a table or to an
in-memory CLOB.

To store results to a table, specify the name of the table. The table to which you want
to store results must exist before you make this call.

See Also:

"Filter Table (page A-7)" in Oracle Text Result Tables (page A-1) for more
information about the structure of the filter result table

To store results in memory, specify the name of the CLOB locator. If restab is NULL,
then a temporary CLOB is allocated and returned. You must de-allocate the locator
after using it with DBMS_LOB.FREETEMPORARY ().

If restab is not NULL, then the CLOB is truncated before the operation.

query_id
Specify an identifier to use to identify the row inserted into restab.

When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext

Specify TRUE to generate a plaintext version of the document. Specify FALSE to
generate an HTML version of the document if you are using the AUTO_FILTER filter
or indexing HTML documents.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.

You can specify one of the following values for the use_saved_copy parameter:
e CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D

table. If the copy of the document is not present in the $D table, then fetch the
document from the data store.

e CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then show an error

9-4 Oracle Text Reference

GIST

9.3 GIST

message. Specify this value when you want to implement a specific fallback logic

when the copy of the document is not available in the $D table.

e CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC . SAVE_COPY_FALLBACK.

Example
In-Memory Filter
The following code shows how to filter a document to HTML in memory.

declare

mklob clob;

amt number := 40;
line varchar2(80);

begin

ctx_doc.filter("myindex”,"1", mklob, FALSE);

-- mklob is NULL when passed-in, so ctx-doc.filter will allocate a temporary
-- CLOB for us and place the results there.

dbms_lob.read(mklob, amt, 1, line);

dbms_output.put_line("FIRST 40 CHARS ARE:"||line);

-- have to de-allocate the temp lob

dbms_lob.freetemporary(mklob);

end;

Create the filter result table to store the filtered document as follows:

create table filtertab (query_id number,
document clob);
To obtain a plaintext version of document with textkey 20, enter the following

statement:

begin
ctx_doc.filter("newsindex", "20", "filtertab®, "0", TRUE);
end;

Use the CTX_DOC.GIST procedure to generate gist and theme summaries for a
document. You can generate paragraph-level or sentence-level gists or theme
summaries.

Syntax 1: In-Memory Storage
CTX_DOC.GIST(

index_name IN VARCHAR2,

textkey IN VARCHAR2,

restab IN OUT CLOB,

glevel IN VARCHAR2 DEFAULT "P*",

pov IN VARCHAR2 DEFAULT "GENERIC",

numParagraphs IN NUMBER DEFAULT 16,
maxPercent IN NUMBER DEFAULT 10,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

CTX_DOC Package 9-5

GIST

Syntax 2: Result Table Storage
CTX_DOC.GIST(

index_name IN VARCHAR2,

textkey IN VARCHAR2,

restab IN VARCHAR2,

query_id IN NUMBER DEFAULT 0,
glevel IN VARCHAR2 DEFAULT "P*,
pov IN VARCHAR2 DEFAULT NULL,

numParagraphs IN NUMBER DEFAULT 16,
maxPercent IN NUMBER DEFAULT 10,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:
* asingle column primary key value

¢ anencoded specification for a composite (multiple column) primary key. To
encode a composite textkey, use the CTX_DOC.PKENCODE procedure

e the rowid of the row containing the document

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE.

restab

Specify that this procedure store the gist and theme summaries to either a table or to
an in-memory CLOB.

To store results to a table specify the name of an existing table.

See Also:
"Gist Table (page A-7)" in Oracle Text Result Tables (page A-1)

To store results in memory, specify the name of the CLOB locator. If restab is NULL,
then a temporary CLOB is allocated and returned. You must de-allocate the locator
after using it.

If restab is not NULL, then the CLOB is truncated before the operation.
query_id
Specify an identifier to use to identify the row(s) inserted into restab.

glevel
Specify the type of gist or theme summary to produce. The possible values are:

e P for paragraph

9-6 Oracle Text Reference

GIST

e S for sentence

The default is P.

pov
Specify whether a gist or a single theme summary is generated. The type of gist or
theme summary generated (sentence-level or paragraph-level) depends on the value
specified for glevel.

To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To
generate a theme summary for a single theme in a document, specify the theme as the
value for pov.

When using result table storage, if you do not specify a value for pov, then this
procedure returns the generic gist plus up to 50 theme summaries for the document.

When using in-memory result storage to a CLOB, you must specify a pov. However, if
you do not specify a pov, then this procedure generates only a generic gist for the
document.

Note:

The pov parameter is case sensitive. To return a gist for a document, specify
'GENERIC' in all uppercase. To return a theme summary, specify the theme
exactly as it is generated for the document.

Only the themes generated by THEMES (page 9-47) for a document can be
used as input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries. The default is 16.

Note:

The numParagraphs parameter is used only when this parameter yields a
smaller gist or theme summary size than the gist or theme summary size
yielded by the maxPercent parameter.

This means that the system always returns the smallest size gist or theme
summary.

maxPercent

Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries as a percentage of the total paragraphs (or
sentences) in the document. The default is 10.

Note:

The maxPercent parameter is used only when this parameter yields a
smaller gist or theme summary size than the gist or theme summary size
yielded by the numParagraphs parameter.

This means that the system always returns the smallest size gist or theme
summary.

CTX_DOC Package 9-7

GIST

num_themes

Specify the number of theme summaries to produce when you do not specify a value
for pov. For example, if you specify 10, this procedure returns the top 10 theme
summaries. The default is 50.

If you specify 0 or NULL, then this procedure returns all themes in a document. If the
document contains more than 50 themes, only the top 50 themes show conceptual
hierarchy.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.

You can specify one of the following values for the use_saved_copy parameter:

e CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D
table. If the copy of the document is not present in the $D table, then fetch the
document from the data store.

e CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

e CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.
The default value is CTX_DOC . SAVE_COPY_FALLBACK.

Examples
In-Memory Gist

The following example generates a non-default size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then de-
allocates the returned CLOB locator after using it.

set serveroutput on;
declare
gklob clob;
amt number := 40;
line varchar2(80);

begin

ctx_doc.gist("newsindex","34",gklob, pov => "GENERIC",numParagraphs => 10);
-- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
-- CLOB for us and place the results there.

dbms_lob.read(gklob, amt, 1, line);
dbms_output.put_line("FIRST 40 CHARS ARE:"||line);
-- have to de-allocate the temp lob

dbms_lob. freetemporary(gklob);

end;

Result Table Gists
The following example creates a gist table called CTX_GIST:

create table CTX_GIST (query_id number,
pov varchar2(80),
gist CLOB);

9-8 Oracle Text Reference

HIGHLIGHT

Gists and Theme Summaries

The following example returns a default sized paragraph-level gist for document 34 as
well as the top 10 theme summaries in the document:

begin
ctx_doc.gist("newsindex","34","CTX _GIST", 1, num_themes=>10);
end;

The following example generates a non-default size gist of at most 10 paragraphs:

begin
ctx_doc.gist("newsindex","34","CTX _GIST",1,pov =>"GENERIC" ,numParagraphs=>10);
end;

The following example generates a gist whose number of paragraphs is at most 10
percent of the total paragraphs in document:

begin
ctx_doc.gist("newsindex","34","CTX_GIST",1,pov => "GENERIC", maxPercent => 10);
end;

Theme Summary

The following example returns a paragraph-level theme summary for insects for
document 34. The default theme summary size is returned.

begin
ctx_doc.gist("newsindex","34","CTX _GIST",1, pov => "insects");
end;

9.4 HIGHLIGHT

Use the CTX_DOC.HIGHLIGHT procedure to generate highlight offsets for a
document. The offset information is generated for the terms in the document that
satisfy the query you specify. These highlighted terms are either the words that satisfy
a word query or the themes that satisfy an ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the
document. The table returned by CTX_DOC.HIGHLIGHT does not include any
graphics found in the original document. Apply the offset information to the same
documents filtered with CTX_DOC.FILTER (page 9-3).

You usually call this procedure after a query, from which you identify the document
to be processed. You can store the highlight offsets to either an in-memory PL/SQL
table or a result table.

Note that for queries that have predicates used mainly for filtering documents at
query time, the predicates are ignored during highlighting. This applies to SNIPPET,
MARKUP and HIGHL IGHT procedures. The following predicates are treated as filter
predicates for this purpose: SDATA, HASPATH, and WITHIN/ INPATH searching inside
XML attributes.

See CTX_DOC.POLICY_HIGHLIGHT (page 9-23) for a version of this procedure that
does not require an index.

The performance of the procedures SNIPPET (page 9-44), HIGHLIGHT, and
MARKUP (page 9-14) can be improved by using the forward index feature of Oracle
Text.

CTX_DOC Package 9-9

HIGHLIGHT

See Also:

Oracle Text Application Developer’s Guide for more information about forward
index

Syntax 1: In-Memory Result Storage

exec CTX_DOC.HIGHLIGHT(
index_name IN VARCHARZ2,
textkey IN VARCHAR2,
text_query IN VARCHARZ2,
restab IN OUT NOCOPY HIGHLIGHT TAB,
plaintext IN BOOLEAN DEFAULT FALSE,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT CLOB_QUERY(
index_name IN VARCHARZ2,
textkey IN VARCHAR2,
text_query IN CLOB,
restab IN OUT NOCOPY HIGHLIGHT TAB,
plaintext IN BOOLEAN DEFAULT FALSE,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_ FALLBACK);

Syntax 2: Result Table Storage

exec CTX_DOC.HIGHLIGHT(
index_name IN VARCHARZ2,

textkey IN VARCHAR2,
text_query IN VARCHAR2,
restab IN VARCHAR2,

query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY FALLBACK):

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
index_name IN VARCHARZ2,

textkey IN VARCHAR2,
text_query IN CLOB,
restab IN VARCHAR2,

query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY FALLBACK):

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:
¢ asingle column primary key value

* encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE (page 9-20) procedure.

® the rowid of the row containing the document

9-10 Oracle Text Reference

HIGHLIGHT

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE (page 9-43).

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If text_query includes wildcards, stemming, fuzzy matching which result in
stopwords being returned, HIGHL IGHT does not highlight the stopwords.

If text_query contains the threshold operator, the operator is ignored. The
HIGHLIGHT procedure always returns highlight information for the entire result set.

restab

You can specify that this procedure store highlight offsets to either a table or to an in-
memory PL/SQL table.

To store results to a table specify the name of the table. The table must exist before
you call this procedure.

See Also:
"Highlight Table (page A-7)" in Oracle Text Result Tables (page A-1) for
more information about the structure of the highlight result table.

To store results to an in-memory table, specify the name of the in-memory table of
type CTX_DOC.HIGHLIGHT_TAB. The HIGHLIGHT_TAB datatype is defined as
follows:

type highlight_rec is record (
offset number,
length number

);
type highlight_tab is table of highlight_rec index by binary_integer;

CTX_DOC.HIGHLIGHT clears HIGHLIGHT_TAB before the operation.

query_id

Specify the identifier used to identify the row inserted into restab. When query_id
is not specified or set to NULL, it defaults to 0. You must manually truncate the table
specified in restab.

plaintext

Specify TRUE to generate a plaintext offsets of the document. Specify FALSE to
generate HTML offsets of the document if you are using the AUTO_FILTER filter or
indexing HTML documents.

use_saved_copy

Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table. The
default value is CTX_DOC . SAVE_COPY_FALLBACK.

You can specify one of the following values for the use_saved_copy parameter:

e CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D
table. If the copy of the document is not present in the $D table, then fetch the
document from the data store.

CTX_DOC Package 9-11

HIGHLIGHT

e CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

e CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

Examples
Create Highlight Table
Create the highlight table to store the highlight offset information:

create table hightab(query_id number,
offset number,
Iength number);

Word Highlighting in the Presence of Filters

[

When performing highlight on queries such as the following, only the keyword ("dog'
in these examples) will be highlighted. The filtering predicates after the AND operator
will be ignored.

begin

ctx_doc.highlight("newsindex", "20", "dog AND cat WITHIN titlesection@name®,
"hightab®, 0, FALSE);

end;

begin

ctx_doc.highlight("newsindex", "20", "dog AND SDATA(price > 100)", "hightab®, O,
FALSE);

end;

Word Highlight Offsets
To obtain HTML highlight offset information for document 20 for the word dog:

begin
ctx_doc.highlight("newsindex", "20", "dog", "hightab®, 0, FALSE);
end;

begin

ctx_doc.highlight("newsindex®, "20", "dog AND cat WITHIN titlesection®, "hightab",
0, FALSE);

end;

Theme Highlight Offsets

Assuming the index newsindex has a theme component, obtain HTML highlight offset
information for the theme query of politics by issuing the following query:

begin
ctx_doc.highlight("newsindex", "20", "about(politics)", "hightab", 0, FALSE);
end;

The output for this statement are the offsets to highlighted words and phrases that
represent the theme of politics in the document.

Restrictions

CTX_DOC.HIGHLIGHT does not support the use of query templates or highlighting
XML attribute values.

9-12 Oracle Text Reference

IFILTER

9.5 IFILTER

Related Topics
"POLICY_HIGHLIGHT (page 9-23)"
"MARKUP (page 9-14)"

"SNIPPET (page 9-44)"

Use this procedure to filter binary data to text.

This procedure takes binary data (BLOB IN), filters the data with the AUTO_FILTER
filter, and writes the text version to a CLOB. (Any graphics in the original document
are ignored.) CTX_DOC. IFILTER employs the safe callout, and it does not require an
index, as CTX_DOC.FILTER does.

Note:

This procedure will not be supported in future releases. Applications should
use CTX_DOC.POLICY_FILTER (page 9-20) instead.

Requirements

Because CTX_DOC. IFILTER employs the safe callout mechanism, the SQL*Net
listener must be running and configured for extproc agent startup.

Syntax
CTX_DOC. IFILTER(data IN BLOB, text IN OUT NOCOPY CLOB);

data
Specify the binary data to be filtered.

text

Specify the destination CLOB. The filtered data is placed in here. This parameter must
be a valid CLOB locator that is writable. Passing NULL or a non-writable CLOB will
result in an error. Filtered text will be appended to the end of existing content, if any.

Example

The document text used in a MATCHES query can be VARCHAR2 or CLOB. It does not
accept BLOB input, so you cannot match filtered documents directly. Instead, you
must filter the binary content to CLOB using the AUTO_FILTER filter. Assuming the
document data is in bind variable :doc_blob:

declare
doc_text clob;

begin
-- create a temporary CLOB to hold the document text
dbms_lob.createtemporary(doc_text, TRUE, DBMS_LOB.SESSION);

-- call ctx_doc.ifilter to filter the BLOB to CLOB data
ctx_doc.ifilter(:doc_blob, doc_text);

-- now do the matches query using the CLOB version
for cl in (select * from queries where matches(query_string, doc_text)>0)

CTX_DOC Package 9-13

MARKUP

loop
-- do what you need to do here
end loop;

dbms_lob.freetemporary(doc_text);
end;

9.6 MARKUP

The CTX_DOC.MARKUP procedure takes a query specification and a document textkey
and returns a version of the document in which the query terms are marked up. These
marked-up terms are either the words that satisfy a word query or the themes that
satisfy an ABOUT query.

You can set the marked-up output to be either plaintext or HTML. The marked-up
document returned by CTX_DOC .MARKUP does not include any graphics found in the
original document.

You can use one of the predefined tag sets for marking highlighted terms, including a
tag sequence that enables HTML navigation.

You usually call CTX_DOC .MARKUP after a query, from which you identify the
document to be processed.

You can store the marked-up document either in memory or in a result table.

Note that for queries that have predicates used mainly for filtering documents at
query time, the predicates are ignored during MARKUP. The following predicates are
treated as filter predicates for this purpose: SDATA, HASPATH, and WITHIN/ INPATH
searching inside XML attributes.

See CTX_DOC.POLICY_MARKUP (page 9-26) for a version of this procedure that
does not require an index.

The performance of the procedures SNIPPET (page 9-44), HIGHLIGHT (page 9-9),
and MARKUP can be improved by using the forward index feature of Oracle Text.

See Also:

Oracle Text Application Developer’s Guide for more information about forward
index

Note:

Oracle Text does not guarantee well-formed output from CTX.DOC . MARKUP,
especially for terms that are already marked up with HTML or XML. In
particular, unexpected nesting of markup tags may occasionally result.

Syntax 1: In-Memory Result Storage
exec CTX_DOC.MARKUP(

index_name IN VARCHARZ2,

textkey IN VARCHAR2,

text_query IN VARCHAR2,

restab IN OUT NOCOPY CLOB,

plaintext IN BOOLEAN DEFAULT FALSE,

tagset IN VARCHAR2 DEFAULT "TEXT_DEFAULT",

9-14 Oracle Text Reference

MARKUP

starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,

use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.MARKUP_CLOB_QUERY(

index_name IN VARCHARZ2,

textkey IN VARCHAR2,

text_query IN CLOB,

restab IN OUT NOCOPY CLOB,

plaintext IN BOOLEAN DEFAULT FALSE,

tagset IN VARCHAR2 DEFAULT "TEXT_DEFAULT®,
starttag IN VARCHAR2 DEFAULT NULL,

endtag IN VARCHAR2 DEFAULT NULL,

prevtag IN VARCHAR2 DEFAULT NULL,

nexttag IN VARCHAR2 DEFAULT NULL,

use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage
exec CTX_DOC.MARKUP(

index_name IN VARCHARZ2,

textkey IN VARCHARZ2,

text_query IN VARCHAR2,

restab IN VARCHAR2,

query_id IN NUMBER DEFAULT 0,

plaintext IN BOOLEAN DEFAULT FALSE,

tagset IN VARCHAR2 DEFAULT "TEXT DEFAULT",
starttag IN VARCHAR2 DEFAULT NULL,

endtag IN VARCHAR2 DEFAULT NULL,

prevtag IN VARCHAR2 DEFAULT NULL,

nexttag IN VARCHAR2 DEFAULT NULL,

use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.MARKUP_CLOB_QUERY(
index_name IN VARCHARZ2,

textkey IN CLOB,

text_query IN VARCHAR2,

restab IN VARCHARZ2,

query_id IN NUMBER DEFAULT O,

plaintext IN BOOLEAN DEFAULT FALSE,

tagset IN VARCHAR2 DEFAULT "TEXT DEFAULT",
starttag IN VARCHAR2 DEFAULT NULL,

endtag IN VARCHAR2 DEFAULT NULL,

prevtag IN VARCHAR2 DEFAULT NULL,

nexttag IN VARCHAR2 DEFAULT NULL,

use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:

¢ Asingle column primary key value

CTX_DOC Package 9-15

MARKUP

* Encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE (page 9-20) procedure.

¢ The rowid of the row containing the document

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE (page 9-43).

text_query
Specify the original query expression used to retrieve the document.

If text_query includes wildcards, stemming, fuzzy matching which result in
stopwords being returned, MARKUP does not highlight the stopwords.

If text_query contains the threshold operator, the operator is ignored. The MARKUP
procedure always returns highlight information for the entire result set.

restab
You can specify that this procedure store the marked-up text to either a table or to an
in-memory CLOB.

To store results to a table specify the name of the table. The result table must exist
before you call this procedure.

See Also:
For more information about the structure of the markup result table, see
"Markup Table (page A-8)" in Oracle Text Result Tables (page A-1).

To store results in memory, specify the name of the CLOB locator. If restab is NULL,
a temporary CLOB is allocated and returned. You must de-allocate the locator after
using it.

If restab is not NULL, the CLOB is truncated before the operation.

query_id

Specify the identifier used to identify the row inserted into restab.

When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext

Specify TRUE to generate plaintext marked-up document. Specify FALSE to generate a
marked-up HTML version of document if you are using the AUTO_FILTER filter or
indexing HTML documents.

tagset
Specify one of the following predefined tag sets. The second and third columns show
how the different tags are defined for each tagset:

Tagset Tag Tag Value
TEXT_DEFAULT starttag <<
TEXT_DEFAULT endtag >>>
HTML_DEFAULT starttag
HTML_DEFAULT endtag

9-16 Oracle Text Reference

MARKUP

Tagset Tag Tag Value

HTML_NAVIGATE starttag

HTML_NAVIGATE endtag

HTML_NAVIGATE prevtag <A HREF=#ctx
%PREVNUM>& I t;

HTML_NAVIGATE nexttag <A HREF=#ctx
UWNEXTNUM>> ;

starttag
Specify the character(s) inserted by MARKUP to indicate the start of a highlighted term.

The sequence of starttag, endtag, prevtag and nexttag with respect to the
highlighted word is as follows:

... prevtag starttag word endtag nexttag...

endtag
Specify the character(s) inserted by MARKUP to indicate the end of a highlighted term.

prevtag

Specify the markup sequence that defines the tag that navigates the user to the
previous highlight.

In the markup sequences prevtag and nexttag, you can specify the following
offset variables which are set dynamically:

Offset Variable Value

%CURNUM the current offset number
%PREVNUM the previous offset number
%NEXTNUM the next offset number

See the description of the HTML_NAVIGATE "tagset (page 9-16)" for an example.

nexttag
Specify the markup sequence that defines the tag that navigates the user to the next
highlight tag.

Within the markup sequence, you can use the same offset variables you use for
prevtag. See the explanation for "prevtag (page 9-17)" and the HTML_NAVIGATE
"tagset (page 9-16)" for an example.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.

You can specify one of the following values for the use_saved_copy parameter:

e CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D
table. If the copy of the document is not present in the $D table, then fetch the
document from the data store.

e CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then show an error

CTX_DOC Package 9-17

MARKUP

message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

e CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.
The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Examples
In-Memory Markup

The following code takes document (the dog chases the cat), performs the assigned
markup on it, and stores the result in memory.

set serveroutput on

drop table mark_tab;
create table mark tab (id number primary key, text varchar2(80));
insert into mark_tab values ("1", "The dog chases the cat.");

create index mark _tab_idx on mark_tab(text)
indextype is ctxsys.context parameters
("filter ctxsys.null_filter");

declare

mklob clob;

amt number := 40;
line varchar2(80);

begin
ctx_doc.markup("mark_tab_idx","1","dog AND cat", mklob);
-- mklob is NULL when passed-in, so ctx_doc.markup will
-- allocate a temporary CLOB for us and place the results there.
dbms_lob.read(mklob, amt, 1, line);
dbms_output.put_line("FIRST 40 CHARS ARE:"||line);
-- have to de-allocate the temp lob
dbms_lob.freetemporary(mklob);
end;
/

The output from this example shows what the marked-up document looks like:

FIRST 40 CHARS ARE: The <<<dog>>> chases the <<<cat>>>.

Markup Table
Create the highlight markup table to store the marked-up document as follows:

create table markuptab (query_id number,
document clob);

Word Highlighting in HTML

You can also store your MARKUP results in a table. To create HTML highlight markup
for the words dog or cat for document 23, enter the following examples:

begin
ctx_doc.markup(index_name => "my_index",
textkey => "237,
text_query => “dog|cat”,
restab => "markuptab®,
query_id => "1°,
tagset => "HTML_DEFAULT");

9-18 Oracle Text Reference

MARKUP

end;

begin
ctx_doc.markup(index_name => "my_index",

textkey => "23",
text_query => "dog AND cat WITHIN titlesection@name”,
restab => "markuptab®,
query_id => "1°,
tagset => "HTML_DEFAULT");

end;

Word Highlighting in the Presence of Filters

When performing markup on queries such as the following, only the keyword ("dog"
in these examples) will be marked up. The filtering predicates after the AND operator
will be ignored.

begin
ctx_doc.markup(index_name => "my_index",

textkey => "23",
text_query => "dog AND cat WITHIN titlesection@name”,
restab => "markuptab®,
query_id => "1°,
tagset => "HTML_DEFAULT");

end;

begin
ctx_doc.markup(index_name => "my_index",

textkey => "23",
text_query => "dog AND SDATA(price > 100)",
restab => "markuptab®,
query_id => "1°,
tagset => "HTML_DEFAULT");

end;

Theme Highlighting in HTML

To create HTML highlight markup for the theme of politics for document 23, enter the
following statement:

begin
ctx_doc.markup(index_name => "my_index",

textkey => "23",
text_query => "about(politics)”,
restab => "markuptab®,
query_id => "1°,
tagset => "HTML_DEFAULT");

end;

Restrictions

CTX_DOC.MARKUP does not support the use of query templates.

Related Topics
"POLICY_MARKUP (page 9-26)"
"SNIPPET (page 9-44)"

CTX_DOC Package 9-19

PKENCODE

9.7 PKENCODE

The CTX_DOC . PKENCODE function converts a composite textkey list into a single
string and returns the string.

The string created by PKENCODE can be used as the primary key parameter textkey
in other CTX_DOC procedures, such as CTX_DOC.THEMES (page 9-47) and
CTX_DOC.GIST (page 9-5).

Syntax

CTX_DOC. PKENCODE(
pkl IN VARCHARZ,
pk2 IN VARCHARZ DEFAULT NULL,
pk4 IN VARCHARZ DEFAULT NULL,
pk5 IN VARCHARZ DEFAULT NULL,
pk6 IN VARCHARZ DEFAULT NULL,
pk7 IN VARCHARZ DEFAULT NULL,
pk8 IN VARCHARZ DEFAULT NULL,
pk9 IN VARCHARZ DEFAULT NULL,
pk10 IN VARCHAR2 DEFAULT NULL,
pk1l IN VARCHAR2 DEFAULT NULL,
pk12 IN VARCHAR2 DEFAULT NULL,
pk13 IN VARCHAR2 DEFAULT NULL,
pk14 IN VARCHAR2 DEFAULT NULL,
pk15 IN VARCHAR2 DEFAULT NULL,
pk16 IN VARCHAR2 DEFAULT NULL)

RETURN VARCHARZ;

pkl1-pk16
Each PK argument specifies a column element in the composite textkey list. You can
encode at most 16 column elements.

Returns

String that represents the encoded value of the composite textkey.

Example
begin

ctx_doc.gist("newsindex",CTX_DOC.PKENCODE("smith", 14), "CTX_GIST");
end;

In this example, smith and 14 constitute the composite textkey value for the document.

9.8 POLICY_FILTER

Generates a plain text or an HTML version of a document. With this procedure, no
CONTEXT index is required.

This procedure uses a trusted callout.

Syntax

ctx_doc.policy_filter(policy_name in VARCHARZ2,
document in [VARCHAR2|CLOB|BLOB|BFILE],
restab in out nocopy CLOB,

9-20 Oracle Text Reference

POLICY_GIST

plaintext in BOOLEAN default FALSE,
language in VARCHAR2 default NULL,
format in VARCHAR2 default NULL,
charset in VARCHAR2 default NULL);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY (page 8-32).

document
Specify the document to filter.

restab
Specify the name of the CLOB locator.

plaintext

Specify TRUE to generate a plaintext version of the document. Specify FALSE to
generate an HTML version of the document if you are using the AUTO_FILTER filter
or indexing HTML documents.

language

Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See BASIC_LEXER (page 2-41)
in Oracle Text Indexing Elements (page 2-1).

format

Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in CREATE
INDEX (page 1-41) in Oracle Text SQL Statements and Operators (page 1-1).

charset
Specify the character set of the document. Use an Oracle Text supported value as you
would specify in the charset column of the base table. See "Filter Types (page 2-19)".

9.9 POLICY_GIST

Generates a gist or theme summary for document. You can generate paragraph-level
or sentence-level gists or theme summaries. With this procedure, no CONTEXT index is

required.

Syntax

ctx_doc.policy_gist(policy_name in VARCHAR2,
document in [VARCHAR2|CLOB|BLOB|BFILE],
restab in out nocopy CLOB,
glevel in VARCHAR2 default "P",
pov in VARCHAR2 default "GENERIC",
numParagraphs in VARCHAR2 default NULL,
maxPercent in NUMBER default NULL,
num_themes in NUMBER default 50
language in VARCHAR2 default NULL,
format in VARCHAR2 default NULL,
charset in VARCHAR2 default NULL

);

CTX_DOC Package 9-21

POLICY_GIST

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY (page 8-32).

document
Specify the document for which to generate the Gist or theme summary.

restab
Specify the name of the CLOB locator.

glevel
Specify the type of gist or theme summary to produce. The possible values are:

¢ P for paragraph
e S for sentence

The default is P.

pov
Specify whether a gist or a single theme summary is generated. The type of gist or
theme summary generated (sentence-level or paragraph-level) depends on the value
specified for glevel.

To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To
generate a theme summary for a single theme in a document, specify the theme as the
value for pov.

When using result table storage and you do not specify a value for pov, this
procedure returns the generic gist plus up to 50 theme summaries for the document.

Note:

The pov parameter is case sensitive. To return a gist for a document, specify
'GENERIC' in all uppercase. To return a theme summary, specify the theme
exactly as it is generated for the document.

Only the themes generated by THEMES (page 9-47) for a document can be
used as input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries. The default is 16.

Note:

The numParagraphs parameter is used only when this parameter yields a
smaller gist or theme summary size than the gist or theme summary size
yielded by the maxPercent parameter.

This means that the system always returns the smallest size gist or theme
summary.

maxPercent

Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries as a percentage of the total paragraphs (or
sentences) in the document. The default is 10.

9-22 Oracle Text Reference

POLICY_HIGHLIGHT

Note:

The maxPercent parameter is used only when this parameter yields a
smaller gist or theme summary size than the gist or theme summary size
yielded by the numParagraphs parameter.

This means that the system always returns the smallest size gist or theme
summary.

num_themes

Specify the number of theme summaries to produce when you do not specify a value
for pov. For example, if you specify 10, this procedure returns the top 10 theme
summaries. The default is 50.

If you specify 0 or NULL, this procedure returns all themes in a document. If the
document contains more than 50 themes, only the top 50 themes show conceptual
hierarchy.

language

Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER

(page 2-49)".

format

Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX (page 1-41)".

charset
Specify the character set of the document. Use an Oracle Text supported value as you
would specify in the charset column of the base table.

9.10 POLICY_HIGHLIGHT

Generates plain text or HTML highlighting offset information for a document. With
this procedure, no CONTEXT index is required.

The offset information is generated for the terms in the document that satisfy the
query you specify. These highlighted terms are either the words that satisfy a word
query or the themes that satisfy an ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the
document. You can apply the offset information to the same documents filtered with
CTX_DOC.FILTER (page 9-3).

Syntax

exec ctx_doc.policy_highlight(
policy_name 1in VARCHAR2,
document in [VARCHAR2|CLOB|BLOB|BFILE],
text_query in VARCHAR2,
restab in out nocopy highlight_tab,
plaintext in boolean FALSE
language in VARCHAR2 default NULL,
format in VARCHAR2 default NULL,
charset in VARCHAR2 default NULL

CTX_DOC Package 9-23

POLICY_HIGHLIGHT

exec ctx_doc.policy_highlight_clob_query(
policy_name in VARCHAR2,
document in [VARCHAR2|CLOB|BLOB|BFILE],
text_query in CLOB,
restab in out nocopy highlight_tab,
plaintext in boolean FALSE
language in VARCHAR2 default NULL,
format in VARCHAR2 default NULL,
charset in VARCHAR2 default NULL

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY (page 8-32).

document
Specify the document to generate highlighting offset information.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If text_query includes wildcards, stemming, or fuzzy matching which result in
stopwords being returned, this procedure does not highlight the stopwords.

If text_query contains the threshold operator, the operator is ignored. This
procedure always returns highlight information for the entire result set.

restab
Specify the name of the highlight_tab PL/SQL index-by-table type.

See Also:
"HIGHLIGHT (page 9-9)" for more information about the structure of the
highlight_tab table type

plaintext
Specify TRUE to generate a plaintext offsets of the document.

Specify FALSE to generate HTML offsets of the document if you are using the
AUTO_FILTER filter or indexing HTML documents.

language

Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER

(page 2-49)" in Oracle Text Indexing Elements (page 2-1).

format

Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description under "CREATE
INDEX (page 1-41)".

charset
Specify the character set of the document. Use an Oracle Text supported value as you
would specify in the charset column of the base table.

9-24 Oracle Text Reference

POLICY_LANGUAGES

Restrictions
CTX_DOC.POLICY_HIGHLIGHT does not support the use of query templates.

9.11 POLICY_LANGUAGES

Provides the ability to fetch the language for a section of text.

Returns a table of language descriptors and scores, where the score is the confidence
level with which the system can assert that the supplied text is in the specific
language.

Syntax

CTX_DOC.POLICY_LANGUAGES (
policy_name IN VARCHAR2 | CLOB,
document IN VARCHAR2,
restab IN OUT NOCOPY CTX_DOC.LANGUAGE_TAB

);

policy_name

A policy that was previously created using the CTX_DDL.CREATE_POLICY

(page 8-32) method. If the specified policy includes a sectioning preference, the API
will honor the sectioning preference. For instance, if HTML sectioning is specified,
then HTML tags will be removed before processing the input document.

document
A body of text for which the languages are to be extracted. The text is assumed to be
plain text with UTF-8 character encoding.

restab

The result of the language extraction process. The result is a table of records. Each
record has two attributes: the language string, and the score for each language string.
The score can range from 0 to 100 and represents the confidence with which the
system can assert that the supplied text is in the specified language. The resulting
languages are returned in sorted order with the language with the most confidence
appearing first.

The table layout for restab is similar to that for HIGHLIGHT.

See Also:
"HIGHLIGHT (page 9-9)" for information on restab layout

Supported Languages for CTX_DOC.POLICY_LANGUAGES and POLICY_STEMS

Language extraction is supported for text in the languages supported by
AUTO_LEXER (page 2-33). The supported languages for
CTX_DOC.POLICY_LANGUAGES and CTX_DOC.POLICY_STEMS (page 9-36) for
this release are:

Arabic
Bokmal
Catalan

Croatian

CTX_DOC Package 9-25

POLICY_MARKUP

Czech
Danish
Dutch
English
Finnish
French
German
Greek
Hebrew
Hungarian
Italian
Japanese
Korean
Polish
Nynorsk
Persian
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Simplified Chinese
Spanish
Swedish
Thai
Traditional Chinese

Turkish

Related Topics
"POLICY_STEMS (page 9-36)"
"AUTO_LEXER (page 2-33)"

9.12 POLICY_MARKUP

Generates plain text or HTML version of a document with query terms highlighted.
With this procedure, no CONTEXT index is required.

The CTX_DOC.POLICY_MARKUP procedure takes a query specification and a
document and returns a version of the document in which the query terms are marked

9-26 Oracle Text Reference

POLICY_MARKUP

up. These marked-up terms are either the words that satisfy a word query or the
themes that satisfy an ABOUT query.

You can set the marked-up output to be either plaintext or HTML.

You can use one of the predefined tag sets for marking highlighted terms, including a
tag sequence that enables HTML navigation.

Syntax

ctx_doc.policy_markup(policy_name in VARCHAR2,
document in [VARCHAR2|CLOB|BLOB|BFILE],
text_query in VARCHAR2,
restab in out nocopy CLOB,
plaintext in BOOLEAN default FALSE,
tagset in VARCHAR2 default "TEXT_DEFAULT",
starttag in VARCHAR2 default NULL,
endtag in VARCHAR2 default NULL,
prevtag in VARCHAR2 default NULL,
nexttag in VARCHAR2 default NULL
language in VARCHAR2 default NULL,
format in VARCHAR2 default NULL,
charset in VARCHAR2 default NULL

):

ctx_doc.policy_markup_clob_query(

policy_name in VARCHAR2,
document in [VARCHAR2|CLOB|BLOB|BFILE],
text_query in CLOB,
restab in out nocopy CLOB,
plaintext in BOOLEAN default FALSE,
tagset in VARCHAR2 default "TEXT_DEFAULT",
starttag in VARCHAR2 default NULL,
endtag in VARCHAR2 default NULL,
prevtag in VARCHAR2 default NULL,
nexttag in VARCHAR2 default NULL
language in VARCHAR2 default NULL,
format in VARCHAR2 default NULL,

n

charset in VARCHAR2 default NULL

);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY (page 8-32).

document
Specify the document to generate highlighting offset information.

text_query
Specify the original query expression used to retrieve the document.
If text_query includes a NULL, then this procedure will fail and generate errors.

If text_query includes wildcards, stemming, or fuzzy matching which result in
stopwords being returned, then this procedure does not highlight the stopwords.

If text_query contains the threshold operator, the operator is ignored. This
procedure always returns highlight information for the entire result set.

restab
Specify the name of the CLOB locator.

CTX_DOC Package 9-27

POLICY_MARKUP

plaintext

Specify TRUE to generate a plaintext marked-up document. Specify FALSE to generate
a marked-up HTML version of the document if you are using the AUTO_FILTER filter
or indexing HTML documents.

tagset
Specify one of the following predefined tag sets. The second and third columns show
how the different tags are defined for each tagset:

Tagset Tag Tag Value

TEXT_DEFAULT starttag <<<

TEXT_DEFAULT endtag >>>

HTML_DEFAULT starttag

HTML_DEFAULT endtag

HTML_NAVIGATE starttag

HTML_NAVIGATE endtag

HTML_NAVIGATE prevtag <A HREF=#ctx
%PREVNUM>& It ;

HTML_NAVIGATE nexttag <A HREF=#ctx
%BNEXTNUM>> ;

starttag
Specify the character(s) inserted by MARKUP to indicate the start of a highlighted term.

The sequence of starttag, endtag, prevtag and nexttag with regard to the
highlighted word is as follows:

... prevtag starttag word endtag nexttag...

endtag
Specify the character(s) inserted by MARKUP to indicate the end of a highlighted term.

prevtag
Specify the markup sequence that defines the tag that navigates the user to the
previous highlight.

In the markup sequences prevtag and nexttag, you can specify the following
offset variables which are set dynamically:

Offset Variable Value

%CURNUM the current offset number
%PREVNUM the previous offset number
%NEXTNUM the next offset number

See the description of the HTML_NAVIGATE tagset for an example "tagset (page 9-16)".

nexttag
Specify the markup sequence that defines the tag that navigates the user to the next
highlight tag.

9-28 Oracle Text Reference

POLICY_NOUN_PHRASES

Within the markup sequence, you can use the same offset variables you use for
prevtag. See the explanation for prevtag and the HTML_NAVIGATE "tagset
(page 9-16)" for an example.

language

Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER

(page 2-49)" in Oracle Text Indexing Elements (page 2-1).

format

Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX (page 1-41)".

charset
Specify the character set of the document. Use an Oracle Text supported value as you
would specify in the charset column of the base table. See "Filter Types (page 2-19)".

Restrictions
CTX_DOC.POLICY_MARKUP does not support the use of query templates.

9.13 POLICY_NOUN_PHRASES

Provides the ability to extract the noun phrases along with part-of-speech information
for each word in each noun phrase from a given document.

For example, consider the following sentence:
"The mayor of Chicago is giving a brief press conference."

The noun phrases for this input are "mayor of Chicago" and "brief press conference."
The subgroups in the input text are not returned. For instance, in the above example,
subgroups such as "mayor,Chicago, brief press, press conference, press, conference"
are not returned.

POLICY_NOUN_PHRASES (and POLICY_PART_OF_SPEECH (page 9-32)) supports
the following languages:

e Dutch

English

e German

e French

e [talian

¢ Japanese

¢ Korean

e Simplified Chinese
¢ Spanish

e Traditional Chinese

CTX_DOC Package 9-29

POLICY_NOUN_PHRASES

Syntax

ctx_doc.policy_noun_phrases (
policy_name in varchar2,

document in varchar2 | CLOB,

restab in out nocopy noun_phrase_tab,
language in varchar2 default NULL,
format in varchar2 default NULL,
charset in varchar2 default NULL

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY (page 8-32).

document
A body of text for which the languages are to be extracted. The text is assumed to be
plain text with UTF-8 character encoding.

restab
Specify the name of the CLOB locator.

language

Specify the language. See the list of supported languages in this section. If this
parameter is null, the language will be automatically detected. There is a cost
associated with language detection.

format
The format of the input text.

charset
The character set of the input text.

Abbreviations for Use with POLICY_NOUN_PHRASES and
POLICY_PART_OF_SPEECH

Table 9-1 (page 9-30) provides a list of abbreviations to use in queries for
POLICY_NOUN_PHRASES and POLICY_PART_OF_SPEECH. The examples use these
abbreviations.

Table 9-1 Part of Speech Abbreviations
|

Abbreviation Part of Speech
N noun

propN nounProper

\% verb

Adj adjective

Adv adverb

Prep preposition
Part particle

9-30 Oracle Text Reference

POLICY_NOUN_PHRASES

Table 9-1 (Cont.) Part of Speech Abbreviations
|

Abbreviation Part of Speech
Punct punct

Pro pronoun

Wh interrog

Det determiner
Conj conjunction
Card numCardinal
Ord numOrdinal
Suf suffix

Pre prefix

Acr nounAcronym
Poss poss

Unk unknown

Example for POLICY__NOUN_PHRASES
The example in this section uses the abbreviations shown in Table 9-1 (page 9-30).

set serverout on
create or replace function toString(b boolean) return varchar2 is
begin
if (b) then
return "TRUE";

end if;

return “"FALSE";
end;
/

declare

the_nps ctx_doc.noun_phrase_tab;

begin
ctx_ddl.create_preference("rvlex®, “"AUTO_LEXER");
ctx_ddl.set_attribute("rvlex®, "mixed_case","YES");
ctx_ddl.set_attribute("rvlex®, "timeout®,0);

ctx_ddl.create_policy(policy name => "rv_policy_21",lexer => "rvlex");

ctx_doc.policy_noun_phrases("rv_policy 21%,"The mayor of Chicago is giving a
brief press conference”,the nps);
dbms_output.put_line(the_nps.count);

for 1 in 1..the_nps.count loop
if (the_nps(i).is_phrase_start) then
if (i>1) then
dbms_output.put(*]");

CTX_DOC Package 9-31

POLICY_PART_OF_SPEECH

dbms_output.new_line;
end if;
dbms_output.put("Phrase{term,P0S,is_in_lex,offset, len,is_phrase_
start}:[");
else
dbms_output.put(®,");
end if;
dbms_output.put("{" || the_nps(i).term || *," || the_nps(i).pos_tag || *,"
|1 toString(the_nps(i).is_in_lexicon) || "," || the_nps(i).offset
Il *." || the_nps(i).length || *," || toString(the_nps(i).is_phrase_start)
I3
end loop;
dbms_output.put(*]1");
dbms_output.new_line;
end;
/

Output for this example:

Phrase{term,P0S, is_in_lex,offset,len,is_phrase_start}:
[{The,Det,TRUE, 1,3, TRUE},{mayor,N,TRUE,5,5, FALSE},
{of,Prep,TRUE,11,2,FALSE},{Chicago,propN,TRUE, 14,7,FALSE}

Phrase{term,P0S, is_in_lex,offset, len,is_phrase_start}:

[{a,Det,TRUE,32,1,TRUE},{brief,N,TRUE,34,5,FALSE},
{press,N,TRUE,40,5,FALSE},{conference,N,TRUE,46,10,FALSE}]

Related Topics
"POLICY_PART_OF_SPEECH (page 9-32)"

9.14 POLICY_PART_OF_SPEECH

Extracts part of speech information for each word in a body of text.

POLICY_NOUN_PHRASES (page 9-29) has the list of supported languages.

Syntax

ctx_doc.policy_part_of _speech (
policy_name in varchar2,
document in varchar2 | CLOB,
restab in out nocopy noun_phrase_tab,
language in varchar2 default NULL,
format in varchar2 default NULL,
charset in varchar2 default NULL

disambiguate_tags in boolean default TRUE

policy_name

Specify the policy name created with CTX_DDL.CREATE_POLICY (page 8-32). If the
specified policy includes a sectioning preference, the API will honor the sectioning
preference. For instance, if HTML sectioning is specified, HTML tags will be removed
before processing the input document.

document
A body of text for which the languages are to be extracted. The text is assumed to be
plain text with UTF-8 character encoding.

9-32 Oracle Text Reference

POLICY_PART_OF_SPEECH

restab
Specify the name of the CLOB locator. The query returns a table with the result of the
noun phrase extraction. For each word, the following attributes are also returned:

* pos_tags: the part of speech tags for this word. There can be multiple part of
speech tags with the most likely tag listed first.

¢ offset: offset of the word in the input string
e length: length of the word in the input string.

e is_in_lexicon: Indicates whether the word is in the lexicon.

language

Specify the language. See the list of supported languages in this section. If this
parameter is null, the language will be automatically detected. There is a cost
associated with language detection.

format
The format of the input text.

charset
The character set of the input text.

Example for POLICY_PART_OF_SPEECH
The example in this section uses the abbreviations shown in Table 9-1 (page 9-30).

set serveroutput on;
declare
the_nps ctx_doc.part_of_speech_tab;
begin
ctx_doc.policy_part_of _speech(policy_name => "rv_policy 21",
document => "The mayor of Chicago is giving
a brief press conference®,
restab => the_nps,
disambiguate_tags => false,
language => "english®);
for i in 1..the_nps.count loop
dbms_output.put(*word:" || the_nps(i).word || ",pos:[");
for j in 1..the_nps(i).pos_tags.count loop
dbms_output.put(the_nps(i).pos_tags(g) || *.");
end loop;
dbms_output.put_line("]");
end loop;
end;
/

Output for this example:

word:The,pos:[Det,]
word:mayor,pos:[N,]
word:of,pos:[Prep,]
word:Chicago,pos:[propN,]
word:is,pos:[V,]
word:giving,pos:[N,V,Adj,]
word:a,pos:[Det,]
word:brief,pos:[N,V,Adj,]

CTX_DOC Package 9-33

POLICY_SNIPPET

word:press,pos:[N,V,]

word:conference,pos:[N,V,]

Related Topics

"POLICY_NOUN_PHRASES (page 9-29)"

"Custom Dictionary Valid Parts-of-Speech (case sensitive) (page 6-3)"

9.15 POLICY_SNIPPET

Displays marked-up keywords in context. The returned text contains either the words
that satisfy a word query or the themes that satisfy an ABOUT query. This version of
the CTX_DOC.SNIPPET (page 9-44) procedure does not require an index.

Syntax
Syntax 1
exec CTX_DOC.POLICY_SNIPPET(

policy_name IN VARCHAR2,

document IN [VARCHAR2|CLOB|BLOB|BFILE],
text_query IN VARCHAR2,

language IN VARCHAR2 default NULL,
format IN VARCHAR2 default NULL,
charset IN VARCHAR2 default NULL,
starttag IN VARCHAR2 DEFAULT “"",
endtag IN VARCHAR2 DEFAULT *"",
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT *"..."
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 150

)

return varchar2;

Syntax 2

exec CTX_DOC.POLICY_SNIPPET_CLOB_QUERY(

policy_name IN VARCHARZ2,

document IN [VARCHAR2|CLOB|BLOB|BFILE],
text_query IN CLOB,

language IN VARCHAR2 default NULL,
format IN VARCHAR2 default NULL,
charset IN VARCHAR2 default NULL,
starttag IN VARCHAR2 DEFAULT “"",
endtag IN VARCHAR2 DEFAULT *"",
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT *"..."
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 150

)

return varchar2;

policy_name
Specify the name of a policy created with CTX_DDL.CREATE_POLICY (page 8-32).

9-34 Oracle Text Reference

POLICY_SNIPPET

document
Specify the document in which to search for keywords.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If text_query includes wildcards, stemming, fuzzy matching which result in
stopwords being returned, POLICY_SNIPPET does not highlight the stopwords.

If text_query contains the threshold operator, the operator is ignored.

language

Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See MULTI_LEXER

(page 2-49) in Oracle Text Indexing Elements (page 2-1).

format

Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX (page 1-41)".

charset
Specify the character set of the document. Use an Oracle Text supported value as you
would specify in the charset column of the base table. See "Filter Types (page 2-19)".

starttag
Specify the start tag for marking up the query keywords. Default is ''.

endtag
Specify the end tag for marking up the query keywords. Default is ''.

entity_translation

Specify if you want HTML entities to be translated. The default is TRUE, which
means the special entities (<, >, and &) are translated into their alternate forms ('&1t;,
‘&et;', and '&') when output by the procedure. However, special characters in the
markup tags generated by CTX_DOC.POLICY_SNIPPET will not be translated.

separator
Specify the string separating different returned fragments. Default is '...'.

radius

Specify the number of characters to be shown on either side of the hit query in a
segment. The character count before the hit query begins on the first character of the
first hit query displayed in a segment. Accordingly, the character count after the hit
query begins on the last character of the last hit query displayed on a specific
segment. Two segments are merged into one if their radii overlap. The displayed
number of characters on each side may be modified by +/-10 chars to best match the
beginning or ending of a sentence or word.

Special attention is required for the value 0. When specified, the radius is set to
automatic and varies between sentences. A best guess of the results is displayed,
which attempts to match a full sentence. Note that the length of the radius on each
side of the hit query will most likely significantly differ.

The default value is 25.

CTX_DOC Package 9-35

POLICY_STEMS

max_length

Specify the maximum length of the snippet output in characters. This value is
currently upper-bounded by the current return type of CTX_DOC.SNIPPET

(page 9-44) and CTX_DOC.POLICY_SNIPPET (VARCHAR?2). Should the output be
longer than the return type VARCHAR?2, the result will be truncated.

The default value for max_length is 150.

Note:

If you set max_length value to a very low value, no snippet may be
generated. For example, if max_length is set to O or if max_length is lower
than the length of query tokens themselves, no snippet may be generated at
all.

Limitations
CTX_DOC.POLICY_SNIPPET does not support the use of query templates.

CTX_DOC.POLICY_SNIPPET displays marked-up keywords in context when used
with NULL_SECT ION_GROUP. However, there are limitations when using this
procedure with XML documents. When used with XML_SECT ION_GROUP or
AUTO_SECTION_GROUP, the XML structure is ignored and user-specified tags are
stripped out, which results in parts of surrounding text to be included in the returned
snippet.

Related Topics
"SNIPPET (page 9-44)"
"MARKUP (page 9-14)"

9.16 POLICY_STEMS

Extracts stems for each word in a body of text. This procedure is for use with
AUTO_LEXER (page 2-33). This procedure can only use the languages supported by
AUTO_LEXER, which are listed under "POLICY_LANGUAGES (page 9-25)".

Syntax

exec CTX_DOC.POLICY_STEMS (
policy_name in varchar2,

document in varchar2 | CLOB,

restab in out nocopy ctx_doc.stem group_tab,
language in varchar2 default NULL,

format in varchar2 default NULL,

charset in varchar2 default NULL

policy_name

A policy that was previously created using the CTX_DDL.CREATE_POLICY
(page 8-32) method. If the specified policy includes a HTML_SECTION_GROUP
sectioning preference, the API will honor the sectioning preference. For instance, if
HTML sectioning is specified, HTML tags will be removed before processing the
input document.

Note that the policy must use AUTO_LEXER only.

9-36 Oracle Text Reference

POLICY_THEMES

document
A body of text for which the languages are to be extracted. The text is assumed to be
plain text with UTF-8 character encoding.

restab

The result of the stem extraction process. The returned values in the PL/SQL table
will have one cell for each word in the input string document. Each word can be a
multi-word as determined by the lexer. For each word, all the stems (including all
alternate stems) are returned. For each stem, the offset and the length (in the input
string) of the word for which this is a stem is returned. Additionally, for each stem, a
Boolean value is returned that indicates if the stem was found in the lexicon.

stem_group_tabis a table of stem_group_records.

language

The language of the input text. The language string can be one of the values specified
in the previous section on language extraction. If this parameter is null, the language
will be automatically detected. There is a cost associated with language detection. So,
if the language is known, it is best to supply the language value. See
"POLICY_LANGUAGES (page 9-25)" for the list of languages.

format
The format of the input text.

charset
The character set of the input text.

Restrictions and Notes

The stem extraction process supports certain nonstandard word forms—e.g.
capitalization errors—as well as standard forms, and thus can be used to process
informal or imperfect text (such as email, online documents, or queries). It also
handles some variations in the text including case variation, hyphenation and
unaccented characters among others.

The stem extraction process does not break compound words, but instead separates
compound words with a # character. Such compound words are common in German.
For instance, the German compound word Bildungsroman (from Bildung "education"
and Roman "novel") yields a single stem Bildungs#roman instead of two stems
Bildungs and roman.

Related Topics
"POLICY_LANGUAGES (page 9-25)"
"AUTO_LEXER (page 2-33)"
"CREATE_POLICY (page 8-32)"

9.17 POLICY_THEMES

Generates a list of themes for a document. With this procedure, no CONTEXT index is
required.

Syntax

ctx_doc.policy_themes(policy_name in VARCHAR2,
document in [VARCHAR2|CLOB|BLOB|BFILE],

CTX_DOC Package 9-37

POLICY_THEMES

restab in out nocopy theme_tab,
full_themes in BOOLEAN default FALSE,
num_themes in number default 50

language in VARCHAR2 default NULL,
format in VARCHAR2 default NULL,
charset in VARCHAR2 default NULL

policy_name
Specify the policy you create with CTX_DDL.CREATE_POLICY (page 8-32).

document
Specify the document for which to generate a list of themes.

restab
Specify the name of the theme_tab PL/SQL index-by-table type.

See Also:
"THEMES (page 9-47)" for more information about the structure of the
theme_tab type.

full _themes
Specify whether this procedure generates a single theme or a hierarchical list of
parent themes (full themes) for each document theme.

Specify TRUE for this procedure to write full themes to the THEME column of the
result table.

Specify FALSE for this procedure to write single theme information to the THEME
column of the result table. This is the default.

num_themes
Specify the maximum number of themes to retrieve. For example, if you specify 10,
up to first 10 themes are returned for the document. The default is 50.

If you specify 0 or NULL, this procedure returns all themes in a document. If the
document contains more than 50 themes, only the first 50 themes show conceptual
hierarchy.

language

Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER

(page 2-49)" in Oracle Text Indexing Elements (page 2-1).

format

Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX (page 1-41)" in Oracle Text SQL Statements and Operators (page 1-1).

charset
Specify the character set of the document. Use an Oracle Text supported value as you
would specify in the charset column of the base table. See "Filter Types (page 2-19)".

9-38 Oracle Text Reference

POLICY_TOKENS

Example
Create a policy:

exec ctx_ddl.create_policy("mypolicy");

Run themes:

declare
la varchar2(200);
rtab ctx_doc.theme_tab;
begin

ctx_doc.policy_themes("mypolicy",
"To define true madness, What is""t but to be nothing but mad?", rtab);
for 1 in 1..rtab.count loop
dbms_output.put_line(rtab(i).theme||":"||rtab(i).weight);
end loop;
end;

9.18 POLICY_TOKENS

Generate all index tokens for document. With this procedure, no CONTEXT index is

required.

Syntax

ctx_doc.policy_tokens(policy_name in VARCHAR2,
document in [VARCHAR2|CLOB|BLOB|BFILE],
restab in out nocopy token_tab,
language in VARCHAR2 default NULL,
format in VARCHAR2 default NULL,
charset in VARCHAR2 default NULL,
thes_name in VARCHAR2 default NULL,

thes_toktype in VARCHAR2 default "SYN");

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY (page 8-32).

document
Specify the document for which to generate tokens.

restab
Specify the name of the token_tab PL/SQL index-by-table type.

The tokens returned are those tokens which are inserted into the index for the
document. Stop words are not returned. Section tags are not returned because they
are not text tokens.

See Also:
"TOKENS (page 9-50)" of this chapter for more information about the
structure of the token_tab type

CTX_DOC Package 9-39

POLICY_TOKENS

language

Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER

(page 2-49)" in Oracle Text Indexing Elements (page 2-1).

format

Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX (page 1-41)".

charset
Specify the character set of the document. Use an Oracle Text supported value as you
would specify in the charset column of the base table. See "Filter Types (page 2-19)".

thes_name
Specify the thesaurus name. If you do not specify a name, no synonyms or broader
terms for index tokens will be generated.

To use the system default thesaurus, specify DEFAULT.

thes_toktype

Specify SYN to generate synonyms. Alternatively, specify BT to generate broader
terms of index tokens. By default, only synonyms are generated. To use this
parameter, you must first specify the thesaurus name using the thes_name
parameter.

Example 1
Get tokens:

declare
la varchar2(200);
rtab ctx _doc.token_ tab;
begin
ctx_doc.policy_tokens("mypolicy”,
"To define true madness, What is""t but to be nothing but mad?",rtab);
for i in 1..rtab.count loop
dbms_output.put_line(rtab(i).offset|]":"||rtab(i).token);

end loop;
end;
Example 2

This example uses thesaurus support to generate synonyms for tokens:

declare
rtab ctx_doc.token_tab;
begin
ctx_doc.policy_tokens("mypolicy", "the lazy dog",rtab,thes _name =>"animals");
for 1 in 1..rtab.count loop
dbms_output.put_line(rtab(i).token]|"a"||rtab(i).thes_tokens);
end loop;
end;

9-40 Oracle Text Reference

SENTIMENT

9.19 SENTIMENT

Use this procedure to perform sentiment analysis for a document, determine a
sentiment score for each topic within the document, and populate the results into a
result table.

The mandatory inputs to this procedure include the name of a text index associated
with the document set and the text key, which is a unique identifier that identifies
each document. After sentiment classification is performed, the text segments from the
document and their associated sentiment scores are populated into the result table.
The sentiment score is a value between -100 and 100.

The result table must exist before you run this procedure. An error is returned if the
result table does not exist or if the specified topic is null.

If the specified topic is not present in the document, then a default snippet and
sentiment score of zero are written into the result table. If no sentiment classifier is
specified, then the default sentiment classifier is used. The default classifier is only
available when using AUTO_LEXER.

Syntax

SENTIMENT (
index_name IN VARCHAR2,
textkey IN VARCHARZ2,
topic IN VARCHAR2,
restab IN VARCHAR2,
clsfier_name IN VARCHAR2 default NULL,
ttype IN VARCHAR2 default "EXACT",
radius IN NUMBER default 50,
max_inst IN NUMBER default 5,
starttag IN VARCHAR2 default "*,
endtag IN VARCHAR2 default "*",
use_saved_copy IN NUMBER default O

);

Most parameters in SENTIMENT are also used in SENT IMENT_AGGREGATE. For a
description of parameters common to SENTIMENT and SENT IMENT_AGGREGATE,
refer to SENTIMENT_AGGREGATE (page 9-42).

restab

Specify the name of the result table that will be populated with generated results. The
table must exist and you must have INSERT permissions on the table. The table must
have two columns, snippet of data type CLOB and score of data type NUMBER.

starttag
Specify the character(s) to be inserted to indicate the start of a highlighted term.

endtag
Specify the character(s) to be inserted to indicate the end of a highlighted term.

See Also:

Oracle Text Application Developer’s Guide for an example of using the
SENTIMENT procedure

CTX_DOC Package 9-41

SENTIMENT_AGGREGATE

9.20 SENTIMENT_AGGREGATE

Use this procedure to perform sentiment analysis and return a single aggregate
sentiment score per document. The aggregate sentiment score is a value between -100
and 100.

You specify search keywords as part of a text query and then identify a sentiment
associated with the topics in the document.

The mandatory inputs for this procedure include the name of a text index associated
with the document set and the text key, which is a unique identifier that identifies
each document. If no sentiment classifier is specified, then the default sentiment
classifier is used. The default classifier is only available when using AUTO_LEXER.

If the specified topic keyword is not found within the document, then a sentiment
score of zero is returned. If no topic is specified, then the aggregate sentiment score for
the entire document is returned.

Note:

Avoid using AUTO_LEXER with user-defined classifiers as this may provide
inconsistent sentiment scores.

Syntax

SENT IMENT_AGGREGATE(
index_name IN VARCHARZ2,
textkey IN VARCHARZ2,
topic IN VARCHAR2 default NULL,
clsfier_name IN VARCHAR2 default NULL,
ttype IN VARCHAR2 default "EXACT",
radius IN NUMBER default 50,
max_inst IN NUMBER default 5,
use_saved_copy IN NUMBER default O

) return NUMBER;

index_name
Specify the name of the CONTEXT index for the text column. This parameter is
mandatory.

textkey
Specify the unique identifier (usually the primary key) for the document. The
textkey is mandatory and is a single column primary key value.

clsfier name

Specify the name of the sentiment classifier used to perform sentiment analysis. The
maximum length supported for a classifier name is 24 bytes. If you do not specify a
classifier name, then the default classifier is used.

topic

Specify the topic for which a sentiment score must be generated for this document. If
the topic is not specified, then the sentiment score for the entire document is
generated.

9-42 Oracle Text Reference

SET_KEY_TYPE

ttype
Specify the type of search to be performed for this document:

e EXACT: Indicates that the specified search keyword must be searched in the
document. This is the default setting.

e ABOUT: Indicates that the thesaurus must be used to find words that are related
to the search keywords.

radius
Specifies the radius of the surrounding text to be analyzed during sentiment
classification. The default value is 50.

The exact amount of text used for analysis varies from case to case because Oracle
Text attempts to find the best match text segment with respect to nearby topic
keywords, word boundaries, and sentence boundaries.

max_inst
Specify the maximum number of instances/occurrences of the topic that must be
analyzed. The default value for this parameter is 5.

use_saved_copy

Specify whether to refer to the $D table to fetch the copy of the document and what
action to take when the copy of the document is not available in the $D table. The
default value of this parameter is zero.

See Also:

Oracle Text Application Developer’s Guide for an example of using the
SENT IMENT_AGGREGATE procedure

9.21 SET_KEY_TYPE

Use this procedure to set the CTX_DOC procedures to accept either the ROWID or the
PRIMARY_KEY document identifiers. This setting affects the invoking session only.

Syntax
ctx_doc.set_key type(key_type in varchar2);

key_type
Specify either ROWID or PRIMARY_KEY as the input key type (document identifier) for
CTX_DOC procedures.

This parameter defaults to the value of the CTX_DOC_KEY_TYPE system parameter.

Note:

When your base table has no primary key, setting key_type to PRIMARY_KEY
is ignored. The textkey parameter that you specify for any CTX_DOC
procedure is interpreted as a ROWID.

CTX_DOC Package 9-43

SNIPPET

Example

The following example sets CTX_DOC procedures to accept primary key document
identifiers.

begin
ctx_doc.set_key_type("PRIMARY_KEY");
end

9.22 SNIPPET

Use the CTX_DOC.SNIPPET procedure to produce a concordance for a document. The
output of a snippet is a collection of segments. A concordance is a text fragment that
contains a query term with some of its surrounding text. This is also sometimes known
as Key Word in Context or KWIC, because it returns query keywords marked up in
their surrounding text, which enables the user to evaluate them in context. The
returned text can also contain themes that satisfy an ABOUT query.

For example, a search on brillig and slithey might return one relevant fragment of a
document as follows:

"Twas brillig, and the slithey toves did gyre and

CTX_DOC.SNIPPET returns one or more most relevant fragments for a document that
contains the query term. Because CTX_DOC . SNIPPET returns surrounding text, you
can immediately evaluate how useful the returned term is. CTX_DOC.SNIPPET
returns the entire document if no words in the returned text are marked up.

Note that for queries that have predicates used mainly for filtering documents at
query time, the predicates are ignored during SNIPPET generation. The following
predicates are treated as filter predicates for this purpose: SDATA, HASPATH, and
WITHIN/ INPATH searching inside xml attributes.

See Also:

CTX_DOC.POLICY_SNIPPET (page 9-34) for a policy-based version of this
procedure

Syntax
Syntax 1
exec CTX_DOC.SNIPPET(

index_name IN VARCHAR2,

textkey IN VARCHAR2,

text_query IN VARCHAR2,

starttag IN VARCHAR2 DEFAULT "",
endtag IN VARCHAR2 DEFAULT "",
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT "...",
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK
return varchar2

);

Syntax 2

9-44 Oracle Text Reference

SNIPPET

exec CTX_DOC.SNIPPET_CLOB_QUERY(

index_name IN VARCHARZ2,

textkey IN VARCHARZ2,

text_query IN CLOB,

starttag IN VARCHAR2 DEFAULT "",

endtag IN VARCHAR2 DEFAULT "",
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT "...",
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK
return varchar2

):

index_name
Specify the name of the index for the text column.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:
® A single column primary key value

* Anencoded specification for a composite (multiple column) primary key. When
textkey is a composite key, you must encode the composite textkey string using
the CTX_DOC . PKENCODE procedure.

* The rowid of the row containing the document

Use CTX_DOC.SET_KEY_TYPE to toggle between primary key and rowid
identification.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If text_query includes wildcards, stemming, fuzzy matching which result in
stopwords being returned, SNIPPET does not highlight the stopwords.

If text_query contains the threshold operator, the operator is ignored.

starttag
Specify the start tag for marking up the query keywords. Default is '".

endtag
Specify the end tag for marking up the query keywords. Default is '".

entity_translation

Specify if you want HTML entities to be translated. The default is TRUE, which
means that the special entities (<, >, and &) are translated into their alternative forms
(&1, '>', and '&,") when output by the procedure. However, special characters
in the markup tags that are generated by CTX_DOC.SNIPPET will not be translated.

separator
Specify the string separating different returned fragments. Default is '...".

CTX_DOC Package 9-45

SNIPPET

radius

Specify the number of characters to be shown on either side of the hit query in a
segment. The character count before the hit query begins on the first character of the
first hit query displayed in a segment. Accordingly, the character count after the hit
query begins on the last character of the last hit query displayed on a specific
segment. Two segments are merged into one if their radii overlap. The displayed
number of characters on each side may be modified by +/-10 chars to best match the
beginning or ending of a sentence or word.

Special attention is required for the value 0. When specified, the radius is set to
automatic and varies between sentences. A best guess of the results is displayed,
which attempts to match a full sentence. Note that the length of the radius on each
side of the hit query will most likely significantly differ.

The default value is 25.

max_length

Specify the maximum length of the snippet output in characters. This value is
currently upper-bounded by the current return type of CTX_DOC.SNIPPET

(page 9-44) and CTX_DOC.POLICY_SNIPPET (page 9-34) (VARCHAR?2). Should the
output be longer than the return type VARCHAR?2, the result will be truncated. The
default value for max_length is 250.

If you set max_length value to a very low value, no snippet may be generated. For
example, if max_length is set to O or if max_length is lower than the length of
query tokens themselves, no snippet may be generated at all.

use_saved_copy

Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table. The
default value is CTX_DOC. SAVE_COPY_FALLBACK.

You can specify one of the following values for the use_saved_copy parameter:

e CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D
table. If the copy of the document is not present in the $D table, then fetch the
document from the data store.

e CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D
table. If the copy of the document is not present in the $D table, then show an
error message. Specify this value when you want to implement a specific fallback
logic when the copy of the document is not available in the $D table.

e CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

Example

create table tdrbhk0l1 (id number primary key, text varchar2(4000));

insert into tdrbhk01 values (1, "Oracle Text adds powerful search

and intelligent text management to the Oracle

database. Complete. You can search and manage documents, web pages,
catalog entries in more than 150 formats in any language. Provides a
complete text query language and complete character support. Simple. You
can index and search text using SQL. Oracle Text Management can be done
using Oracle Enterprise Manager - a GUI tool. Fast. You can search
millions of documents, document,web pages, catalog entries using the
power and scalability of the database. Intelligent. Oracle Text""s
unique knowledge-base enables you to search, classify, manage

9-46 Oracle Text Reference

THEMES

documents, clusters and summarize text based on its meaning as well as
its content.);

create index tdrbhk01x on tdrbhk01(text) indextype is ctxsys.context;

create or replace function my_snippet_wrapper(
key in varchar2,
query in varchar2,
radius in number,
max_length in number) return varchar2 is
buff varchar2(4000);
begin
buff := ctx_doc.snippet("tdrbhk01x", key, query, "", "", true, "..",
radius, max_length);
return buff;
end;
/
show errors;

select my_snippet_wrapper(“1","Oracle®, 10, 100) from dual;

The result looks something like this:
CTX_DOC.SNIPPET("TDRBHKO1X","1","SEARCH|CLASSIFY")

Text"s unique knowledge-base enables you to search,
classify, manage documents, clusters and summarize

Limitations
CTX_DOC.SNIPPET does not support the use of query templates.

CTX_DOC.SNIPPET displays marked-up keywords in context when used with
NULL_SECTION_GROUP. However, there are limitations when using this procedure
with XML documents. When used with XML_SECT 10N_GROUP or

AUTO_SECT ION_GROUP, the XML structure is ignored and user-specified tags are
stripped out, which results in parts of surrounding text to be included in the returned
snippet.

Related Topics
"POLICY_SNIPPET (page 9-34)"
"HIGHLIGHT (page 9-9)"
"MARKUP (page 9-14)"

9.23 THEMES

Use the CTX_DOC. THEMES procedure to generate a list of themes for a document. You
can store each theme as a row in either a result table or an in-memory PL/SQL table
that you specify.

Syntax 1: In-Memory Table Storage
CTX_DOC. THEMES(

index_name IN VARCHARZ2,
textkey IN VARCHARZ2,
restab IN OUT NOCOPY THEME_TAB,

CTX_DOC Package 9-47

THEMES

full_themes IN BOOLEAN DEFAULT FALSE,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage
CTX_DOC. THEMES(

index_name IN VARCHARZ2,

textkey IN VARCHARZ2,

restab IN VARCHARZ2,

query_id IN NUMBER DEFAULT O,
full_themes IN BOOLEAN DEFAULT FALSE,
num_themes IN NUMBER DEFAULT 50,

use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index for the text column.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:
¢ Asingle column primary key value

* An encoded specification for a composite (multiple column) primary key. When

textkey is a composite key, you must encode the composite textkey string using

the CTX_DOC . PKENCODE procedure.

¢ The rowid of the row containing the document

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE.

restab

You can specify this procedure to store results to either a table or to an in-memory
PL/SQL table.

To store results in a table, specify the name of the table.

See Also:
"Theme Table (page A-8)" in Oracle Text Result Tables (page A-1)

To store results in an in-memory table, specify the name of the in-memory table of
type THEME_TAB. The THEME_TAB datatype is defined as follows:

type theme_rec is record (
theme varchar2(2000),
weight number

);
type theme_tab is table of theme_rec index by binary_integer;

CTX_DOC.THEMES clears the THEME_TAB you specify before the operation.

9-48 Oracle Text Reference

THEMES

query_id
Specify the identifier used to identify the row(s) inserted into restab.

full_themes
Specify whether this procedure generates a single theme or a hierarchical list of
parent themes (full themes) for each document theme.

Specify TRUE for this procedure to write full themes to the THEME column of the
result table.

Specify FALSE for this procedure to write single theme information to the THEME
column of the result table. This is the default.

num_themes
Specify the maximum number of themes to retrieve. For example, if you specify 10,
then up to the first 10 themes are returned for the document. The default is 50.

If you specify 0 or NULL, then this procedure returns all themes in a document. If the
document contains more than 50 themes, then only the first 50 themes show
conceptual hierarchy.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.

You can specify one of the following values for the use_saved_copy parameter:
e CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D

table. If the copy of the document is not present in the $D table, then fetch the
document from the data store.

e CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

e CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.
The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Examples
In-Memory Themes

The following example generates the first 10 themes for document 1 and stores them
in an in-memory table called the_themes. The example then loops through the table
to display the document themes.

declare
the_themes ctx_doc.theme_tab;

begin

ctx_doc.themes("myindex","1",the_themes, num_themes=>10);

for i in 1..the_themes.count loop
dbms_output.put_line(the_themes(i).theme||":"||the_themes(i).weight);
end loop;

end;

Theme Table
The following example creates a theme table called CTX_THEMES:

CTX_DOC Package 9-49

TOKENS

create table CTX_THEMES (query_id number,
theme varchar2(2000),
weight number);

Single Themes

To obtain a list of up to the first 20 themes, where each element in the list is a single
theme, enter a statement like the following example:

begin

ctx_doc.themes("newsindex”,"34",*CTX_THEMES®",1,full_themes => FALSE,
num_themes=> 20);

end;

Full Themes

To obtain a list of the top 20 themes, where each element in the list is a hierarchical list
of parent themes, enter a statement like the following example:

begin

ctx_doc.themes("newsindex", "34","CTX_THEMES®,1,full_themes => TRUE, num_
themes=>20);

end;

9.24 TOKENS

Use this procedure to identify all text tokens in a document. The tokens returned are
those tokens that are inserted into the index. Thesaurus support also enables you to
generate synonyms or broader terms of the queried index tokens. This feature is useful
for implementing document classification, routing, or clustering.

Stopwords are not returned. Section tags are not returned because they are not text
tokens.

Syntax 1: In-Memory Table Storage

CTX_DOC.TOKENS(index_name IN VARCHARZ,
textkey IN VARCHARZ,
restab IN OUT NOCOPY TOKEN_TAB,
thes_name IN VARCHAR2 DEFAULT NULL,

thes_toktype IN VARCHAR2 DEFAULT "SYN®,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

CTX_DOC.TOKENS(index_name IN VARCHARZ2,
textkey IN VARCHAR2,
restab IN VARCHAR2,
thes_name IN VARCHAR2 DEFAULT NULL,
thes_toktype IN VARCHAR2 DEFAULT "SYN®,
query_id IN NUMBER DEFAULT O,

use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index for the text column.

9-50 Oracle Text Reference

TOKENS

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be as follows:
* A single column primary key value

¢ Encoded specification for a composite (multiple column) primary key. To encode
a composite textkey, use the CTX_DOC.PKENCODE (page 9-20) procedure.

® The rowid of the row containing the document

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE (page 9-43).

restab

You can specify that this procedure store results to either a table or to an in-memory
PL/SQL table.

The tokens returned are those tokens that are inserted into the index for the document
(or row) named with textkey. Stop words are not returned. Section tags are not
returned because they are not text tokens.

thes_name

Specify the thesaurus name. If you do not specify a thesaurus name, then no
synonyms or broader terms will be generated. To use the system default thesaurus,
specify DEFAULT.

thes_toktype

Specify SYN to generate synonyms of index tokens. Alternatively, specify BT to
generate broader terms of index tokens. By default, synonyms are generated. To use
this parameter, you must first specify a thesaurus name using the thes_name
parameter.

Specifying a Token Table

To store results to a table, specify the name of the table. Token tables can be named
anything, but must include the columns shown in the following table, with names and
datatypes as specified.

Table 9-2 Required Columns for Token Tables
|

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call
to CTX_DOC.TOKENS (only populated when table is used
to store results from multiple TOKEN calls)

TOKEN VARCHAR2(64) The token string in the text.

OFFSET NUMBER The position of the token in the document, relative to the
start of document which has a position of 1.

LENGTH NUMBER The character length of the token.

CTX_DOC Package 9-51

TOKENS

Specifying an In-Memory Table
To store results to an in-memory table, specify the name of the in-memory table of
type TOKEN_TAB. The TOKEN_TAB datatype is defined as follows:

type token_rec is record (

token varchar2(64),
offset number,
length number

);
type token_tab is table of token_rec index by binary_integer;

CTX_DOC.TOKENS clears the TOKEN_TAB you specify before the operation.

query_id
Specify the identifier used to identify the row(s) inserted into restab.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.

You can specify one of the following values for the use_saved_copy parameter:

e CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D
table. If the copy of the document is not present in the $D table, then fetch the
document from the data store.

e CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

e CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.
The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Example
In-Memory Tokens

The following example generates the tokens for document 1 and stores them in an in-
memory table, declared as the_tokens. The example then loops through the table to
display the document tokens.

declare
the_tokens ctx_doc.token_tab;

begin
ctx_doc.tokens("myindex","1",the_tokens);
for i in 1..the_tokens.count loop
dbms_output.put_line(the_tokens(i).token);
end loop;

end;

9-52 Oracle Text Reference

10

CTX_ENTITY Package

The CTX_ENTITY PL/SQL package is used to locate and classify words and phrases
into categories, such as persons or companies.

CTX_ENTITY contains the following stored procedures and functions.

Name

Description

ADD_EXTRACT_RULE (page 10-1)
ADD_STOP_ENTITY (page 10-5)
COMPILE (page 10-6)

CREATE_EXTRACT_POLICY
(page 10-7)

DROP_EXTRACT_POLICY (page 10-8)
EXTRACT (page 10-8)
REMOVE_EXTRACT_RULE

(page 10-10)

REMOVE_STOP_ENTITY (page 10-10)

Adds a single extraction rule to an extraction policy.
Marks certain entity mentions or entity types as not to be extracted.
Compiles added extraction rules into an extraction policy.

Creates an extraction policy to use.

Drops an extraction policy.

Generates an XML document describing the entities found in an
input document.

Removes a single extraction rule from an extraction policy.

Removes a stop entity from an extraction policy.

Note:

The APIs in the CTX_ENTITY package do not support identifiers that are
prefixed with the schema or the owner name.

10.1 ADD_EXTRACT_RULE

The ADD_EXTRACT_RULE procedure adds a single extraction rule to extract policy.
Invokers add rules into their own extraction policy. Extraction rules have sentence-
wide scopes. Extraction rules have to be case-sensitive except for entity types and rule
operators in the rule expression. Order of rule addition is not important. Addition of a
rule will not be effective until CTX_ENTITY.COMPILE (page 10-6) is executed.
This procedure issues a commit.

Syntax

CTX_ENTITY.ADD_EXTRACT RULE(

policy_name
rule_id
extraction_rule

IN VARCHARZ,
IN INTEGER,
IN VARCHAR2);

CTX_ENTITY Package 10-1

ADD_EXTRACT_RULE

policy_name
Specify the policy name.

rule_id
Specify a unique rule ID within an extraction policy. The rule ID must be greater than

extraction_rule

The rule text in XML format specifies the language, expression, and entities to be
extracted. The rule text follows the XML schema as follows:

<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="rule">
<xsd:sequence>
<xsd:element name="expression” type="xsd:string"/>
<xsd:complexType>
<xsd:attribute name="refid" type="xsd:positivelnteger"/>
</xsd:complexType>
<xsd:element name="comments type="xsd:string" default="\0"/>
</xsd:sequence>
</xsd:attribute name="language" type="xsd:string" default="ALL"/>
</xsd:element>
</xsd:schema>

Where:

* The language attribute of the rule tag specifies the applied language for the rule.
The rule will only be applied to documents that are of the specified languages.
The language attribute can be left out, or set to "ALL" if the rule is to match on all
documents.

¢ The expression tag contains the posix regular expression that will be used in the
matching.

* The comments tag allows users to associate any comments with this user rule.

¢ The type tag assigns the extracted entity text to a given entity type. The refid
attribute of the type tag specifies which backreference in the regular expression
corresponds to the actual entity. The entity type can be one of the Oracle supplied
types, listed in Table 10-1 (page 10-2), or it can be a user-defined type, which

non

must be prefixed with the letter "x".

Supplied Entity Explanation Examples

Type

building A particular building White House

city New York

company Oracle Corporation
country United States
currency Dollar

date July 4

day Monday, Tuesday
email_address person@example.com

10-2 Oracle Text Reference

ADD_EXTRACT_RULE

Example 1

Supplied Entity
Type

Explanation

Examples

geo_political

holiday

location_other

month

non_profit

organization_ot
her

percent

person_jobtitle

person_name

person_other

phone_number
postal_address
product

region

ssn

state
time_duration
tod

url

zip_code

A political or strategic
organization

Name of a country
holiday

Other types of
locations

Non-profit
organization

Other types of
organizations

Expressed as number
and %

Person referred to by
title

Person referred to by
name

Other types of persons

Social Security Number
A state or province

A length of time

Time of day

Web address

Zip Code

United Nations

Labor Day

Atlantic Ocean

June, July

Red Cross

Supreme Court

10%

President, Professor

John Doe

Other types of persons (for
example, criminal)

(123)-456-7890
Redwood Shores, CA
Oracle Text

North America
123-45-6789
California

10 seconds

8:00 AM
www.example.com

CA 94065

The following example shows how to define an extraction rule and associate it with an
entity extraction policy. The following rule defines a simple extraction rule for finding
email addresses in documents.

begin
ctx_entity.add_extract_rule("poll”, 1,
“<rule>
<expression>email is (\w+@\w+\.\w+)</expression>
<type refid = "1">email_address</type>
</rule>");

CTX_ENTITY Package 10-3

ADD_EXTRACT_RULE

end;
/

Where:

¢ Given the sentence: "My email address is jdoe@company.com”, this extraction rule
will extract "jdoe@company.com” as an entity of type emai l_address.

® The rule is added to the extraction policy called pol 1.
* Theruleis added with rule ID of 1.
e This XML description of the rule is as follows:

— The language attribute of the rule tag is left empty, so the rule will apply to all
languages.

— The expression tag contains the regular expression to use in the extraction.

— The value of the type element and the refid attribute of the type tag specify
that the first backreference corresponds to the text of the entity.

Example 2

The following rule defines a simple extraction rule for finding phone numbers in
documents:
begin
ctx_entity.add_extract_rule("poll”, 2,
"<rule language="english">
<expression>(\(d{3}\) \d{3}-\d{3}-\d{4})</expression>
<comments>Rule for phone numbers</comments>
<type refid="1">email_address</type>
</rule>";
end;
/

Where:

e Given the sentence: "I can be contacted at (123) 456-7890", this extraction rule will
extract "(123) 456-7890" as an entity of type phone_number.

¢ Therule is added to the extraction policy called pol1.
¢ Therule is added with rule ID of 2.
* The XML description of the rule is as follows:

— The language attribute of the rule tag is set to english, so the rule will only
apply to English documents.

— The expression tag contains the regular expression to use in the extraction.

— The value of the type element and the refid attribute of the type tag specify
that the first backreference corresponds to the text of the entity.

— Explanatory comments are associated with this rule.

10-4 Oracle Text Reference

ADD_STOP_ENTITY

10.2 ADD_STOP_ENTITY

This procedure is used to mark certain entity mentions or entity types as not to be
extracted. Invokers add stop entities to their own extraction policy. It does not take
effect until after CTX_ENTITY.COMPILE (page 10-6) is run. Either
entity_name or entity_type can be NULL, but not both. If one stop entity is a
subset of another, it will be marked as a subset after CTX_ENTITY .COMPILE, and not
used in extraction. This procedure issues a commit.

Syntax
CTX_ENTITY.ADD_STOP_ENTITY(
policy_name IN VARCHARZ,
entity_name IN INTEGER,
entity_type IN VARCHAR2 DEFAULT NULL,
comments IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the policy name of the stop entity that is to be added.

entity_name
Specify the entity name to be listed as a stop entity. If entity_type is NULL, all
mentions with this entity_name will be listed as stop entities. It is case-sensitive.

entity_type

If entity_name is NULL, this will specify an entire entity type to be listed as stop
entity. If entity_name is not NULL, this will specify only the mention
<entity_type, entity_name> as a stop entity. It is case-insensitive. The
maximum byte length is 4000 bytes.

comments
The maximum byte length is 4000 bytes.

Example

The following example adds a stop entity corresponding to all persons. After
compilation, extraction will not report any mentions of entity type person.

exec ctx_entity.add_stop_entity("poll®, NULL, "person®);

The following example adds a stop entity corresponding to <*person®, *john
doe">. After compilation, extraction will not report any mentions of the pair
<"person®, "john doe">. This stop entity is actually a subset of the first stop
entity added. It will be marked subset in the CTX_USER_EXTRACT_STOP_ENTITIES
(page G-17) view, and will not be used in extraction.

exec ctx_entity.add_stop_entity("poll®, "john doe", "person®);

The following example adds a stop entity corresponding to all mentions of ford.
After compilation, extraction will not report any mentions of the entity ford,
irrespective of the entity type of the mention. For example, if a rule matches ford to a

person, the extraction will not report this match. If a rule matches ford to a company,
the extraction will again not report this match.

exec ctx_entity.add_stop_entity("poll®, "ford", NULL);

CTX_ENTITY Package 10-5

COMPILE

Related Topics
"COMPILE (page 10-6)"
"CTX_USER_EXTRACT_STOP_ENTITIES (page G-17)"

10.3 COMPILE

This procedure compiles added extraction rules into an extraction policy. It can also be
used to compile added stop entities into an extraction policy. Users have to invoke this
procedure if they have added any rules or stop entities to their policy.

Invokers compile rules and stop entities into their own extraction policy. Users can
choose to compile added rules, added stop entities, or both.

After compilation, the CTX_USER_EXTRACT_RULES (page G-16) and
CTX_USER_EXTRACT_STOP_ENTITIES (page G-17) views will show which
rules and stop entities are being used in the entity extraction.

Syntax

CTX_ENTITY.COMPILE(
policy_name IN VARCHARZ,
compile_choice IN NUMBER DEFAULT COMPILE_ALL,
locking IN NUMBER DEFAULT LOCK_NOWAIT_ERROR);

policy_name
Specify the policy name that is to be compiled.

compile_choice
Specify the entity name to be listed as a stop entity. If entity_type is NULL, all
mentions with this entity_name will be listed as stop entities. It is case-sensitive.

The options are COMPILE_ALL, COMPILE_RULES, and COMPILE_STOP_ENTITIES.
COMPILE_ALL compiles both rules and stop entities. COMP ILE_RULES compiles only
rules. COMPILE_STOP_ENTITIES compiles only stop entities.

locking
The maximum byte length is 4000 bytes. Configure how COMP ILE deals with the
situation where another COMP ILE is already running on the same policy.

The options for locking are:

e CTX_ENTITY.LOCK_WAIT

If another compile is running, wait until the running compile is complete, then
begin compile. (In the event of not being able to get a lock, it will wait forever and
ignore the maxtime setting.).

o CTX_ENTITY.LOCK_NOWAIT

If another compile is running, immediately returns without error.

e CTX_ENTITY.LOCK_NOWAIT_ERROR

If another sync is running, error "DRG-51313: timeout while waiting for DML or
optimize lock" is raised.

Example

The following example compiles the policy using the default setting:

10-6 Oracle Text Reference

CREATE_EXTRACT_POLICY

exec ctx_entity.compile("poll®);

The following example compiles only the stop entities for the policy:

exec ctx_entity.compile("poll®, CTX_ENTITY.COMPILE_STOP_ENTITIES);

The following example compiles both rules and stop entities. If a lock exists, the
function returns immediately, but does not raise an error.

exec ctx_entity.compile("poll®, CTX_ENTITY.COMPILE_ALL,
CTX_ENTITY.LOCK_NOWAIT);

Related Topics

"CTX_USER_EXTRACT_RULES (page G-16)"

"CTX_USER_EXTRACT_STOP_ENTITIES (page G-17)"

10.4 CREATE_EXTRACT_POLICY

The CREATE_EXTRACT_POLICY procedure creates an extraction policy to use. This
policy can only be used by the policy owner.

Syntax

CTX_ENTITY.CREATE_EXTRACT_POLICY(
policy_name IN VARCHAR2,
lexer IN VARCHAR2 DEFAULT NULL,
include_supplied_rules IN BOOLEAN DEFAULT TRUE,
include_supplied_dictionary IN BOOLEAN DEFAULT TRUE

policy_name
Specify the name of the new extraction policy.

lexer

Specify the name of the lexer preference. Only AUTO_LEXER (page 2-33) is
supported. If not specified, CTXSYS.DEFAULT_EXTRACT_LEXER (page 2-103)
will be used. The attributes index_stems and deriv_stems are not allowed.

include_supplied_rules
Specify whether Oracle-supplied rules are included in entity extraction. If false,
automatic acronym resolution will be turned off. The default is true.

include_supplied_dictionary
Specify whether the Oracle-supplied dictionary is included in entity extraction. The
default is true.

Examples

The following example creates an extraction policy using the default settings. By
default, the Oracle-supplied features, such as rules and dictionary, are enabled.

exec CTX_ENTITY.CREATE_EXTRACT POLICY("pol1®);

The following example creates an extraction policy that explicitly specifies certain
parameters. It specifies the lexer to be used as my lex, which must be an

CTX_ENTITY Package 10-7

DROP_EXTRACT_POLICY

AUTO_LEXER (page 2-33) preference. It also includes the Oracle-supplied rules, but
disables the Oracle-supplied dictionary.

exec CTX_ENTITY.CREATE_EXTRACT POLICY(*pol2”, "mylex", TRUE, FALSE);

Related Topics
"AUTO_LEXER (page 2-33)"
"CTXSYS.DEFAULT_EXTRACT_LEXER (page 2-103)"

10.5 DROP_EXTRACT_POLICY

The DROP_EXTRACT_POLICY procedure drops an extraction policy. These policies can
only be dropped by the policy owner. This procedure issues a commit.

Syntax

CTX_ENTITY.DROP_EXTRACT_POLICY(
policy_name IN VARCHAR2
);

policy_name
Specify the name of the extraction policy to be dropped.

Example
The following example drops the extraction policy pol2:

exec ctx_entity.drop_extract_policy("pol2%);

10.6 EXTRACT

The EXTRACT procedure runs entity extraction on a given document and generates an
XML document describing the entities found in the document. The XML document
will give the entity text, type, and location of the entity in the document. The
extraction will use the settings (rules, stop entities, and dictionary) defined in the
given extraction policy.

Entity type names in the result will be uppercased. Invokers can run extraction using
their own extraction policy.

Before execution, you have to issue CTX_ENTITY_.COMPILE (page 10-6).

Syntax

CTX_ENTITY.EXTRACT(
policy_name IN VARCHARZ2,
document IN CLOB,
language IN VARCHARZ,
result IN OUT NOCOPY CLOB,
entity_type_list IN CLOB DEFAULT NULL

);

policy_name
Run extraction using the given policy.

10-8 Oracle Text Reference

EXTRACT

document
The input document to run extraction on.

If entity_type is NULL, all mentions with this entity_name will be listed as stop
entities. It is case-sensitive.

language
Only English is supported.

result
A CLOB containing the XML description of the entities extracted from the document.

If entity_type is NULL, all mentions with this entity_name will be listed as stop
entities. It is case-sensitive.

entity_type_list

Specify that extraction will only consider a subset of entity types. The

entity type listisacomma-delimited list. If the entity type listisnot
specified, the entity extraction will consider all entity types.

Example

The following example shows the results of entity extraction on an example document.
Suppose that we have created an extraction policy called pol1, and we are given the
input document:

Sam A. Schwartz retired as executive vice president of Hupplewhite INc. in New York.

We then call the ctx_entity.extract procedure to generate an XML document
containing the entities in this document. We insert the results CLOB into a table called
entities for future viewing.

declare
myresults clob;

begin
select txt into mydoc from docs where id=1;
ctx_entity._extract("pl”, mydoc, null, myresults);
insert into entities values(l, myresults);
commit;
end;

/

Then we can examine the extracted entities from the entities table. Note that each
entity is tagged with its location in the input document, as well as the source used to
classify the entity.

<entities>

<entity id="0" offset="75" length="8" source="SuppliedDictionary">
<text>New York</text>

<type>city</type>

</entity>

<entity id="1" offset="55" length="16" source="SuppliedRule>
<text>Hupplewhite Inc.</text>

<type>company</type>

</entity>

<entity id="2" offset="27" length="24" source="SuppliedDictionary">
<text>Sam A. Schwartz</text>

<type>person_name</type>

</entity>

<entity id="4" offset="75" length="8" source="SuppliedDictionary">

CTX_ENTITY Package 10-9

REMOVE_EXTRACT_RULE

<text>New York</text>
<type>state</type>
</entity>

</entities>

10.7 REMOVE_EXTRACT_RULE

The REMOVE_EXTRACT_RULE procedure removes an extraction rule from the specified
policy given a rule_id. Only the owner of the specified policy can remove an
extraction rule from the policy. Removal of the extraction rule will be in effect after
running CTX_ENTITY_COMPILE (page 10-6).

Syntax

CTX_ENTITY.REMOVE_EXTRACT_RULE(
policy_name IN VARCHARZ,
rule_id IN INTEGER

);

policy_name
Remove the extraction rule from the specified policy.

rule_id
Specify the rule ID of the extraction rule to be removed.

Example
The following example removes the extraction rule with ID 1 from the policy pol1:

exec ctx_entity.remove_extract_rule("poll®, 1);

10.8 REMOVE_STOP_ENTITY

The REMOVE_STOP_ENTITY procedure removes a stop entity from an extraction
policy. Only the owner of the specified policy can remove a stop entity from the
policy. Removal of the stop entity will be in effect after running
CTX_ENTITY.COMPILE (page 10-6). Either the entity_name or entity_type
can be null, but not both.

Syntax

CTX_ENTITY.REMOVE_STOP_ENTITY(
policy_name IN VARCHAR2,
entity_name IN INTEGER DEFAULT NULL,
entity type IN VARCHAR2 DEFAULT NULL

)i

policy_name
Remove the stop_entity from the specified policy.

entity_name

Specify the name to be removed from the stop entity list. The stop_entity must
have already been added to the stop_entity list using
CTX_ENTITY.ADD_STOP_ENTITY (page 10-5).

10-10 Oracle Text Reference

REMOVE_STOP_ENTITY

entity_type

Specify the type of entity to be removed from the stop entity list. The stop_entity
must have already been added to the stop entity list using
CTX_ENTITY.ADD_STOP_ENTITY (page 10-5).

Example

exec ctx_entity.remove_stop_entity("poll®, NULL, "person_name®);

The example statement removes the stop entity corresponding to all mentions of the
entity_type person_name from the policy pol 1. After execution, this stop entity
will be marked as "to be deleted" in the CTX_USER_EXTRACT _STOP_ENTITIES
(page G-17) view. The removal of the stop entity will take effect once the user
runs CTX_ENTITY.COMPILE (page 10-6).

Related Topics

"COMPILE (page 10-6)"

"ADD_STOP_ENTITY (page 10-5)"
"CTX_USER_EXTRACT_STOP_ENTITIES (page G-17)"

CTX_ENTITY Package 10-11

REMOVE_STOP_ENTITY

10-12 Reference

11

CTX_OUTPUT Package

This chapter provides reference information for using the CTX_OUTPUT PL/SQL

package.

CTX_OUTPUT contains the following stored procedures:

Name

Description

ADD_EVENT (page 11-2)
ADD_TRACE (page 11-2)

DISABLE_QUERY_STATS
(page 11-4)

ENABLE_QUERY_STATS
(page 11-4)

END_LOG (page 11-5)

END_QUERY_LOG
(page 11-6)

GET_TRACE_VALUE
(page 11-6)

LOG_TRACES (page 11-7)
LOGFILENAME (page 11-7)

REMOVE_EVENT
(page 11-7)

REMOVE_TRACE
(page 11-8)

RESET_TRACE (page 11-8)
START_LOG (page 11-9)

START_QUERY_LOG
(page 11-10)

Adds an event to the index log.
Enables tracing.

Turns off the gathering of query stats for the index.

Enables gathering of query stats for the index.

Halts logging of index and document services requests.

Stops logging queries into a logfile.

Returns the value of a trace.

Prints traces to logfile.
Returns the name of the current log file.

Removes an event from the index log.

Disables tracing.

Clears a trace.
Starts logging index and document service requests.

Creates a log file of queries.

Note:

The APIs in the CTX_OUTPUT package do not support identifiers that are
prefixed with the schema or the owner name.

CTX_OUTPUT Package 11-1

ADD_EVENT

11.1 ADD_EVENT

Use this procedure to add an event to the index log for a more detailed log output or
to enable error tracing for Oracle Text errors. Index logs are now appended to the
database trace files.

Syntax
CTX_OUTPUT.ADD_EVENT(event in NUMBER, errnum in NUMBER := null);

event
Specify the type of index event to log. You can add the following events:

e CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID, which logs the rowid of each row
as it is indexed. This is useful for debugging a failed index operation.

e CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN, which prints the each token as it is
being indexed.

e CTX_OUTPUT.EVENT_DRG_DUMP_ERRORSTACK, which prints the stack trace for
the specified DRG error in the log. An error will be raised if errnum is not
specified.

Note: CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN, which prints each token

as it is being optimized, and CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN,

which prints each token as it is being indexed, are disabled when using PDB
lockdown profile CTX_PROTOCOLS.

errnum
Specify the DRG error number for a
CTX_OUTPUT.EVENT_DRG_DUMP_ERRRORSTACK event.

Example

begin
CTX_OUTPUT.ADD_EVENT(CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID);
end;

Related Topics
"REMOVE_EVENT (page 11-7)"

11.2 ADD_TRACE

Use this procedure to enable a trace. If the trace has not been enabled, this call adds
the trace to the list of active traces and resets its value to 0. If the trace has already been
enabled, an error is raised.

Syntax
CTX_OUTPUT.ADD_TRACE(trace_id BINARY_INTEGER);

11-2 Oracle Text Reference

ADD_TRACE

trace_id

Specify the ID of the trace to enable. See Table 11-1 (page 11-3) for possible trace

values.

Notes

Table 11-1 (page 11-3) shows the available traces:

Table 11-1 Available Traces

Symbol ID Metric
TRACE_I1DX_USER_DATASTORE 1 Time spent executing user datastore
TRACE_IDX_AUTO_FILTER 2 Time spent invoking the AUTO_FILTER filter.
(Replaces the deprecated
TRACE_IDX_INSO_FILTER trace)
TRACE_QRY_XX_TIME 3 Time spent executing the $X cursor
TRACE_QRY_XF_TIME 4 Time spent fetching from $X
TRACE_QRY_X_ROWS 5 Total number of rows whose token metadata was
fetched from $X
TRACE_QRY_IF_TIME 6 Time spent fetching the LOB locator from $1
TRACE_QRY_IR_TIME 7 Time spent reading $1 LOB information
TRACE_QRY_I_ROWS 8 Number of rows whose $1 token_info was
actually read
TRACE_QRY_I1_SIZE 9 Number of bytes read from $1 LOBs
TRACE_QRY_R_TIME 10 Time spent fetching and reading $R information
TRACE_QRY_CON_TIME 11 Time spent in CONTAINS processing
(drexrcontains/drexrstart/drexrfetch)
TRACE_QRY_S_TIME 15 Time spent fetching and reading $S information
TRACE_QRY_O_TIME 19 Time spent reading $0 information
TRACE_QRY_D_TIME 23 Time spent reading $D information
TRACE_QRY_SNIPPET_TIME 25 Time spent extracting a snippet from a document
TRACE_HIL_DOCSERV_TIME 26 Time spent by document service procedures

(snippet, highlight, and markup)

Tracing is independent of logging. Logging does not have to be on to start tracing, and

vice-versa.

Traces are associated with a session—they can measure operations that take place
within a single session, and conversely, cannot make measurements across sessions.

CTX_OUTPUT Package 11-3

DISABLE_QUERY_STATS

During parallel sync or optimize, the trace profile will be copied to the slave sessions if
and only if tracing is currently enabled. Each slave will accumulate its own traces and
implicitly write all trace values to the slave logfile before termination.

Related Topics

"REMOVE_TRACE (page 11-8)"
"GET_TRACE_VALUE (page 11-6)"
"LOG_TRACES (page 11-7)"
"RESET_TRACE (page 11-8)"

Oracle Text Application Developer’s Guide

11.3 DISABLE_QUERY_STATS

Disables gathering of query stats for the index.

Syntax

ctx_output.disable_query_stats(
index_name IN VARCHAR2

);

index_name
The name of the index on which query stats collection is to be disabled.

Example
Turn off gathering of query stats for the index myindex.
CTX_OUTPUT.DISABLE_QUERY_STATS(myindex);

Notes

Once the query stats is disabled for an index, gathering and storing query-related
metadata is stopped for that index. All the entries corresponding to that index are
cleared from the dictionary tables. An error is returned if you call this procedure on an
index where query stats is not enabled.

Related Topics
CTX_OUTPUT."ENABLE_QUERY_STATS (page 11-4)"
CTX_REPORT."INDEX_STATS (page 13-6)"

11.4 ENABLE_QUERY_STATS

Enables gathering of query stats for the index. To have query-related metadata stored
for the index, use this procedure to enable collection of statistics on that index. You
can only access the gathered metadata when ctx_output._enable_query_stats is
turned on for the index.

11-4 Oracle Text Reference

END_LOG

Note:

Accessing the query stats metadata only works when

ctx _output.enable_query_ stats is turned on for the index. Please see
CTX_REPORT."INDEX_STATS (page 13-6)" for the list of gathered query
stats metadata.

Syntax

ctx_output.enable_query_stats(
index_name IN VARCHAR2

):

index_name
The name of the index on which query stats collection is to be enabled.

Example
Turn on gathering of query stats for the index myindex.

CTX_OUTPUT.ENABLE_QUERY_STATS(myindex);

Notes

The information that shows whether query stats is enabled on an index is available in
the views: CTX_INDEXES and CTX_USER_INDEXES under the column

idx_query_ stats_enabled, which is in both of these views. If query_stats is
enabled for an index, then the column displays YES; if not, then the column displays
NO.

The data corresponding to the query statistics will be stored in persistent dictionary
tables. Once statistics has been enabled for a particular index, query statistics will
be collected for that index from all sessions.

If you call this procedure for an index where query stats is already enabled, then an
error is thrown.

Statistics collection has a minimal effect on query performance.

Related Topics
CTX_OUTPUT."DISABLE_QUERY_STATS (page 11-4)"
CTX_REPORT."INDEX_STATS (page 13-6)".

11.5 END_LOG

This procedure halts logging index and document service requests.

Syntax
ctx_output.end_log;

Example

begin
CTX_OUTPUT.END_LOG;
end;

CTX_OUTPUT Package 11-5

END_QUERY_LOG

11.6 END_QUERY_LOG

Use this procedure to stop logging queries into the database trace files.

Syntax

ctx_output.end_query_log;

Example

begin

CTX_OUTPUT.START_QUERY_LOG("mylogl®);
< get queries >
CTX_OUTPUT.END_QUERY_LOG;

end;

11.7 GET_TRACE_VALUE

Use this procedure to programmatically retrieve the current value of a trace.

Syntax
CTX_OUTPUT.GET_TRACE_VALUE(trace_id BINARY_INTEGER);

trace_id
Specify the trace ID whose value you want. See Table 11-1 (page 11-3) for possible
values.

Example
This sets the value of the variable value:

value := ctx_output.get_trace_value(trace_id);

Notes
You can also retrieve trace values through SQL:

select * from ctx_trace_values;

See "CTX_TRACE_VALUES (page G-15)" for the entries in the CTX_TRACE_VALUES
view.

If the trace has not been enabled, an error is raised.
Traces are not reset to 0 by this call.

Traces are associated with a session—they can measure operations that take place
within a single session, and conversely, cannot make measurements across sessions.

Related Topics
"REMOVE_TRACE (page 11-8)"
"ADD_TRACE (page 11-2)"
"LOG_TRACES (page 11-7)"

11-6 Oracle Text Reference

LOG_TRACES

"RESET_TRACE (page 11-8)"
Oracle Text Application Developer’s Guide

11.8 LOG_TRACES

Use this procedure to print all active traces to the RDBMS trace files.

Syntax
CTX_OUTPUT.LOG_TRACES;

Notes
Traces are not reset to 0 by this call.

The traces now go to the database trace files.

Related Topics

"REMOVE_TRACE (page 11-8)"
"GET_TRACE_VALUE (page 11-6)"
"ADD_TRACE (page 11-2)"
"RESET_TRACE (page 11-8)"

Oracle Text Application Developer’s Guide

11.9 LOGFILENAME

Returns the current session's trace file name. An error occurs if logging is not started.

Syntax
CTX_OUTPUT.LOGFILENAME RETURN VARCHAR2;

Returns

Log file name

Example

declare

logname varchar2(100);
begin

logname := CTX_OUTPUT.LOGFILENAME;
dbms_output.put_line("The current log file is: "||logname);
end;

11.10 REMOVE_EVENT

Use this procedure to remove an event added through ctx_output.add_event.

Syntax
CTX_OUTPUT.REMOVE_EVENT(event in NUMBER);

CTX_OUTPUT Package 11-7

REMOVE_TRACE

event
Specify the type of index event to remove from the log. You can remove the following
events:

e CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID, which logs the rowid of each row
after it is indexed. This is useful for debugging a failed index operation.

e CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN, which prints each token as it is being
optimized.

e CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN, which prints the each token as it is
being indexed.

Example

begin

CTX_OUTPUT.REMOVE_EVENT (CTX_OUTPUT.EVENT _INDEX_PRINT_ROWID);
end;

Related Topics
"ADD_EVENT (page 11-2)"

11.11 REMOVE_TRACE

Use this procedure to disable a trace.

Syntax
CTX_OUTPUT.REMOVE_TRACE(trace_id BINARY_INTEGER);

trace_id
Specify the ID of the trace to disable. See Table 11-1 (page 11-3) for possible values.

Notes

If the trace has not been enabled, an error is raised.

Related Topics
"GET_TRACE_VALUE (page 11-6)"
"ADD_TRACE (page 11-2)"
"LOG_TRACES (page 11-7)"
"RESET_TRACE (page 11-8)"

Oracle Text Application Developer’s Guide

11.12 RESET_TRACE

Use this procedure to clear a trace (that is, reset it to 0).

11-8 Oracle Text Reference

START_LOG

Syntax
CTX_OUTPUT.RESET_TRACE(trace_id BINARY_INTEGER);

trace_id
Specify the ID of the trace to reset. See Table 11-1 (page 11-3) for possible values.

Notes

If the trace has not been enabled, an error is raised.

Related Topics

"REMOVE_TRACE (page 11-8)"
"GET_TRACE_VALUE (page 11-6)"
"ADD_TRACE (page 11-2)"
"LOG_TRACES (page 11-7)"

Oracle Text Application Developer’s Guide

11.13 START_LOG

Begin logging index and document service requests. Starting with Oracle Database 12c
Release 2 (12.2), the index logs are written to the database trace files.

Syntax
CTX_OUTPUT.START_LOG(logfile in varchar2, overwrite in default true);

logfile

Specify the name of the log file. Starting with Oracle Database 12c Release 2 (12.2), the
logfile parameter is ignored. The logs are now appended to the database trace files.
Use the dictionary views such as VSDIAG_INFO and V$PROCESS to find the path to
your current session's trace file or to the trace file for each Oracle Database process.

The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility can also
be used to access the trace files.

overwrite

Specify whether you want to overwrite or append to the original query log file
specified by logfile, if it already exists. Starting with Oracle Database 12c Release 2
(12.2), this parameter is ignored. By default, all logs are appended to the database
trace file.

Examples

begin
CTX_OUTPUT.START_LOG("mylogl*);
end;

To view the indexing logs, search for COMPONENT_NAME="CONTEXT_INDEX” in view
V$DIAG_TRACE_FILE_CONTENTS:

select PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where COMPONENT NAME="CONTEXT_INDEX"
and TRACE_FILENAME = trc_nane;

CTX_OUTPUT Package 11-9

START_QUERY_LOG

To view the query logs, search for COMPONENT_NAME=~CONTEXT_QUERY~ in view V
$DIAG_TRACE_FILE_CONTENTS:

select PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where COMPONENT_NAME="CONTEXT_QUERY"
and TRACE_FILENAME = trc_nane;

Parallel Query (PQ) Slaves have trace filenames of the type: SID_pxxx_PID.trc. To
see the traces in the parallel slaves:

select TRACE_FILENAME, PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where
COMPONENT_NAME="CONTEXT_INDEX" and TRACE_FILENAME LIKE "%p00%";

Notes
No logs are written if the PDB lockdown profile CTX_LOGGING is enabled.
Logging does not have to be on to start tracing, and vice-versa.

Logging is associated with a session-it can log operations that take place within a
single session, and, conversely, cannot make measurements across sessions.

Filenames used in CTX_OUTPUT .START_LOG are restricted to the following
characters: alphanumeric, minus, period, space, hash, underscore, single and double
quotes. Any other character in the filename will raise an error.

11.14 START_QUERY_LOG

Begin logging query requests. Starting with Oracle Database 12c Release 2 (12.2), the
query logs are written to the database trace files.

Use CTX_OUTPUT .END_QUERY_LOG to stop logging queries. Use
CTX_REPORT.QUERY_LOG_SUMMARY to obtain reports on logged queries, such as
which queries returned successfully the most times.

The query log includes the query string, the index name, and the timestamp of the
query, as well as whether or not the query successfully returned a hit. A successful
query for the phrase Blues Guitarists made at 6:46 (local time) on November 11th, 2003,
would be entered into the query log in this form:

<QuerySet><TimeStamp>18:46:51 02/04/03</TimeStamp><IndexName>
I1DX_SEARCH_TABLE</ IndexName><Query>Blues
Guitarists</Query><ReturnHit>Yes</ReturnHit></QuerySet>

Syntax
CTX_OUTPUT.START_QUERY_LOG(logfile in varchar2, overwrite in default true);

logfile

Specify the name of the query log file. Starting with Oracle Database 12¢ Release 2
(12.2), the logfi le parameter is ignored. The logs are appended to the database
trace files instead. Use the dictionary views such as VSDIAG_INFO and V$PROCESS
to find the path to your current session's trace file or to the trace file for each Oracle
Database process.

The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility can also
be used to access the trace files.

11-10 Oracle Text Reference

START_QUERY_LOG

overwrite

Specify whether you want to overwrite or append to the original query log file
specified by logfile, if it already exists. Starting with Oracle Database 12c Release 2
(12.2), this parameter is ignored. By default, all logs are appended to the database
trace file.

Example

begin

CTX_OUTPUT.START _QUERY_LOG("mylogl®);
< get queries >
CTX_OUTPUT.END_QUERY_LOG;

end;

Notes
No logs are written if the PDB lockdown profile CTX_LOGGING is enabled.

Filenames used in CTX_OUTPUT .START_QUERY_LOG are restricted to the following
characters: alphanumeric, minus, period, space, hash, underscore, single and double
quotes. Any other character in the filename will raise an error.

Logging is associated with a session-it can log operations that take place within a
single session, and, conversely, cannot make measurements across sessions.

CTX_OUTPUT Package 11-11

START_QUERY_LOG

11-12 Reference

12

CTX_QUERY Package

This chapter describes the CTX_QUERY PL/SQL package you can use for generating
query feedback, counting hits, and creating stored query expressions.

The CTX_QUERY package includes the following procedures and functions:

Name

Description

BROWSE_WORDS
(page 12-1)

COUNT_HITS (page 12-4)

EXPLAIN (page 12-4)

HFEEDBACK (page 12-7)

REMOVE_SQE (page 12-10)

RESULT_SET (page 12-11)

RESULT_SET_CLOB_QUERY
(page 12-20)

RESULT_SET_DOCUMENT
(page 12-21)

STORE_SQE (page 12-21)

Returns the words around a seed word in the index.

Returns the number hits to a query.

Generates query expression parse and expansion
information.

Generates hierarchical query feedback information (broader
term, narrower term, and related term).

Removes a specified stored query expression from the SQL
tables.

Executes a query and generates a result set.

Executes a query and generates a result set based on a CLOB
query parameter.

Holds the result set document after the CONTAINS query
cursor is explicitly closed and if the query template has the
<ctx_result_set_descriptor> element.

Executes a query and stores the results in stored query
expression tables.

Note:

You can use this package only when your index type is CONTEXT. This
package does not support the CTXCAT index type.

The APIs in the CTX_QUERY package do not support identifiers that are
prefixed with the schema or the owner name.

12.1 BROWSE_WORDS

This procedure enables you to browse words in an Oracle Text index. Specify a seed
word and BROWSE_WORDS returns the words around it in the index, and an
approximate count of the number of documents that contain each word.

CTX_QUERY Package 12-1

BROWSE_WORDS

This feature is useful for refining queries. You can identify the following words:
¢ Unselective words (words that have low document count)

e Misspelled words in the document set

Syntax 1: To Store Results in Table

ctx_query.browse_words(

index_name IN VARCHAR2,

seed IN VARCHAR2,

restab IN VARCHAR2,

browse_id IN NUMBER DEFAULT O,

numwords IN NUMBER DEFAULT 10,

direction IN VARCHAR2 DEFAULT BROWSE_AROUND,
part_name IN VARCHAR2 DEFAULT NULL

);

Syntax 2: To Store Results in Memory

ctx_query.browse_words(

index_name IN VARCHAR2,

seed IN VARCHAR2,

resarr IN OUT BROWSE_TAB,

numwords IN NUMBER DEFAULT 10,

direction IN VARCHAR2 DEFAULT BROWSE_AROUND,
part_name IN VARCHAR2 DEFAULT NULL

);

index

Specify the name of the index. You can specify schema.name. Must be a local index.

seed

Specify the seed word. This word is lexed before browse expansion. The word need
not exist in the token table. seed must be a single word. Using multiple words as the
seed will result in an error.

restab

Specify the name of the result table. You can enter restab as schema.name. The
table must exist before you call this procedure, and you must have INSERT
permissions on the table. This table must have the following schema.

Column Datatype
browse_id number
word varchar2(64)
doc_count number

Existing rows in restab are not deleted before BROWSE_WORDS is called.

resarr
Specify the name of the result array. resarr is of type ctx_query.browse_tab.

12-2 Oracle Text Reference

BROWSE_WORDS

type browse_rec is record (
word varchar2(64),
doc_count number

);

type browse_tab is table of browse_rec index by binary_integer;

browse_id

Specify a numeric identifier between 0 and 232. The rows produced for this browse
have a value of in the browse_id column in restab. When you do not specify
browse_id, the defaultis 0.

numwords
Specify the number of words returned.

direction
Specify the direction for the browse. You can specify one of:

value behavior
BEFORE Browse seed word and words alphabetically before the seed.
AROUND Browse seed word and words alphabetically before and

after the seed.

AFTER Browse seed word and words alphabetically after the seed.

Symbols CTX_QUERY .BROWSE_BEFORE, CTX_QUERY . BROWSE_AROUND, and
CTX_QUERY .BROWSE_AFTER are defined for these literal values as well.

part_name
Specify the name of the index partition to browse.

Example
Browsing Words with Result Table

begin
ctx_query.browse_words("myindex", *dog", "myres" ,numwords=>5,direction=>"AROUND");
end;

select word, doc_count from myres order by word;

WORD DOC_COUNT
CZAR 15
DARLING 5

DOC 73

DUNK 100

EAR 3

Browsing Words with Result Array

set serveroutput on;
declare
resarr ctx_query.browse_tab;
begin
ctx_query.browse_words("myindex", *dog",resarr,5,CTX_QUERY_BROWSE_AROUND);
for 1 in 1..resarr.count loop
dbms_output.put_line(resarr(i).word || ":" || resarr(i).doc_count);

CTX_QUERY Package 12-3

COUNT_HITS

end loop;
end;

12,2 COUNT_HITS

Returns the number of hits for the specified query. You can call COUNT_HITS in exact
or estimate mode. Exact mode returns the exact number of hits for the query. Estimate
mode returns an upper-bound estimate but runs faster than exact mode.

Syntax
Syntax 1

exec CTX_QUERY.COUNT_HITS(
index_name IN VARCHARZ2,
text_query IN VARCHAR2,
exact IN BOOLEAN DEFAULT TRUE,
part_name IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Syntax 2

exec CTX_QUERY.COUNT_HITS_CLOB_QUERY(
index_name IN VARCHARZ2,
text_query IN CLOB,
exact IN BOOLEAN DEFAULT TRUE,
part_name IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

index_name
Specify the index name.

text_query
Specify the query.

exact
Specify TRUE for an exact count. Specify FALSE for an upper-bound estimate.

Specifying FALSE returns a less accurate number but runs faster. Specifying FALSE
might return a number which is too high if rows have been updated or deleted since
the last FULL index optimize. Optimizing in full mode removes these false hits, and
then EXACT set to FALSE will return the same number as EXACT set to TRUE.

part_name
Specify the name of the index partition to query.

Notes
If the query contains structured criteria, then you should use SELECT COUNT (*).

If the index was created with the TRANSACT IONAL parameter, then COUNT_HITS will
include pending rowids as well as those that have been synchronized.

12.3 EXPLAIN

Use CTX_QUERY .EXPLAIN to generate explain plan information for a query
expression. The EXPLAIN plan provides a graphical representation of the parse tree
for a Text query expression. This information is stored in a result table.

12-4 Oracle Text Reference

EXPLAIN

This procedure does not execute the query. Instead, this procedure can tell you how a
query is expanded and parsed before you enter the query. This is especially useful for
stem, wildcard, thesaurus, fuzzy, soundex, or about queries. Parse trees also show the
following information:

* Order of execution (precedence of operators)
e ABOUT query normalization

¢ Query expression optimization

® Stop-word transformations

¢ Breakdown of composite-word tokens

Knowing how Oracle Text evaluates a query is useful for refining and debugging
queries. You can also design your application so that it uses the explain plan
information to help users write better queries.

Syntax
Syntax 1
exec CTX_QUERY.EXPLAIN(

index_name IN VARCHAR2,
text_query IN VARCHAR2,
explain_table IN VARCHAR2,

sharelevel IN NUMBER DEFAULT O,
explain_id IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL
);
Syntax 2

exec CTX_QUERY.EXPLAIN_CLOB_QUERY(
index_name IN VARCHAR2,
text_query IN CLOB,
explain_table IN VARCHAR2,

sharelevel IN NUMBER DEFAULT O,
explain_id IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL

):

index_name
Specify the name of the index to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.

When you include a wildcard, fuzzy, or soundex operator in text_query, this
procedure looks at the index tables to determine the expansion.

Wildcard, fuzzy (?), and soundex (!) expression feedback does not account for lazy
deletes as in regular queries.

CTX_QUERY Package 12-5

EXPLAIN

explain_table

Specify the name of the table used to store representation of the parse tree for
text_query. You must have at least INSERT and DELETE privileges on the table used to
store the results from EXPLAIN.

See Also:
"EXPLAIN Table (page A-1)" in Oracle Text Result Tables (page A-1) for
more information about the structure of the explain table.

sharelevel
Specify whether explain_table is shared by multiple EXPLAIN calls. Specify 0 for
exclusive use and 1 for shared use. Default is 0 (single-use).

When you specify 0, the system automatically truncates the result table before the
next call to EXPLAIN.

When you specify 1 for shared use, this procedure does not truncate the result table.
Only results with the same explain_id are updated. When no results with the same
explain_id exist, new results are added to the EXPLAIN table.

explain_id

Specify a name that identifies the explain results returned by an EXPLAIN procedure
when more than one EXPLAIN call uses the same shared EXPLAIN table. Default is
NULL.

part_name
Specify the name of the index partition to query.

Example
Creating the Explain Table

To create an explain table called test_explain for example, use the following SQL
statement:

create table test_explain(
explain_id varchar2(30),
id number,
parent_id number,
operation varchar2(30),
options varchar2(30),
object_name varchar2(64),
position number,
cardinality number);

Running CTX_QUERY.EXPLAIN

To obtain the expansion of a query expression such as comp% OR ?smith, use
CTX_QUERY .EXPLAIN as follows:

ctx_query.explain(
index_name => "newindex",
text_query => "comp% OR ?smith",
explain_table => "test_explain®,
sharelevel => 0,
explain_id => "Test");

Retrieving Data from Explain Table

12-6 Oracle Text Reference

HFEEDBACK

To read the explain table, you can select the columns as follows:

select explain_id, id, parent_id, operation, options, object name, position
from test_explain order by id;

The output is ordered by ID to simulate a hierarchical query:

EXPLAIN_ID ID PARENT_ID OPERATION OPTIONS OBJECT_NAME POSITION

Test 1 0 OR NULL NULL 1
Test 2 1 EQUIVALENCE NULL COMP% 1
Test 3 2 WORD NULL COMPTROLLER 1
Test 4 2 WORD NULL COMPUTER 2
Test 5 1 EQUIVALENCE (?) SMITH 2
Test 6 5 WORD NULL SMITH 1
Test 7 5 WORD NULL SMYTHE 2

Restrictions
CTX_QUERY .EXPLAIN does not support the use of query templates.
You cannot use CTX_QUERY .EXPLAIN with remote queries.

Related Topics
Oracle Text CONTAINS Query Operators (page 3-1)

Stopword Transformations in Oracle Text (page H-1)

12.4 HFEEDBACK

In English or French, this procedure generates hierarchical query feedback information
(broader term, narrower term, and related term) for the specified query.

Broader term, narrower term, and related term information is obtained from the
knowledge base. However, only knowledge base terms that are also in the index are
returned as query feedback information. This increases the chances that terms
returned from HFEEDBACK produce hits over the currently indexed document set.

Hierarchical query feedback information is useful for suggesting other query terms to
the user.

Syntax
Syntax 1
exec CTX_QUERY.HFEEDBACK(
index_name IN VARCHAR2,
text_query IN VARCHAR2,
feedback table IN VARCHAR2,
sharelevel IN NUMBER DEFAULT O,
feedback_id IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL
);
Syntax 2
exec CTX_QUERY.HFEEDBACK_CLOB_QUERY(
index_name IN VARCHAR2,
text_query IN CLOB,
feedback table IN VARCHAR2,
sharelevel IN NUMBER DEFAULT O,

CTX_QUERY Package 12-7

HFEEDBACK

feedback_id IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL

index_name
Specify the name of the index for the text column to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.

feedback_table
Specify the name of the table used to store the feedback terms.

See Also:
"HFEEDBACK Table (page A-3)" in Oracle Text Result Tables
(page A-1) for more information about the structure of the explain table.

sharelevel
Specify whether feedback_table is shared by multiple HFEEDBACK calls. Specify 0
for exclusive use and 1 for shared use. Default is 0 (single-use).

When you specify 0, the system automatically truncates the feedback table before the
next call to HFEEDBACK.

When you specify 1 for shared use, this procedure does not truncate the feedback
table. Only results with the same Feedback_id are updated. When no results with
the same Feedback_id exist, new results are added to the feedback table.

feedback_id

Specify a value that identifies the feedback results returned by a call to HFEEDBACK
when more than one HFEEDBACK call uses the same shared feedback table. Default is
NULL.

part_name
Specify the name of the index partition to query.

Example
Create HFEEDBACK Result Table
Create a result table to use with CTX_QUERY _HFEEDBACK as follows:

CREATE TABLE restab (
feedback_id VARCHAR2(30),
id NUMBER,
parent_id NUMBER,
operation VARCHAR2(30),
options VARCHAR2(30),
object_name VARCHAR2(80),
position NUMBER,
bt_feedback ctxsys.ctx_feedback_type,
rt_feedback ctxsys.ctx_feedback_type,
nt_feedback ctxsys.ctx_feedback_type,
NESTED TABLE bt_feedback STORE AS res_bt,
NESTED TABLE rt_feedback STORE AS res_rt,
NESTED TABLE nt_feedback STORE AS res_nt

12-8 Oracle Text Reference

HFEEDBACK

CTX_FEEDBACK_TYPE (page A-5) is a system-defined type in the CTXSYS
schema.

See Also:

"HFEEDBACK Table (page A-3)" in Oracle Text Result Tables (page A-1)
for more information about the structure of the HFEEDBACK table.

Call CTX_QUERY.HFEEDBACK
The following code calls the HFEEDBACK procedure with the query computer industry.

BEGIN
ctx_query._hfeedback (index_name => "my_index",
text_query => "computer industry®,
feedback table => "restab”,
sharelevel = 0,
feedback_id => "queryl0*"
);
END;

Select From the Result Table

The following code extracts the feedback data from the result table. It extracts broader
term, narrower term, and related term feedback separately from the nested tables.

DECLARE
i NUMBER;
BEGIN
FOR frec IN (
SELECT object_name, bt_feedback, rt_feedback, nt_feedback
FROM restab
WHERE feedback_id = "queryl10® AND object name IS NOT NULL
) LooP

dbms_output.put_line("Broader term feedback for " || frec.object name ||
DN
i := frec.bt feedback.FIRST;
WHILE i IS NOT NULL LOOP
dbms_output.put_line(frec.bt_feedback(i).text);
i := frec.bt_feedback.NEXT(1);
END LOOP;

dbms_output.put_line("Related term feedback for " || frec.object name ||
DN
i := frec.rt_feedback.FIRST;
WHILE i IS NOT NULL LOOP
dbms_output.put_line(frec.rt_feedback(i).text);
i := frec.rt_feedback .NEXT(1);
END LOOP;

dbms_output.put_line("Narrower term feedback for * || frec.object_name ||
%)
i := frec.nt_feedback.FIRST;
WHILE i IS NOT NULL LOOP
dbms_output.put_line(frec.nt_feedback(i).text);
i := frec.nt_feedback .NEXT(1);

CTX_QUERY Package 12-9

REMOVE_SQE

END LOOP;

END LOOP;
END;

Sample Output

The following output is for the preceding example, which queries on computer
industry:

Broader term feedback for computer industry:
hard sciences

Related term feedback for computer industry:
computer networking

electronics

knowledge

library science

mathematics

optical technology

robotics

satellite technology

semiconductors and superconductors

symbolic logic

telecommunications industry

Narrower term feedback for computer industry:
ABEND - abnormal end of task

AT&T Starlans

ATl Technologies, Incorporated

ActivCard

Actrade International Ltd.

Alta Technology

Amiga Format

Amiga Library Services

Amiga Shopper

Amstrat Action

Apple Computer, Incorporated

Note:

The HFEEDBACK information you obtain depends on the contents of your
index and knowledge base and as such might differ from the sample shown.

Restrictions
CTX_QUERY _HFEEDBACK does not support the use of query templates.

12.5 REMOVE_SQE

The CTX_QUERY . REMOVE_SQE procedure removes the specified stored query
expression.

CTX_QUERY .REMOVE_SQE can be used to remove both session-duration and
persistent SQEs. See "STORE_SQE (page 12-21)".

Since the query_name namespace is shared between the persistent and session-
duration SQEs, it is unnecessary to specify the duration of the SQE to be removed.

12-10 Oracle Text Reference

RESULT_SET

Syntax

CTX_QUERY.REMOVE_SQE(
query_name IN VARCHAR2
);

query_name
Specify the name of the stored or session-duration query expression to be removed.

Example

begin
ctx_query.remove_sqge("disl"™);
ctx_query.remove_sqge("dis2");

end;

/

12.6 RESULT_SET

This procedure executes an XML query and generates a result set in XML. The Result
Set Interface can return data views that are difficult to express in SQL.

See Also:

Oracle Text Application Developer’s Guide for details on how to use the Result
Set Interface

Syntax

CTX_QUERY.RESULT_SET (
starttag IN VARCHAR2 DEFAULT "",
endtag IN VARCHAR2 DEFAULT *",
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
part_name IN VARCHAR2 DEFAULT NULL

);

starttag

Specify the start tag for marking up the query keywords. Default is '".

endtag
Specify the end tag for marking up the query keywords. Default is "".

radius

Specify the number of characters to be shown on either side of the hit query in a
segment. The character count before the hit query begins on the first character of the
first hit query displayed in a segment. Accordingly, the character count after the hit
query begins on the last character of the last hit query displayed on a specific
segment. Two segments are merged into one if their radii overlap. The displayed
number of characters on each side may be modified by +/-10 characters to best
match the beginning or ending of a sentence or word.

Special attention is required for the value 0. When specified, the radius is set to
automatic and varies between sentences. A best guess of the results is displayed,

CTX_QUERY Package 12-11

RESULT_SET

which attempts to match a full sentence. Note that the length of the radius on each
side of the hit query will most likely significantly differ.

The default value is 25.

max_length

Specify the maximum length of the result set output in characters. This value is
currently upper-bounded by the current return type of CTX_DOC.RESULT_SET
(VARCHAR2). If the output is longer than the return type VARCHAR2, then the result
is truncated. The default value for max_length is 250.

If you set the max_length value to a very low value, no result set is generated. For
example, if the max_length is set to O or if the max_length is lower than the length
of query tokens themselves, no result set is generated at all.

part_name

Specify the index partition name. If the index is global, part_name must be NULL. If
the index is partitioned and part_name is not NULL, then the query will only be
evaluated for the given partition. If the index is partitioned and part_name is NULL,
then the query will be evaluated for all partitions.

The Input Result Set Descriptor

The result set descriptor is an XML message which describes what to calculate for the
result set. The elements present in the result set descriptor and the order in which they
occur serve as a simple template, specifying what to include in the output result set.
That is, there should be the list of hit rowids, then a count, then a token count, and so
on. The attributes of the elements specify the parameters and options to the specific
operations, such as number of hits in the list of rowids, estimate versus exact count,
and so on.

The result set descriptor itself is XML conforming to the following DTD:

<IDOCTYPE ctx_result_set_descriptor [

<IELEMENT ctx_result_set_descriptor (hitlist?, group*, count?, collocates?)>
<IELEMENT hitlist (rowid?, score?, sdata*, snippet*, sentiment?)>
<IELEMENT group (count?, group_values?)>

<IELEMENT count EMPTY>

<IELEMENT rowid EMPTY>

<IELEMENT score EMPTY>

<IELEMENT sdata EMPTY>

<IELEMENT group_values (value*)>

<IELEMENT value EMPTY>

<IELEMENT sentiment (item*)>

<IELEMENT item EMPTY>

<IELEMENT collocates EMPTY>

<IATTLIST sentiment classifier CDATA "DEFAULT_CLASSIFIER">
<IATTLIST item topic CDATA #REQUIRED>

<IATTLIST item type (about]exact) "exact'>

<IATTLIST item agg (TRUE|FALSE) "FALSE">

<IATTLIST item radius CDATA "50">

<IATTLIST item max_inst CDATA "5">

<IATTLIST item starttag CDATA #IMPLIED>

<IATTLIST item endtag CDATA #IMPLIED>

<IATTLIST collocates radius CDATA "20">

<IATTLIST collocates max_words CDATA "10">

<IATTLIST collocates use_tscore (TRUE|FALSE) "TRUE">
<IATTLIST collocates use_hits CDATA "'10">

<IATTLIST group sdata CDATA #REQUIRED>

<IATTLIST value id CDATA #IMPLIED>

12-12 Oracle Text Reference

RESULT_SET

<IATTLIST hitlist start_hit_num CDATA #REQUIRED>
<IATTLIST hitlist end_hit_num CDATA #REQUIRED>
<IATTLIST hitlist order CDATA #IMPLIED>
<IATTLIST count exact (TRUE|JFALSE) "FALSE">
<IATTLIST snippet radius CDATA #IMPLIED>
<IATTLIST snippet max_length CDATA #IMPLIED>
<IATTLIST snippet starttag CDATA #IMPLIED>
<IATTLIST snippet endtag CDATA #IMPLIED>

1>

The following is a description of the possible XML elements for the result set
descriptor:

ctx_result_set_descriptor

This is the root element for the result set descriptor. The parent element is none, as
are the available attributes.

The possible child elements are:

— Zero or more hitlist elements.
— Zero or more group elements.

— At most one count element.

group

The group element causes the generated result set to include a group breakdown.
In other words, a breakdown of the results by SDATA section values. The parent
element is ctx_result_set _descriptor, and the available attributes are:

- sdata
Specifies the name of the SDATA section to use for grouping. It is required.

Possible child elements of group are:
— At most one count element.
hitlist

The hitlist element controls inclusion of a list of hit documents. The parent
element is ctx_result_set _descriptor, and the available attributes are:

The possible child elements of order are:

- start_hit_num

This specifies the starting document hit to be included in the generated result
set. This can be set to any positive integer less than or equal to 16000. For
example, if start_hit_numis 21, then the result set will include document
hits starting from the 21st document hit. This element is required.

— end_hit_num

This specifies the last document hit to be included in the generated result set.
This can be set to any positive integer less than or equal to 16000. For
example, if end_hit_numis 40, then the result set will include document hits
up to the 40th document hit. This element is required.

The possible child elements for hitlist are:

CTX_QUERY Package 12-13

RESULT_SET

— At most one rowid element.
— At most one score element.
— At most one sdata element.
— At most one snippet element.

- order

This is an optional attribute that specifies the order for the documents in the
generated result set. The value is a list similar to a SQL ORDER BY statement,
except that, instead of column names, they can either be SCORE or SDATA
section names. In the following example, MYDATE and MYPRICE are the
SDATA section names:

(order = "SCORE DESC, MYDATE, MYPRICE DESC'")
— At most one rowid element.
— At most one score element.
— At most one sdata element.

e count

This element causes the generated result set to include a count of the number of
hit documents. The parent elements are:

- ctx_result_set descriptor
- group
The available attributes for count are:

- exact

This is to estimate mode. Set to true or Talse. It is required, and the default
is false.

The possible child elements for count are none.
e rowid

This child element causes the generated result set to include rowid information for
each hit. The parent element is hitlist. There are no attributes and no possible
child elements.

® Score

This child element causes the generated result set to include score information for
each hit.

— The parent element is hitlist.
— There are no available attributes, and no possible child elements.

e sdata

This child element causes the generated result set to include sdata values for
each hit.

— The parent element is hitlist.

12-14 Oracle Text Reference

RESULT_SET

— The available attribute is name. This specifies the name of the sdata section.
It is required.

— There are no child elements.

sentiment

This element controls the inclusion of sentiment classification results for each
document returned as a part of the hitlist. There can be only one sentiment
element in the hitlist element.

The parent element is hitlist.

The attribute available for this element is classifier, which specifies the
sentiment classifier that is used to perform sentiment analysis. If no classifier is
specified, then the CTXSYS.DEFAULT_SENTIMENT_CLASSIFIER is used. If a
specified classifier is not available, then an error is displayed.

item

This element specifies keywords or concepts for which sentiment information
must be fetched for the returned set of documents. Each sentiment element
must contain at least one child 1tem element. The maximum is 10 child item
elements. If you specify an empty item element (without any attributes), it
indicates that sentiment score for entire document must be returned.

The parent element is sentiment.

The available attributes for item are:
- topic
This specifies the topic for which sentiment analysis must be performed.

- type

If this attribute value is set to ABOUT, then the classifier treats the specified
topic as a concept rather than a keyword. The default is EXACT.

- agg

Determines whether the sentiment score must be aggregated and presented
as a single score for the entire document. The possible values are TRUE or
FALSE. TRUE indicates that the per text segment scores will be aggregated
and text segments will not be returned in the output resultset, only the
aggregated score will be returned. The default value is FALSE.

- radius

This specifies the radius of the surrounding text to be identified during
sentiment classification for that keyword. The default value is 50.

- max_inst

This specifies how many instances of text excerpts related to the specified
topic must be analyzed for sentiment classification. The default value is 5.

- starttag

This specifies the starting tag for topic highlighting.
- endtag

This specifies the ending tag for topic highlighting.

CTX_QUERY Package 12-15

RESULT_SET

e collocates

This element controls the generation of related keywords or concepts associated
with the collection of documents retrieved by the query.

The parent element is hitlist.

The available attributes for col locates are:

- radius

This specifies the radius of the surrounding text to be identified for collocates.
The default value is 20.

- max_words

This specifies the maximum number of collocates to return for the given
query. The default value is 10.

— use_tscore

This specifies whether to use T-score for scoring the collocates. The possible
values are TRUE or FALSE, with the default being TRUE.

Set this attribute to TRUE to identify collocates that are common tokens. Set
this attribute to FALSE to identify collocates that emphasize unique words.

The Output Result Set XML
The output result set XML is XML conforming to the following DTD:

<IDOCTYPE ctx_result_set [

<IELEMENT ctx_result_set (hitlist?, groups*, count? , collocates?)>
<IELEMENT hitlist (hit*)>

<IELEMENT hit (rowid?, score?, snippet*, sdata*, sentiment?)>
<IELEMENT groups (group*)>

<IELEMENT group (count?)>

<IELEMENT count (#PCDATA)>

<IELEMENT rowid (#PCDATA)>

<IELEMENT score (#PCDATA)>

<IELEMENT snippet (segment*)>

<IELEMENT sdata (#PCDATA)>

<IELEMENT sentiment (item*)>

<IELEMENT item (segment*, score*, doc?)>

<IELEMENT segment (segment_text?, segment_score?)>
<IELEMENT segment_text (#PCDATA)>

<IELEMENT segment_score (#PCDATA)>

<IELEMENT doc (score?)>

<IELEMENT collocates (collocation*)>

<IELEMENT collocation (word?, score?)>

<TELEMENT word (#PCDATA)>

<IATTLIST item topic CDATA #REQUIRED>

<IATTLIST groups sdata CDATA #REQUIRED>

<IATTLIST group value CDATA #REQUIRED>

1>

The following is a description of the list of possible XML elements for the output result
set:

e ctx _result_set

This is the root element for the generated result set. There are no attributes. The
parent is none. The possible child elements are:

12-16 Oracle Text Reference

RESULT_SET

— Atmostone hitlist element.
— Zero or more groups elements.

groups

This delimits the start of a group breakdown section. The parent element is
ctx_result_set. The available attributes are:

- sdata
This is the name of the sdata section used for grouping.

The possible child elements are:
— Zero or more group elements.

group

This delimits the start of a GROUP BY value. The parent element is the groups
element. The available attributes are:

- value

This is the value of the sdata section.
The possible child elements are at most one count element.
hitlist

This delimits the start of hitlist information. The parent element is
ctx_result_set, while the children are zero or more hit elements. There are
no attributes.

hit
This delimits the start of the information for a particular document within a

hitlist. The parent element is hitlist, and there are no available attributes.
The possible child elements are:

— Zero or one rowid elements.
— Zero or one score element.

— Zero or one sdata element.

— Zero or one snippet element.

rowid

This is the rowid of the document, so the content is the rowid of the document.
The parent element is the hit element. There are no child elements, and no
available attributes.

score

This is the score of the document. The parent element is the hit element. The
content is the numeric score. There are no available attributes, and no possible
child elements.

sdata

This is the SDATA value or values for the document. The parent element is the hit
element, and the available attribute is name, which is the name of the sdata

CTX_QUERY Package 12-17

RESULT_SET

section. There are no possible child elements available. The content is the SDATA
section value, which, for DATE values, is in the format "YYYY-MM-DD
HH24:MI:SS", depending upon the actual values being stored.

count

This is the document hit count. The parent element is the ctx_result_set
element or the group element. It contains the numeric hit count, has no attributes,
and no possible child elements.

sentiment

This delimits the sentiment element for the hitlist document. Its child element
is i'tem and parent is hitlist. It contains no attributes in the output result set.

item

This delimits the item element for the hitlist document. Parent element is
sentiment and child elements are segment, score, and doc. It has one
attribute called topic.

segment

This delimits an instance of segment element in a hit. Parent element is item.
Child elements are segment_text and segment_score. It contains no
attributes.

segment_text

This specifies the text segment for the given item topic. Parent element is
segment. It has no child elements or attributes.

segment_score

This specifies the sentiment score for the segment. Parent element is segment. It
has no child elements or attributes.

score

This specifies the sentiment score for the document or for the parent item topic.
When present within collocation it specifies the collocation score for the particular
collocation keyword. Parent element is doc or collocation. It has no child elements
or attributes

doc

This denotes the sentiment score is for the entire document. Its parent element is
item and child element is score. It has no attributes.

collocates

This delimits the collocates element for the result set output. Parent element is
ctx_result_set and child element is col location. It has no attributes.

collocation

This denotes a single collocation. Parent element is col locates and child
elements are word and score. It has no attributes.

word

This specifies the collocates token. Its parent element is col location. It has no
child elements or attributes.

12-18 Oracle Text Reference

RESULT_SET

Example

This call to CTX_QUERY .RESULT_SET with the specified XML
result_set_descriptor will generate the following information in the form of
XML:

* top 5 hits displaying, score, rowid, author SDATA section value, and pubDate
SDATA section value, order by pubDate SDATA section value DESC and score DESC

e total doc hit count for the text query
¢ counts group by pubDate SDATA section values

* counts group by author SDATA section values

declare
rs clob;
begin
dbms_lob.createtemporary(rs, true, dbms_lob.session);
ctx_query.result_set("docidx", "oracle®, "
<ctx_result_set_descriptor>
<count/>
<hitlist start_hit_num="1" end_hit_nune"5" order="pubDate desc, score desc">
<score/ >
<row d/ >
<sdata name="aut hor"/>
<sdata nane="pubDate"/>
</hitlist>
<group sdat a="pubDate">
<count/>
</ group>
<group sdata="aut hor">
<count/>
</ group>
</ctx_result_set _descriptor>
", rs);
dbms_lob.freetemporary(rs);
exception
when others then
dbms_lob.freetemporary(rs);
raise;
end;
/

The XML output store in the result set output clob will resemble the following;:

<ctx_result_set>
<hitlist>

<hit>
<score>3</score><rowid>AAAPOEAABAAAMWSAAC</rowid>
<sdata name="AUTHOR">John</sdata>
<sdata name="PUBDATE'>2001-01-03 00:00:00</sdata>

</hit>

<hit>
<score>3</score><rowid>AAAPOEAABAAAMWSAAG</rowid>
<sdata name="AUTHOR'>John</sdata>
<sdata name="PUBDATE'>2001-01-03 00:00:00</sdata>

</hit>

<hit>
<score>3</score><rowid>AAAPOEAABAAAMWSAAK</rowid>
<sdata name="AUTHOR'>John</sdata>
<sdata name="PUBDATE'>2001-01-03 00:00:00</sdata>

CTX_QUERY Package 12-19

RESULT_SET_CLOB_QUERY

</hit>

<hit>
<score>3</score><rowid>AAAPOEAABAAAMWSAAO</rowid>
<sdata name="AUTHOR'>John</sdata>
<sdata name="PUBDATE'">2001-01-03 00:00:00</sdata>

</hit>

<hit>
<score>3</score><rowid>AAAPOEAABAAAMWSAAS</rowid>
<sdata name="AUTHOR'>John</sdata>
<sdata name="PUBDATE">2001-01-03 00:00:00</sdata>

</hit>

</hitlist>

<count>100</count>

<groups sdata="PUBDATE">
<group value="2001-01-01 00:00:00"><count>25</count></group>
<group value="2001-01-02 00:00:00"><count>50</count></group>
<group value="2001-01-03 00:00:00"><count>25</count></group>
</groups>

<groups sdata="AUTHOR'>
<group value="John"><count>50</count></group>
<group value="Mike"><count>25</count></group>
<group value="Steve'><count>25</count></group>
</groups>

</ctx_result_set>

Limitations and Restrictions

The following limitations and restrictions apply for RESULT_SET.

® The Result Set Interface (RSI) is not supported with Virtual Private Database.
(VPD is supported with the regular CONTAINS query, but not with RSI.)

* Inorder to execute the function, you must be able to query the base table.

e Ifa VPD policy is active on the base table, the documents portion of the result set
will not show any documents to which you are not entitled.

¢ When a VPD policy is being used, aggregate measures such as count may not be
accurate.

Related Topics

Oracle Text Application Developer’s Guide for information on the XML Result Set
Interface

12,7 RESULT_SET_CLOB_QUERY

This procedure executes an XML query and generates a result set based on a CLOB
query parameter in XML

The RESULT_SET_CLOB_QUERY procedure is identical to the RESULT_SET procedure
except that the datatype of its query parameter is CLOB instead of VARCHAR2 to handle
longer queries.

12-20 Oracle Text Reference

RESULT_SET_DOCUMENT

Syntax

CTX_QUERY.RESULT_SET_CLOB_QUERY (
index_name IN VARCHARZ2,
query IN CLOB,
result_set_descriptor IN CLOB,
result_set IN OUT CLOB,
part_name IN VARCHAR2 DEFAULT

See Also: RESULT_SET (page 12-11) for the description of these parameters

12.8 RESULT_SET_DOCUMENT

RESULT_SET_DOCUMENT holds the result set document after the CONTAINS query
cursor is explicitly closed and if the query template has the
<ctx_result_set_descriptor> element.

Syntax

CTX_QUERY.RESULT_SET_DOCUMENT(
index_name IN VARCHARZ2,
query IN VARCHAR2,
result_set_descriptor IN CLOB,
result_set IN OUT NOCOPY CLOB,
part_name IN VARCHAR2 DEFAULT NULL

index_name
Specify the index against which to execute the query.

query
Specity the query string.

result_set_descriptor
Specify the result set descriptor in XML. It describes what the result set should
contain. See "The Input Result Set Descriptor (page 12-12)" for more details.

result_set

Specify the output result set. If this variable is NULL on input, a session-duration
temporary lob will be allocated and returned to the user. The user is responsible for
deallocating this temporary lob. See "The Output Result Set XML (page 12-16)" for
more details.

part_name

Specify the index partition name. If the index is global, part_name must be NULL. If
the index is partitioned and part_name is not NULL, then the query will only be
evaluated for the given partition. If the index is partitioned and part_name is NULL,
then the query will be evaluated for all partitions.

12.9 STORE_SQE

This procedure creates either a stored or session-duration query expression (SQE).
Only the query definition is stored.

CTX_QUERY Package 12-21

STORE_SQE

SQEs are used to store the definition of a query without storing any results.
Referencing the query with the CONTAINS SQL operator references the definition of
the query. In this way, SQEs make it easy for defining long or frequently used query
expressions. Creating a session-duration SQE is useful for when you do not want the
maintenance overhead of deleting unused or no longer needed SQEs.

Supported Operators

Stored query expressions support all of the CONTAINS query operators. Stored query
expressions also support all of the special characters and other components that can be
used in a query expression, including other stored query expressions.

Privileges

Users are permitted to create and remove stored query expressions owned by them.
Users are permitted to use stored query expressions owned by anyone. The CTXSYS
user can create or remove stored query expressions for any user.

Syntax
Syntax 1
CTX_QUERY.STORE_SQE(
query_name IN VARCHAR2,
text_query IN VARCHAR2
duration IN NUMBER default CTX_QUERY.DURATION_SESSION
);
Syntax 2
CTX_QUERY.STORE_SQE_CLOB_SYNTAX(
query_name IN VARCHAR2,
text_query IN CLOB
duration IN NUMBER default CTX_QUERY.DURATION_SESSION

);

query_name
Specify the name of the stored query expression to be created.

text_query
Specify the query expression to be associated with query_name.

duration
The possible values are DURAT ION_SESS 10N and DURATION_PERSISTENT.

e When duration is to set to DURATION_SESSION, the stored query expression is
stored in a PL/SQL package variable and is available for the session.

e When duration is to set to DURATION_PERSISTENT, the stored query
expression is stored in a database table, and can be referenced by other database
sessions.

¢ The query_name namespace is shared between the persistent and session-
duration SQEs. If you try to add a persistent or session-duration SQE with a
name that is already used by another persistent or session-duration SQE, then an
error will be raised.

12-22 Oracle Text Reference

STORE_SQE

duration_persistent
When there is a CLOB query, specify that the duration is stored in a database table.
This SQE must be deleted when it is no longer needed.

¢ The query_name namespace is shared between the persistent and session-
duration SQEs. If you try to add a persistent or session-duration SQE with a
name that is already used by another persistent or session-duration SQE, then an
error will be raised.

Example

begin
ctx_query.store_sqge("disl®, "flood", CTX_QUERY.DURATION_SESSION);
ctx_query.store_sqge("dis2", "tornado®, CTX_QUERY._DURATION_PERSISTENT);
ctx_query.store_sqge("dis3", "fire")

end;

/

CTX_QUERY Package 12-23

STORE_SQE

12-24 Reference

13

CTX_REPORT Package

This chapter describes how to use the CTX_REPORT package to create reports on
indexing and querying. These reports can help you troubleshoot problems or fine-tune
your applications.

This chapter contains the following topics:

13.1 Description of Procedures in CTX_REPORT

Description of Procedures in CTX_REPORT (page 13-1)

Using the Function Versions (page 13-2)
DESCRIBE_INDEX (page 13-2)
DESCRIBE_POLICY (page 13-3)
CREATE_INDEX_SCRIPT (page 13-4)
CREATE_POLICY_SCRIPT (page 13-5)
INDEX_SIZE (page 13-5)
INDEX_STATS (page 13-6)
QUERY_LOG_SUMMARY (page 13-11)
TOKEN_INFO (page 13-14)
TOKEN_TYPE (page 13-15)
VALIDATE_INDEX (page 13-17)

Note:

The APIs in the CTX_REPORT package do not support identifiers that are

prefixed with the schema or the owner name.

See Also:

Oracle Text Application Developer’s Guide for an overview of the CTX_REPORT
package and how you can use the various procedures described in this

chapter

The CTX_REPORT package contains the following procedures:

CTX_REPORT Package 13-1

Using the Function Versions

Name

Description

DESCRIBE_INDEX
(page 13-2)

DESCRIBE_POLICY
(page 13-3)

CREATE_INDEX_SCRIPT
(page 13-4)

CREATE_POLICY_SCRIPT
(page 13-5)

INDEX_SIZE (page 13-5)

INDEX_STATS (page 13-6)

QUERY_LOG_SUMMARY
(page 13-11)

TOKEN_INFO (page 13-14)

TOKEN_TYPE (page 13-15)

VALIDATE_INDEX
(page 13-17)

Creates a report describing the index.

Creates a report describing a policy.

Creates a SQL*Plus script to duplicate the named index.

Creates a SQL*Plus script to duplicate the named policy.

Creates a report to show the internal objects of an index,
their tablespaces and used sizes.

Creates a report to show the various statistics of an index.
Creates a report showing query statistics

Creates a report showing the information for a token,
decoded.

Translates a name and returns a numeric token type.

Checks for index corruption and reports on problems
found. Mainly used with Oracle Support.

13.2 Using the Function Versions

Some of the procedures in the CTX_REPORT package have function versions. You can
call these functions as follows:

select ctx_report._describe_index("MYINDEX") from dual;

In SQL*Plus, to generate an output file to send to support, you can do:

set long 64000

set pages 0

set heading off

set feedback off

spool outputfile

select ctx_report.describe_index("MYINDEX") from dual;
spool off

13.3 DESCRIBE_INDEX

Creates a report describing the index. This includes the settings of the index metadata,
the indexing objects used, the settings of the attributes of the objects, and index
partition descriptions, if any.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

13-2 Oracle Text Reference

DESCRIBE_POLICY

Syntax

procedure CTX_REPORT.DESCRIBE_INDEX(
index_name IN VARCHARZ2,
report IN OUT NOCOPY CLOB,
report_format IN VARCHAR2 DEFAULT FMT_TEXT

):

function CTX_REPORT.DESCRIBE_INDEX(
index_name IN VARCHARZ2,

report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return CLOB;

index_name
Specify the name of the index to describe.

report
Specify the CLOB locator to which to write the report.

If reportis NULL, a session-duration temporary CLOB will be created and returned.
It is the caller's responsibility to free this temporary CLOB as needed.

The report CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call.

report_format

Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT . FMT_TEXT or
CTX_REPORT . FMT_XML.

Notes

CTX_REPORT.DESCRIBE_INDEX outputs FILTER BY and ORDER BY column
information if the index is created with FILTER BY and/or ORDER BY clauses.

Related Topics
"CREATE INDEX (page 1-41)"
"ADD_SDATA_COLUMN (page 8-15)"

13.4 DESCRIBE_POLICY

Creates a report describing the policy. This includes the settings of the policy
metadata, the indexing objects used, and the settings of the attributes of the objects.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax

procedure CTX_REPORT.DESCRIBE_POLICY(
policy_name IN VARCHAR2,
report IN OUT NOCOPY CLOB,
report_format IN VARCHAR2 DEFAULT FMT_TEXT

);

function CTX_REPORT.DESCRIBE_POLICY(
policy_name IN VARCHAR2,

CTX_REPORT Package 13-3

CREATE_INDEX_SCRIPT

report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return CLOB;

report
Specify the CLOB locator to which to write the report.

If reportis NULL, a session-duration temporary CLOB will be created and returned.
It is the caller's responsibility to free this temporary CLOB as needed.

The report CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call.

report_format

Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT . FMT_TEXT or
CTX_REPORT.FMT_XML.

policy_name
Specify the name of the policy to describe.

13.5 CREATE_INDEX_SCRIPT

Creates a SQL*Plus script which will create a text index that duplicates the named text
index.

The created script will include creation of preferences identical to those used in the
named text index. However, the names of the preferences will be different.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax

procedure CTX_REPORT.CREATE_INDEX_SCRIPT(
index_name in varchar2,
report in out nocopy clob,
prefname_prefix in varchar2 default null

):

function CTX_REPORT.CREATE_INDEX_SCRIPT(
index_name in varchar?2,

prefname_prefix in varchar2 default null
) return clob;

index_name
Specify the name of the index.

report
Specify the CLOB locator to which to write the script.

If reportis NULL, a session-duration temporary CLOB will be created and returned.
It is the caller's responsibility to free this temporary CLOB as needed.

The report CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call.

prefname_prefix
Specify optional prefix