

Oracle® Database
JDBC Developer’s Guide

11g Release 2 (11.2)

E16548-03

September 2011

This book describes how to use Oracle JDBC drivers to
develop powerful Java database applications.

Oracle Database JDBC Developer's Guide, 11g Release 2 (11.2)

E16548-03

Copyright © 1999, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tulika Das, Venkatasubramaniam Iyer, Elizabeth Hanes Perry, Brian Wright, Thomas
Pfaeffle

Contributing Author: Brian Martin

Contributor: Kuassi Mensah, Douglas Surber, Paul Lo, Ed Shirk, Tong Zhou, Jean de Lavarene, Rajkumar
Irudayaraj, Ashok Shivarudraiah, Angela Barone, Rosie Chen, Sunil Kunisetty, Joyce Yang, Mehul
Bastawala, Luxi Chidambaran, Srinath Krishnaswamy, Longxing Deng, Magdi Morsi, Ron Peterson,
Ekkehard Rohwedder, Catherine Wong, Scott Urman, Jerry Schwarz, Steve Ding, Soulaiman Htite, Anthony
Lai, Prabha Krishna, Ellen Siegal, Susan Kraft, Sheryl Maring

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xxi

Audience... xxi
Documentation Accessibility ... xxi
Related Documents .. xxii
Conventions ... xxiv

What’s New.. xxix

New Features for Release 2 (11.2) ... xxix

Part I Overview

1 Introducing JDBC

Overview of Oracle JDBC Drivers .. 1-1
Common Features of Oracle JDBC Drivers .. 1-2
Choosing the Appropriate Driver.. 1-4
Feature Differences Between JDBC OCI and Thin Drivers.. 1-4

Environments and Support .. 1-5
Supported JDK and JDBC Versions... 1-5
JNI and Java Environments .. 1-5
JDBC and IDEs.. 1-5

Feature List .. 1-5

2 Getting Started

Version Compatibility for Oracle JDBC Drivers ... 2-1
Verification of a JDBC Client Installation .. 2-2

Check the Installed Directories and Files ... 2-2
Check the Environment Variables ... 2-3
Ensure that the Java Code Can Be Compiled and Run .. 2-5
Determine the Version of the JDBC Driver .. 2-5
Test JDBC and the Database Connection.. 2-5

Basic Steps in JDBC ... 2-7
Importing Packages ... 2-8
Opening a Connection to a Database .. 2-8
Creating a Statement Object ... 2-9

iv

Running a Query and Retrieving a Result Set Object ... 2-9
Processing the Result Set Object ... 2-10
Closing the Result Set and Statement Objects... 2-10
Making Changes to the Database ... 2-11
Committing Changes.. 2-13

Changing Commit Behavior... 2-13
Closing the Connection .. 2-14

Sample: Connecting, Querying, and Processing the Results.. 2-14
Stored Procedure Calls in JDBC Programs... 2-15

PL/SQL Stored Procedures ... 2-15
Java Stored Procedures... 2-16

Processing SQL Exceptions ... 2-16

Part II Oracle JDBC

3 JDBC Standards Support

Support for JDBC 2.0 Standard.. 3-1
Data Type Support ... 3-2
Standard Feature Support... 3-2
Extended Feature Support .. 3-2
Standard versus Oracle Performance Enhancement APIs ... 3-2

Support for JDBC 3.0 Standard.. 3-2
Transaction Savepoints.. 3-3

Creating a Savepoint .. 3-3
Rolling Back to a Savepoint ... 3-3
Releasing a Savepoint... 3-4
Checking Savepoint Support... 3-4
Savepoint Notes .. 3-4

Retrieval of Auto-Generated Keys... 3-4
java.sql.Statement ... 3-4
Sample Code .. 3-4
Limitations ... 3-5

JDBC 3.0 LOB Interface Methods... 3-5
Result Set Holdability.. 3-6

Support for JDBC 4.0 Standard.. 3-6
Wrapper Pattern Support.. 3-7
SQLXML Type .. 3-7
Enhanced Exception Hierarchy and SQLException... 3-10
The RowId Data Type... 3-10
LOB Creation ... 3-10
National Language Character Set Support.. 3-11

4 Oracle Extensions

Overview of Oracle Extensions ... 4-1
Features of the Oracle Extensions .. 4-1

Database Management Using JDBC.. 4-2

v

Support for Oracle Data Types... 4-2
Support for Oracle Objects.. 4-3
Support for Schema Naming.. 4-4
DML Returning .. 4-4
Accessing PL/SQL Index-by Tables.. 4-5

Oracle JDBC Packages... 4-5
Package oracle.sql .. 4-5
Package oracle.jdbc .. 4-9

Oracle Character Data Types Support... 4-10
SQL CHAR Data Types .. 4-10
SQL NCHAR Data Types... 4-10
Class oracle.sql.CHAR.. 4-11

Additional Oracle Type Extensions... 4-13
Oracle ROWID Type... 4-13
Oracle REF CURSOR Type Category... 4-14
Oracle BINARY_FLOAT and BINARY_DOUBLE Types ... 4-15
Oracle SYS.ANYTYPE and SYS.ANYDATA Types... 4-16
The oracle.jdbc Package ... 4-19

Interface oracle.jdbc.OracleConnection .. 4-20
Interface oracle.jdbc.OracleStatement... 4-21
Interface oracle.jdbc.OraclePreparedStatement .. 4-21
Interface oracle.jdbc.OracleCallableStatement .. 4-22
Interface oracle.jdbc.OracleResultSet .. 4-22
Interface oracle.jdbc.OracleResultSetMetaData... 4-22
Class oracle.jdbc.OracleTypes.. 4-22
Method getJavaSqlConnection... 4-24

DML Returning ... 4-25
Oracle-Specific APIs.. 4-26
Running DML Returning Statements... 4-26
Example of DML Returning .. 4-26
Limitations of DML Returning.. 4-27

Accessing PL/SQL Index-by Tables... 4-28
Overview .. 4-28
Binding IN Parameters ... 4-29
Receiving OUT Parameters.. 4-30
Type Mappings.. 4-31

5 Features Specific to JDBC Thin

Overview of JDBC Thin Client ... 5-1
Additional Features Supported ... 5-1

Support for Applets ... 5-2
Default Support for Native XA .. 5-2

JDBC in Applets ... 5-2
Connecting to the Database Through the Applet.. 5-2
Connecting to a Database on a Different Host Than the Web Server .. 5-3

Using the Oracle Connection Manager.. 5-4
Using Signed Applets... 5-5

vi

Using Applets with Firewalls... 5-6
Configuring a Firewall for Applets that use the JDBC Thin Driver 5-6
Writing a URL to Connect Through a Firewall .. 5-7

Packaging Applets ... 5-8
Specifying an Applet in an HTML Page ... 5-8

CODE, HEIGHT, and WIDTH .. 5-8
CODEBASE.. 5-9
ARCHIVE... 5-9

6 Features Specific to JDBC OCI Driver

OCI Connection Pooling... 6-1
Client Result Cache.. 6-1

Benefits of Client Result Cache .. 6-1
Usage Guidelines in JDBC .. 6-2

RESULT_CACHE_MODE Parameter .. 6-2
Table Annotations... 6-2
SQL Hints ... 6-3

Transparent Application Failover ... 6-4
OCI Native XA .. 6-4
OCI Instant Client .. 6-4

Overview of Instant Client.. 6-4
Benefits of Instant Client ... 6-5
JDBC OCI Instant Client Installation Process .. 6-5
Usage of Instant Client .. 6-7
Patching Instant Client Shared Libraries .. 6-7
Regeneration of Data Shared Library and ZIP files .. 6-8
Database Connection Names for OCI Instant Client .. 6-8
Environment Variables for OCI Instant Client ... 6-10

Instant Client Light (English) ... 6-11
Globalization Settings... 6-12
Operation.. 6-12
Installation.. 6-13

7 Server-Side Internal Driver

Overview of the Server-Side Internal Driver ... 7-1
Connecting to the Database.. 7-1
Session and Transaction Context .. 7-3
Testing JDBC on the Server ... 7-4
Loading an Application into the Server... 7-4

Using the Loadjava Utility .. 7-4
Using the JVM Command-Line.. 7-6

Part III Connection and Security

8 Data Sources and URLs

Data Sources .. 8-1

vii

Overview of Oracle Data Source Support for JNDI .. 8-1
Features and Properties of Data Sources .. 8-2
Creating a Data Source Instance and Connecting ... 8-5
Creating a Data Source Instance, Registering with JNDI, and Connecting............................... 8-5
Supported Connection Properties ... 8-7
Using Roles for SYS Login .. 8-7
Configuring Database Remote Login.. 8-7
Bequeath Connection and SYS Logon... 8-8
Properties for Oracle Performance Extensions .. 8-9

Database URLs and Database Specifiers... 8-9

9 JDBC Client-Side Security Features

Support for Oracle Advanced Security .. 9-1
Support for Login Authentication .. 9-3
Support for Strong Authentication ... 9-3
Support for OS Authentication ... 9-4

Configuration Steps for Linux.. 9-4
Configuration Steps for Windows... 9-5
JDBC Code Using OS Authentication ... 9-6

Support for Data Encryption and Integrity ... 9-6
JDBC OCI Driver Support for Encryption and Integrity.. 9-7
JDBC Thin Driver Support for Encryption and Integrity... 9-8
Setting Encryption and Integrity Parameters in Java ... 9-9

Support for SSL ... 9-11
Managing Certificates and Wallets... 9-12
Keys and certificates containers .. 9-12

Support for Kerberos .. 9-13
Configuring Windows to Use Kerberos... 9-13
Configuring Oracle Database to Use Kerberos... 9-13
Code Example.. 9-15

Support for RADIUS .. 9-19
Configuring Oracle Database to Use RADIUS ... 9-19
Code Example.. 9-20

Secure External Password Store ... 9-21

10 Proxy Authentication

About Proxy Authentication ... 10-1
Types of Proxy Connections.. 10-2
Creating Proxy Connections.. 10-3
Closing a Proxy Session ... 10-5
Caching Proxy Connections .. 10-5
Limitations of Proxy Connections.. 10-5

Part IV Data Access and Manipulation

viii

11 Accessing and Manipulating Oracle Data

Data Type Mappings .. 11-1
Table of Mappings .. 11-1
Notes Regarding Mappings... 11-3

Data Conversion Considerations ... 11-4
Standard Types Versus Oracle Types .. 11-4
Converting SQL NULL Data ... 11-5
Testing for NULLs .. 11-5

Result Set and Statement Extensions .. 11-5
Comparison of Oracle get and set Methods to Standard JDBC ... 11-6

Standard getObject Method... 11-6
Oracle getOracleObject Method.. 11-7
Summary of getObject and getOracleObject Return Types .. 11-8
Other getXXX Methods .. 11-9

Return Types of getXXX Methods ... 11-10
Special Notes about getXXX Methods .. 11-10

Data Types For Returned Objects from getObject and getXXX ... 11-10
The setObject and setOracleObject Methods... 11-11
Other setXXX Methods... 11-11

Input Data Binding .. 11-12
Method setFixedCHAR for Binding CHAR Data into WHERE Clauses....................... 11-13

Using Result Set Metadata Extensions.. 11-14
Using SQL CALL and CALL INTO Statements .. 11-15

12 Java Streams in JDBC

Overview of Java Streams.. 12-1
Streaming LONG or LONG RAW Columns.. 12-2

LONG RAW Data Conversions .. 12-2
LONG Data Conversions ... 12-3
Streaming Example for LONG RAW Data.. 12-3
Avoiding Streaming for LONG or LONG RAW .. 12-5

Streaming CHAR, VARCHAR, or RAW Columns ... 12-6
Streaming LOBs and External Files ... 12-6
Data Streaming and Multiple Columns.. 12-7
Closing a Stream.. 12-8
Notes and Precautions on Streams... 12-8

Streaming Data Precautions .. 12-8
Using Streams to Avoid Limits on setBytes and setString.. 12-9
Streaming and Row Prefetching ... 12-10

13 Working with Oracle Object Types

Mapping Oracle Objects .. 13-1
Using the Default STRUCT Class for Oracle Objects ... 13-2

STRUCT Class Functionality ... 13-2
Retrieving STRUCT Objects and Attributes.. 13-3
Creating STRUCT Objects.. 13-4

ix

Binding STRUCT Objects into Statements... 13-4
STRUCT Automatic Attribute Buffering ... 13-4

Creating and Using Custom Object Classes for Oracle Objects .. 13-5
Relative Advantages of ORAData versus SQLData .. 13-5
Understanding Type Maps for SQLData Implementations.. 13-6
Creating Type Map and Defining Mappings for a SQLData Implementation 13-7

Adding Entries to an Existing Type Map... 13-7
Creating a New Type Map ... 13-8
Materializing Object Types not Specified in the Type Map .. 13-8

Reading and Writing Data with a SQLData Implementation .. 13-8
Understanding the ORAData Interface ... 13-11
Reading and Writing Data with a ORAData Implementation ... 13-12
Additional Uses for ORAData... 13-15

Object-Type Inheritance .. 13-15
Creating Subtypes ... 13-16
Implementing Customized Classes for Subtypes... 13-17

Use of ORAData for Type Inheritance Hierarchy... 13-17
Use of SQLData for Type Inheritance Hierarchy .. 13-20
JPublisher Utility.. 13-22

Retrieving Subtype Objects.. 13-22
Creating Subtype Objects... 13-24
Sending Subtype Objects.. 13-25
Accessing Subtype Data Fields ... 13-25
Inheritance Metadata Methods ... 13-26

Using JPublisher to Create Custom Object Classes ... 13-27
JPublisher Functionality... 13-27
JPublisher Type Mappings .. 13-27

Describing an Object Type.. 13-29
Functionality for Getting Object Metadata.. 13-30
Steps for Retrieving Object Metadata... 13-30

14 Working with LOBs and BFILEs

The LOB Data Types... 14-1
Oracle SecureFiles ... 14-2
Data Interface for LOBs ... 14-3

Streamlined Mechanism... 14-3
Input.. 14-3
Output... 14-5
CallableSatement and IN OUT Parameter .. 14-6
Size Limitations ... 14-6

LOB Locator Interface... 14-6
Working With Temporary LOBs .. 14-8
Opening Persistent LOBs with the Open and Close Methods... 14-9
Working with BFILEs ... 14-10

x

15 Using Oracle Object References

Oracle Extensions for Object References.. 15-1
Retrieving and Passing an Object Reference... 15-2

Retrieving an Object Reference from a Result Set .. 15-2
Retrieving an Object Reference from a Callable Statement .. 15-3
Passing an Object Reference to a Prepared Statement... 15-3

Accessing and Updating Object Values Through an Object Reference..................................... 15-3
Custom Reference Classes with JPublisher ... 15-4

16 Working with Oracle Collections

Oracle Extensions for Collections .. 16-1
Choices in Materializing Collections.. 16-1
Creating Collections.. 16-2
Creating Multilevel Collection Types .. 16-3

Overview of Collection Functionality... 16-3
ARRAY Performance Extension Methods .. 16-4

Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types............................ 16-4
ARRAY Automatic Element Buffering .. 16-4
ARRAY Automatic Indexing... 16-4

Creating and Using Arrays .. 16-5
Creating ARRAY Objects ... 16-5
Retrieving an Array and Its Elements .. 16-6

Retrieving the Array ... 16-6
Data Retrieval Methods .. 16-6
Comparing the Data Retrieval Methods... 16-7
Retrieving Elements of a Structured Object Array According to a Type Map 16-8
Retrieving a Subset of Array Elements ... 16-9
Retrieving Array Elements into an oracle.sql.Datum Array ... 16-9
Accessing Multilevel Collection Elements ... 16-10

Passing Arrays to Statement Objects.. 16-11
Using a Type Map to Map Array Elements .. 16-12
Custom Collection Classes with JPublisher .. 16-13

17 Result Set

Oracle JDBC Implementation Overview for Result Set Support .. 17-1
Resultset Limitations and Downgrade Rules .. 17-2
Avoiding Update Conflicts.. 17-3
Fetch Size .. 17-4

Setting the Fetch Size .. 17-4
Presetting the Fetch Direction ... 17-5

Refetching Rows.. 17-5
Viewing Database Changes Made Internally and Externally .. 17-6

Visibility versus Detection of External Changes .. 17-6
Summary of Visibility of Internal and External Changes ... 17-6
Oracle Implementation of Scroll-Sensitive Result Sets.. 17-7

xi

18 JDBC RowSets

Overview of JDBC RowSets.. 18-1
RowSet Properties ... 18-2
Events and Event Listeners.. 18-3
Command Parameters and Command Execution.. 18-4
Traversing RowSets .. 18-4

CachedRowSet ... 18-6
JdbcRowSet .. 18-9
WebRowSet .. 18-10
FilteredRowSet .. 18-12
JoinRowSet ... 18-13

19 Globalization Support

Providing Globalization Support .. 19-1
NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property in JDK 1.5 19-3
New Methods for National Character Set Type Data in JDK 1.6... 19-4

Part V Performance and Scalability

20 Statement and Result Set Caching

About Statement Caching.. 20-1
Basics of Statement Caching .. 20-2
Implicit Statement Caching ... 20-2
Explicit Statement Caching.. 20-3

Using Statement Caching .. 20-3
Enabling and Disabling Statement Caching.. 20-4
Closing a Cached Statement .. 20-5
Using Implicit Statement Caching.. 20-6
Using Explicit Statement Caching .. 20-9

Reusing Statements Objects.. 20-10
Using a Pooled Statement .. 20-11
Closing a Pooled Statement ... 20-11

Result Set Caching .. 20-12
Server-side Cache.. 20-12
Client Result Cache ... 20-12

21 Implicit Connection Caching

The Implicit Connection Cache .. 21-2
Using the Connection Cache ... 21-3

Turning Caching On ... 21-4
Opening a Connection.. 21-4
Setting Connection Cache Name .. 21-5
Setting Connection Cache Properties ... 21-5
Closing a Connection.. 21-5
Implicit Connection Cache Example .. 21-6

xii

Connection Attributes .. 21-7
Getting Connections ... 21-7
Setting Connection Attributes ... 21-8
Checking Attributes of a Returned Connection ... 21-8
Connection Attribute Example ... 21-8

Connection Cache Properties .. 21-9
Limit Properties ... 21-9
TIMEOUT Properties.. 21-10
Other Properties .. 21-11
Connection Property Example .. 21-12

Connection Cache Manager API .. 21-13
Advanced Topics ... 21-13

Attribute Weights and Connection Matching... 21-13
Connection Cache Callbacks ... 21-14
Use Cases for TimeToLiveTimeout and AbandonedConnectionTimeout 21-15

22 Run-Time Connection Load Balancing

Overview of Run-Time Connection Load Balancing ... 22-1
Enabling Run-Time Connection Load Balancing ... 22-2

23 Performance Extensions

Update Batching .. 23-1
Overview of Update Batching Models... 23-2
Oracle Update Batching ... 23-3

Oracle Update Batching Characteristics and Limitations .. 23-3
Setting the Connection Batch Value .. 23-4
Setting the Statement Batch Value... 23-4
Checking the Batch Value... 23-5
Overriding the Batch Value ... 23-5
Committing the Changes in Oracle Batching .. 23-6
Update Counts in Oracle Batching.. 23-6
Error Reporting in Oracle Update Batching... 23-8

Standard Update Batching... 23-8
Limitations in the Oracle Implementation of Standard Batching..................................... 23-8
Adding Operations to the Batch .. 23-9
Processing the Batch .. 23-10
Committing the Changes in the Oracle Implementation of Standard Batching........... 23-10
Clearing the Batch.. 23-10
Update Counts in the Oracle Implementation of Standard Batching 23-11
Error Handling in the Oracle Implementation of Standard Batching............................ 23-12
Intermixing Batched Statements and Nonbatched Statements 23-13

Premature Batch Flush ... 23-14
Additional Oracle Performance Extensions ... 23-15

Prefetching LOB Data ... 23-15
Oracle Row-Prefetching Limitations .. 23-16
Defining Column Types ... 23-17
Reporting DatabaseMetaData TABLE_REMARKS.. 23-20

xiii

24 OCI Connection Pooling

OCI Driver Connection Pooling: Background... 24-1
OCI Driver Connection Pooling and Shared Servers Compared .. 24-2
Defining an OCI Connection Pool... 24-2
Connecting to an OCI Connection Pool.. 24-6
Sample Code for OCI Connection Pooling .. 24-7
Statement Handling and Caching .. 24-9
JNDI and the OCI Connection Pool .. 24-10

25 Oracle Advanced Queuing

Functionality and Framework of Oracle Advanced Queuing .. 25-1
Making Changes to the Database .. 25-2
AQ Asynchronous Event Notification .. 25-3
Creating Messages... 25-5
Example: Creating a Message and Setting a Payload ... 25-7
Enqueuing Messages .. 25-7
Dequeuing Messages.. 25-8
Examples: Enqueuing and Dequeuing.. 25-10

26 Database Change Notification

Creating a Registration... 26-2
Associating a Query with a Registration .. 26-3
Notifying Database Change Events... 26-4
Deleting a Registration .. 26-4

Part VI High Availability

27 Fast Connection Failover

Overview of Fast Connection Failover.. 27-1
Using Fast Connection Failover.. 27-2

Fast Connection Failover Prerequisites.. 27-2
Configuring ONS for Fast Connection Failover ... 27-3

Remote ONS Subscription .. 27-3
Enabling Fast Connection Failover... 27-3
Querying Fast Connection Failover Status.. 27-4

Understanding Fast Connection Failover ... 27-4
What the Application Sees... 27-4
How It Works .. 27-5

Comparison of Fast Connection Failover and TAF .. 27-5

28 Transparent Application Failover

Overview of Transparent Application Failover .. 28-1
Failover Type Events .. 28-1
TAF Callbacks .. 28-2
Java TAF Callback Interface.. 28-2

xiv

Part VII Transaction Management

29 Distributed Transactions

Overview of Distributed Transactions ... 29-1
Distributed Transaction Components and Scenarios .. 29-2
Distributed Transaction Concepts .. 29-2
Switching Between Global and Local Transactions ... 29-3
Oracle XA Packages .. 29-5

XA Components... 29-5
XADatasource Interface and Oracle Implementation.. 29-6
XAConnection Interface and Oracle Implementation ... 29-6
XAResource Interface and Oracle Implementation ... 29-7
OracleXAResource Method Functionality and Input Parameters ... 29-8
Xid Interface and Oracle Implementation ... 29-12

Error Handling and Optimizations.. 29-13
XAException Classes and Methods.. 29-13
Mapping Between Oracle Errors and XA Errors .. 29-14
XA Error Handling.. 29-14
Oracle XA Optimizations... 29-14

Implementing a Distributed Transaction ... 29-15
Summary of Imports for Oracle XA ... 29-15
Oracle XA Code Sample... 29-15

Native-XA in Oracle JDBC Drivers.. 29-19
OCI Native XA... 29-20
Thin Native XA.. 29-21

Part VIII Manageability

30 Database Administration

31 Diagnosability in JDBC

Logging.. 31-1
Enabling and Using JDBC Logging .. 31-2

Configuring the CLASSPATH ... 31-2
Enabling Logging... 31-2
Configuring Logging... 31-3
Using Loggers... 31-5
An Example... 31-6

Performance, Scalability, and Security Issues... 31-7
Diagnosability Management... 31-8

32 JDBC DMS Metrics

Overview of JDBC DMS Metrics ... 32-2
Determining the Type of Metric to Be Generated .. 32-2
Generating the SQLText Metric ... 32-3
Accessing DMS Metrics Using JMX .. 32-3

xv

Part IX Appendixes

A JDBC Reference Information

Valid SQL-JDBC Data Type Mappings .. A-1
Supported SQL and PL/SQL Data Types ... A-3
Embedded JDBC Escape Syntax... A-6

Time and Date Literals ... A-7
Date Literals.. A-7
Time Literals ... A-7
Timestamp Literals .. A-8

Scalar Functions... A-9
LIKE Escape Characters ... A-9
Outer Joins.. A-10
Function Call Syntax... A-10
JDBC Escape Syntax to Oracle SQL Syntax Example .. A-10

Oracle JDBC Notes and Limitations.. A-11
CursorName... A-11
JDBC Outer Join Escapes.. A-12
PL/SQL TABLE, BOOLEAN, and RECORD Types .. A-12
IEEE 754 Floating Point Compliance.. A-12
Catalog Arguments to DatabaseMetaData Calls.. A-12
SQLWarning Class .. A-13
Executing DDL Statements .. A-13
Binding Named Parameters .. A-13

B Oracle RAC Fast Application Notification

Overview of Oracle RAC Fast Application Notification ... B-1
Installing and Configuring Oracle RAC Fast Application Notification B-3

Configuration of ONS... B-3
Overview of ONS Configuration File ... B-3
Configuring Client-Side ONS .. B-5

Using Oracle RAC Fast Application Notification... B-6
Implementing a Connection Cache ... B-7

C Coding Tips

JDBC and Multithreading ... C-1
Performance Optimization .. C-1

Disabling Auto-Commit Mode ... C-1
Standard Fetch Size and Oracle Row Prefetching.. C-2
Standard and Oracle Update Batching .. C-2
Statement Caching .. C-3
Mapping Between Built-in SQL and Java Types .. C-3

Transaction Isolation Levels and Access Modes... C-3

xvi

D JDBC Error Messages

General Structure of JDBC Error Messages ... D-1
General JDBC Messages .. D-1

JDBC Messages Sorted by ORA Number .. D-2
JDBC Messages Sorted in Alphabetic Order ... D-7

Native XA Messages ... D-12
Native XA Messages Sorted by ORA Number ... D-12
Native XA Messages Sorted in Alphabetic Order .. D-13

TTC Messages .. D-13
TTC Messages Sorted by ORA Number .. D-13
TTC Messages Sorted in Alphabetic Order ... D-15

E Troubleshooting

Common Problems.. E-1
Memory Consumption for CHAR Columns Defined as OUT or IN/OUT Variables E-1
Memory Leaks and Running Out of Cursors.. E-2
Boolean Parameters in PL/SQL Stored Procedures... E-2
Opening More Than 16 OCI Connections for a Process.. E-2
Using statement.cancel ... E-3
Using JDBC with Firewalls .. E-3
Frequent Abrupt Disconnection from Server.. E-4

Basic Debugging Procedures .. E-4
Oracle Net Tracing to Trap Network Events .. E-4

Client-Side Tracing ... E-5
TRACE_LEVEL_CLIENT ... E-5
TRACE_DIRECTORY_CLIENT ... E-5
TRACE_FILE_CLIENT .. E-5
TRACE_UNIQUE_CLIENT ... E-6

Server-Side Tracing ... E-6
TRACE_LEVEL_SERVER ... E-6
TRACE_DIRECTORY_SERVER .. E-6
TRACE_FILE_SERVER .. E-7

Third Party Debugging Tools ... E-7

Index

xvii

List of Examples

3–1 Accessing SQLXML Data... 3-8
4–1 Accessing SYS.ANYTYPE Type... 4-17
4–2 Creating a Transient Object Type Through PL/SQL and Retrieving Through JDBC ... 4-17
4–3 Calling a PL/SQL Stored Procedure That Takes an ANYTPE as IN Parameter 4-17
4–4 Accessing an Instance of ANYDATA from the Database .. 4-18
4–5 Inserting an Object as ANYDATA in a Database Table ... 4-18
4–6 Selecting an ANYDATA Column from a Database Table ... 4-19
8–1 Using SYS Login To Make a Remote Connection .. 8-8
9–1 Using SSL Authentication to Connect to the Database ... 9-2
9–2 Using a Data Source to Connect to the Database ... 9-3
9–3 Setting Data Encryption and Integrity Parameters... 9-10
9–4 Using Kerberos Authentication to Connect to the Database... 9-15
9–5 Using RADIUS Authentication to Connect to the Database ... 9-20
20–1 Using Implicit Statement Cache... 20-8
21–1 Using the Implicit Connection Cache ... 21-4
21–2 Connection Cache Example... 21-6
21–3 Using Connection Attributes.. 21-8
21–4 Using Connection Properties ... 21-12
21–5 Connection Cache Manager Example... 21-13
23–1 Oracle Update Batching .. 23-7
23–2 Standard Update Batching.. 23-12
23–3 Premature Batch Flushing .. 23-14
23–4 Defining Column Types.. 23-19
23–5 TABLE_REMARKS Reporting ... 23-20
25–1 Creating a Message and Setting a Payload .. 25-7
25–2 Enqueuing a Single Message.. 25-10
25–3 Dequeuing a Single Message.. 25-10
26–1 Database Change Notification ... 26-5
27–1 Enabling Fast Connection Failover.. 27-4
30–1 Database Startup and Shutdown... 30-3
B–1 Example of a Sample ons.config File... B-5
B–2 Example of Sample Code Using Oracle RAC FAN API... B-6

xviii

List of Figures

1–1 Architecture of Oracle JDBC Drivers and Oracle Database.. 1-2
5–1 Applet, Connection Manager, and Database Relationship .. 5-4
22–1 Run-Time Connection Load Balancing... 22-2

xix

xx

List of Tables

1–1 Feature Differences Between JDBC OCI and JDBC Thin Drivers....................................... 1-4
1–2 Feature List.. 1-5
2–1 Import Statements for JDBC Driver .. 2-8
3–1 Key Areas of JDBC 3.0 Functionality .. 3-2
3–2 BLOB Method Equivalents ... 3-5
3–3 CLOB Method Equivalents... 3-6
4–1 Key Interfaces and Classes of the oracle.jdbc Package.. 4-19
4–2 PL/SQL Types and Corresponding JDBC Types... 4-28
4–3 Arguments of the setPlsqlIndexTable Method... 4-29
4–4 Arguments of the registerIndexTableOutParameter Method .. 4-31
4–5 Argument of the getPlsqlIndexTable Method .. 4-32
4–6 Argument of the getOraclePlsqlIndexTable Method .. 4-32
4–7 Arguments of the getPlsqlIndexTable Method .. 4-33
6–1 OCI Instant Client Shared Libraries .. 6-5
6–2 Data Shared Library for Instant Client and Instant Client Light (English) 6-11
8–1 Standard Data Source Properties... 8-3
8–2 Oracle Extended Data Source Properties.. 8-3
8–3 Supported Database Specifiers ... 8-11
9–1 Client/Server Negotiations for Encryption or Integrity .. 9-7
9–2 OCI Driver Client Parameters for Encryption and Integrity... 9-8
9–3 Thin Driver Client Parameters for Encryption and Integrity .. 9-8
11–1 Default Mappings Between SQL Types and Java Types... 11-2
11–2 getObject and getOracleObject Return Types... 11-8
12–1 LONG and LONG RAW Data Conversions ... 12-3
13–1 JPublisher SQL Type Categories, Supported Settings, and Defaults 13-29
17–1 Visibility of Internal and External Changes for Oracle JDBC... 17-6
18–1 The JDBC and Cached Row Sets Compared... 18-9
20–1 Comparing Methods Used in Statement Caching.. 20-3
20–2 Methods Used in Statement Allocation and Implicit Statement Caching 20-7
20–3 Methods Used to Retrieve Explicitly Cached Statements... 20-10
23–1 Valid Column Type Specifications ... 23-20
26–1 Database Change Notification Registration Options... 26-3
29–1 Connection Mode Transitions... 29-4
29–2 Oracle-XA Error Mapping ... 29-14
30–1 Supported Database Startup Options .. 30-2
30–2 Supported Database Shutdown Options... 30-3
A–1 Valid SQL Data Type-Java Class Mappings ... A-1
A–2 Support for SQL Data Types ... A-3
A–3 Support for ANSI-92 SQL Data Types ... A-4
A–4 Support for SQL User-Defined Types.. A-4
A–5 Support for PL/SQL Data Types.. A-5
B–1 Required ONS Configuration Parameters... B-4
B–2 Optional ONS Configuration Parameters ... B-4
B–3 onsctl Commands ... B-5
D–1 JDBC Messages Sorted by ORA Number .. D-2
D–2 JDBC Messages Sorted in Alphabetic Order... D-7
D–3 Native XA Messages Sorted by ORA Number... D-12
D–4 Native XA Messages Sorted in Alphabetic Order.. D-13
D–5 TTC Messages Sorted by ORA Number.. D-13
D–6 TTC Messages Sorted in Alphabetic Order... D-15

xxi

Preface

This preface introduces you to the Oracle Database JDBC Developer's Guide discussing
the intended audience, structure, and conventions of this document. A list of related
Oracle documents is also provided.

This preface covers the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
The Oracle Database JDBC Developer's Guide is intended for developers of Java Database
Connectivity (JDBC)-based applications and applets. This book can be read by anyone
with an interest in JDBC programming, but assumes at least some prior knowledge of
the following:

■ Java

■ Oracle PL/SQL

■ Oracle databases

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xxii

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
The following books are also available from the Oracle Java Platform group:

■ Oracle Database Java Developer's Guide

This book introduces the basic concepts of Java and provides general information
about server-side configuration and functionality. Information that pertains to the
Oracle Java platform as a whole, rather than to a particular product (such as JDBC)
is in this book. This book also discusses Java stored procedures, which were
formerly discussed in a standalone book.

■ Oracle Database JPublisher User's Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing JDBC
applications that use object types, VARRAY types, nested table types, or object
reference types, then JPublisher can generate custom Java classes to map to them.

The following OC4J documents, for Oracle Application Server releases, are also
available from the Oracle Java Platform group:

■ Oracle Application Server Containers for J2EE User's Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

■ Oracle Containers for J2EE Support for JavaServer Pages Developer's Guide

This book provides information for JSP developers who want to run their pages in
OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps for
getting started in the OC4J environment.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4J.

■ Oracle Containers for J2EE Servlet Developer's Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J configuration
files.

■ Oracle Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4J,
such as JTA, JNDI, and the Oracle Application Server Java Object Cache.

■ Oracle Containers for J2EE Enterprise JavaBeans Developer's Guide

xxiii

This book provides information about the EJB implementation and EJB container
in OC4J.

The following documents are from the Oracle Server Technologies group:

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database PL/SQL Language Reference

■ Oracle Database SQL Language Reference

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database Advanced Security Administrator's Guide

■ Oracle Database Reference

■ Oracle Database Error Messages

The following documents from the Oracle Application Server group may also be of
some interest:

■ Oracle Application Server Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Oracle Fusion Middleware Performance Guide

■ Oracle Fusion Middleware Application Globalization Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Oracle Fusion Middleware Upgrade Planning Guide

The following are available from the JDeveloper group:

■ Oracle JDeveloper online help

■ Oracle JDeveloper documentation on the Oracle Technology Network:

http://www.oracle.com/technetwork/developer-tools/jdev/overvi
ew/index.html

Printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technetwork/community/join/overview/index.
html

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technetwork/documentation/index.html

The following resources are available from Sun Microsystems:

■ Web site for JDBC, including the latest specifications:

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

xxiv

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Conventions in Code Examples
Code examples illustrate Java, SQL, and command-line statements. Examples are
displayed in a monospace (fixed-width) font and separated from normal text as shown
in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
data types, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, user names
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

xxv

The following table describes typographic conventions used in code examples and
provides examples of their use.

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to the
example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

xxvi

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job='SALESMAN' and
sal<1600\"
C:\>imp SYSTEM/password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

xxvii

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is C:\oracle. If you install the
latest Oracle release on a computer with no
other Oracle software installed, then the
default setting for the first Oracle home
directory is C:\oracle\orann, where nn
is the latest release number. The Oracle
home directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Microsoft Windows for additional
information about OFA compliances and
for information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xxviii

xxix

What’s New

This chapter describes the new features in Oracle Database 11g Release 2 (11.2) JDBC
drivers.

New Features for Release 2 (11.2)
In this release, Oracle JDBC drivers support the following new features:

■ SQLXML Support

■ Timestamp and Time Zone improvement

■ LOB Prefetching Support

■ Zero-copy I/O for Oracle SecureFiles

■ Setting Session Edition for a Connection

■ Internet Protocol Version 6 Support (IPv6)

■ PreparedStatement.getMetaData() Method

■ Oracle RAC Fast Application Notification

■ Universal Connection Pool

■ OCI Client Result Cache Enhancement

SQLXML Support
This release of Oracle JDBC drivers provides a mapping interface to support the
SQL/XML database data type. For more information about SQL/XML database data
type, refer to "SQLXML Type" on page 3-7.

Timestamp and Time Zone improvement
This release of Oracle JDBC drivers provides a newly designed time zone cache to
address the issues related to version incompatibility of time zones. For more
information refer to "Overview of Classes oracle.sql.TIMESTAMP,
oracle.sql.TIMESTAMPTZ, and oracle.sql.TIMESTAMPLTZ" on page 4-8.

LOB Prefetching Support
This release of Oracle JDBC drivers improves the performance of LOB operations by
reducing the number of round trips to the database. For more information refer to
"Prefetching LOB Data" on page 23-15.

xxx

Zero-copy I/O for Oracle SecureFiles
This release of JDBC drivers provides faster LOB operations by using zero-copy I/O
framework. For more information refer to "Zero-Copy I/O for Oracle SecureFiles" on
page 14-3.

Setting Session Edition for a Connection
Starting from this release of Oracle JDBC drivers, when you connect to the Database,
you can specify the session edition in your code along with user name, password,
System privileges, and connection identifier. For more information, refer to Oracle
Database JDBC Java API Reference.

Internet Protocol Version 6 Support (IPv6)
This release of Oracle JDBC drivers supports Internet Protocol Version 6 (IPv6)
addresses. For more information refer to "Internet Protocol Version 6 Support" on
page 8-10.

PreparedStatement.getMetaData() Method
Starting from Oracle Database 11g Release 2 (11.2), JDBC drivers support obtaining the
metadata of a SELECT statement without executing the PreparedStatement. This
feature works even with the earlier database releases. For more information, please
refer to "Interface oracle.jdbc.OraclePreparedStatement" on page 4-21.

Oracle RAC Fast Application Notification
Oracle Database 11g Release 2 (11.2) introduces a simplified API for accessing Oracle
RAC Fast Application Notification (FAN) events. This feature enables you to develop
more responsive applications that take full advantage of Oracle Database
high-availability features. For more information refer to "Oracle RAC Fast Application
Notification".

Universal Connection Pool
Oracle Database 11g Release 2 (11.2) includes Oracle Universal Connection Pool (UCP)
for JDBC developers. The Oracle Universal Connection Pool (UCP) is a full-featured
connection pool for managing database connections. Database-intensive Java
applications use the connection pool to improve performance and better utilize system
resources.

See Also: Oracle Database Advanced Application Developer's Guide for
more information about session editions

Note: All the new System classes that are required for IPv6 support
are loaded when Java is enabled during database initialization. So, if
your application does not have any IPv6 addressing, then you do not
need to change your code to use IPv6 functionality. However, if your
application has either IPv6 only or both IPv6 and IPv4 addressing,
then you should set the java.net.preferIPv6Addresses system
property in the command line. This enables the Oracle JVM to load
appropriate libraries. These libraries are loaded once and cannot be
reloaded without restarting the Java process.

Note: Oracle Universal Connection Pool (UCP) for JDBC developers
was introduced in Oracle Database 11.1.0.7 release.

xxxi

OCI Client Result Cache Enhancement
The Oracle Call Interface (OCI) client result cache feature is enhanced in Oracle
Database 11g Release 2 (11.2). The client result cache now supports table annotations
and caching on query with views. Also, the restriction causing the client cache to be
disabled with database resident pooling is now removed. For more information refer
to "Client Result Cache" on page 6-1.

See Also: Oracle Universal Connection Pool for JDBC Developer's Guide

xxxii

Part I
Overview

The chapters in this part introduce the concept of Java Database Connectivity (JDBC)
and provide an overview of the Oracle implementation of JDBC. This part provides
basic information about installation and configuration of the Oracle client with
reference to JDBC drivers. This part also covers the basic steps in creating and running
any JDBC application.

Part I contains the following chapters:

■ Chapter 1, "Introducing JDBC"

■ Chapter 2, "Getting Started"

See Also:

■ Oracle Database JDBC Java API Reference

Introducing JDBC 1-1

1
Introducing JDBC

Java Database Connectivity (JDBC) is a Java standard that provides the interface for
connecting from Java to relational databases. The JDBC standard is defined by Sun
Microsystems and implemented through the standard java.sql interfaces. This
allows individual providers to implement and extend the standard with their own
JDBC drivers. JDBC is based on the X/Open SQL Call Level Interface (CLI). JDBC 4.0
complies with the SQL 2003 standard.

This chapter provides an overview of the Oracle implementation of JDBC, covering the
following topics:

■ Overview of Oracle JDBC Drivers

■ Environments and Support

■ Feature List

Overview of Oracle JDBC Drivers
In addition to supporting the standard JDBC application programming interfaces
(APIs), Oracle drivers have extensions to support Oracle-specific data types and to
enhance performance.

Oracle provides the following JDBC drivers:

■ Thin driver

It is a pure Java driver used on the client-side, without an Oracle client
installation. It can be used with both applets and applications.

■ Oracle Call Interface (OCI) driver

It is used on the client-side with an Oracle client installation. It can be used only
with applications.

■ Server-side Thin driver

It is functionally similar to the client-side Thin driver. However, it is used for code
that runs on the database server and needs to access another session either on the
same server or on a remote server on any tier.

■ Server-side internal driver

It is used for code that runs on the database server and accesses the same session.
That is, the code runs and accesses data from a single Oracle session.

Figure 1–1 illustrates the architecture of Oracle JDBC drivers and Oracle Database.

Overview of Oracle JDBC Drivers

1-2 Oracle Database JDBC Developer's Guide

Figure 1–1 Architecture of Oracle JDBC Drivers and Oracle Database

This section covers the following topics:

■ Common Features of Oracle JDBC Drivers

■ Choosing the Appropriate Driver

■ Feature Differences Between JDBC OCI and Thin Drivers

Common Features of Oracle JDBC Drivers
The server-side and client-side Oracle JDBC drivers provide the same basic
functionality.

The JDBC Thin and OCI drivers support Java Development Kit (JDK) 1.5 and 1.6. The
server-side internal drivers support only JDK 1.5. All the JDBC drivers support the
following standards and features:

■ Same syntax and APIs

■ Same Oracle extensions

■ Full support for multithreaded applications

Oracle JDBC drivers implement the standard java.sql interfaces. You can access the
Oracle-specific features, in addition to the standard features, by using the
oracle.jdbc package.

JDBC Thin Driver
The JDBC Thin driver is a pure Java, Type IV driver that can be used in applications
and applets. It is platform-independent and does not require any additional Oracle
software on the client-side. The JDBC Thin driver communicates with the server using
SQL*Net to access Oracle Database.

The JDBC Thin driver allows a direct connection to the database by providing an
implementation of SQL*Net on top of Java sockets. The driver supports the TCP/IP
protocol and requires a TNS listener on the TCP/IP sockets on the database server.

Oracle Database

JDBC Thin Driver

Java Sockets

OCI C Library

JDBC OCI Driver SOL Engine
PL/SQL Engine

Java Engine

Server-Side Thin Driver

JDBC Server-Side
Internal Driver

KPRB C Library

Oracle Database

Overview of Oracle JDBC Drivers

Introducing JDBC 1-3

JDBC OCI Driver
The JDBC OCI driver is a Type II driver used with Java applications. It requires an
Oracle client installation and, therefore, is Oracle platform-specific. It supports all
installed Oracle Net adapters, including interprocess communication (IPC), named
pipes, TCP/IP, and Internetwork Packet Exchange/Sequenced Packet Exchange
(IPX/SPX).

The JDBC OCI driver, written in a combination of Java and C, converts JDBC
invocations to calls to OCI, using native methods to call C-entry points. These calls
communicate with the database using SQL*Net.

The JDBC OCI driver uses the OCI libraries, C-entry points, Oracle Net, core libraries,
and other necessary files on the client computer where it is installed.

OCI is an API that enables you to create applications that use the native procedures or
function calls of a third-generation language to access Oracle Database and control all
phases of the SQL statement processing.

JDBC Server-Side Thin Driver
The JDBC server-side Thin driver offers the same functionality as the JDBC Thin
driver that runs on the client-side. However, the JDBC server-side Thin driver runs
inside Oracle Database and accesses a remote database or a different session on the
same database.

This driver is useful in the following scenarios:

■ Accessing a remote database server from an Oracle Database instance acting as a
middle tier

■ Accessing an Oracle Database session from inside another, such as from a Java
stored procedure

The use of JDBC Thin driver from a client application or from inside a server does not
affect the code.

JDBC Server-Side Internal Driver
The JDBC server-side internal driver supports any Java code that runs inside Oracle
Database, such as in a Java stored procedure, and must access the same database. It
lets the Oracle Java Virtual Machine (Oracle JVM) to communicate directly with the
SQL engine. This driver supports only JDK 1.5.

The JDBC server-side internal driver, the Oracle JVM, the database, and the SQL
engine all run within the same address space, and therefore, the issue of network
round-trips is irrelevant. The programs access the SQL engine by using function calls.

The JDBC server-side internal driver is fully consistent with the client-side drivers and
supports the same features and extensions.

See Also: Chapter 5, "Features Specific to JDBC Thin"

See Also: Chapter 6, "Features Specific to JDBC OCI Driver"

See Also: Chapter 5, "Features Specific to JDBC Thin"

Note: The server-side internal driver does not support the
cancel and setQueryTimeout methods of the Statement class.

Environments and Support

1-4 Oracle Database JDBC Developer's Guide

Choosing the Appropriate Driver
Consider the following when choosing a JDBC driver for your application or applet:

■ In general, unless you need OCI-specific features, such as support for non-TCP/IP
networks, use the JDBC Thin driver.

■ If you want maximum portability and performance, then use the JDBC Thin
driver. You can connect to Oracle Database from either an application or an applet
using the JDBC Thin driver.

■ If you want to use Lightweight Directory Access Protocol (LDAP) over Secure
Sockets Layer (SSL), then use the JDBC Thin driver.

■ If you are writing a client application for an Oracle client environment and need
OCI-driver-specific features, such as support for non-TCP/IP networks, then use
the JDBC OCI driver.

■ If you are writing an applet, then you must use the JDBC Thin driver.

■ For code that runs in the database server and needs to access a remote database or
another session within the same database instance, use the JDBC server-side Thin
driver.

■ If your code runs inside the database server and needs to access data locally
within the session, then use the JDBC server-side internal driver to access that
server.

Feature Differences Between JDBC OCI and Thin Drivers
Table 1–1 lists the features that are specific either to the JDBC OCI or JDBC Thin driver
in Oracle Database 11g Release 2 (11.2).

Environments and Support
This section provides a brief discussion of the following topics:

■ Supported JDK and JDBC Versions

■ JNI and Java Environments

See Also: Chapter 7, "Server-Side Internal Driver"

Table 1–1 Feature Differences Between JDBC OCI and JDBC Thin Drivers

JDBC OCI Driver JDBC Thin Driver

OCI connection pooling Default support for Native XA

Transparent Application Failover (TAF)

OCI Client Result Cache

Note:

■ The OCI optimized fetch and client-side object cache features are
internal to the JDBC OCI driver and are not applicable to the
JDBC Thin driver.

■ Some JDBC OCI driver features, inherited from the OCI library,
are not available in the Thin JDBC driver.

Feature List

Introducing JDBC 1-5

■ JDBC and IDEs

Supported JDK and JDBC Versions
In Oracle Database 11g Release 2 (11.2), all the JDBC drivers are compatible with JDK
1.5. The JDBC Thin and OCI drivers also support JDK 1.6. All versions of JDK earlier
than 1.5 are no longer supported. Support for JDK 1.5 and 1.6 is provided through the
ojdbc5.jar and ojdbc6.jar files, respectively.

JNI and Java Environments
The JDBC OCI driver uses the standard Java Native Interface (JNI) to call OCI C
libraries. You can use the JDBC OCI driver with Java Virtual Machines (JVMs) other
than that of Sun Microsystems, in particular, with Microsoft and IBM JVMs.

JDBC and IDEs
The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for the
Internet. The Oracle JDeveloper environment contains integrated support for JDBC,
including the JDBC Thin driver and the native OCI driver. The database component of
Oracle JDeveloper uses the JDBC drivers to manage the connection between the
application running on the client and the server.

Feature List
Table 1–2 lists the features and the versions in which they were first supported for
each of the three Oracle JDBC drivers: server-side internal driver, JDBC OCI driver,
and JDBC Thin driver.

See Also: "Version Compatibility for Oracle JDBC Drivers" on
page 2-1

Table 1–2 Feature List

Feature
Server-Side
Internal JDBC OCI JDBC Thin

JDK 1.0 7.2.2 7.2.2

JDBC 1.0.2 7.2.2 7.2.2

JDK 1.1.1 8.0.6 8.0.6

JDBC 1.22 (No new features; just minor revisions) 8.0.6 8.0.6

defineColumnType 8.0.6 8.0.6

Row Prefetch 8.0.6 8.0.6

Oracle Batching 8.0.6 8.0.6

Java Native Interface 8.1.6

JDK 1.2 9.0.1 8.1.6 8.1.6

JDBC 2.0 SQL3 Types (BLOB, CLOB, Struct,
Array, REF)

8.1.5 8.1.5 8.1.5

Native LOB 8.1.6 9.2.0

Index-by Tables 10.2.0 8.1.6 10.1.0

JDBC 2.0 Scrollable Result Sets 8.1.6 8.1.6 8.1.6

Feature List

1-6 Oracle Database JDBC Developer's Guide

JDBC 2.0 Updatable Result Sets 8.1.6 8.1.6 8.1.6

JDBC 2.0 Standard Batching 8.1.6 8.1.6 8.1.6

JDBC 2.0 Connection Pooling NA 8.1.6 8.1.6

JDBC 2.0 XA 8.1.6 8.1.6 8.1.6

Server-side Thin driver 8.1.6 NA NA

JDBC 2.0 RowSets 9.0.1 9.0.1

Implicit Statement Caching 8.1.7 8.1.7 8.1.7

Explicit Statement Caching 8.1.7 8.1.7 8.1.7

Temporary LOBs 9.0.1 9.0.1 9.0.1

Object Type Inheritance 9.0.1 9.0.1 9.0.1

Multilevel Collections 9.0.1 9.0.1 9.0.1

oracle.jdbc Interfaces 9.0.1 9.0.1 9.0.1

Native XA 9.0.1 10.1.0

OCI Connection Pooling NA 9.0.1 NA

TAF NA 9.0.1 NA

NLS Support 9.0.1 9.0.1 9.0.1

JDK 1.3 9.2.0 9.2.0 9.2.0

JDK 1.4 10.1.0 9.2.0 9.2.0

JDBC 3.0 Savepoints 9.2.0 9.2.0 9.2.0

New Statement Caching API 9.2.0 9.2.0 9.2.0

ConnectionCacheImpl connection cache NA 8.1.7 8.1.7

Implicit Connection Cache NA 10.1.0 10.1.0

Fast Connection Failover 10.1.0.3 10.1.0.3

Connection Wrapping 9.2.0 9.2.0

DMS 9.2.0 9.2.0

Service Names in URLs 9.2.0 10.2.0

JDBC 3.0 Connection Pooling Properties NA 10.1.0 10.1.0

JDBC 3.0 Updatable BLOB, CLOB, REF 10.1.0 10.1.0 10.1.0

JDBC 3.0 Multiple Open Result Sets 10.1.0 10.1.0 10.1.0

JDBC 3.0 Parameter Metadata 10.1.0 10.1.0 10.1.0

JDBC 3.0 Set/Get Stored Procedures Parameters
by Name

10.1.0 10.1.0 10.1.0

JDBC 3.0 Statement Pooling 10.1.0 10.1.0 10.1.0

Set Statement Parameters by Name 10.1.0 10.1.0 10.1.0

End-to-End Tracing 10.1.0 10.1.0

Web RowSet 11.1 10.1.0 10.1.0

Proxy Authentication 10.2.0 10.1.0

Table 1–2 (Cont.) Feature List

Feature
Server-Side
Internal JDBC OCI JDBC Thin

Feature List

Introducing JDBC 1-7

JDBC 3.0 Auto Generated Keys 10.2.0 10.2.0

JDBC 3.0 Holdable Cursors 10.2.0 10.2.0 10.2.0

JDBC 3.0 Local/Global Transaction Switching 9.2.0 9.2.0 9.2.0

Run-time Connection Load Balancing NA 10.2.0 10.2.0

Extended setXXX and getXXX for LOBs 10.2.0 10.2.0

XA Connection Cache NA 10.2.0 10.2.0

DML Returning 10.2.0 10.2.0

JSR 114 RowSets 10.2.0 10.2.0

SSL Encryption 9.2.0 10.2.0

SSL Authentication 9.2.0 11.1

JDK 1.5 11.1 11.1 11.1

JDK 1.6 11.1 11.1

JDBC 4.0 11.1 11.1

AES Encryption 11.1

SHA1 Hash 11.1

Radius Authentication 10.2.0 11.1

Kerberos Authentication 11.1

ANYDATA and ANYTYPE types 11.1 11.1

Native AQ 11.1

Database Change Notification 11.1 11.1

Database startup and shutdown NA 11.1 11.1

Factory methods for data types 11.1 11.1 11.1

Buffer Cache 11.1 11.1 11.1

Secure Files 11.1 11.1 11.1

Diagnosability 11.1 11.1 11.1

OCI Client Result Cache 11.1.0

Server Result Cache 11.1 11.1.0 11.1.0

Universal Connection Pool 11.1.0.7.0 11.1.0.7.0

TimeZone Patching 11.2 11.2

Secure Lob Support 11.2 11.2

Lob prefetch Support 11.2 11.2

Network Connection Pool 11.2

Column Security Suppor 11.2

XMLType Queue Support (AQ) 11.2

Notification Grouping (AQ and DCN) 11.2

SimpleFAN 11.2 11.2

Table 1–2 (Cont.) Feature List

Feature
Server-Side
Internal JDBC OCI JDBC Thin

Feature List

1-8 Oracle Database JDBC Developer's Guide

Note:

■ In the table, NA means that the feature is not applicable for the
corresponding Oracle JDBC driver.

■ The ConnectionCacheImpl connection cache feature is
deprecated since Oracle Database 10g and Implicit Connection
Cache replaces this.

Getting Started 2-1

2
Getting Started

This chapter discusses the compatibility of Oracle Java Database Connectivity (JDBC)
driver versions, database versions, and Java Development Kit (JDK) versions. It also
describes the basics of testing a client installation and configuration and running a
simple application. This chapter contains the following sections:

■ Version Compatibility for Oracle JDBC Drivers

■ Verification of a JDBC Client Installation

■ Basic Steps in JDBC

■ Sample: Connecting, Querying, and Processing the Results

■ Stored Procedure Calls in JDBC Programs

■ Processing SQL Exceptions

Version Compatibility for Oracle JDBC Drivers
This section discusses the general JDBC version compatibility issues.

Backward Compatibility
The JDBC drivers are certified to work with the currently supported versions of Oracle
Database. For example, the JDBC Thin drivers in Oracle Database 11g Release 2 (11.2)
are certified to work with the 10.2.x, 10.1.x, 9.2.x, and 9.0.1.x Oracle Database releases.
However, they are not certified to work with older, unsupported database releases,
such as 8.0.x and 7.x.

Forward Compatibility
Existing and supported JDBC drivers are certified to work with Oracle Database 11g
Release 2 (11.2).

Note:

■ In Oracle Database 11g Release 2 (11.2), Oracle JDBC drivers no
longer support JDK 1.4.x or earlier versions.

■ You can find a complete, up-to-date list of supported databases
at
http://www.oracle.com/technetwork/database/ente
rprise-edition/jdbc-faq-090281.html.

Verification of a JDBC Client Installation

2-2 Oracle Database JDBC Developer's Guide

Verification of a JDBC Client Installation
To verify a JDBC client installation, you must do all of the following:

■ Check the Installed Directories and Files

■ Check the Environment Variables

■ Ensure that the Java Code Can Be Compiled and Run

■ Determine the Version of the JDBC Driver

■ Test JDBC and the Database Connection

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific documentation.

This section describes the steps for verifying an Oracle client installation of the JDBC
drivers, assuming that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, then no further installation on the client
computer is necessary.

If you have installed the JDBC Oracle Call Interface (OCI) driver, then you must also
install the Oracle client software. This includes Oracle Net and the OCI libraries.

Check the Installed Directories and Files
Installing the Oracle Java products creates, among other things, the following
directories:

■ ORACLE_HOME/jdbc

■ ORACLE_HOME /jlib

Check whether or not the following directories and files have been created and
populated in the ORACLE_HOME/jdbc directory:

■ demo

This directory contains a compressed file, demo.zip or demo.tar. When you
uncompress this compressed file, the samples directory and the
Samples-Readme.txt file are created. The samples directory contains sample
programs, including examples of how to use JDBC escape syntax and Oracle SQL
syntax, PL/SQL blocks, streams, user-defined types, additional Oracle type
extensions, and Oracle performance extensions.

■ doc

This directory contains the javadoc.zip file, which is the Oracle JDBC
application programming interface (API) documentation.

■ lib

The lib directory contains the following required Java classes:

– orai18n.jar and orai18n-mapping.jar

Contain classes for globalization and multibyte character sets support

– ojdbc5.jar, ojdbc5_g.jar, ojdbc6.jar, and ojdbc6_g.jar

Note: The JDBC Thin driver requires a TCP/IP listener to be running
on the computer where the database is installed.

Verification of a JDBC Client Installation

Getting Started 2-3

Contain the JDBC driver classes for use with JDK 1.5 and JDK 1.6

■ Readme.txt

This file contains late-breaking and release-specific information about the drivers,
which may not have been included in other documentation on the product.

Check whether or not the following directories have been created and populated in the
ORACLE_HOME /jlib directory:

■ jta.jar and jndi.jar

These files contain classes for the Java Transaction API (JTA) and the Java Naming
and Directory Interface (JNDI). These are required only if you are using JTA
features for distributed transaction management or JNDI features for naming
services.

■ ons.jar

This JAR file contains classes for Oracle Notification Services. This file is required
if you use Fast Application Notification (FAN) to notify other processes about
configuration and service level information.

Check the Environment Variables
This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver, focusing on the Sun Solaris, Linux, and Microsoft
Windows platforms.

You must set the CLASSPATH environment variable for your installed JDBC OCI or
Thin driver. Include the following in the CLASSPATH environment variable:

ORACLE_HOME/jdbc/lib/ojdbc5.jar
ORACLE_HOME/jlib/orai18n.jar

Note:

■ Since Oracle Database 11g Release 1 (11.1), support for a version
of JDK earlier than version 1.5 has been removed. Also, the
ojdbc14.jar and classes12.jar files are no longer shipped.
Instead, you can use the ojdbc5.jar and ojdbc6.jar files,
which are shipped with Oracle Database 11g.

■ If you are using JSE 6 and later, then there is no need to explicitly
load the JDBC driver. This means that the Java run-time loads the
driver when needed and you need not include
Class.forName("oracle.jdbc.OracleDriver") or new
oracle.jdbc.OracleDriver() in your code. But if you are
using J2SE 5.0, then you need to load the JDBC driver explicitly.

Note: These files can also be obtained from the Sun Microsystems
Web site. However, it is recommended that you use the versions
supplied by Oracle, which have been tested with the Oracle drivers.

Verification of a JDBC Client Installation

2-4 Oracle Database JDBC Developer's Guide

JDBC OCI Driver
If you are installing the JDBC OCI driver, then you must also set the following value
for the library path environment variable:

■ On Sun Solaris or Linux, set the LD_LIBRARY_PATH environment variable as
follows:

ORACLE_HOME/lib

This directory contains the libocijdbc11.so shared object library.

■ On Microsoft Windows, set the PATH environment variable as follows:

ORACLE_HOME\bin

This directory contains the ocijdbc11.dll dynamic link library.

All of the JDBC OCI demonstration programs can be run in the Instant Client mode by
including the JDBC OCI Instant Client data shared library on the library path
environment variable.

JDBC Thin Driver
If you are installing the JDBC Thin driver, then you do not have to set any other
environment variables. However, to use the JDBC server-side Thin driver, you need to
set permission.

Setting Permission for the Server-Side Thin Driver
The JDBC server-side Thin driver opens a socket for its connection to the database.
Because Oracle Database enforces the Java security model, a check is performed for a
SocketPermission object.

To use the JDBC server-side Thin driver, the connecting user must be granted the
appropriate permission. The following is an example of how the permission can be
granted for the user SCOTT:

CREATE ROLE jdbcthin;
CALL dbms_java.grant_permission('JDBCTHIN', 'java.net.SocketPermission', '*',
'connect');
GRANT jdbcthin TO SCOTT;

Note that JDBCTHIN in the grant_permission call must be in uppercase. The
asterisk (*) is a pattern. You can restrict the user by granting permission to connect to
only specific computers or ports.

Note: If you use the JTA features and the JNDI features, then you
must specify jta.jar and jndi.jar in your CLASSPATH
environment variable.

Note: If you are running a 32-bit Java Virtual Machine (JVM)
against a 64-bit client or database, then you must also add
ORACLE_HOME/lib32 to the LD_LIBRARY_PATH environment
variable.

See Also: Chapter 6, "Features Specific to JDBC OCI Driver"

See Also: Oracle Database Java Developer's Guide

Verification of a JDBC Client Installation

Getting Started 2-5

Ensure that the Java Code Can Be Compiled and Run
To further ensure that Java is set up properly on your client system, go to the
samples directory under the ORACLE_HOME/jdbc/demo directory. Now, type the
following commands on the command line, one after the other, to see if the Java
compiler and the Java interpreter run without error:

javac

java

Each of the preceding commands should display a list of options and parameters and
then exit. Ideally, verify that you can compile and run a simple test program, such as
jdbc/demo/samples/generic/SelectExample.

Determine the Version of the JDBC Driver
You can determine the version of the JDBC driver that you installed, by calling the
getDriverVersion method of the OracleDatabaseMetaData class.

The following sample code shows how to determine the driver version:

import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

class JDBCVersion
{
 public static void main (String args[]) throws SQLException
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:scott/tiger@<host>:<port>:<service>");
 Connection conn = ods.getConnection();

 // Create Oracle DatabaseMetaData object
 DatabaseMetaData meta = conn.getMetaData();

 // gets driver info:
 System.out.println("JDBC driver version is " + meta.getDriverVersion());
 }
}

You can also determine the version of the JDBC driver by executing the following
commands:

■ java -jar ojdbc5.jar

■ java -jar ojdbc6.jar

Test JDBC and the Database Connection
The samples directory contains sample programs for a particular Oracle JDBC driver.
One of the programs, JdbcCheckup.java, is designed to test JDBC and the database
connection. The program queries for the user name, password, and the name of the
database to which you want to connect. The program connects to the database, queries
for the string "Hello World", and prints it to the screen.

Go to the samples directory, and compile and run the JdbcCheckup.java
program. If the results of the query print without error, then your Java and JDBC
installations are correct.

Verification of a JDBC Client Installation

2-6 Oracle Database JDBC Developer's Guide

Although JdbcCheckup.java is a simple program, it demonstrates several
important functions by performing the following:

■ Imports the necessary Java classes, including JDBC classes

■ Creates a DataSource instance

■ Connects to the database

■ Runs a simple query

■ Prints the query results to your screen

The JdbcCheckup.java program, which uses the JDBC OCI driver, is as follows:

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */

// You need to import the java.sql and JDBC packages to use JDBC
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
 public static void main(String args[]) throws SQLException, IOException
 {

 // Prompt the user for connect information
 System.out.println("Please enter information to test connection to
 the database");
 String user;
 String password;
 String database;

 user = readEntry("user: ");
 int slash_index = user.indexOf('/');
 if (slash_index != -1)
 {
 password = user.substring(slash_index + 1);
 user = user.substring(0, slash_index);
 }
 else
 password = readEntry("password: ");
 database = readEntry("database(a TNSNAME entry): ");

 System.out.print("Connecting to the database...");
 System.out.flush();
 System.out.println("Connecting...");
 // Open an OracleDataSource and get a connection
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:oci:@" + database);
 ods.setUser(user);
 ods.setPassword(password);
 Connection conn = ods.getConnection();
 System.out.println("connected.");

Basic Steps in JDBC

Getting Started 2-7

 // Create a statement
 Statement stmt = conn.createStatement();

 // Do the SQL "Hello World" thing
 ResultSet rset = stmt.executeQuery("select 'Hello World' from dual");

 while (rset.next())
 System.out.println(rset.getString(1));
 // close the result set, the statement and the connection
 rset.close();
 stmt.close();
 conn.close();
 System.out.println("Your JDBC installation is correct.");
 }

 // Utility function to read a line from standard input
 static String readEntry(String prompt)
 {
 try
 {
 StringBuffer buffer = new StringBuffer();
 System.out.print(prompt);
 System.out.flush();
 int c = System.in.read();
 while (c != '\n' && c != -1)
 {
 buffer.append((char)c);
 c = System.in.read();
 }
 return buffer.toString().trim();
 }
 catch(IOException e)
 {
 return "";
 }
 }
}

Basic Steps in JDBC
After verifying the JDBC client installation, you can start creating your JDBC
applications. When using Oracle JDBC drivers, you must include certain
driver-specific information in your programs. This section describes, in the form of a
tutorial, where and how to add the information. The tutorial guides you through the
steps to create code that connects to and queries a database from the client.

You must write code to perform the following tasks:

1. Importing Packages

2. Opening a Connection to a Database

3. Creating a Statement Object

4. Running a Query and Retrieving a Result Set Object

5. Processing the Result Set Object

6. Closing the Result Set and Statement Objects

7. Making Changes to the Database

Basic Steps in JDBC

2-8 Oracle Database JDBC Developer's Guide

8. Committing Changes

9. Closing the Connection

Importing Packages
Regardless of which Oracle JDBC driver you use, include the import statements
shown in Table 2–1 at the beginning of your program.

The Oracle packages listed as optional provide access to the extended functionality
provided by Oracle JDBC drivers, but are not required for the example presented in
this section.

Opening a Connection to a Database
First, you must create an OracleDataSource instance. Then, open a connection to
the database using the OracleDataSource.getConnection method. The
properties of the retrieved connection are derived from the OracleDataSource
instance. If you set the URL connection property, then all other properties, including
TNSEntryName, DatabaseName, ServiceName, ServerName, PortNumber,
Network Protocol, and driver type are ignored.

Specifying a Database URL, User Name, and Password
The following code sets the URL, user name, and password for a data source:

OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setUser(user);
ods.setPassword(password);

The following example connects user scott with password tiger to a database with
service orcl through port 1521 of the host myhost, using the JDBC Thin driver:

Note: You must supply Oracle driver-specific information for the
first three tasks, which allow your program to use the JDBC
application programming interface (API) to access a database. For the
other tasks, you can use standard JDBC Java code, as you would for
any Java application.

Table 2–1 Import Statements for JDBC Driver

Import statement Provides

import java.sql.*; Standard JDBC packages.

import java.math.*; The BigDecimal and BigInteger classes. You can
omit this package if you are not going to use these
classes in your application.

import oracle.jdbc.*;

import oracle.jdbc.pool.*;

import oracle.sql.*;

Oracle extensions to JDBC. This is optional.

OracleDataSource.

Oracle type extensions. This is optional.

Note: It is better to import only the classes your application needs,
rather than using the wildcard asterisk (*). This guide uses the
asterisk (*) for simplicity, but this is not the recommended way of
importing classes and interfaces.

Basic Steps in JDBC

Getting Started 2-9

OracleDataSource ods = new OracleDataSource();
String url = "jdbc:oracle:thin:@//myhost:1521/orcl",
ods.setURL(url);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

Specifying a Database URL that Includes User Name and Password
The following example connects user scott with password tiger to a database host
whose Transparent Network Substrate (TNS) entry is myTNSEntry, using the JDBC
Oracle Call Interface (OCI) driver. In this case, the URL includes the user name and
password and is the only input parameter.

String url = "jdbc:oracle:oci:scott/tiger@myTNSEntry");
ods.setURL(url);
Connection conn = ods.getConnection();

If you want to connect using the Thin driver, then you must specify the port number.
For example, if you want to connect to the database on the host myhost that has a
TCP/IP listener on port 1521 and the service identifier is orcl, then provide the
following code:

String URL = "jdbc:oracle:thin:scott/tiger@//myhost:1521/orcl");
ods.setURL(URL);
Connection conn = ods.getConnection();

Creating a Statement Object
Once you connect to the database and, in the process, create a Connection object, the
next step is to create a Statement object. The createStatement method of the
JDBC Connection object returns an object of the JDBC Statement type. To continue
the example from the previous section, where the Connection object conn was
created, here is an example of how to create the Statement object:

Statement stmt = conn.createStatement();

Running a Query and Retrieving a Result Set Object
To query the database, use the executeQuery method of the Statement object. This
method takes a SQL statement as input and returns a JDBC ResultSet object.

Note: The user name and password specified in the arguments
override any user name and password specified in the URL.

See Also: Chapter 8, "Data Sources and URLs"

Basic Steps in JDBC

2-10 Oracle Database JDBC Developer's Guide

To continue the example, once you create the Statement object stmt, the next step is
to run a query that returns a ResultSet object with the contents of the ename
column of a table of employees named EMP:

ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp");

Processing the Result Set Object
Once you run your query, use the next() method of the ResultSet object to iterate
through the results. This method steps through the result set row by row, detecting the
end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate getXXX
methods of the ResultSet object, where XXX corresponds to a Java data type.

For example, the following code will iterate through the ResultSet object, rset,
from the previous section and will retrieve and print each employee name:

while (rset.next())
 System.out.println (rset.getString(1));

The next() method returns false when it reaches the end of the result set. The
employee names are materialized as Java String values.

Closing the Result Set and Statement Objects
You must explicitly close the ResultSet and Statement objects after you finish
using them. This applies to all ResultSet and Statement objects you create when
using Oracle JDBC drivers. The drivers do not have finalizer methods. The cleanup
routines are performed by the close method of the ResultSet and Statement
classes. If you do not explicitly close the ResultSet and Statement objects, serious
memory leaks could occur. You could also run out of cursors in the database. Closing
both the result set and the statement releases the corresponding cursor in the database.
If you close only the result set, then the cursor is not released.

For example, if your ResultSet object is rset and your Statement object is stmt,
then close the result set and statement with the following lines of code:

rset.close();

Note:

■ The method used to execute a Statement object depends on the
type of SQL statement being executed. If the Statement object
represents a SQL query returning a ResultSet object, the
executeQuery method should be used. If the SQL is known to
be a DDL statement or a DML statement returning an update
count, the executeUpdate method should be used. If the type of
the SQL statement is not known, the execute method should be
used.

■ In case of a standard JDBC driver, if the SQL string being executed
does not return a ResultSet object, then the executeQuery
method throws a SQLException exception. In case of an Oracle
JDBC driver, the executeQuery method does not throw a
SQLException exception even if the SQL string being executed
does not return a ResultSet object.

Basic Steps in JDBC

Getting Started 2-11

stmt.close();

When you close a Statement object that a given Connection object creates, the
connection itself remains open.

Making Changes to the Database

DML Operations
To perform DML (Data Manipulation Language) operations, such as INSERT or
UPDATE operations, you can create either a Statement object or a
PreparedStatement object. PreparedStatement objects enable you to run a
statement with varying sets of input parameters. The prepareStatement method of
the JDBC Connection object lets you define a statement that takes variable bind
parameters and returns a JDBC PreparedStatement object with your statement
definition.

Use the setXXX methods on the PreparedStatement object to bind data to the
prepared statement to be sent to the database.

The following example shows how to use a prepared statement to run INSERT
operations that add two rows to the EMP table.

 // Prepare to insert new names in the EMP table
PreparedStatement pstmt = null;
try{
 pstmt = conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (?,
?)");

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPNO
 pstmt.setString (2, "LESLIE"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 // Add MARSHA as employee number 507
 pstmt.setInt (1, 507); // The first ? is for EMPNO
 pstmt.setString (2, "MARSHA"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();
}

finally{
if(pstmt!=null)

 // Close the statement
 pstmt.close();
}

Note: Typically, you should put close statements in a finally
clause.

See Also: "The setObject and setOracleObject Methods" on
page 11-11 and "Other setXXX Methods" on page 11-11

Basic Steps in JDBC

2-12 Oracle Database JDBC Developer's Guide

DDL Operations
To perform data definition language (DDL) operations, you can create either a
Statement object or a PreparedStatement object. The following example shows
how to create a table in the database using a Statement object.

//create table EMP with columns EMPNO and ENAME
String query;
Statement stmt=null;

try{
 query="create table EMP " +
 "(EMPNO int, " +
 "ENAME varchar(50))";
 stmt = conn.createStatement();
 stmt.executeUpdate(query);
 }
finally{
 //close the Statement object
 stmt.close();
 }

If your code involves reexecuting a DDL operation, then, before reexecuting the
statement, you must prepare it again. The following example shows how to prepare
your DDL statements before any reexecution:

//
PreparedStatement pstmt = null;
PreparedStatement tstmt = null;
try{
 pstmt = conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (?,
?)");

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPNO
 pstmt.setString (2, "LESLIE"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 tstmt = conn.prepareStatement("truncate table EMP");
 tstmt.executeUpdate();

 // Add MARSHA as employee number 507
 pstmt.setInt (1, 507); // The first ? is for EMPNO
 pstmt.setString (2, "MARSHA"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 tstmt.close();
 tstmt = conn.prepareStatement("truncate table EMP");
 tstmt.executeUpdate();
 }
finally{
if(pstmt!=null)

 // Close the statement
 pstmt.close();
}

Basic Steps in JDBC

Getting Started 2-13

Committing Changes
By default, data manipulation language (DML) operations are committed
automatically as soon as they are run. This is known as the auto-commit mode.
However, you can disable auto-commit mode with the following method call on the
Connection object:

conn.setAutoCommit(false);

If you disable the auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connection object:

conn.commit();

or:

conn.rollback();

A COMMIT or ROLLBACK operation affects all DML statements run since the last
COMMIT or ROLLBACK.

Changing Commit Behavior
When a transaction updates the database, it generates a redo entry corresponding to
this update. Oracle Database buffers this redo in memory until the completion of the
transaction. When you commit the transaction, the Log Writer (LGWR) process writes
the redo entry for the commit to disk, along with the accumulated redo entries of all
changes in the transaction. By default, Oracle Database writes the redo to disk before
the call returns to the client. This behavior introduces latency in the commit because
the application must wait for the redo entry to be persisted on disk.

If your application requires very high transaction throughput and you are willing to
trade commit durability for lower commit latency, then you can change the behavior
of the default COMMIT operation, depending on the needs of your application. You can
change the behavior of the COMMIT operation with the following options:

■ WAIT

■ NOWAIT

■ WRITEBATCH

■ WRITEIMMED

See Also: "Disabling Auto-Commit Mode" on page C-1.

Note:

■ If the auto-commit mode is disabled and you close the
connection without explicitly committing or rolling back your
last changes, then an implicit COMMIT operation is run.

■ Any data definition language (DDL) operation always causes
an implicit COMMIT. If the auto-commit mode is disabled, then
this implicit COMMIT will commit any pending DML operations
that had not yet been explicitly committed or rolled back.

Sample: Connecting, Querying, and Processing the Results

2-14 Oracle Database JDBC Developer's Guide

These options let you control two different aspects of the commit phase:

■ Whether the COMMIT call should wait for the server to process it or not. This is
achieved by using the WAIT or NOWAIT option.

■ Whether the Log Writer should batch the call or not. This is achieved by using the
WRITEIMMED or WRITEBATCH option.

You can also combine different options together. For example, if you want the COMMIT
call to return without waiting for the server to process it and also the log writer to
process the commits in batch, then you can use the NOWAIT and WRITEBATCH options
together. For example:

((OracleConnection)conn).commit(
 EnumSet.of(
 OracleConnection.CommitOption.WRITEBATCH,
 OracleConnection.CommitOption.NOWAIT));

Closing the Connection
You must close the connection to the database after you have performed all the
required operations and no longer require the connection. You can close the
connection by using the close method of the Connection object, as follows:

conn.close();

Sample: Connecting, Querying, and Processing the Results
The steps in the preceding sections are illustrated in the following example, which
uses the Oracle JDBC Thin driver to create a data source, connects to the database,
creates a Statement object, runs a query, and processes the result set.

Note that the code for creating the Statement object, running the query, returning
and processing the ResultSet object, and closing the statement and connection uses
the standard JDBC API.

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import java.sql.SQLException;
import oracle.jdbc.pool.OracleDataSource;

See Also: For more information on these options, refer to the Oracle
Javadoc at

http://download.oracle.com/otn/utilities_
drivers/jdbc/111060/doc/javadoc/index.html

Note: you cannot use the WAIT and NOWAIT options together
because they have opposite meanings. If you do so, then the JDBC
driver will throw an exception. The same applies to the WRITEIMMED
and WRITEBATCH options.

Note: Typically, you should put close statements in a finally
clause.

Stored Procedure Calls in JDBC Programs

Getting Started 2-15

class JdbcTest
{
 public static void main (String args []) throws SQLException
 {

OracleDataSource ods = null;
Connection conn = null;
Statement stmt = null;
ResultSet rset = null;

 // Create DataSource and connect to the local database
 ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@//myhost:1521/orcl");
 ods.setUser("scott");
 ods.setPassword("tiger");
 conn = ods.getConnection();

try
{
 // Query the employee names
 stmt = conn.createStatement ();
 rset = stmt.executeQuery ("SELECT ename FROM emp");

 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 }

 //Close the result set, statement, and the connection

finally{
 if(rset!=null) rset.close();
 if(stmt!=null) stmt.close();
 if(conn!=null) conn.close();
}
 }
}

If you want to adapt the code for the OCI driver, then replace the call to the
OracleDataSource.setURL method with the following:

ods.setURL("jdbc:oracle:oci:@MyHostString");

where, MyHostString is an entry in the TNSNAMES.ORA file.

Stored Procedure Calls in JDBC Programs
This section describes how Oracle JDBC drivers support the following kinds of stored
procedures:

■ PL/SQL Stored Procedures

■ Java Stored Procedures

PL/SQL Stored Procedures
Oracle JDBC drivers support the processing of PL/SQL stored procedures and
anonymous blocks. They support PL/SQL block syntax and most of JDBC escape
syntax. The following PL/SQL calls would work with any Oracle JDBC driver:

Processing SQL Exceptions

2-16 Oracle Database JDBC Developer's Guide

// JDBC escape syntax
CallableStatement cs1 = conn.prepareCall
 ("{call proc (?,?)}") ; // stored proc
CallableStatement cs2 = conn.prepareCall
 ("{? = call func (?,?)}") ; // stored func
// PL/SQL block syntax
CallableStatement cs3 = conn.prepareCall
 ("begin proc (?,?); end;") ; // stored proc
CallableStatement cs4 = conn.prepareCall
 ("begin ? := func(?,?); end;") ; // stored func

As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (val1 char)
return char as
begin
 return val1 || 'suffix';
end;

The function invocation in your JDBC program should look like the following:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci:@<hoststring>");
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

CallableStatement cs = conn.prepareCall ("begin ? := foo(?); end;");
cs.registerOutParameter(1,Types.CHAR);
cs.setString(2, "aa");
cs.executeUpdate();
String result = cs.getString(1);

Java Stored Procedures
You can use JDBC to call Java stored procedures through the SQL and PL/SQL
engines. The syntax for calling Java stored procedures is the same as the syntax for
calling PL/SQL stored procedures, presuming they have been properly published.
That is, you have written call specifications to publish them to the Oracle data
dictionary. Applications can call Java stored procedures using the Native Java
Interface for direct invocation of static Java methods.

Processing SQL Exceptions
To handle error conditions, Oracle JDBC drivers throw SQL exceptions, producing
instances of the java.sql.SQLException class or its subclass. Errors can originate
either in the JDBC driver or in the database itself. Resulting messages describe the
error and identify the method that threw the error. Additional run-time information
can also be appended.

JDBC 3.0 defines only a single exception, SQLException. However, there are large
categories of errors and it is useful to distinguish them. Therefore, in JDBC 4.0, a set of
subclasses of the SQLException exception is introduced to identify the different
categories of errors. To know more about this feature, see Support for JDBC 4.0
Standard on page 3-6.

Processing SQL Exceptions

Getting Started 2-17

Basic exception handling can include retrieving the error message, retrieving the error
code, retrieving the SQL state, and printing the stack trace. The SQLException class
includes functionality to retrieve all of this information, when available.

Retrieving Error Information
You can retrieve basic error information with the following methods of the
SQLException class:

■ getMessage

■ getErrorCode

■ getSQLState

The following example prints output from a getMessage method call:

catch(SQLException e)
{
 System.out.println("exception: " + e.getMessage());
}

This would print the output, such as the following, for an error originating in the
JDBC driver:

exception: Invalid column type

Printing the Stack Trace
The SQLException class provides the printStackTrace() method for printing a
stack trace. This method prints the stack trace of the throwable object to the standard
error stream. You can also specify a java.io.PrintStream object or
java.io.PrintWriter object for output.

The following code fragment illustrates how you can catch SQL exceptions and print
the stack trace.

try { <some code> }
catch(SQLException e) { e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

// Iterate through the result and print the employee names
// of the code

try {
 while (rset.next ())
 System.out.println (rset.getString (5)); // incorrect column index
}
catch(SQLException e) { e.printStackTrace (); }

See Also:

■ Appendix D, "JDBC Error Messages"

■ Oracle Database Error Messages

Note: Error message text is available in alternative languages and
character sets supported by Oracle.

Processing SQL Exceptions

2-18 Oracle Database JDBC Developer's Guide

Assuming the column index is incorrect, running the program would produce the
following error text:

java.sql.SQLException: Invalid column index
at oracle.jdbc.driver.OracleResultSetImpl.getDate(OracleResultSetImpl.java:1556)
at Employee.main(Employee.java:41)

Part II
Oracle JDBC

This part includes chapters that discuss the different Java Database Connectivity
(JDBC) versions that Oracle Database 11g supports. It also includes chapters that cover
features specific to JDBC Thin driver, JDBC Oracle Call Interface (OCI) driver, and the
server-side internal driver.

Part II contains the following chapters:

■ Chapter 3, "JDBC Standards Support"

■ Chapter 4, "Oracle Extensions"

■ Chapter 5, "Features Specific to JDBC Thin"

■ Chapter 6, "Features Specific to JDBC OCI Driver"

■ Chapter 7, "Server-Side Internal Driver"

JDBC Standards Support 3-1

3
JDBC Standards Support

The Oracle Java Database Connectivity (JDBC) drivers support different versions of
the JDBC standard features. In Oracle Database 11g Release 2 (11.2), Oracle JDBC
drivers have been enhanced to provide support for the JDBC 4.0 standards. These
features are provided through the oracle.jdbc and oracle.sql packages. These
packages support Java Development Kit (JDK) releases 1.5 and 1.6. This chapter
discusses the JDBC standards support in Oracle JDBC drivers. It contains the
following sections:

■ Support for JDBC 2.0 Standard

■ Support for JDBC 3.0 Standard

■ Support for JDBC 4.0 Standard

Support for JDBC 2.0 Standard
Standard JDBC 2.0 features are supported by JDK 1.2 and later versions. There are
three areas to consider:

■ Support for data types, such as objects, arrays, and large objects (LOBs). This is
handled through the standard java.sql package.

■ Support for standard features, such as result set enhancements and update
batching. This is handled through standard objects, such as Connection,
ResultSet, and PreparedStatement, under JDK 1.2.x and later.

■ Support for extended features, such as features of the JDBC 2.0 optional package,
also known as the standard extension application programming interface (API),
including data sources, connection pooling, and distributed transactions.

This section covers the following topics:

■ Data Type Support

■ Standard Feature Support

■ Extended Feature Support

■ Standard versus Oracle Performance Enhancement APIs

Note: Versions of JDK earlier than 1.5 are no longer supported. The
package oracle.jdbc2 has been removed.

Support for JDBC 3.0 Standard

3-2 Oracle Database JDBC Developer's Guide

Data Type Support
Oracle JDBC fully supports JDK 1.5 and JDK 1.6, which includes standard JDBC 2.0
functionality through implementation of interfaces in the standard java.sql
package. These interfaces are implemented as appropriate by classes in the
oracle.sql and oracle.jdbc packages.

Standard Feature Support
In a JDK 1.5 environment, using the JDBC classes in ojdbc5.jar, JDBC 2.0 features,
such as scrollable result sets, updatable result sets, and update batching, are supported
through methods specified by standard JDBC 2.0 interfaces.

Extended Feature Support
Features of the JDBC 2.0 optional package, including data sources, connection pooling,
and distributed transactions, are supported in a JDK 1.2.x or later environment.

The standard javax.sql package and classes that implement its interfaces are
included in the Java Archive (JAR) files packaged with Oracle Database.

Standard versus Oracle Performance Enhancement APIs
The following performance enhancements are available under JDBC 2.0, which had
previously been available only as Oracle extensions:

■ Update batching

■ Fetch size or row prefetching

In each case, you have the option of using the standard model or the Oracle model.
Oracle recommends that you use the JDBC standard model whenever possible. Do not,
however, try to mix usage of the standard model and Oracle model within a single
application for either of these features.

Support for JDBC 3.0 Standard
Standard JDBC 3.0 features are supported by JDK 1.4 and later versions. Table 3–1 lists
the JDBC 3.0 features supported by Oracle Database 11g Release 2 (11.2) and gives
references to a detailed discussion of each feature.

See Also:

■ "Update Batching" on page 23-1

■ "Fetch Size" on page 17-4

Table 3–1 Key Areas of JDBC 3.0 Functionality

Feature Comments and References

Transaction savepoints See "Transaction Savepoints" on page 3-3 for information.

Statement caching Reuse of prepared statements by connection pools. See Chapter 20, "Statement and
Result Set Caching".

Switching between local and
global transactions

See "Switching Between Global and Local Transactions" on page 29-3.

LOB modification See "JDBC 3.0 LOB Interface Methods" on page 3-5.

Named SQL parameters See "Interface oracle.jdbc.OracleCallableStatement" on page 4-22 and "Interface
oracle.jdbc.OraclePreparedStatement" on page 4-21.

Support for JDBC 3.0 Standard

JDBC Standards Support 3-3

The following JDBC 3.0 features supported by Oracle JDBC drivers are covered in this
section:

■ Transaction Savepoints

■ Retrieval of Auto-Generated Keys

■ JDBC 3.0 LOB Interface Methods

■ Result Set Holdability

Transaction Savepoints
The JDBC 3.0 specification supports savepoints, which offer finer demarcation within
transactions. Applications can set a savepoint within a transaction and then roll back
all work done after the savepoint. Savepoints relax the atomicity property of
transactions. A transaction with a savepoint is atomic in the sense that it appears to be
a single unit outside the context of the transaction, but code operating within the
transaction can preserve partial states.

Creating a Savepoint
You create a savepoint using the Connection.setSavepoint method, which
returns a java.sql.Savepoint instance.

A savepoint is either named or unnamed. You specify the name of a savepoint by
supplying a string to the setSavepoint method. If you do not specify a name, then
the savepoint is assigned an integer ID. You retrieve a name using the
getSavepointName method. You retrieve an ID using the getSavepointId
method.

Rolling Back to a Savepoint
You roll back to a savepoint using the Connection.rollback(Savepoint svpt)
method. If you try to roll back to a savepoint that has been released, then a
SQLException exception is thrown.

RowSets See Chapter 18, "JDBC RowSets"

Retrieving auto-generated
keys

See "Retrieval of Auto-Generated Keys" on page 3-4

Result set holdability See "Result Set Holdability" on page 3-6

Note: Savepoints are supported for local transactions only.
Specifying a savepoint within a global transaction causes a
SQLException exception to be thrown.

Note: Attempting to retrieve a name from an unnamed savepoint
or attempting to retrieve an ID from a named savepoint throws a
SQLException exception.

Table 3–1 (Cont.) Key Areas of JDBC 3.0 Functionality

Feature Comments and References

Support for JDBC 3.0 Standard

3-4 Oracle Database JDBC Developer's Guide

Releasing a Savepoint
You remove a savepoint using the Connection.releaseSavepoint(Savepoint
svpt) method.

Checking Savepoint Support
You query if savepoints are supported by your database by calling the
oracle.jdbc.OracleDatabaseMetaData.supportsSavepoints method,
which returns true if savepoints are available, false otherwise.

Savepoint Notes
When using savepoints, you must consider the following:

■ After a savepoint has been released, attempting to reference it in a rollback
operation will cause a SQLException exception to be thrown.

■ When a transaction is committed or rolled back, all savepoints created in that
transaction are automatically released and become invalid.

■ Rolling a transaction back to a savepoint automatically releases and makes invalid
any savepoints created after the savepoint in question.

Retrieval of Auto-Generated Keys
Many database systems automatically generate a unique key field when a row is
inserted. Oracle Database provides the same functionality with the help of sequences
and triggers. JDBC 3.0 introduces the retrieval of auto-generated keys feature that
enables you to retrieve such generated values. In JDBC 3.0, the following interfaces are
enhanced to support the retrieval of auto-generated keys feature:

■ java.sql.DatabaseMetaData

■ java.sql.Connection

■ java.sql.Statement

These interfaces provide methods that support retrieval of auto-generated keys.
However, this feature is supported only when INSERT statements are processed.
Other data manipulation language (DML) statements are processed, but without
retrieving auto-generated keys.

java.sql.Statement
If key columns are not explicitly indicated, then Oracle JDBC drivers cannot identify
which columns need to be retrieved. When a column name or column index array is
used, Oracle JDBC drivers can identify which columns contain auto-generated keys
that you want to retrieve. However, when the Statement.RETURN_GENERATED_
KEYS integer flag is used, Oracle JDBC drivers cannot identify these columns. When
the integer flag is used to indicate that auto-generated keys are to be returned, the
ROWID pseudo column is returned as key. The ROWID can be then fetched from the
ResultSet object and can be used to retrieve other columns.

Sample Code
The following code illustrates retrieval of auto-generated keys:

Note: The Oracle server-side internal driver does not support the
retrieval of auto-generated keys feature.

Support for JDBC 3.0 Standard

JDBC Standards Support 3-5

/** SQL statements for creating an ORDERS table and a sequence for generating the
 * ORDER_ID.
 *
 * CREATE TABLE ORDERS (ORDER_ID NUMBER, CUSTOMER_ID NUMBER, ISBN NUMBER,
 * DESCRIPTION NCHAR(5))
 *
 * CREATE SEQUENCE SEQ01 INCREMENT BY 1 START WITH 1000
 */

...
String cols[] = {"ORDER_ID", "DESCRIPTION"};

// Create a PreparedStatement for inserting a row into the ORDERS table.
OraclePreparedStatement pstmt = (OraclePreparedStatement)
conn.prepareStatement("INSERT INTO ORDERS (ORDER_ID, CUSTOMER_ID, ISBN,
DESCRIPTION) VALUES (SEQ01.NEXTVAL, 101,
 966431502, ?)", cols);
char c[] = {'a', '\u5185', 'b'};
String s = new String(c);
pstmt.setNString(1, s);
pstmt.executeUpdate();
ResultSet rset = pstmt.getGeneratedKeys();
...

In the preceding example, a sequence, SEQ01, is created to generate values for the
ORDER_ID column starting from 1000 and incrementing by 1 each time the sequence
is processed to generate the next value. An OraclePreparedStatement object is
created to insert a row in to the ORDERS table.

Limitations
Auto-generated keys are implemented using the DML returning clause. So, they are
subjected to the following limitations:

■ You cannot combine auto-generated keys with batch update.

■ You need to access the ResultSet object returned from getGeneratedKeys
method by position only and no bind variable names should be used as columns
in the ResultSet object.

JDBC 3.0 LOB Interface Methods
Table 3–2 and Table 3–3 show the conversions between Oracle proprietary methods
and JDBC 3.0 standard methods.

Table 3–2 BLOB Method Equivalents

Oracle Proprietary Method JDBC 3.0 Standard Method

putBytes(long pos, byte []
bytes)

setBytes(long pos, byte[] bytes)

putBytes(long pos, byte []
bytes, int length)

setBytes(long pos, byte[] bytes, int
offset, int len)

getBinaryOutputStream(long
pos)

setBinaryStream(long pos)

trim (long len) truncate(long len)

Support for JDBC 4.0 Standard

3-6 Oracle Database JDBC Developer's Guide

Result Set Holdability
Result set holdability was introduced since JDBC 3.0. This feature enables applications
to decide whether the ResultSet objects should be open or closed, when a commit
operation is performed. The commit operation could be either implicit or explicit.

Oracle Database supports only HOLD_CURSORS_OVER_COMMIT. Therefore, it is the
default value for Oracle JDBC drivers. Any attempt to change holdability will throw a
SQLException exception.

Support for JDBC 4.0 Standard
The JDBC 4.0 standard support is provided by JDK 1.6 and later versions. Oracle
Database 11g Release 2 (11.2) JDBC drivers provide support for the JDBC 4.0 standard.

Table 3–3 CLOB Method Equivalents

Oracle Proprietary Method JDBC 3.0 Standard Method

putString(long pos, String
str)

setString(long pos, String str)

not applicable setString(long pos, String str,
int offset, int len)

getAsciiOutputStream(long pos) setAsciiStream(long pos)

getCharacterOutputStream(long
pos)

setCharacterStream(long pos)

trim (long len) truncate(long len)

Note:

■ You need to have the ojdbc6.jar in your classpath
environment variable in order to have JDBC 4.0 standard support.

■ The JDBC 4.0 specification defines the getClientInfo and
setClientInfo methods to get and set client information. The
11.2 Oracle JDBC drivers do not define any client information, so
any call to these methods throws a SQLClientInfoException
exception.

■ The JDBC 4.0 specification defines the
java.sql.Connection.createArrayOf factory method to
create java.sql.Array objects. The createArrayOf method
accepts the name of the array element type as one of the
arguments, where the array type is anonymous. Oracle database
supports only named array types, not anonymous array types. So,
the 11.2 Oracle JDBC drivers do not and cannot support the
createArrayOf method. You must use the Oracle specific
createARRAY method to create an array type. For more
information about the createArrayOf method, refer to
"Creating ARRAY Objects" on page 16-5.

■ This document provides only an overview of these new features.
For detailed information about these features, see "Java 2 Platform,
Standard Edition (JSE) 6.0 specification" at

http://download.oracle.com/javase/6/docs/

Support for JDBC 4.0 Standard

JDBC Standards Support 3-7

Some of the features available in Oracle Database 11g Release 2 (11.2) JDBC drivers are
the following:

■ Wrapper Pattern Support

■ SQLXML Type

■ Enhanced Exception Hierarchy and SQLException

■ The RowId Data Type

■ LOB Creation

■ National Language Character Set Support

Wrapper Pattern Support
Wrapper pattern is a common coding pattern used in Java applications to provide
extensions beyond the traditional JDBC API that are specific to a data source. You may
need to use these extensions to access the resources that are wrapped as proxy class
instances representing the actual resources. JDBC 4.0 introduces the Wrapper
interface that describes a standard mechanism to access these wrapped resources
represented by their proxy, to permit direct access to the resource delegates.

The Wrapper interface provides the following two methods:

■ public boolean isWrapperFor(Class<?> iface) throws
SQLException;

■ public <T> T unwrap(Class<T> iface) throws SQLException;

The other JDBC 4.0 interfaces, except those that represent SQL data, all implement this
interface. These include Connection, Statement and its subtypes, ResultSet, and
the metadata interfaces.

SQLXML Type
One of the most important updates in JDBC 4.0 standard is the support for the XML
data type, defined by the SQL 2003 standard. Now JDBC offers a mapping interface to
support the SQL/XML database data type, that is, java.sql.SQLXML. This new
JDBC interface defines Java native bindings for XML, thus making handling of any
database XML data easier and more efficient.

You can create an instance of XML by calling the createSQLXML method in
java.sql.Connection interface. This method returns an empty XML object.

The PreparedStatement, CallableStatement, and ResultSet interfaces have
been extended with the appropriate getter and setter methods in the following way:

See Also:

http://download.oracle.com/javase/6/docs/api/java/sq
l/Wrapper.html

Note:

■ You also need to include the xdb.jar and xmlparserv2.jar
files in the classpath environment variable to use SQLXML type
data, if they are not already present in the classpath.

■ SQLXML is not supported in CachedRowset objects.

Support for JDBC 4.0 Standard

3-8 Oracle Database JDBC Developer's Guide

■ PreparedStatement: The method setSQLXML have been added

■ CallableStatement: The methods getSQLXML and setSQLXML have been
added

■ ResultSet: The method getSQLXML have been added

The oracle.jdbc.getObjectReturnsXMLType Property
In Oracle Database 10g and earlier versions of Oracle Database 11g, Oracle JDBC
drivers supported the Oracle SQL XML type (XMLType) through an Oracle
proprietary extension. XML values were represented by instances of the
oracle.xdb.XMLType class and the SQL XMLType values were read and set
through the JDBC standard getObject, setObject, and updateObject methods.

The JDBC standard requires the getObject method to return an instance of
java.sql.SQLXML type when called on a SQL XML type column. But, the earlier
versions of Oracle JDBC drivers return an instance of oracle.xdb.XMLType. This
does not conform to the JDBC standard.

The current release of Oracle JDBC drivers conform to the JDBC standard with the
introduction of a new connection property,
oracle.jdbc.getObjectReturnsXMLType. If you set this property to false,
then the getObject method returns an instance of java.sql.SQLXML type. You can
achieve this by using the following command line option while compiling your
program with javac:

-Doracle.jdbc.getObjectReturnsXMLType="false"

If you depend on the existing Oracle proprietary support for SQL XMLType using
oracle.xdb.XMLType, then you can change the value of this property back to true
by using the following command line option:

-Doracle.jdbc.getObjectReturnsXMLType="true"

The value of the oracle.jdbc.getObjectReturnsXMLType property is a String
representing a boolean value of either true or false. If the value of this property is
true, then the getObject method returns oracle.xdb.XMLType instances, when
called for a SQL XMLType column. This is the deafault value of the
oracle.jdbc.getObjectReturnsXMLType property. If the value of this property
is false, then the getObject method returns java.sql.SQLXML instances. This is
the standard JDBC-compliant mode.

Example

Example 3–1 Accessing SQLXML Data

The following example shows how to create an instance of XML from a String, write
the XML data into the Database, and then retrieve the XML data from the Database.

import java.sql.*;
import java.util.Properties;
import oracle.jdbc.pool.OracleDataSource;

Note: The oracle.jdbc.getObjectReturnsXMLType property
affects only the result of the getObject method. All other methods
conform to the JDBC 4.0 standard regardless of the value of the
property.

Support for JDBC 4.0 Standard

JDBC Standards Support 3-9

public class SQLXMLTest
 {

 public static void main(String[] args)
 {

 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 PreparedStatement ps = null;

 String xml = "<?xml version=\"1.0\"?>\n" +
 "<oldjoke>\n" +
 "<burns>Say <quote>goodnight</quote>, Gracie.</burns>\n" +
 "<allen><quote>Goodnight, Gracie.</quote></allen>\n" +
 "<applause/>\n" +
 "</oldjoke>";

 try
 {

 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@//localhost:1521/orcl");
 ods.setUser("scott");
 ods.setPassword("tiger");
 conn = ods.getConnection();

 ps = conn.prepareStatement("insert into x values (?, ?)");
 ps.setString(1, "string to string");
 SQLXML x = conn.createSQLXML();
 x.setString(xml);
 ps.setSQLXML(2, x);
 ps.execute();
 x.free();
 stmt = conn.createStatement();
 rs = stmt.executeQuery("select * from x");
 while (rs.next())
 {

 System.out.println(rs.getString(1) + "\n" + rs.getSQLXML(2).getString());
 }

 rs.close();
 ps.close();
 }

 catch (SQLException e){e.printStackTrace ();}

 }
}

Note: Calling a setter method with an empty XML throws
SQLException. The getter methods never return an empty XML.

Support for JDBC 4.0 Standard

3-10 Oracle Database JDBC Developer's Guide

Enhanced Exception Hierarchy and SQLException
JDBC 3.0 defines only a single exception, SQLException. However, there are large
categories of errors and it is useful to distinguish them. This feature provides
subclasses of the SQLException class to identify the different categories of errors.
The primary distinction is between permanent errors and transient errors. Permanent
errors are a result of the correct operation of the system and will always occur.
Transient errors are the result of failures, including timeouts, of some part of the
system and may not reoccur.

JDBC 4.0 adds additional exceptions to represent transient and permanent errors and
the different categories of these errors.

 Also, the SQLException class and its subclasses are enhanced to provide support for
the J2SE chained exception functionality.

The RowId Data Type
JDBC 4.0 provides the java.sql.RowId data type to represent SQL ROWID values.
You can retrieve a RowId value using the getter methods defined in the ResultSet
and CallableStatement interfaces. You can also use a RowId value in a
parameterized PreparedStatement to set a parameter with a RowId object or in an
updatable result set to update a column with a specific RowId value.

A RowId object is valid until the identified row is not deleted. A RowId object may
also be valid for the following:

■ The duration of the transaction in which it is created

■ The duration of the session in which it is created

■ An undefined duration where by it is valid forever

The lifetime of the RowId object can be determined by calling the
DatabaseMetaData.getRowIdLifetime method.

LOB Creation
In JDBC 4.0, the Connection interface has been enhanced to provide support for the
creation of BLOB, CLOB, and NCLOB objects. The interface provides the createBlob,
createClob, and createNClob methods that enable you to create Blob, Clob, and
NClob objects.

The created large objects (LOBs) do not contain any data. You can add or retrieve data
to or from these objects by calling the APIs available in the java.sql.Blob,
java.sql.Clob, and java.sql.NClob interfaces. You can either retrieve the entire
content or a part of the content from these objects. The following code snippet
illustrates how to retrieve 100 bytes of data from a BLOB object starting at offset 200:

...
Connection con = DriverManager.getConnection(url, props);
Blob aBlob = con.createBlob();
// Add data to the BLOB object.
aBlob.setBytes(...);
...
// Retrieve part of the data from the BLOB object.

See Also: JSR 173: Streaming API for XML at:

http://www.jcp.org/aboutJava/communityprocess/first/
jsr173/

Support for JDBC 4.0 Standard

JDBC Standards Support 3-11

InputStream is = aBlob.getBinaryStream(200, 100);
...

You can also pass LOBs as input parameters to a PreparedStatement object by
using the setBlob, setClob, and setNClob methods. You can use the
updateBlob, updateClob, and updateNClob methods to update a column value in
an updatable result set.

These LOBs are temporary LOBs and can be used for any purpose for which
temporary LOBs should be used. To make the storage permanent in the database,
these LOBs must be written to a table.

Temporary LOBs remain valid for at least the duration of the transaction in which they
are created. This may result in unwarranted use of memory during a long running
transaction. You can release LOBs by calling their free method, as follows:

...
Clob aClob = con.createClob();
int numWritten = aClob.setString(1, val);
aClob.free();
...

National Language Character Set Support
JDBC 4.0 introduces the NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB JDBC types
to access the national character set types. These types are similar to the CHAR,
VARCHAR, LONGVARCHAR, and CLOB types, except that the values are encoded using
the national character set.

See Also: "Working With Temporary LOBs" on page 14-8

Support for JDBC 4.0 Standard

3-12 Oracle Database JDBC Developer's Guide

Oracle Extensions 4-1

4
Oracle Extensions

Oracle provides Java classes and interfaces that extend the Java Database Connectivity
(JDBC) standard implementation, enabling you to access and manipulate Oracle data
types and use Oracle performance extensions. This chapter provides an overview of
the classes and interfaces provided by Oracle that extend the JDBC standard
implementation. It also describes some of the key support features of the extensions.

This chapter contains the following sections:

■ Overview of Oracle Extensions

■ Features of the Oracle Extensions

■ Oracle JDBC Packages

■ Oracle Character Data Types Support

■ Additional Oracle Type Extensions

■ DML Returning

■ Accessing PL/SQL Index-by Tables

Overview of Oracle Extensions
Beyond standard features, Oracle JDBC drivers provide Oracle-specific type
extensions and performance extensions. These extensions are provided through the
following Java packages:

■ oracle.sql

Provides classes that represent SQL data in Oracle format

■ oracle.jdbc

Provides interfaces to support database access and updates in Oracle type formats

Features of the Oracle Extensions
The Oracle extensions to JDBC include a number of features that enhance your ability
to work with Oracle Databases. These include the following:

Note: This chapter focuses on type extensions, as opposed to
performance extensions, which are discussed in detail in
Chapter 23, "Performance Extensions".

See Also: "Oracle JDBC Packages" on page 4-5

Features of the Oracle Extensions

4-2 Oracle Database JDBC Developer's Guide

■ Database Management Using JDBC

■ Support for Oracle Data Types

■ Support for Oracle Objects

■ Support for Schema Naming

■ DML Returning

■ Accessing PL/SQL Index-by Tables

Database Management Using JDBC
Oracle Database 11g Release 1 (11.1) introduced new JDBC methods, startup and
shutdown, in the oracle.jdbc.OracleConnection interface that enable you to
start up and shut down an Oracle Database instance. You also have support for the
Database Change Notification feature of Oracle Database. These new features are
discussed in details in "Database Administration".

Support for Oracle Data Types
One of the features of the Oracle JDBC extensions is the type support in the
oracle.sql package. This package includes classes that are an exact representation
of the data in Oracle format. Keep the following important points in mind, when you
use oracle.sql types in your program:

■ For numeric type of data, the conversion to standard Java types does not
guarantee to retain full precision due to limitations of the data conversion process.
Use the BigDecimal type to minimize any data loss issues.

■ For certain data types, the conversion to standard Java types can be dependent on
the system settings and your program may not run as expected. This is a known
limitation while converting data from oracle.sql types to standard Java types.

■ If the functionalities of your program is limited to reading data from one table and
writing the same to another table, then for numeric and date data, oracle.sql
types are slightly faster as compared to standard Java types. But, if your program
involves even a simple data manipulation operation like compare or print, then
standard Java types are faster.

■ oracle.sql.CHAR is not an exact representation of the data in Oracle format.
oracle.sql.CHAR is constructed from java.lang.String. There is no
advantage of using oracle.sql.CHAR because java.lang.String is always
faster and represents the same character sets, excluding a couple of desupported
character sets.

Note: Oracle strongly recommends you to use standard Java types
and convert any existing oracle.sql type of data to standard Java
types. Internally, the Oracle JDBC drivers strive to maximize the
performance of Java standard types. oracle.sql types are
supported only for backward compatibility and their use is
discouraged.

Features of the Oracle Extensions

Oracle Extensions 4-3

Support for Oracle Objects
Oracle JDBC supports the use of structured objects in the database, where an object
data type is a user-defined type with nested attributes. For example, a user application
could define an Employee object type, where each Employee object has a
firstname attribute (character string), a lastname attribute (character string), and
an employeenumber attribute (integer).

Oracle JDBC supports Oracle object data types. When you work with Oracle object
data types in a Java application, you must consider the following:

■ How to map between Oracle object data types and Java classes

■ How to store Oracle object attributes in corresponding Java objects

■ How to convert attribute data between SQL and Java formats

■ How to access data

Oracle objects can be mapped either to the weak java.sql.Struct type or to
strongly typed customized classes. These strong types are referred to as custom Java
classes, which must implement either the standard java.sql.SQLData interface or
the Oracle extension oracle.sql.ORAData interface. Each interface specifies
methods to convert data between SQL and Java.

Oracle recommends the use of the Oracle JPublisher utility to create custom Java
classes to correspond to your Oracle objects. Oracle JPublisher performs this task
seamlessly with command-line options and can generate either SQLData or ORAData
interface implementations.

For SQLData interface implementations, a type map defines the correspondence
between Oracle object data types and Java classes. Type maps are objects that specify
which Java class corresponds to each Oracle object data type. Oracle JDBC uses these
type maps to determine which Java class to instantiate and populate when it retrieves
Oracle object data from a result set.

JPublisher automatically defines getXXX methods of the custom Java classes, which
retrieve data into your Java application.

See Also:

■ Package oracle.sql on page 4-5

■ "Oracle Character Data Types Support" on page 4-10

■ "Additional Oracle Type Extensions" on page 4-13

Note: The ORAData interface has replaced the CustomDatum
interface. The latter interface is desupported since Oracle Database
release 11.1.

Note: Oracle recommends using the ORAData interface, instead of
the SQLData interface, in situations where portability is not a
concern. The ORAData interface works more easily and flexibly in
conjunction with other features of the Oracle platform offerings
using Java.

Features of the Oracle Extensions

4-4 Oracle Database JDBC Developer's Guide

Support for Schema Naming
Oracle object data type classes have the ability to accept and return fully qualified
schema names. A fully qualified schema name has this syntax:

{[schema_name].}[sql_type_name]

Where, schema_name is the name of the schema and sql_type_name is the SQL
type name of the object. schema_name and sql_type_name are separated by a
period (.).

To specify an object type in JDBC, use its fully qualified name. It is not necessary to
enter a schema name if the type name is in the current naming space, that is, the
current schema. Schema naming follows these rules:

■ Both the schema name and the type name may or may not be within quotation
marks. However, if the SQL type name has a period in it, such as
CORPORATE.EMPLOYEE, the type name must be quoted.

■ The JDBC driver looks for the first period in the object name that is not within
quotation marks and uses the string before the period as the schema name and the
string following the period as the type name. If no period is found, then the JDBC
driver takes the current schema as default. That is, you can specify only the type
name, without indicating a schema, instead of specifying the fully qualified name
if the object type name belongs to the current schema. This also explains why you
must put the type name within quotation marks if the type name has a dot in it.

For example, assume that user Scott creates a type called person.address and
then wants to use it in his session. Scott may want to skip the schema name and
pass in person.address to the JDBC driver. In this case, if person.address is
not within quotation marks, then the period will be detected and the JDBC driver
will mistakenly interpret person as the schema name and address as the type
name.

■ JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver will not change the character case even if the object type name is
within quotation marks.

For example, if Scott.PersonType is passed to the JDBC driver as an object
type name, then the JDBC driver will pass the string to the database unchanged.
As another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

DML Returning
Oracle Database supports the use of the RETURNING clause with data manipulation
language (DML) statements. This enables you to combine two SQL statements into
one. Both the Oracle JDBC Oracle Call Interface (OCI) driver and the Oracle JDBC Thin
driver support DML returning.

See Also:

■ Chapter 13, "Working with Oracle Object Types"

■ Oracle Database JPublisher User's Guide.

See Also: "DML Returning" on page 4-25

Oracle JDBC Packages

Oracle Extensions 4-5

Accessing PL/SQL Index-by Tables
Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with index-by
table parameters. Oracle JDBC drivers support PL/SQL index-by tables of scalar data
types

Oracle JDBC Packages
This section describes the following Java packages, which support the Oracle JDBC
extensions:

■ Package oracle.sql

■ Package oracle.jdbc

Package oracle.sql
The oracle.sql package supports direct access to data in SQL format. This package
consists primarily of classes that provide Java mappings to SQL data types and their
support classes. Essentially, the classes act as Java containers for SQL data.

Each of the oracle.sql.* data type classes extends oracle.sql.Datum, a
superclass that encapsulates functionality common to all the data types. Some of the
classes are for JDBC 2.0-compliant data types. These classes, implement standard
JDBC 2.0 interfaces in the java.sql package, as well as extending the
oracle.sql.Datum class.

The LONG and LONG RAW SQL types and REF CURSOR type category have no
oracle.sql.* classes. Use standard JDBC functionality for these types. For example,
retrieve LONG or LONG RAW data as input streams using the standard JDBC result set
and callable statement methods getBinaryStream and getCharacterStream. Use
the getCursor method for REF CURSOR types.

General oracle.sql.* Data Type Support
Each of the Oracle data type classes provides, among other things, the following:

■ Data storage as Java byte arrays for SQL data

■ A getBytes() method, which returns the SQL data as a byte array

Note: Index-by tables of PL/SQL records are not supported.

See Also: "Accessing PL/SQL Index-by Tables" on page 4-28

Note:

■ Oracle recommends the use of standard JDBC types or Java types
whenever possible.

■ Oracle JDBC drivers do not support sharing any JDBC types
across connections.

Note: The types in the package oracle.sql.* are provided
primarily for backward compatibility or for support of a few Oracle
specific features such as OPAQUE, OraData, TIMESTAMPTZ, and so
on.

Oracle JDBC Packages

4-6 Oracle Database JDBC Developer's Guide

■ A toJdbc() method that converts the data into an object of a corresponding Java
class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific data types that are not part of
the JDBC specification, such as BFILE. The driver returns the object in the
corresponding oracle.sql.* format.

■ Appropriate xxxValue methods to convert SQL data to Java type. For example,
stringValue, intValue, booleanValue, dateValue, and
bigDecimalValue

■ Additional conversion methods, getXXX and setXXX, as appropriate, for the
functionality of the data type, such as methods in the large object (LOB) classes
that get the data as a stream and methods in the REF class that get and set object
data through the object reference.

Overview of Class oracle.sql.STRUCT
oracle.sql.STRUCT class is the Oracle implementation of java.sql.Struct interface.
This class is a value class and you should not change the contents of the class after
construction. This class, as with all oracle.sql.* data type classes, is a subclass of
the oracle.sql.Datum class.

If you want to create a STRUCT object in JDK 1.5, then use the createStruct method
of the oracle.jdbc.OracleConnection interface. The signature of this factory
method for creating STRUCT objects is as follows:

Struct createStruct (String typeName, Object[] attributes) throws SQLException

If you want to create a STRUCT object in JDK 1.6, then you can use the standard
java.sql.createStruct method.

You should use the JDBC standard type, java.sql.Struct, and the JDBC standard
methods in preference to using oracle.sql.STRUCT. If you want your code to be
more portable, then you must use the standard type because only the Oracle JDBC
drivers will use instances of oracle.sql.STRUCT type.

Overview of Class oracle.sql.REF
The oracle.sql.REF class is the generic class that supports Oracle object references.
This class, as with all oracle.sql.* data type classes, is a subclass of the
oracle.sql.Datum class.

The REF class has methods to retrieve and pass object references. However, selecting
an object reference retrieves only a pointer to an object. This does not materialize the
object itself. But the REF class also includes methods to retrieve and pass the object
data. You cannot create REF objects in your JDBC application. You can only retrieve
existing REF objects from the database.

You should use the JDBC standard type, java.sql.Ref, and the JDBC standard
methods in preference to using oracle.sql.REF. If you want your code to be more
portable, then you must use the standard type because only the Oracle JDBC drivers
will use instances of oracle.sql.REF type.

Note: Oracle strongly recommends using JDBC standard features in
your code, where possible.

See Also: Oracle Database JDBC Java API Reference

Oracle JDBC Packages

Oracle Extensions 4-7

Overview of Class oracle.sql.ARRAY
The oracle.sql.ARRAY class supports Oracle collections, either VARRAYs or
nested tables. If you select either a VARRAY or a nested table from the database, then
the JDBC driver materializes it as an object of the ARRAY class. The structure of the
data is equivalent in either case. The oracle.sql.ARRAY class extends the
oracle.sql.Datum class and implements the standard JDBC 2.0 java.sql.Array
interface.

You can use the setARRAY method of the OraclePreparedStatement or
OracleCallableStatement interface to pass an ARRAY as an input parameter to a
prepared statement. Similarly, you can use the createARRAY method of the
OracleConnection interface to create an ARRAY object to pass it to a prepared
statement or callable statement, perhaps to insert into the database.

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE
Binary large objects (BLOBs), character large objects (CLOBs), and binary files
(BFILEs) are for data items that are too large to store directly in a database table.
Instead, the database table stores a locator that points to the location of the actual data.

Note:

Oracle strongly recommends using JDBC standard features in your
code, where possible.

See Also: Oracle Database JDBC Java API Reference

Note: You should use the JDBC standard type, java.sql.Array,
and the JDBC standard methods in preference to using
oracle.sql.ARRAY. If you want your code to be more portable,
then you must use the standard type because only the Oracle JDBC
drivers will use instances of oracle.sql.ARRAY type.

Oracle strongly recommends using JDBC standard features in your
code, where possible.

See Also: "Overview of Collection Functionality" on page 16-3

Note:

■ The oracle.sql.BLOB and oracle.sql.CLOB classes
implement the standard JDBC types java.sql.Blob and
java.sql.Clob respectively. You should use the JDBC standard
types, and the JDBC standard methods in preference to using the
Oracle extensions. If you want your code to be more portable,
then you must use the standard type because only the Oracle
JDBC drivers will use instances of Oracle extensions.

Oracle strongly recommends use of JDBC standard features where
possible.

■ oracle.sql.BFILE is an Oracle proprietary extension and there
is no JDBC standard equivalent.

Oracle JDBC Packages

4-8 Oracle Database JDBC Developer's Guide

The oracle.sql package supports these data types in several ways:

■ BLOBs point to large unstructured binary data items and are supported by the
oracle.sql.BLOB class.

■ CLOBs point to large character data items and are supported by the
oracle.sql.CLOB class.

■ BFILEs point to the content of external files (operating system files) and are
supported by the oracle.sql.BFILE class. BFiles are read-only.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement. However, you receive only the locator, and not the data.
Additional steps are necessary to retrieve the data.

Overview of Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW
These classes hold primitive SQL data types in Oracle native representation. In most
cases, these types are not used internally by the drivers and you should use the
standard JDBC types instead.

Because Java Double and Float NaN values do not have an equivalent Oracle
NUMBER representation, a NullPointerException is thrown whenever a
Double.NaN value or a Float.NaN value is converted into an Oracle NUMBER using
the oracle.sql.NUMBER class. For instance, the following code throws a
NullPointerException:

oracle.sql.NUMBER n = new oracle.sql.NUMBER(Double.NaN);
System.out.println(n.doubleValue()); // throws NullPointerException

Overview of Classes oracle.sql.TIMESTAMP, oracle.sql.TIMESTAMPTZ, and
oracle.sql.TIMESTAMPLTZ
The JDBC drivers support the following date/time data types:

■ TIMESTAMP (TIMESTAMP)

■ TIMESTAMP WITH TIME ZONE (TIMESTAMPTZ)

■ TIMESTAMP WITH LOCAL TIME ZONE (TIMESTAMPLTZ)

The JDBC drivers allow conversions between DATE and date/time data types. For
example, you can access a TIMESTAMP WITH TIME ZONE column as a DATE value.

The JDBC drivers support the most popular time zone names used in the industry as
well as most of the time zone names defined in the JDK. Time zones are specified by
using the java.util.TimeZone class.

The following code shows how the TimeZone and Calendar objects are created for
US_PACIFIC, which is a time zone name not defined in JDK:

See Also: Chapter 14, "Working with LOBs and BFILEs".

Note:

■ Do not use TimeZone.getTimeZone to create time zone
objects. The Oracle time zone data types support more time
zone names than JDK.

■ If a result set contains a TIMESTAMPLTZ column followed by a
LONG column, then reading the LONG column results in an
error.

Oracle JDBC Packages

Oracle Extensions 4-9

TimeZone tz = TimeZone.getDefault();
tz.setID("US_PACIFIC");
GregorianCalendar gcal = new GregorianCalendar(tz);

The following Java classes represent the SQL date/time types:

■ oracle.sql.TIMESTAMP

■ oracle.sql.TIMESTAMPTZ

■ oracle.sql.TIMESTAMPLTZ

Before accessing TIMESTAMP WITH LOCAL TIME ZONE data, call the
OracleConnection.setSessionTimeZone(String regionName) method to
set the session time zone. When this method is called, the JDBC driver sets the session
time zone of the connection and saves the session time zone so that any TIMESTAMP
WITH LOCAL TIME ZONE data accessed through JDBC can be adjusted using the
session time zone.

Overview of Class oracle.sql.OPAQUE
The oracle.sql.OPAQUE class gives you the name and characteristics of the OPAQUE
type and any attributes. The OPAQUE type provides access only to the uninterrupted
bytes of the instance.

Package oracle.jdbc
The interfaces of the oracle.jdbc package define the Oracle extensions to the
interfaces in java.sql. These extensions provide access to Oracle SQL-format data
and other Oracle-specific functionality, including Oracle performance enhancements.

Note: TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE types can be represented as standard
java.sql.Timestamp type. The byte representation of TIMESTAMP
WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE
types to java.sql.Timestamp is straight forward. This is because
the internal format of TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE data types is GMT, and
java.sql.Timestamp type objects internally use a milliseconds
time value that is the number of milliseconds since EPOCH. However,
the String representation of these data types requires time zone
information that is obtained dynamically from the server and cached
on the client side.

In earlier versions of JDBC drivers, the cache of time zone was shared
across different connections. This used to cause problems sometimes
due to incompatibility in various time zones. Starting from Oracle
database 11.2 version of JDBC drivers, the time zone cache is based on
the time zone version supplied by the database. This newly designed
cache avoids any issues related to version incompatibility of time
zones.

Note: There is minimal support for the OPAQUE type.

See Also: "The oracle.jdbc Package" on page 4-19

Oracle Character Data Types Support

4-10 Oracle Database JDBC Developer's Guide

Oracle Character Data Types Support
Oracle character data types include the SQL CHAR and NCHAR data types. The
following sections describe how these data types can be accessed using the
oracle.sql.* classes:

■ SQL CHAR Data Types

■ SQL NCHAR Data Types

■ Class oracle.sql.CHAR

SQL CHAR Data Types
The SQL CHAR data types include CHAR, VARCHAR2, and CLOB. These data types let
you store character data in the database character set encoding scheme. The character
set of the database is established when you create the database.

SQL NCHAR Data Types
The SQL NCHAR data types were created for Globalization Support. The SQL NCHAR
data types include NCHAR, NVARCHAR2, and NCLOB. These data types allow you to
store Unicode data in the database NCHAR character set encoding. The NCHAR character
set, which never changes, is established when you create the database.

The usage of SQL NCHAR data types is similar to that of the SQL CHAR data types.
JDBC uses the same classes and methods to access SQL NCHAR data types that are used
for the corresponding SQL CHAR data types. Therefore, there are no separate,
corresponding classes defined in the oracle.sql package for SQL NCHAR data types.
Similarly, there is no separate, corresponding constant defined in the
oracle.jdbc.OracleTypes class for SQL NCHAR data types.

The following code shows how to access SQL NCHAR data:

//
// Table TEST has the following columns:
// - NUMBER
// - NVARCHAR2
// - NCHAR
//
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
conn.prepareStatement("insert into TEST values(?, ?, ?)");

//
// oracle.jdbc.OraclePreparedStatement.FORM_NCHAR should be used for all NCHAR,

Note: Because the UnicodeStream class is deprecated in favor of
the CharacterStream class, the setUnicodeStream and
getUnicodeStream methods are not supported for NCHAR data
type access. Use the setCharacterStream method and the
getCharacterStream method if you want to use stream access.

Note: For JDK 1.5, a JDBC program must call the setFormOfUse
method for those columns that specifically need national-language
characters.

Oracle Character Data Types Support

Oracle Extensions 4-11

// NVARCHAR2 and NCLOB data types.
//

pstmt.setInt(1, 1); // NUMBER column
pstmt.setNString(2, myUnicodeString1); // NVARCHAR2 column
pstmt.setNString(3, myUnicodeString2); // NCHAR column
pstmt.execute();

Class oracle.sql.CHAR
The oracle.sql.CHAR class is used by Oracle JDBC in handling and converting
character data. This class provides the Globalization Support functionality to convert
character data. This class has two key attributes: Globalization Support character set
and the character data. The Globalization Support character set defines the encoding
of the character data. It is a parameter that is always passed when a CHAR object is
constructed. Without the Globalization Support character set information, the data
bytes in the CHAR object are meaningless. The oracle.sql.CHAR class is used for
both SQL CHAR and SQL NCHAR data types.

The only remaining use of the oracle.sql.CHAR class is to handle character data in
the form of raw bytes encoded in an Oracle Globalization Support character set. All
character data retrieved from Oracle Database should be accessed using the
java.lang.String class. When processing byte data from another source, you can
use an oracle.sql.CHAR to convert the bytes to java.lang.String.

To convert an oracle.sql.CHAR, you must provide the data bytes and an
oracle.sql.CharacterSet instance that represents the Globalization Support
character set used to encode the data bytes.

The CHAR objects that are Oracle object attributes are returned in the database
character set.

JDBC application code rarely needs to construct CHAR objects directly, because the
JDBC driver automatically creates CHAR objects, when it is needed to create them on
those rare occasions.

To construct a CHAR object, you must provide character set information to the CHAR
object by way of an instance of the CharacterSet class. Each instance of this class
represents one of the Globalization Support character sets that Oracle supports. A
CharacterSet instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets.

Constructing an oracle.sql.CHAR Object
Follow these general steps to construct a CHAR object:

1. Create a CharacterSet object by calling the static CharacterSet.make
method.

Note: In versions of Oracle JDBC drivers prior to 10g release 1
(10.1), there were performance advantages to using the
oracle.SQL.CHAR. Starting from Oracle Database 10g, there are
no longer any such advantages. In fact, optimum performance is
achieved using the java.lang.String. All Oracle JDBC drivers
handle all character data in the Java UCS2 character set. Using the
oracle.sql.CHAR does not prevent conversions between the
database character set and UCS2 character set.

Oracle Character Data Types Support

4-12 Oracle Database JDBC Developer's Guide

This method is a factory for the character set instance. The make method takes an
integer as input, which corresponds to a character set ID that Oracle supports. For
example:

int oracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set ID,
 // 832
...
CharacterSet mycharset = CharacterSet.make(oracleId);

Each character set that Oracle supports has a unique, predefined Oracle ID.

2. Construct a CHAR object.

Pass a string, or the bytes that represent the string, to the constructor along with
the CharacterSet object that indicates how to interpret the bytes based on the
character set. For example:

String mystring = "teststring";
...
CHAR mychar = new CHAR(teststring, mycharset);

There are multiple constructors for CHAR, which can take a String, a byte array,
or an object as input along with the CharacterSet object. In the case of a
String, the string is converted to the character set indicated by the
CharacterSet object before being placed into the CHAR object.

oracle.sql.CHAR Conversion Methods
The CHAR class provides the following methods for translating character data to
strings:

■ getString

This method converts the sequence of characters represented by the CHAR object to
a string, returning a Java String object. If you enter an invalid OracleID, then
the character set will not be recognized and the getString method will throw a
SQLException exception.

■ toString

This method is identical to the getString method. But if you enter an invalid
OracleID, then the character set will not be recognized and the toString
method will return a hexadecimal representation of the CHAR data and will not
throw a SQLException exception.

■ getStringWithReplacement

Note:

■ The CharacterSet object cannot be a null value.

■ The CharacterSet class is an abstract class, therefore it has
no constructor. The only way to create instances is to use the
make method.

■ The server recognizes the special value
CharacterSet.DEFAULT_CHARSET as the database character
set. For the client, this value is not meaningful.

■ Oracle does not intend or recommend that users extend the
CharacterSet class.

Additional Oracle Type Extensions

Oracle Extensions 4-13

This method is identical to the getString method, except a default replacement
character replaces characters that have no unicode representation in the CHAR
object character set. This default character varies from character set to character
set, but is often a question mark (?).

The database server and the client, or application running on the client, can use
different character sets. When you use the methods of the CHAR class to transfer data
between the server and the client, the JDBC drivers must convert the data from the
server character set to the client character set or vice versa. To convert the data, the
drivers use Globalization Support.

Additional Oracle Type Extensions
Oracle JDBC drivers support the Oracle-specific BFILE and ROWID data types and REF
CURSOR types, which are not part of the standard JDBC specification. This section
describes the ROWID and REF CURSOR type extensions. The ROWID is supported as a
Java string, and REF CURSOR types are supported as JDBC result sets.

This section covers the following topics:

■ Oracle ROWID Type

■ Oracle REF CURSOR Type Category

■ Oracle BINARY_FLOAT and BINARY_DOUBLE Types

■ Oracle SYS.ANYTYPE and SYS.ANYDATA Types

■ The oracle.jdbc Package

Oracle ROWID Type
A ROWID is an identification tag unique for each row of an Oracle Database table. The
ROWID can be thought of as a virtual column, containing the ID for each row.

The oracle.sql.ROWID class is supplied as a container for ROWID SQL data type.

ROWIDs provide functionality similar to the getCursorName method specified in
the java.sql.ResultSet interface and the setCursorName method specified in
the java.sql.Statement interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set getString method. You can also bind a ROWID to a
PreparedStatement parameter with the setString method. This enables in-place
updating, as in the example that follows.

Example
The following example shows how to access and manipulate ROWID data:

See Also: Chapter 19, "Globalization Support"

Note: Use the oracle.sql.ROWID class, only when you are
using J2SE 1.5. For JSE 6, you should use the standard
java.sql.RowId interface instead.

Note: The following example works only with JSE 6.

Additional Oracle Type Extensions

4-14 Oracle Database JDBC Developer's Guide

Statement stmt = conn.createStatement();

// Query the employee names with "FOR UPDATE" to lock the rows.
// Select the ROWID to identify the rows to be updated.

ResultSet rset =
 stmt.executeQuery ("SELECT ename, rowid FROM emp FOR UPDATE");

// Prepare a statement to update the ENAME column at a given ROWID

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

// Loop through the results of the query
while (rset.next ())
{
 String ename = rset.getString (1);
 RowId rowid = rset.getROWID(2); // Get the ROWID as a String
 pstmt.setString (1, ename.toLowerCase ());
 pstmt.setROWID (2, rowid); // Pass ROWID to the update statement
 pstmt.executeUpdate (); // Do the update
}

Oracle REF CURSOR Type Category
A cursor variable holds the memory location of a query work area, rather than the
contents of the area. Declaring a cursor variable creates a pointer. In SQL, a pointer has
the data type REF x, where REF is short for REFERENCE and x represents the entity
being referenced. A REF CURSOR, then, identifies a reference to a cursor variable.
Because many cursor variables might exist to point to many work areas, REF CURSOR
can be thought of as a category or data type specifier that identifies many different
types of cursor variables.

To create a cursor variable, begin by identifying a type that belongs to the REF CURSOR
category. For example:

DECLARE TYPE DeptCursorTyp IS REF CURSOR

Then, create the cursor variable by declaring it to be of the type DeptCursorTyp:

dept_cv DeptCursorTyp - - declare cursor variable
...

REF CURSOR, then, is a category of data types, rather than a particular data type.

Stored procedures can return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set. A REF CURSOR
essentially encapsulates the results of a query.

In JDBC, a REF CURSOR is materialized as a ResultSet object and can be accessed as
follows:

1. Use a JDBC callable statement to call a stored procedure. It must be a callable
statement, as opposed to a prepared statement, because there is an output
parameter.

Note: REF CURSOR instances are not scrollable.

Additional Oracle Type Extensions

Oracle Extensions 4-15

2. The stored procedure returns a REF CURSOR.

3. The Java application casts the callable statement to an Oracle callable statement
and uses the getCursor method of the OracleCallableStatement class to
materialize the REF CURSOR as a JDBC ResultSet object.

4. The result set is processed as requested.

Example
This example shows how to access REF CURSOR data.

import oracle.jdbc.*;
...
CallableStatement cstmt;
ResultSet cursor;

// Use a PL/SQL block to open the cursor
cstmt = conn.prepareCall
 ("begin open ? for select ename from emp; end;");

cstmt.registerOutParameter(1, OracleTypes.CURSOR);
cstmt.execute();
cursor = ((OracleCallableStatement)cstmt).getCursor(1);

// Use the cursor like a standard ResultSet
while (cursor.next ())
 {System.out.println (cursor.getString(1));}

In the preceding example:

■ A CallableStatement object is created by using the prepareCall method of
the connection class.

■ The callable statement implements a PL/SQL procedure that returns a REF
CURSOR.

■ As always, the output parameter of the callable statement must be registered to
define its type. Use the type code OracleTypes.CURSOR for a REF CURSOR.

■ The callable statement is run, returning the REF CURSOR.

■ The CallableStatement object is cast to OracleCallableStatement to use
the getCursor method, which is an Oracle extension to the standard JDBC API,
and returns the REF CURSOR into a ResultSet object.

Oracle BINARY_FLOAT and BINARY_DOUBLE Types
The Oracle BINARY_FLOAT and BINARY_DOUBLE types are used to store IEEE 574
float and double data. These correspond to the Java float and double scalar types
with the exception of negative zero and NaN.

Important: The cursor associated with a REF CURSOR is closed
whenever the statement object that produced the REF CURSOR is
closed.

Unlike in past releases, the cursor associated with a REF CURSOR is
not closed when the result set object in which the REF CURSOR was
materialized is closed.

See Also: Oracle Database SQL Language Reference

Additional Oracle Type Extensions

4-16 Oracle Database JDBC Developer's Guide

If you include a BINARY_DOUBLE column in a query, then the data is retrieved from
the database in the binary format. Also, the getDouble method will return the data in
the binary format. In contrast, for a NUMBER data type column, the number bits are
returned and converted to the Java double data type.

A call to the JDBC standard setDouble(int, double) method of the
PreparedStatement interface converts the Java double argument to Oracle
NUMBER style bits and send them to the database. In contrast, the
setBinaryDouble(int, double) method of the
oracle.jdbc.OraclePreparedStatement interface converts the data to the
internal binary bits and sends them to the database.

You must ensure that the data format used matches the type of the target parameter of
the PreparedStatement interface. This will result in correct data and least use of
CPU. If you use setBinaryDouble for a NUMBER parameter, then the binary bits are
sent to the server and converted to NUMBER format. The data will be correct, but server
CPU load will be increased. If you use setDouble for a BINARY_DOUBLE parameter,
then the data will first be converted to NUMBER bits on the client and sent to the server,
where it will be converted back to binary format. This will increase the CPU load on
both client and server and can result in data corruption as well.

The SetFloatAndDoubleUseBinary connection property when set to true causes
the JDBC standard APIs, setFloat(int, float), setDouble(int, double), and
all the variations, to send internal binary bits instead of NUBMER bits.

Oracle SYS.ANYTYPE and SYS.ANYDATA Types
Oracle Database 11g Release 2 (11.2) provides a Java interface to access the
SYS.ANYTYPE and SYS.ANYDATA Oracle types.

An instance of the SYS.ANYTYPE type contains a type description of any SQL type,
persistent or transient, named or unnamed, including object types and collection
types. You can use the oracle.sql.TypeDescriptor class to access the
SYS.ANYTYPE type. An ANYTYPE instance can be retrieved from a PL/SQL procedure
or a SQL SELECT statement where SYS.ANYTYPE is used as a column type. To
retrieve an ANYTYPE instance from the database, use the getObject method. This
method returns an instance of the TypeDescriptor.

The retrieved ANYTYPE instance could be any of the following:

■ Transient object type

■ Transient predefined type

■ Persistent object type

Note: The Oracle representation for the SQL FLOAT, DOUBLE
PRECISION, and REAL data types use the Oracle NUMBER
representation. The BINARY_FLOAT and BINARY_DOUBLE data types
can be regarded as proprietary types.

Note: Although this section largely discusses BINARY_DOUBLE, the
same is true for BINARY_FLOAT as well.

See Also: For information about these Oracle types, refer Oracle
Database PL/SQL Packages and Types Reference

Additional Oracle Type Extensions

Oracle Extensions 4-17

■ Persistent predefined type

Example 4–1 Accessing SYS.ANYTYPE Type

The following code snippet illustrates how to retrieve an instance of ANYTYPE from
the database:

...
ResultSet rs = stmt.executeQuery("select anytype_column from my_table");
TypeDescriptor td = (TypeDescriptor)rs.getObject(1);
short typeCode = td.getInternalTypeCode();
if(typeCode == TypeDescriptor.TYPECODE_OBJECT)
{
 // check if it's a transient type
 if(td.isTransientType())
 {
 AttributeDescriptor[] attributes =
((StructDescriptor)td).getAttributesDescriptor();
 for(int i=0; i<attributes.length; i++)
 System.out.println(attributes[i].getAttributeName());
 }
 else
 {
 System.out.println(td.getTypeName());
 }
}
...

Example 4–2 Creating a Transient Object Type Through PL/SQL and Retrieving Through
JDBC

This example provides a code snippet illustrating how to retrieve a transient object
type through JDBC.

...
OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
 ("BEGIN ? := transient_obj_type (); END;");
cstmt.registerOutParameter(1,OracleTypes.OPAQUE,"SYS.ANYTYPE");
cstmt.execute();
TypeDescriptor obj = (TypeDescriptor)cstmt.getObject(1);
if(!obj.isTransient())
 System.out.println("This must be a JDBC bug");
cstmt.close();
return obj;
...

Example 4–3 Calling a PL/SQL Stored Procedure That Takes an ANYTPE as IN
Parameter

The following code snippet illustrates how to call a PL/SQL stored procedure that
takes an ANYTYPE as IN parameter:

...
CallableStatement cstmt = conn.prepareCall("BEGIN ? := dumpanytype(?); END;");
cstmt.registerOutParameter(1,OracleTypes.VARCHAR);
// obj is the instance of TypeDescriptor that you have retrieved
cstmt.setObject(2,obj);
cstmt.execute();
String str = (String)cstmt.getObject(1);
...

Additional Oracle Type Extensions

4-18 Oracle Database JDBC Developer's Guide

The oracle.sql.ANYDATA class enables you to access SYS.ANYDATA instances from
the database. An instance of this class can be obtained from any valid instance of
oracle.sql.Datum class. The convertDatum factory method takes an instance of
Datum and returns an instance of ANYDATA. The syntax for this factory method is as
follows:

public static ANYDATA convertDatum(Datum datum) throws SQLException

The following is sample code for creating an instance of oracle.sql.ANYDATA:

// struct is a valid instance of oracle.sql.STRUCT that either comes from the
// database or has been constructed in Java.
ANYDATA myAnyData = ANYDATA.convertDatum(struct);

Example 4–4 Accessing an Instance of ANYDATA from the Database

...
// anydata_table has been created as:
// CREATE TABLE anydata_tab (data SYS.ANYDATA)
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select data from my_anydata_tab");
while(rs.next())
{
 ANYDATA anydata = (ANYDATA)rs.getObject(1);
 if(!anydata.isNull())
 {
 TypeDescriptor td = anydata.getTypeDescriptor();
 if(td.getTypeCode() == OracleType.TYPECODE_OBJECT)
 STRUCT struct = (STRUCT)anydata.accessDatum();
 }
}
...

Example 4–5 Inserting an Object as ANYDATA in a Database Table

Consider the following table and object type definition:

CREATE TABLE anydata_tab (id NUMBER, data SYS.ANYDATA)

CREATE OR REPLACE TYPE employee AS OBJECT (empno NUMBER, ename VARCHAR2(10))

To create an instance of the EMPLOYEE SQL object type and to insert it into anydata_
tab:

...
PreparedStatement pstmt = conn.prepareStatement("insert into anydata_table values
(?,?)");
StructDescriptor sd =
StructDescriptor.createDescriptor("EMPLOYEE",(OracleConnection)conn);
Object[] objattr = new Object[2];
objattr[0] = new BigDecimal(1120);
objattr[1] = new String("Papageno");
STRUCT myEmployeeStr = new STRUCT(sd,conn,objattr);
ANYDATA anyda = ANYDATA.convertDatum(myEmployeeStr);
pstmt.setInt(1,123);
pstmt.setObject(2,anyda);
pstmt.executeUpdate();
...

Additional Oracle Type Extensions

Oracle Extensions 4-19

Example 4–6 Selecting an ANYDATA Column from a Database Table

...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select data from anydata_table");
while(rs.next())
{
 ANYDATA obj = (ANYDATA)rs.getObject(1);
 TypeDescriptor td = obj.getTypeDescriptor();
}
rs.close();
stmt.close();
...

The oracle.jdbc Package
The interfaces of the oracle.jdbc package define the Oracle extensions to the
interfaces in java.sql. These extensions provide access to SQL-format data as
described in this chapter. They also provide access to other Oracle-specific
functionality, including Oracle performance enhancements.

For the oracle.jdbc package, Table 4–1 lists key interfaces and classes used for
connections, statements, and result sets.

Table 4–1 Key Interfaces and Classes of the oracle.jdbc Package

Name
Interface
or Class Key Functionality

OracleDriver Class Implements java.sql.Driver

OracleConnection Interface Provides methods to start and stop an
Oracle Database instance and to return
Oracle statement objects and methods to
set Oracle performance extensions for any
statement run in the current connection.

Implements java.sql.Connection.

OracleStatement Interface Provides methods to set Oracle
performance extensions for individual
statement.

Is a supertype of
OraclePreparedStatement and
OracleCallableStatement.

Implements java.sql.Statement.

OraclePreparedStatement Interface Provides setXXX methods to bind
oracle.sql.* types into a prepared
statement.

Provides getMetaData method to get
the metadata from the prepared
statements without executing the SELECT
statements.

Implements
java.sql.PreparedStatement.

Extends OracleStatement.

Is a supertype of
OracleCallableStatement.

Additional Oracle Type Extensions

4-20 Oracle Database JDBC Developer's Guide

This section covers the following topics:

■ Interface oracle.jdbc.OracleConnection

■ Interface oracle.jdbc.OracleStatement

■ Interface oracle.jdbc.OraclePreparedStatement

■ Interface oracle.jdbc.OracleCallableStatement

■ Interface oracle.jdbc.OracleResultSet

■ Interface oracle.jdbc.OracleResultSetMetaData

■ Class oracle.jdbc.OracleTypes

■ Method getJavaSqlConnection

Interface oracle.jdbc.OracleConnection
This interface extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
support type maps for Oracle objects, and support client identifiers.

In Oracle Database 11g Release 1 (11.1), new methods had been added to this interface
that enable the starting up and shutting down of an Oracle Database instance. Also, for

OracleCallableStatement Interface Provides getXXX methods to retrieve
data in oracle.sql format and setXXX
methods to bind oracle.sql.* types
into a callable statement.

Implements
java.sql.CallableStatement.

Extends OraclePreparedStatement.

OracleResultSet Interface Provides getXXX methods to retrieve
data in oracle.sql format.

Implements java.sql.ResultSet.

OracleResultSetMetaData Interface Provides methods to get metadata
information about Oracle result sets, such
as column names and data types.

Implements
java.sql.ResultSetMetaData.

OracleDatabaseMetaData Class Provides methods to get metadata
information about the database, such as
database product name and version, table
information, and default transaction
isolation level.

Implements
java.sql.DatabaseMetaData).

OracleTypes Class Defines integer constants used to identify
SQL types.

For standard types, it uses the same
values as the standard java.sql.Types
class. In addition, it adds constants for
Oracle extended types.

Table 4–1 (Cont.) Key Interfaces and Classes of the oracle.jdbc Package

Name
Interface
or Class Key Functionality

Additional Oracle Type Extensions

Oracle Extensions 4-21

better visibility and clarity, all connection properties are defined as constants in the
OracleConnection interface.

This interface also defines factory methods for constructing oracle.sql data values
like DATE and NUMBER. Remember the following points while using factory methods:

■ All code that constructs instances of the oracle.sql types should use the Oracle
extension factory methods. For example, ARRAY, BFILE, DATE, INTERVALDS,
NUMBER, STRUCT, TIME, TIMESTAMP, and so on.

■ All code that constructs instances of the standard types should use the JDBC 4.0
standard factory methods. For example, CLOB, BLOB, NCLOB, and so on.

■ There are no factory methods for CHAR, JAVA_STRUCT, ArrayDescriptor, and
StructDescriptor. These types are for internal driver use only.

Client Identifiers
In a connection pooling environment, the client identifier can be used to identify the
lightweight user using the database session currently. A client identifier can also be
used to share the Globally Accessed Application Context between different database
sessions. The client identifier set in a database session is audited when database
auditing is turned on.

Interface oracle.jdbc.OracleStatement
This interface extends standard JDBC statement functionality and is the superinterface
of the OraclePreparedStatement and OracleCallableStatement classes.
Extended functionality includes support for setting flags and options for Oracle
performance extensions on a statement-by-statement basis, as opposed to the
OracleConnection interface that sets these on a connectionwide basis.

Interface oracle.jdbc.OraclePreparedStatement
This interface extends the OracleStatement interface and extends standard JDBC
prepared statement functionality. Also, the
oracle.jdbc.OraclePreparedStatement interface is extended by the
OracleCallableStatement interface. Extended functionality consists of the
following:

■ setXXX methods for binding oracle.sql.* types and objects to prepared
statements

■ getMetaData method to get the metadata from the prepared statements without
executing the SELECT statements

■ Methods to support Oracle performance extensions on a statement-by-statement
basis

Note: Prior to Oracle Database 11g Release 1 (11.1), you had to
construct ArrayDescriptors and StructDescriptors for
passing as arguments to the ARRAY and STRUCT class constructors.
The new ARRAY and Struct factory methods do not have any
descriptor arguments. The driver still uses descriptors internally, but
you do not need to create them.

See Also: Oracle Database Advanced Application Developer's Guide and
Oracle Database JDBC Java API Reference

Additional Oracle Type Extensions

4-22 Oracle Database JDBC Developer's Guide

Interface oracle.jdbc.OracleCallableStatement
This interface extends the OraclePreparedStatement interface, which extends the
OracleStatement interface and incorporates standard JDBC callable statement
functionality.

Interface oracle.jdbc.OracleResultSet
This interface extends standard JDBC result set functionality, implementing getXXX
methods for retrieving data into oracle.sql.* objects.

Interface oracle.jdbc.OracleResultSetMetaData
This interface extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

Class oracle.jdbc.OracleTypes
The OracleTypes class defines constants that JDBC uses to identify SQL types. Each
variable in this class has a constant integer value. The oracle.jdbc.OracleTypes
class duplicates the type code definitions of the standard Java java.sql.Types class
and contains these additional type codes for Oracle extensions:

■ OracleTypes.BFILE

■ OracleTypes.ROWID

Note: Do not use the PreparedStatement interface to create a
trigger that refers to a:NEW or :OLD column. Use Statement
instead. Using PreparedStatement will cause execution to fail
with the message java.sql.SQLException: Missing IN or
OUT parameter at index:: 1.

Note: Do not use the CallableStatement interface to create a
trigger that refers to a:NEW or :OLD column. Use Statement
instead; using CallableStatement will cause execution to fail
with the message java.sql.SQLException: Missing IN or
OUT parameter at index::1

Note:

■ The setXXX(String,...) and
registerOutParameter(String,...) methods can be used
only if all binds are procedure or function parameters only. The
statement can contain no other binds and the parameter binds
must be indicated with a question mark (?) and not :XX.

■ If you are using setXXX(int,...) or
setXXXAtName(String,...) method, then any output
parameter is bound with registerOutParameter(int,...)
and not registerOutParameter(String,...), which is for
named parameter notation.

See Also: "Using Result Set Metadata Extensions" on page 11-14

Additional Oracle Type Extensions

Oracle Extensions 4-23

■ OracleTypes.CURSOR (for REF CURSOR types)

■ OracleTypes.CHAR_BYTES (for calling setNull and setCHAR methods on the
same column)

As in java.sql.Types, all the variable names are in uppercase text.

JDBC uses the SQL types identified by the elements of the OracleTypes class in two
main areas: registering output parameters and in the setNull method of the
PreparedStatement class.

OracleTypes and Registering Output Parameters
The type codes in java.sql.Types or oracle.jdbc.OracleTypes identify the
SQL types of the output parameters in the registerOutParameter method of the
java.sql.CallableStatement and
oracle.jdbc.OracleCallableStatement interfaces.

These are the forms that the registerOutputParameter method can take for the
CallableStatement and OracleCallableStatement interfaces

cs.registerOutParameter(int index, int sqlType);

cs.registerOutParameter(int index, int sqlType, String sql_name);

cs.registerOutParameter(int index, int sqlType, int scale);

In these signatures, index represents the parameter index, sqlType is the type code
for the SQL data type, sql_name is the name given to the data type, for user-defined
types, when sqlType is a STRUCT, REF, or ARRAY type code, and scale represents
the number of digits to the right of the decimal point, when sqlType is a NUMERIC or
DECIMAL type code.

The following example uses a CallableStatement interface to call a procedure
named charout, which returns a CHAR data type. Note the use of the
OracleTypes.CHAR type code in the registerOutParameter method.

CallableStatement cs = conn.prepareCall ("BEGIN charout (?); END;");
cs.registerOutParameter (1, OracleTypes.CHAR);
cs.execute ();
System.out.println ("Out argument is: " + cs.getString (1));

The next example uses a CallableStatement interface to call structout, which
returns a STRUCT data type. The form of registerOutParameter requires you to
specify the type code, Types.STRUCT or OracleTypes.STRUCT, as well as the SQL
name, EMPLOYEE.

The example assumes that no type mapping has been declared for the EMPLOYEE type,
so it is retrieved into a STRUCT data type. To retrieve the value of EMPLOYEE as an
oracle.sql.STRUCT object, the statement object cs is cast to
OracleCallableStatement and the Oracle extension getSTRUCT method is
invoked.

CallableStatement cs = conn.prepareCall ("BEGIN structout (?); END;");
cs.registerOutParameter (1, OracleTypes.STRUCT, "EMPLOYEE");
cs.execute ();

// get the value into a STRUCT because it
// is assumed that no type map has been defined
STRUCT emp = ((OracleCallableStatement)cs).getSTRUCT (1);

Additional Oracle Type Extensions

4-24 Oracle Database JDBC Developer's Guide

OracleTypes and the setNull Method
The type codes in Types and OracleTypes identify the SQL type of the data item,
which the setNull method sets to NULL. The setNull method can be found in the
java.sql.PreparedStatement and
oracle.jdbc.OraclePreparedStatement interfaces.

These are the forms that the setNull method can take for the PreparedStatement
and OraclePreparedStatement objects:

ps.setNull(int index, int sqlType);

ps.setNull(int index, int sqlType, String sql_name);

In these signatures, index represents the parameter index, sqlType is the type code
for the SQL data type, and sql_name is the name given to the data type, for
user-defined types, when sqlType is a STRUCT, REF, or ARRAY type code. If you enter
an invalid sqlType, a ParameterTypeConflict exception is thrown.

The following example uses a prepared statement to insert a null value into the
database. Note the use of OracleTypes.NUMERIC to identify the numeric object set
to NULL. Alternatively, Types.NUMERIC can be used.

PreparedStatement pstmt =
 conn.prepareStatement ("INSERT INTO num_table VALUES (?)");

pstmt.setNull (1, OracleTypes.NUMERIC);
pstmt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type
EMPLOYEE into the database.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO employee_table VALUES (?)");

pstmt.setNull (1, OracleTypes.STRUCT, "EMPLOYEE");
pstmt.execute ();

You can also use the OracleTypes.CHAR_BYTES type with the setNull method, if
you also want to call the setCHAR method on the same column. For example:

 ps.setCHAR(n, aCHAR);
 ps.addBatch();
 ps.setNull(n, OracleTypes.CHAR_BYTES);
 ps.addBatch();

In this preceding example, any other type, apart from the OracleTypes.CHAR_
BYTES type, will cause extra round trips to the Database. Alternatively, you can also
write your code without using the setNull method. For example, you can also write
your code as shown in the following example:

ps.setCHAR(n, null);

Method getJavaSqlConnection
The getJavaSqlConnection method of the oracle.sql.* classes returns
java.sql.Connection. This method is available for the following Oracle data type
classes:

DML Returning

Oracle Extensions 4-25

■ oracle.sql.ARRAY

■ oracle.sql.BFILE

■ oracle.sql.BLOB

■ oracle.sql.CLOB

■ oracle.sql.OPAQUE

■ oracle.sql.REF

■ oracle.sql.STRUCT

The following code snippet shows the getJavaSqlConnection method in the
Array class:

public class ARRAY
{
 java.sql.Connection getJavaSqlConnection()
 throws SQLException;
 ...
}

DML Returning
The DML returning feature provides more functionality compared to retrieval of
auto-generated keys. It can be used to retrieve not only auto-generated keys, but also
other columns or values that the application may use.

The following sections explain the support for DML returning:

■ Oracle-Specific APIs

■ Running DML Returning Statements

■ Example of DML Returning

■ Limitations of DML Returning

Note: The getConnection method used in Oracle 8i and earlier
versions of JDBC driver returns
oracle.jdbc.driver.OracleConnection. The use of the classes
in the oracle.jdbc.driver package was deprecated in favor of the
oracle.jdbc package in Oracle 9i release. Since Oracle Database 11g
Release 1 (11.1), the classes in the package oracle.jdbc.driver
have been desupported.

Note:

■ The server-side internal driver does not support DML returning
and retrieval of auto-generated keys.

■ You cannot use both DML returning and retrieval of
auto-generated keys in the same statement.

See Also: "Retrieval of Auto-Generated Keys" on page 3-4

DML Returning

4-26 Oracle Database JDBC Developer's Guide

Oracle-Specific APIs
The OraclePreparedStatement interface is enhanced with Oracle-specific
application programming interfaces (APIs) to support DML returning. The
registerReturnParameter and getReturnResultSet methods have been
added to the oracle.jdbc.OraclePreparedStatement interface, to register
parameters that are returned and data retrieved by DML returning.

The registerReturnParameter method is used to register the return parameter
for DML returning. The method throws a SQLException instance if an error occurs.
You must pass a positive integer specifying the index of the return parameter. You
also must specify the type of the return parameter. You can also specify the maximum
bytes or characters of the return parameter. This method can be used only with char
or RAW types. You can also specify the fully qualified name of a SQL structure type.

The getReturnResultSet method fetches the data returned from DML returning
and returns it as a ResultSet object. The method throws a SQLException exception
if an error occurs.

Running DML Returning Statements
Before running a DML returning statement, the JDBC application must call one or
more of the registerReturnParameter methods. The method provides the JDBC
drivers with information, such as type and size, of the return parameters. The DML
returning statement is then processed using one of the standard JDBC APIs,
executeUpdate or execute. You can then fetch the returned parameters as a
ResultSet object using the getReturnResultSet method of the
oracle.jdbc.OraclePreparedStatement interface.

In order to read the values in the ResultSet object, the underlying Statement
object must be open. When the underlying Statement object is closed, the returned
ResultSet object is also closed. This is consistent with ResultSet objects that are
retrieved by processing SQL query statements.

When a DML returning statement is run, the concurrency of the ResultSet object
returned by the getReturnResultSet method must be CONCUR_READ_ONLY and
the type of the ResultSet object must be TYPE_FORWARD_ONLY or TYPE_SCROLL_
INSENSITIVE.

Example of DML Returning
This section provides two code examples of DML returning.

The following code example illustrates the use of DML returning. In this example,
assume that the maximum size of the name column is 100 characters. Because the

Note: If you do not know the maximum size of the return
parameters, then you should use registerReturnParameter(int
paramIndex, int externalType), which picks the default
maximum size. If you know the maximum size of return parameters,
using registerReturnParameter(int paramIndex, int
externalType, int maxSize) can reduce memory consumption.

Note: The Oracle-specific APIs for the DML returning feature are in
ojdbc5.jar for Java Development Kit (JDK) 1.5 and in ojdbc6.jar
for JDK 1.6.

DML Returning

Oracle Extensions 4-27

maximum size of the name column is known, the registerReturnParameter(int
paramIndex, int externalType, int maxSize) method is used.

...
OraclePreparedStatement pstmt = (OraclePreparedStatement)conn.prepareStatement(
 "delete from tab1 where age < ? returning name into ?");
pstmt.setInt(1,18);

/** register returned parameter
 * in this case the maximum size of name is 100 chars
 */
pstmt.registerReturnParameter(2, OracleTypes.VARCHAR, 100);

// process the DML returning statement
count = pstmt.executeUpdate();
if (count>0)
{
 ResultSet rset = pstmt.getReturnResultSet(); //rest is not null and not empty
 while(rset.next())
 {
 String name = rset.getString(1);
 ...
 }
}
...

The following code example also illustrates the use of DML returning. However, in
this case, the maximum size of the return parameters is not known. Therefore, the
registerReturnParameter(int paramIndex, int externalType) method
is used.

...
OraclePreparedStatement pstmt = (OraclePreparedStatement)conn.prepareStatement(
 "insert into lobtab values (100, empty_clob()) returning col1, col2 into ?, ?");

// register return parameters
pstmt.registerReturnParameter(1, OracleTypes.INTEGER);
pstmt.registerReturnParameter(2, OracleTypes.CLOB);

// process the DML returning SQL statement
pstmt.executeUpdate();
ResultSet rset = pstmt.getReturnResultSet();
int r;
CLOB clob;
if (rset.next())
{
 r = rset.getInt(1);
 System.out.println(r);
 clob = (CLOB)rset.getClob(2);
 ...
}
...

Limitations of DML Returning
When using DML returning, be aware of the following:

■ It is unspecified what the getReturnResultSet method returns when it is
invoked more than once. You should not rely on any specific action in this regard.

Accessing PL/SQL Index-by Tables

4-28 Oracle Database JDBC Developer's Guide

■ The ResultSet objects returned from the execution of DML returning statements
do not support the ResultSetMetaData type. Therefore, the applications must
know the information of return parameters before running DML returning
statements.

■ Streams are not supported with DML returning.

■ DML returning cannot be combined with batch update.

■ You cannot use both the auto-generated key feature and the DML returning
feature in a single SQL DML statement. For example, the following is not allowed:

...
PreparedStatement pstmt = conn.prepareStatement(’insert into orders (?, ?, ?)
returning order_id into ?");
pstmt.setInt(1, seq01.NEXTVAL);
pstmt.setInt(2, 100);
pstmt.setInt(3, 966431502);
pstmt.registerReturnParam(4, OracleTypes.INTEGER);
pstmt.executeUpdate;
ResultSet rset = pstmt.getGeneratedKeys;
...

Accessing PL/SQL Index-by Tables
Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with index-by
table parameters. This section covers the following topics:

■ Overview

■ Binding IN Parameters

■ Receiving OUT Parameters

■ Type Mappings

Overview
Oracle JDBC drivers support PL/SQL index-by tables of scalar data types. Table 4–2
displays the supported scalar types and the corresponding JDBC type codes.

Note: Index-by tables of PL/SQL records are not supported.

Table 4–2 PL/SQL Types and Corresponding JDBC Types

PL/SQL Types JDBC Types

BINARY_INTEGER NUMERIC

NATURAL NUMERIC

NATURALN NUMERIC

PLS_INTEGER NUMERIC

POSITIVE NUMERIC

POSITIVEN NUMERIC

SIGNTYPE NUMERIC

STRING VARCHAR

Accessing PL/SQL Index-by Tables

Oracle Extensions 4-29

Typical Oracle JDBC input binding, output registration, and data access methods do
not support PL/SQL index-by tables. This chapter introduces additional methods to
support these types.

The OraclePreparedStatement and OracleCallableStatement classes define
the additional methods. These methods include the following:

■ setPlsqlIndexTable

■ registerIndexTableOutParameter

■ getOraclePlsqlIndexTable

■ getPlsqlIndexTable

These methods handle PL/SQL index-by tables as IN, OUT, or IN OUT parameters,
including function return values.

Binding IN Parameters
To bind a PL/SQL index-by table parameter in the IN parameter mode, use the
setPlsqlIndexTable method defined in the OraclePreparedStatement and
OracleCallableStatement classes.

synchronized public void setPlsqlIndexTable (int paramIndex, Object arrayData, int
maxLen, int curLen, int elemSqlType,
 int elemMaxLen) throws SQLException

Table 4–3 describes the arguments of the setPlsqlIndexTable method.

Note: Oracle JDBC does not support RAW, DATE, and PL/SQL
RECORD as element types.

See Also: Oracle Database PL/SQL Language Reference

Table 4–3 Arguments of the setPlsqlIndexTable Method

Argument Description

int paramIndex Indicates the parameter position within the statement.

Object arrayData Is an array of values to be bound to the PL/SQL index-by table
parameter. The value is of type java.lang.Object. The value
can be a Java primitive type array, such as int[], or a Java
object array, such as BigDecimal[].

int maxLen Specifies the maximum table length of the index-by table bind
value that defines the maximum possible curLen for batch
updates. For standalone binds, maxLen should use the same
value as curLen. This argument is required.

int curLen Specifies the actual size of the index-by table bind value in
arrayData. If the curLen value is smaller than the size of
arrayData, then only the curLen number of table elements is
passed to the database. If the curLen value is larger than the
size of arrayData, then the entire arrayData is sent to the
database.

int elemSqlType Specifies the index-by table element type based on the values
defined in the OracleTypes class.

int elemMaxLen Specifies the index-by table element maximum length in case the
element type is CHAR, VARCHAR, or RAW. This value is ignored
for other types.

Accessing PL/SQL Index-by Tables

4-30 Oracle Database JDBC Developer's Guide

The following code example uses the setPlsqlIndexTable method to bind an
index-by table as an IN parameter:

// Prepare the statement
OracleCallableStatement procin = (OracleCallableStatement)
 conn.prepareCall ("begin procin (?); end;");

// index-by table bind value
int[] values = { 1, 2, 3 };

// maximum length of the index-by table bind value. This
// value defines the maximum possible "currentLen" for batch
// updates. For standalone binds, "maxLen" should be the
// same as "currentLen".
int maxLen = values.length;

// actual size of the index-by table bind value
int currentLen = values.length;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types.
int elemMaxLen = 0;

// set the value
procin.setPlsqlIndexTable (1, values,
 maxLen, currentLen,
 elemSqlType, elemMaxLen);

// execute the call
procin.execute ();

Receiving OUT Parameters
This section describes how to register a PL/SQL index-by table as an OUT parameter.
In addition, it describes how to access the OUT bind values in various mapping styles.

Registering the OUT Parameters
To register a PL/SQL index-by table as an OUT parameter, use the
registerIndexTableOutParameter method defined in the
OracleCallableStatement class.

synchronized public void registerIndexTableOutParameter
 (int paramIndex, int maxLen, int elemSqlType,
 int elemMaxLen) throws SQLException

Table 4–4 describes the arguments of the registerIndexTableOutParameter
method.

Note: The methods described in this section apply to function
return values and the IN OUT parameter mode as well.

Accessing PL/SQL Index-by Tables

Oracle Extensions 4-31

The following code example uses the registerIndexTableOutParameter method
to register an index-by table as an OUT parameter:

// maximum length of the index-by table value. This
// value defines the maximum table size to be returned.
int maxLen = 10;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or FIXED_CHAR. This value is ignored for other
// types
int elemMaxLen = 0;

// register the return value
funcnone.registerIndexTableOutParameter
 (1, maxLen, elemSqlType, elemMaxLen);

Accessing the OUT Parameter Values
To access the OUT bind value, the OracleCallableStatement class defines
multiple methods that return the index-by table values in different mapping styles.
There are three mapping choices available in JDBC drivers:

Type Mappings
This section covers the following topics:

■ JDBC Default Mappings

■ Oracle Mappings

■ Java Primitive Type Mappings

JDBC Default Mappings
The getPlsqlIndexTable(int) method returns index-by table elements using the
JDBC default mappings. The syntax for this method is the following:

public Object getPlsqlIndexTable (int paramIndex)

Table 4–4 Arguments of the registerIndexTableOutParameter Method

Argument Description

int paramIndex Indicates the parameter position within the statement.

int maxLen Specifies the maximum table length of the index-by table bind
value to be returned.

int elemSqlType Specifies the index-by table element type based on the values
defined in the OracleTypes class.

int elemMaxLen Specifies the index-by table element maximum length in case the
element type is CHAR, VARCHAR, or FIXED_CHAR. This value is
ignored for other types.

Mappings Methods to Use

JDBC default mappings getPlsqlIndexTable(int)

Oracle mappings getOraclePlsqlIndexTable(int)

Java primitive type mappings getPlsqlIndexTable(int, Class)

Accessing PL/SQL Index-by Tables

4-32 Oracle Database JDBC Developer's Guide

 throws SQLException

Table 4–5 describes the argument of the getPlsqlIndexTable method.

The return value is a Java array. The elements of this array are of the default Java type
corresponding to the SQL type of the elements. For example, for an index-by table
with elements of NUMERIC type code, the element values are mapped to BigDecimal
by Oracle JDBC driver, and the getPlsqlIndexTable method returns a
BigDecimal[] array. For a JDBC application, you must cast the return value to
BigDecimal[] to access the table element values.

The following code example uses the getPlsqlIndexTable method to return
index-by table elements with JDBC default mapping:

// access the value using JDBC default mapping
BigDecimal[] values =
 (BigDecimal[]) procout.getPlsqlIndexTable (1);

// print the elements
for (int i=0; i<values.length; i++)
 System.out.println (values[i].intValue());

Oracle Mappings
The getOraclePlsqlIndexTable method returns index-by table elements using
Oracle mapping.

public Datum[] getOraclePlsqlIndexTable (int paramIndex)
 throws SQLException

Table 4–6 describes the argument of the getOraclePlsqlIndexTable method.

The return value is an oracle.sql.Datum array, and the elements in the array are of
the default Datum type corresponding to the SQL type of the element. For example,
the element values of an index-by table of numeric elements are mapped to the
oracle.sql.NUMBER type in Oracle mapping, and the
getOraclePlsqlIndexTable method returns an oracle.sql.Datum array that
contains oracle.sql.NUMBER elements.

The following code example uses the getOraclePlsqlIndexTable method to
access the elements of a PL/SQL index-by table OUT parameter, using Oracle
mapping:

// Prepare the statement
OracleCallableStatement procout = (OracleCallableStatement)
 conn.prepareCall ("begin procout (?); end;");

...

Table 4–5 Argument of the getPlsqlIndexTable Method

Argument Description

int paramIndex This argument indicates the parameter position within the
statement.

Table 4–6 Argument of the getOraclePlsqlIndexTable Method

Argument Description

int paramIndex Indicates the parameter position within the statement.

Accessing PL/SQL Index-by Tables

Oracle Extensions 4-33

// run the call
procout.execute ();

// access the value using Oracle JDBC mapping
Datum[] outvalues = procout.getOraclePlsqlIndexTable (1);

// print the elements
for (int i=0; i<outvalues.length; i++)
 System.out.println (outvalues[i].intValue());

Java Primitive Type Mappings
The getPlsqlIndexTable(int, Class) method returns index-by table elements
in Java primitive types. The return value is a Java array. The syntax for this method is
the following:

synchronized public Object getPlsqlIndexTable
 (int paramIndex, Class primitiveType) throws SQLException

Table 4–7 describes the arguments of the getPlsqlIndexTable method.

The following code example uses the getPlsqlIndexTable method to access the
elements of a PL/SQL index-by table of numbers. In the example, the second
parameter specifies java.lang.Integer.TYPE and the return value of the
getPlsqlIndexTable method is an int array.

OracleCallableStatement funcnone = (OracleCallableStatement)
 conn.prepareCall ("begin ? := funcnone; end;");

// maximum length of the index-by table value. This
// value defines the maximum table size to be returned.
int maxLen = 10;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types
int elemMaxLen = 0;

// register the return value

Table 4–7 Arguments of the getPlsqlIndexTable Method

Argument Description

int paramIndex Indicates the parameter position within the statement.

Class primitiveType Specifies a Java primitive type to which the index-by table
elements are to be converted. For example, if you specify
java.lang.Integer.TYPE, the return value is an int
array.

The following are the possible values of this parameter:

java.lang.Integer.TYPE

java.lang.Long.TYPE

java.lang.Float.TYPE

java.lang.Double.TYPE

java.lang.Short.TYPE

Accessing PL/SQL Index-by Tables

4-34 Oracle Database JDBC Developer's Guide

funcnone.registerIndexTableOutParameter (1, maxLen,
 elemSqlType, elemMaxLen);
// execute the call
funcnone.execute ();

// access the value as a Java primitive array.
int[] values = (int[])
 funcnone.getPlsqlIndexTable (1, java.lang.Integer.TYPE);

// print the elements
for (int i=0; i<values.length; i++)
 System.out.println (values[i]);

Features Specific to JDBC Thin 5-1

5
Features Specific to JDBC Thin

This chapter introduces the Java Database Connectivity (JDBC) Thin client and covers
the features supported only by the JDBC Thin driver. It also provides basic
information about working with Oracle JDBC applets. This following topics are
covered in this chapter:

■ Overview of JDBC Thin Client

■ Additional Features Supported

■ JDBC in Applets

Overview of JDBC Thin Client
The JDBC Thin client is a pure Java, Type IV driver. It is lightweight and easy to
install. It provides high performance, comparable to the performance provided by the
JDBC Oracle Call Interface (OCI) driver. The JDBC Thin driver is written entirely in
Java, and therefore, it is platform-independent. Also, this driver does not require any
additional Oracle software on the client-side.

The JDBC Thin driver communicates with the server using TTC, a protocol developed
by Oracle to access data from Oracle Database. It can be used for application servers as
well as for applets. The driver allows a direct connection to the database by providing
an implementation of TCP/IP that implements Oracle Net and TTC on top of Java
sockets. Both of these protocols are lightweight implementation versions of their
counterparts on the server. The Oracle Net protocol runs over TCP/IP only.

The JDBC Thin driver can be used on both the client-side and the server-side. On the
client-side, drivers can be used in Java applications or Java applets that run either on
the client or in the middle tier of a three-tier configuration. On the server-side, this
driver is used to access a remote Oracle Database instance or another session on the
same database.

Additional Features Supported
The JDBC Thin driver supports all standard JDBC features. The JDBC Thin driver also
provides support for the following additional features:

■ Support for Applets

■ Default Support for Native XA

JDBC in Applets

5-2 Oracle Database JDBC Developer's Guide

Support for Applets
The JDBC Thin driver is the only Oracle JDBC driver that provides support for
applets. This driver can be downloaded along with the Java applet that is being run in
a browser.

The HTTP protocol, which is usually used for communication over a network, is
stateless. However, the JDBC Thin driver is not stateless. Therefore, the initial HTTP
request to download the applet and the JDBC Thin driver is stateless. After the JDBC
Thin driver establishes the database connection, the communication between the
browser and the database is stateful and in a two-tier configuration.

Default Support for Native XA
Similar to the JDBC OCI driver, the JDBC Thin driver also provides support for Native
XA. However, the JDBC Thin driver provides support for Native XA by default. This
is unlike the case of the JDBC OCI driver, in which the support for Native XA is not
enabled by default.

JDBC in Applets
You can use only the Oracle JDBC Thin driver for an applet. This section describes
what you must do to connect an applet to a database. This description includes how to
use the Connection Manager feature of Oracle Database, or signed applets if you are
connecting to a database that is running on a different host from the Web server. It
also describes how your applet can connect to a database through a firewall. The
section concludes with how to package and deploy the applet.

The following topics are covered:

■ Connecting to the Database Through the Applet

■ Connecting to a Database on a Different Host Than the Web Server

■ Using Applets with Firewalls

■ Packaging Applets

■ Specifying an Applet in an HTML Page

Connecting to the Database Through the Applet
The most common task of an applet using the JDBC driver is to connect to and query a
database. Because of applet security restrictions, unless particular steps are taken, an
applet can open TCP/IP sockets only to the host from which it was downloaded. This
is the host on which the Web server is running. This means that without these steps,
your applet can connect only to a database that is running on the same host as the Web
server.

Note: When the JDBC Thin driver is used with an applet, the
browser used on the client-side must have the capability to support
Java sockets.

See Also: "JDBC in Applets"

See Also: "Native-XA in Oracle JDBC Drivers" on page 29-19

JDBC in Applets

Features Specific to JDBC Thin 5-3

If your database and Web server are running on the same host, then there is no issue
and no special steps are required. You can connect to the database as you would from
an application.

As with connecting from an application, there are two ways in which you can specify
the connection information to the driver. You can provide it in the form of
host:port:sid or in the form of TNS keyword-value syntax.

For example, if the database to which you want to connect resides on host prodHost,
at port 1521, and system identifier (SID) ORCL, and you want to connect with user
name scott and password tiger, then use either of the two following connection
strings:

■ Using host:port:sid syntax:

String connString="jdbc:oracle:thin:@prodHost:1521:ORCL";

OracleDataSource ods = new OracleDataSource();
ods.setURL(connString);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

■ Using TNS keyword-value syntax:

String connString = "jdbc:oracle:thin:@(description=(address_
list=(address=(protocol=tcp)
(port=1521)(host=prodHost)))(connect_data=(INSTANCE_NAME=ORCL)))";
OracleDataSource ods = new OracleDataSource();

ods.setURL(connString);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

If you use the TNS keyword-value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

However, a Web server and database server both require many resources. You seldom
find both servers running on the same computer. Usually, your applet connects to a
database on a host other than the one on which the Web server runs. If you want your
applet to connect to a database running on a different computer, then you have the
following options:

■ Use the Oracle Connection Manager on the host computer. The applet can connect
to the Connection Manager, which connects to a database on another computer.

■ Use signed applets, which can request socket connection privileges to other
computers.

Your applet can also take advantage of the data encryption and integrity checksum
features of the Advanced Security option of Oracle Database.

Connecting to a Database on a Different Host Than the Web Server
If you are connecting to a database on a host other than the one on which the Web
server is running, then you must overcome applet security restrictions. You can do this
in the following ways:

■ Using the Oracle Connection Manager

■ Using Signed Applets

JDBC in Applets

5-4 Oracle Database JDBC Developer's Guide

Using the Oracle Connection Manager
The Oracle Connection Manager is a lightweight, highly scalable program that can
receive Oracle Net packets and retransmit them to a different server. To a client
running Oracle Net, the Connection Manager looks exactly like a database server. An
applet that uses the JDBC Thin driver can connect to a Connection Manager running
on the Web server host and have the Connection Manager redirect the Oracle Net
packets to an Oracle server running on a different host.

Figure 5–1 illustrates the relationship between the applet, the Oracle Connection
Manager, and the database.

Figure 5–1 Applet, Connection Manager, and Database Relationship

Using the Oracle Connection Manager requires two steps:

■ Install and run the Connection Manager.

■ Write the connection string that targets the Connection Manager.

Installing and Running the Oracle Connection Manager
You must install the Connection Manager, available on the Oracle distribution media,
onto the Web server host.

On the Web server host, create a CMAN.ORA file in the ORACLE_HOME/NET8/ADMIN
directory. The options you can declare in a CMAN.ORA file include firewall and
connection pooling support.

Here is an example of a very simple CMAN.ORA file. Replace web-server-host with
the name of your Web server host. The fourth line in the file indicates that the
Connection Manager is listening on port 1610. You must use the same port number in
your connection string for JDBC.

cman = (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL=TCP)
 (HOST=web-server-host)
 (PORT=1610)))

cman_profile = (parameter_list =
 (MAXIMUM_RELAYS=512)
 (LOG_LEVEL=1)
 (TRACING=YES)
 (RELAY_STATISTICS=YES)
 (SHOW_TNS_INFO=YES)
 (USE_ASYNC_CALL=YES)
 (AUTHENTICATION_LEVEL=0)
)

After you create the file, start the Connection Manager at the operating system prompt
with the following command:

cmctl start

Applet
in Browser

webHost

CMAN

Web Server

oraHost

Oracle Net Listener
TCP/IP
(only)

any
Oracle Net

protocol

JDBC in Applets

Features Specific to JDBC Thin 5-5

To use your applet, you must now write the connection string for it.

Writing the URL that Targets the Connection Manager
The following text describes how to write the URL in your applet, so that the applet
connects to the Connection Manager and the Connection Manager connects with the
database. In the URL, you specify an address list that lists the protocol, port, and name
of the Web server host on which the Connection Manager is running, followed by the
protocol, port, and name of the host on which the database is running.

The following example describes the configuration illustrated in Figure 5–1. The Web
server on which the Connection Manager is running is on host webHost and is
listening on port 1610. The database to which you want to connect is running on host
oraHost, listening on port 1521, and SID ORCL. You write the URL in TNS
keyword-value format:

String myURL =
 "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1610)(host=webHost))
 (address=(protocol=tcp)(port=1521)(host=oraHost)))
 (connect_data=(INSTANCE_NAME=orcl))
 (source_route=yes))";
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(myURL);
 ods.setUser("scott");
 ods.setPassword("tiger");
 Connection conn = ods.getConnection();

The first element in the address_list entry represents the connection to the
Connection Manager. The second element represents the database to which you want
to connect. The order in which you list the addresses is important.

When your applet uses a URL, such as the preceding one, it will function exactly as if
it were connected directly to the database on the host oraHost.

Connecting Through Multiple Connection Managers
Your applet can reach its target database even if it first has to go through multiple
Connection Managers. For example, if the Connection Managers form a proxy chain.
To do this, add the addresses of the Connection Managers to the address list, in the
order that you plan to access them. The database listener should be the last address on
this list.

Using Signed Applets
In a Java Development Kit (JDK) 1.2.x-based or later browser, an applet can request
socket connection privileges and connect to a database running on a different host
than the Web server host. Starting from Netscape 4.0, you perform this by signing
your applet, that is, writing a signed applet. You must follow these steps:

1. Sign the applet. For information about the steps you must follow to sign an applet,
refer to

http://www.oracle.com/technetwork/java/index.html

2. Include applet code that asks for appropriate privileges before opening a socket.

If you are using Netscape, then your code would include a statement like this:

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");
OracleDataSource ods = new OracleDataSource();

JDBC in Applets

5-6 Oracle Database JDBC Developer's Guide

ods.setURL("jdbc:oracle:thin:scott/tiger@dlsun511:1721:orcl");
Connection conn = ods.getConnection();

3. You must obtain an object-signing certificate. Refer to a site that provides
information about obtaining and installing a certificate.

For information about the Java Security API, including signed applet examples, see the
following Sun Microsystems site:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136
007.html

Using Applets with Firewalls
Under standard circumstances, an applet that uses the JDBC Thin driver cannot access
the database through a firewall. In general, the purpose of a firewall is to prevent
unauthorized clients from reaching the server. In the case of applets trying to connect
to the database, the firewall prevents the opening of a TCP/IP socket to the database.

In general, firewalls are rule-based. They have a list of rules that define which clients
can connect, and which cannot. Firewalls compare the host name of the client with the
rules and, based on this comparison, either grant the client access or deny access. If the
host name lookup fails, then the firewall tries again. This time, the firewall extracts the
IP address of the client and compares it to the rules. The firewall is designed to do this
so that users can specify rules that include host names as well as IP addresses.

You can solve the firewall issue by using an Oracle Net-compliant firewall and
connection strings that comply with the firewall configuration. Oracle Net-compliant
firewalls are available from many leading vendors.

An unsigned applet can access only the same host from which it is downloaded. In
this case, the Oracle Net-compliant firewall must be installed on that host. In contrast,
a signed applet can connect to any host. In this case, the firewall on the target host
controls the access.

Connecting through a firewall requires two steps, as described in the following
sections:

■ Configuring a Firewall for Applets that use the JDBC Thin Driver

■ Writing a URL to Connect Through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver
The instructions in this section assume that you are running an Oracle Net-compliant
firewall.

Java applets do not have access to the local system. Because of the security limitations,
applets cannot access the host name or environment variables on the local system. As a
result, the JDBC Thin driver cannot access the host name on which it is running. The
firewall cannot be provided with the host name. To allow requests from JDBC Thin
clients to go through the firewall, you must do the following to the list of firewall
rules:

■ Add the IP address, and not the host name, of the host on which the JDBC applet
is running.

■ Ensure that the host name, "__jdbc__", never appears in the firewall rules. This
host name has been hard-coded as a false host name inside the driver to force an
IP address lookup. If you do enter this host name in the list of rules, then every
applet using the JDBC Thin driver will be able to go through your firewall.

JDBC in Applets

Features Specific to JDBC Thin 5-7

Writing a URL to Connect Through a Firewall
To write a URL that enables you to connect through a firewall, you must specify the
name of the firewall host and the name of the database host to which you want to
connect.

For example, if you want to connect to a database on host oraHost, listening on port
1521, with SID ORCL, and you are going though a firewall on host fireWallHost,
listening on port 1610, then use the following URL:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:" +
 "@(description=(address_list=" +
 (address=(protocol=tcp)(host=<firewall-host>)(port=1610))" +
 "(address=(protocol=tcp)(host=oraHost)(port=1521)))" +
 "(source_route=yes)" +
 "(connect_data=(SERVICE_NAME=orcl)))");
);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

The first element in the address_list represents the connection to the firewall. The
second element represents the database to which you want to connect. Note that the
order in which you specify the addresses is important.

You can also write the preceding URL in the following format:

String connString =
 "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1600)(host=fireWallHost))
 (address=(protocol=tcp)(port=1521)(host=oraHost)))
 (connect_data=(INSTANCE_NAME=orcl))
 (source_route=yes))";
OracleDataSource ods = new OracleDataSource();
ods.setURL(connString);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

When your applet uses a URL similar to the preceding URL, it will act as if it were
connected to the database on host oraHost.

Note: To connect through a firewall, you cannot specify the URL
in host:port:sid syntax. For example, a URL specified as
follows will not work:

String connString =
 "jdbc:oracle:thin:@example.us.oracle.com:1521:orcl";

OracleDataSource ods = new OracleDataSource();
ods.setURL(connString);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

JDBC in Applets

5-8 Oracle Database JDBC Developer's Guide

Packaging Applets
After you have coded your applet, you must package it and make it available to users.
To package an applet, you will need your applet class files and the JDBC driver class
files contained in the ojdbc5.jar or ojdbc6.jar files.

Follow these steps:

1. Move the JDBC driver classes file ojdbc5.jar or ojdbc6.jar to an empty
directory.

If your applet connects to a database with a non-US7ASCII and
non-WE8ISO8859P1 character set and uses Oracle object types, then also move the
orai18n.jar file to the same directory.

2. Add your applet classes files to the directory and any other files that the applet
may require.

3. Zip the applet classes and driver classes together into a single ZIP or Java Archive
(JAR) file. The single ZIP file should contain the following:

■ Class files from the ojdbc5.jar or ojdbc6.jar files and required class files
from the orai18n.jar files, if the applet requires Globalization Support

■ Your applet classes

4. Ensure that the ZIP or JAR file is not compressed.

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet ARCHIVE=JdbcApplet.zip
 CODEBASE=Applet_Samples
</APPLET>

Specifying an Applet in an HTML Page
The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have the following attributes: CODE, ARCHIVE, CODEBASE, WIDTH,
and HEIGHT. These attributes are described in the following sections:

■ CODE, HEIGHT, and WIDTH

■ CODEBASE

■ ARCHIVE

CODE, HEIGHT, and WIDTH
The HTML page that runs the applet must have an APPLET tag with an initial width
and height to specify the size of the applet display area. You use the HEIGHT and
WIDTH attributes to specify the size, measured in pixels. This size should not count any
windows or dialog boxes that the applet opens.

The APPLET tag must also specify the name of the file that contains the compiled
applet. Specify the file name with the CODE attribute. Any path specified must be
relative to the base URL of the applet. The path cannot be absolute.

Note: All the parameters shown in the preceding example are
required. In address_list, the firewall address must precede the
database server address.

JDBC in Applets

Features Specific to JDBC Thin 5-9

In the following example, JdbcApplet.class is the name of the compiled applet:

<APPLET CODE="JdbcApplet" WIDTH=500 HEIGHT=200>
</APPLET>

If you use this form of the CODE attribute, then the classes for the applet and the JDBC
Thin driver must be in the same directory as the HTML page.

CODEBASE
The CODEBASE attribute is optional. It specifies the base URL of the applet, that is, the
name of the directory that contains the code of the applet. If it is not specified, then the
URL of the document is used. This means that the classes for the applet and the JDBC
Thin driver must be in the same directory as the HTML page. For example, if the
current directory is my_Dir:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="."
</APPLET>

The attribute, CODEBASE=".", indicates that the applet resides in the current
directory, my_Dir.

Now, consider that the value of CODEBASE is set to Applet_Samples, as follows:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="Applet_Samples"
</APPLET>

This would indicate that the applet resides in the my_Dir/Applet_Samples
directory.

ARCHIVE
The ARCHIVE attribute is optional. It specifies the name of the archive file that
contains the applet classes and resources the applet needs. Oracle recommends using
an archive file, which saves many extra round-trips to the server.

The archive file will be preloaded. If you have more than one archive file in the list,
separate them with commas. In the following example, the class files are stored in the
archive file, JdbcApplet.zip:

<APPLET CODE="JdbcApplet" ARCHIVE="JdbcApplet.zip" WIDTH=500 HEIGHT=200>
</APPLET>

Note: Do not include the file name extension, .class, in the CODE
attribute.

Note: Version 3.0 browsers do not support the ARCHIVE attribute.

JDBC in Applets

5-10 Oracle Database JDBC Developer's Guide

Features Specific to JDBC OCI Driver 6-1

6
Features Specific to JDBC OCI Driver

This chapter introduces the features specific to the Java Database Connectivity (JDBC)
Oracle Call Interface (OCI) driver. It also describes the OCI Instant Client. This chapter
contains the following sections:

■ OCI Connection Pooling

■ Client Result Cache

■ Transparent Application Failover

■ OCI Native XA

■ OCI Instant Client

■ Instant Client Light (English)

OCI Connection Pooling
The OCI connection pooling feature is an Oracle-designed extension. The connection
pooling provided by the JDBC OCI driver enables applications to have multiple logical
connections, all of which are using a small set of physical connections. Each call on a
logical connection is routed on to the physical connection that is available at the given
time.

Client Result Cache
Client result cache feature enables client-side caching of SQL query result sets in client
memory. In this way, OCI applications can use client memory to take advantage of the
client result cache to improve response times of repetitive queries.

This section covers the following topics:

■ Benefits of Client Result Cache

■ Usage Guidelines in JDBC

Benefits of Client Result Cache
The benefits of the OCI client-side result set cache are the following:

See Also: Chapter 24, "OCI Connection Pooling"

See Also: Oracle Call Interface Programmer's Guide

Client Result Cache

6-2 Oracle Database JDBC Developer's Guide

■ The JDBC OCI client-side result set cache is completely transparent to OCI
applications and its cache of result set data is kept consistent with any session or
database changes that affect its result set.

■ Since the result cache is on the client-side, a cache hit causes SQL query execute
and fetch calls to be processed locally, instead of making server round trips. This
can result in huge performance savings for server resources, for example, server
CPU and server I/O.

■ The result cache on JDBC OCI client is per-process, so multiple client sessions can
simultaneously use matching cached result sets.

■ The result cache on JDBC OCI client minimizes the need for each OCI application
to have its own custom result set cache.

■ The result cache on JDBC OCI client uses OCI client memory that is cheaper than
server memory.

Usage Guidelines in JDBC
You can enable result caching in the following two ways:

■ RESULT_CACHE_MODE Parameter

■ Table Annotations

■ SQL Hints

RESULT_CACHE_MODE Parameter
You can use the RESULT_CACHE_MODE parameter to decide the result cache mode
across tables in your queries. Use this clause with the ALTER SESSION and ALTER
SYSTEM statements, or inside the server parameter file (init.ora) to determine
result caching. You can set the RESULT_CACHE_MODE parameter to control whether
the SQL query result cache is used for all queries, or only for the queries that are
annotated with the result cache hint using SQL hints or table annotations.

Table Annotations
You can use table annotations to enable result caching without making changes to the
code. The ALTER TABLE and CREATE TABLE statements enable you to annotate
tables with result cache mode. The syntax is:

CREATE|ALTER TABLE [<schema>.]<table> ... [RESULT_CACHE (MODE {FORCE|DEFAULT})]

Following example shows how to use table annotations with CREATE TABLE
statements:

CREATE TABLE foo (a NUMBER, b VARCHAR2(20)) RESULT_CACHE (MODE FORCE);

Note:

■ You must use JDBC statement caching or cache statements at the
application level when using the JDBC OCI client result cache. for
more information on JDBC statement caching, refer to "Statement
and Result Set Caching".

■ The SQL hints take precedence over the session parameter
RESULT_CACHE_MODE and table annotations. The table
annotation FORCE takes precedence over session parameter.

Client Result Cache

Features Specific to JDBC OCI Driver 6-3

Following example shows how to use table annotations with ALTER TABLE
statements:

ALTER TABLE foo RESULT_CACHE (MODE DEFAULT);

SQL Hints
You can use SQL hints to specify the queries to be cached by annotating the queries
with a /*+ result_cache */ or /*+ no_result_cache */ hint. For example, look at
the following code snippet:

String query = "select /*+ result_cache */ * from emp where empno < : 1";
 ((oracle.jdbc.OracleConnection)conn).setImplicitCachingEnabled(true);
 ((oracle.jdbc.OracleConnection)conn).setStatementCacheSize(10);
 PreparedStatement pstmt;
 ResultSet rs;

 for (int j = 0 ; j < 10 ; j++)
 {
 pstmt = conn.prepareStatement (query);
 pstmt.setInt(1,7500);
 rs = pstmt.executeQuery();
 while (rs.next())
 { // see the values }
 rs.close;
 pstmt.close() ;
 }
 }

In the preceding example, the client result cache hint /*+ result_cache */ is
annotated to the actual query, that is, select * from emp where empno < : 1.
So, the first execution of the query goes to the database and the result set is cached for
the remaining nine executions of the query. This improves the performance of your
application significantly. This is primarily useful for read-only data.

Following are some more examples of SQL hints. All the following examples assume
that the dept table is annotated for result caching by using the following command:

ALTER TABLE dept result_cache (MODE FORCE);

Examples

■ SELECT * FROM emp

 The result set will not be cached.

■ SELECT * FROM dept

The result set will be cached.

■ SELECT /*+ result_cache */ empno FROM emp

The result set will be cached.

■ SELECT /*+ no_result_cache */ deptno FROM dept

The result set will not be cached.

■ SELECT /*+ result_cache */ * FROM dept

The result set will be cached though query hint is not necessary.

Transparent Application Failover

6-4 Oracle Database JDBC Developer's Guide

■ SELECT e.ename FROM emp e, dept d WHERE e.deptno = d.deptno

The result set will not be cached because neither is a query hint available nor are
all the tables annotated as FORCE.

Transparent Application Failover
The Transparent Application Failover feature of JDBC OCI driver enables you to
automatically reconnect to a database if the database instance to which the connection
is made goes down. The new database connection, though created by a different node,
is identical to the original.

OCI Native XA
The JDBC OCI driver also provides a feature called Native XA. This feature enables to
use native APIs to send XA commands. The native APIs provide high performance
gains as compared to non-native APIs.

OCI Instant Client
This section covers the following topics:

■ Overview of Instant Client

■ Benefits of Instant Client

■ JDBC OCI Instant Client Installation Process

■ Usage of Instant Client

■ Patching Instant Client Shared Libraries

■ Regeneration of Data Shared Library and ZIP files

■ Database Connection Names for OCI Instant Client

■ Environment Variables for OCI Instant Client

Overview of Instant Client
The Instant Client feature makes it extremely easy to deploy OCI, Oracle C++ Call
Interface (OCCI), Open Database Connectivity (ODBC), and JDBC-OCI based
customer applications, by eliminating the need for an Oracle home. The storage space
requirement of a JDBC OCI application running in the Instant Client mode is
significantly reduced compared to the same application running on a full client-side
installation. The Instant Client shared libraries occupy only about one-fourth the disk
space used by a full client installation.

Note: For information about usage guidelines, Client cache
consistency, Deployment Time settings, Client cache Statistics,
Validation of client result cache, and OCI Client Result Cache and
Server Result Cache, refer to the Oracle Call Interface Programmer's
Guide.

See Also: Chapter 28, "Transparent Application Failover"

See Also: "OCI Native XA" on page 29-20

OCI Instant Client

Features Specific to JDBC OCI Driver 6-5

Table 6–1 shows the Oracle client-side files required to deploy a JDBC OCI application.
Library names of release 11.2 are used in the table. The number part of library names
will change in future releases to agree with the release.

Benefits of Instant Client
The benefits of Instant Client are the following:

■ Installation involves copying a small number of files.

■ The number of required files and the total disk storage on the Oracle client-side
are significantly reduced.

■ There is no loss of functionality or performance for applications deployed with the
Instant Client.

■ It is simple for independent software vendors to package applications.

JDBC OCI Instant Client Installation Process
The Instant Client libraries can be installed by choosing the Instant Client option from
Oracle Universal Installer. The Instant Client libraries can also be downloaded from
the Oracle Technology Network Web site. The installation process is as follows:

1. Download and install the Instant Client shared libraries and Oracle JDBC class
libraries to a directory, such as instantclient.

2. Set the library path environment variable to the directory from Step 1. For
example, on UNIX systems, set the LD_LIBRARY_PATH environment variable to
instantclient. On Microsoft Windows, set the PATH environment variable to
locate the instantclient directory.

3. Add the full path names of the JDBC class libraries to the CLASSPATH
environment variable.

After completing these steps you are ready to run the JDBC OCI application.

The JDBC OCI application operates in the Instant Client mode when the OCI and
JDBC shared libraries are accessible through the library path environment variable. In
the Instant Client mode, there is no dependency on the ORACLE_HOME and none of the

Table 6–1 OCI Instant Client Shared Libraries

Linux and UNIX
Systems

Description for Linux and UNIX
Systems Microsoft Windows Description for Microsoft Windows

libclntsh.so.11.2 Client Code Library oci.dll Forwarding functions that applications
link with

libociei.so OCI Instant Client Data Shared
Library

oraociei11.dll Data and code

libnnz11.so Security Library orannzsbb11.dll Security Library

libocijdbc11.so OCI Instant Client JDBC Library ocijdbc11.dll OCI Instant Client JDBC Library

ALL JDBC Java Archive
(JAR) files

See Also: "Check the Environment
Variables" on page 2-3

All JDBC JAR files See Also: "Check the Environment
Variables" on page 2-3

Note: To provide Native XA functionality, you must copy the JDBC
XA class library. On UNIX systems, this library, libheteroxa11.so,
is located in the ORACLE_HOME/jdbc/lib directory. On Microsoft
Windows, this library, heteroxa11.dll, is located in the ORACLE_
HOME\bin directory.

OCI Instant Client

6-6 Oracle Database JDBC Developer's Guide

other code and data files provided in ORACLE_HOME is needed by JDBC OCI, except
for the tnsnames.ora file.

Instant Client can be also installed from Oracle Universal Installer by selecting the
Instant Client option. The Instant Client files should always be installed in an empty
directory. As with the OTN installation, you must set the LD_LIBRARY_PATH
environment variable to the Instant Client directory to operate in the Instant Client
mode.

If you have done a complete client installation by choosing the Admin option, then the
Instant Client shared libraries are also installed. The location of the Instant Client
shared libraries and JDBC class libraries in a full client installation is:

On Linux or UNIX systems:

■ libociei.so library is in $ORACLE_HOME/instantclient

■ libclnstsh.so.11.2, libocijdbc11.so, and libnnz11.so are in
$ORACLE_HOME/lib

■ The JDBC class libraries are in $ORACLE_HOME/jdbc/lib

On Microsoft Windows:

■ oraociei11.dll library is in ORACLE_HOME\instantclient

■ oci.dll, ocijdbc11.dll, and orannzsbb11.dll are in ORACLE_HOME\bin

■ The JDBC class libraries are in ORACLE_HOME\jdbc\lib

By copying these files to a different directory, setting the library path to locate this
directory, and adding the path names of the JDBC class libraries to the CLASSPATH
environment variable, you can enable running the JDBC OCI application in the Instant
Client mode.

OCI Instant Client

Features Specific to JDBC OCI Driver 6-7

Usage of Instant Client
Instant Client is a deployment feature and should be used for running production
applications. For development, a full installation is necessary to access demonstration
programs and so on. In general, all JDBC OCI functionality is available to an
application being run in the Instant Client mode, except that the Instant Client mode is
for client-side operation only. Therefore, server-side external procedures cannot
operate in the Instant Client mode.

Patching Instant Client Shared Libraries
Because Instant Client is a deployment feature, the emphasis has been on reducing the
number and size of files required to run a JDBC OCI application. Therefore, all files
needed to patch Instant Client shared libraries are not available in an Instant Client
deployment. An ORACLE_HOME based full client installation is needed to patch the
Instant Client shared libraries. The opatch utility will take care of patching the
Instant Client shared libraries.

Note:

■ To provide Native XA functionality, you must copy the JDBC XA
class library. On UNIX, this library, libheteroxa11.so, is
located in ORACLE_HOME/jdbc/lib. On Windows, this library,
heteroxa11.dll, is located in ORACLE_HOME\bin.

■ All the libraries must be copied from the same ORACLE_HOME and
must be placed in the same directory.

■ On hybrid platforms, such as Sparc64, if the JDBC OCI driver
needs to be operated in the Instant Client mode, then you must
copy the libociei.so library from the ORACLE_
HOME/instantclient32 directory. You must copy all other
Sparc64 libraries needed for the JDBC OCI Instant Client from the
ORACLE_HOME/lib32 directory.

■ Only one set of Oracle libraries should be specified in the library
path environment variable. That is, if you have multiple
directories containing Instant Client libraries, then only one such
directory should be specified in the library path environment
variable.

■ If you have an Oracle home on your computer, then you should
not have the ORACLE_HOME/lib and Instant Client directories in
the library path environment variable simultaneously, regardless
of the order in which they appear in the variable. That is, only one
of ORACLE_HOME/lib directory (for non-Instant Client
operation) or Instant Client directory (for Instant Client operation)
should be specified in the library path environment variable.

■ Oracle recommends that you download Instant Client from Oracle
Technology Network (OTN)

http://www.oracle.com/technology/tech/oci/instant
client/instantclient.html

Note: On Microsoft Windows, you cannot patch the shared libraries.

OCI Instant Client

6-8 Oracle Database JDBC Developer's Guide

After applying the patch in an ORACLE_HOME environment, copy the files listed in
Table 6–1, " OCI Instant Client Shared Libraries" to the instant client directory as
described in "JDBC OCI Instant Client Installation Process".

Instead of copying individual files, you can generate Instant Client ZIP files for OCI,
OCCI, JDBC, and SQL*Plus as described in "Regeneration of Data Shared Library and
ZIP files". Then, you can copy the ZIP files to the target computer and unzip them as
described in "JDBC OCI Instant Client Installation Process".

The opatch utility stores the patching information of the ORACLE_HOME installation
in libclnstsh.so.11.2. This information can be retrieved by the following
command:

genezi -v

Note that if the computer from where Instant Client is deployed does not have the
genezi utility, then it must be copied from the ORACLE_HOME/bin directory on the
computer that has the ORACLE_HOME installation.

Regeneration of Data Shared Library and ZIP files
The OCI Instant Client Data Shared Library, libociei.so, can be regenerated by
performing the following steps in an Administrator Installation of ORACLE_HOME:

mkdir -p $ORACLE_HOME/rdbms/install/instantclient/light
cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk ilibociei

A new version of the libociei.so Data Shared Library based on the current files in
the ORACLE_HOME is then placed in the ORACLE_
HOME/rdbms/install/instantclient directory.

Note that the location of the regenerated Data Shared Library, libociei.so, is
different from that of the original Data Shared Library, libociei.so, which is
located in the ORACLE_HOME/instantclient directory.

The preceding steps also generate Instant Client ZIP files for OCI, OCCI, JDBC, and
SQL*Plus.

Regeneration of data shared library and ZIP files is not available on Microsoft
Windows platforms.

Database Connection Names for OCI Instant Client
All Oracle Net naming methods that do not require the ORACLE_HOME or TNS_ADMIN
environment variables to locate configuration files, such as tnsnames.ora or
sqlnet.ora, work in the Instant Client mode. In particular, the connection string can
be specified in the following formats:

■ A Thin-style connection string of the form:

 host:port:service_name

For example:

url="jdbc:oracle:oci:@//example.com:5521:bjava21"

■ A SQL connection URL string of the form:

//host:[port][/service name]

For example:

OCI Instant Client

Features Specific to JDBC OCI Driver 6-9

url="jdbc:oracle:oci:@//example.com:5521/bjava21

■ As an Oracle Net keyword-value pair. For example:

url="jdbc:oracle:oci:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=dlsun242) (PORT=5521))
 (CONNECT_DATA=(SERVICE_NAME=bjava21)))"

Naming methods that require TNS_ADMIN to locate configuration files continue to
work if the TNS_ADMIN environment variable is set.

If the TNS_ADMIN environment variable is not set and TNSNAMES entries, such as
inst1, are used, then the ORACLE_HOME environment variable must be set and the
configuration files are expected to be in the $ORACLE_HOME/network/admin
directory.

The empty connection string is not supported. However, an alternate way to use the
empty connection string is to set the TWO_TASK environment variable on UNIX
systems, or the LOCAL variable on Microsoft Windows, to either a tnsnames.ora
entry or an Oracle Net keyword-value pair. If TWO_TASK or LOCAL is set to a
tnsnames.ora entry, then the tnsnames.ora file must be loaded by the TNS_
ADMIN or ORACLE_HOME setting.

Example
Consider that the listener.ora file on the database server contains the following
information:

LISTENER = (ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573)))

SID_LIST_LISTENER = (SID_LIST=
 (SID_DESC=(SID_NAME=rdbms3)
 (GLOBAL_DBNAME=rdbms3.server6.us.alchemy.com)
 (ORACLE_HOME=/home/dba/rdbms3/oracle)))

You can connect to this server in one of the following ways:

url = "jdbc:oracle:oci:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=server6)(PORT=1573))
 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

or:

url = "jdbc:oracle:oci:@//server6:1573/rdbms3.server6.us.alchemy.com"

Alternatively, you can set the TWO_TASK environment variable to any of the
connection strings and connect to the database server without specifying the
connection string along with the sqlplus command. For example, set the TWO_TASK
environment in one of the following ways:

setenv TWO_TASK "(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))

See Also: Oracle Database Net Services Administrator's Guide for more
information about connection formats

Note: In this case, the ORACLE_HOME environment variable is used
only for locating Oracle Net configuration files. No other component
of Client Code Library uses the value of the ORACLE_HOME
environment variable.

OCI Instant Client

6-10 Oracle Database JDBC Developer's Guide

 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

or:

setenv TWO_TASK //server6:1573/rdbms3.server6.us.alchemy.com

Now, you can connect to the database server using the following URL:

url = "jdbc:oracle:oci:@"

The connection string can also be stored in the tnsnames.ora file. For example,
consider that the tnsnames.ora file contains the following:

conn_str = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))
 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))

If this tnsnames.ora file is located in the /home/webuser/instantclient
directory, then you can set the TNS_ADMIN environment variable (or LOCAL on
Microsoft Windows) as follows:

setenv TNS_ADMIN /home/webuser/instantclient

Now, you can connect as follows:

url = "jdbc:oracle:oci:@conn_str"

If this tnsnames.ora file is located in the
/network/server6/home/dba/oracle/network/admin directory in the Oracle
home, then instead of using TNS_ADMIN to locate the tnsnames.ora file, you can set
the ORACLE_HOME environment variable as follows:

setenv ORACLE_HOME /network/server6/home/dba/oracle

Now, you can connect with either of the conn_str connection strings, as specified
previously.

If tnsnames.ora can be located by TNS_ADMIN or ORACLE_HOME, then TWO_TASK
can be set to:

setenv TWO_TASK conn_str

You can then connect with the following URL:

url = "jdbc:oracle:oci:@"

Environment Variables for OCI Instant Client
The ORACLE_HOME environment variable no longer determines the location of the
NLS, CORE, and error message files. An OCI-only application does not require the
ORACLE_HOME environment variable to be set. However, if the variable is set, then it
does not have an impact on the operation of the OCI driver. OCI driver always obtains
its data from the Data Shared Library. If the Data Shared Library is not available, only
then the ORACLE_HOME environment variable is used and a full client installation is

Note: The TNS_ADMIN environment variable specifies the directory
where the tnsnames.ora file is located. However, TNS_ADMIN does
not specify the full path of the tnsnames.ora file, instead it specifies
the directory.

Instant Client Light (English)

Features Specific to JDBC OCI Driver 6-11

assumed. Even though the ORACLE_HOME environment variable is not required to be
set, if it is set, then it must be set to a valid operating system path name that identifies
a directory.

Environment variables ORA_NLS10 and ORA_NLSPROFILES33 are ignored in the
Instant Client mode.

In the Instant Client mode, if the ORA_TZFILE variable is not set, then the larger, the
default, timezlrg_n.dat file from the Data Shared Library is used. If the smaller
timezone_n.dat file is to be used from the Data Shared Library, then set the ORA_
TZFILE environment variable to the name of the file without any absolute or relative
path names. That is:

On UNIX systems:

setenv ORA_TZFILE timezone_n.dat

On Microsoft Windows:

set ORA_TZFILE timezone_n.dat

In the examples above, n is the time zone data file version number.

If the OCI driver is not operating in the Instant Client mode because of nonavailability
of the Data Shared Library, then the ORA_TZFILE variable, if set, names a complete
path name, as it does in previous Oracle Database releases.

If TNSNAMES entries are used, then, as mentioned earlier, the TNS_ADMIN directory
must contain the TNSNAMES configuration files, and if TNS_ADMIN is not set, then the
ORACLE_HOME/network/admin directory must contain Oracle Net Services
configuration files.

Instant Client Light (English)
The lightweight version of Instant Client is called Instant Client Light (English).
Instant Client Light is the short name. Instant Client Light is a significantly smaller
version of Instant Client. This reduces the disk space requirements of the client
installation by about 63 MB. This is achieved by the lightweight Data Shared Library,
libociicus.so on UNIX systems, which is 4 MB in size and a subset of the data
shared library, libociei.so, which is 67 MB in size.

The lightweight data shared library supports only a few character sets and error
messages that are only in English. Therefore, the name Instant Client Light (English).
Instant Client Light is designed for applications that require English-only error
messages and use either US7ASCII, WE8DEC, or one of the Unicode character sets.

Table 6–2 lists the names of the data shared libraries for Instant Client and Instant
Client Light (English) on different platforms. The table also specifies the size of each
data shared library in parentheses following the library file name.

This section covers the following topics:

Table 6–2 Data Shared Library for Instant Client and Instant Client Light (English)

Platform Instant Client Instant Client Light (English)

Sun Solaris libociei.so (67 MB) libociicus.so (4 MB)

Linux libociei.so (67 MB) libociicus.so (4 MB)

Microsoft Windows oraociei11.dll (85 MB) oraociicus11.dll (15 MB)

Instant Client Light (English)

6-12 Oracle Database JDBC Developer's Guide

■ Globalization Settings

■ Operation

■ Installation

Globalization Settings
The NLS_LANG setting determines the language, territory, and character set as
language_territory.characterset. In Instant Client Light, language can only
be American, territory can be any that is supported, and characterset can be
any one of the following:

■ Single-byte

– US7ASCII

– WE8DEC

– WE8MSWIN1252

– WE8ISO8859P1

■ Unicode

– UTF8

– AL16UTF16

– AL32UTF8

Specifying character set or national character set other than those listed as the client or
server character set or setting the language in NLS_LANG on the client will throw one
of the following errors:

■ ORA-12734

■ ORA-12735

■ ORA-12736

■ ORA-12737

With Instant Client Light, the error messages obtained are only in English. Therefore,
the valid values for the NLS_LANG setting are of the type:

American_territory.characterset

where, territory can be any valid and supported territory and characterset can
be any one the previously listed character sets.

Instant Client Light can operate with the OCI environment handles created in the
OCI_UTF16 mode.

Operation
To operate in the Instant Client Light mode, an application must set the LD_
LIBARARY_PATH environment variable in UNIX systems or the PATH environment
variable in Microsoft Windows to a location containing the client and data shared
libraries. OCI applications by default look for the OCI Data Shared Library,
libociei.so in the LD_LIBRARY_PATH environment variable in UNIX systems or
the oraociei11.dll Data Shared Library in the PATH environment variable in

See Also: Oracle Database Globalization Support Guide for more
information about NLS settings.

Instant Client Light (English)

Features Specific to JDBC OCI Driver 6-13

Microsoft Windows, to determine if the application should operate in the Instant
Client mode. In case this library is not found, then OCI tries to load the Instant Client
Light Data Shared Library, libociicus.so in UNIX systems or
libociicus11.dll in Microsoft Windows. If this library is found, then the
application operates in the Instant Client Light mode. Otherwise, a non-Instant Client
mode is assumed.

Installation
Instant Client Light can be installed in one of the following ways:

■ From OTN

You can download the required file from

http://www.oracle.com/technology/tech/oci/instantclient/insta
ntclient.html

For Instant Client Light, instead of downloading and expanding the Basic package,
download and unzip the Basic Light package. The instantclient_11_2
directory in which the lightweight libraries are unzipped should be empty before
unzipping the files.

■ From Client Admin Install

Instead of copying libociei.so or oraociei11.dll from the ORACLE_
HOME/instantclient directory, copy libociicus.so or oraociic10.dll
from the ORACLE_HOME/instantclient/light directory. That is, the Instant
Client directory on the LD_LIBRARY_PATH environment variable, in UNIX
systems, should contain the Instant Client Light Data Shared Library,
libociicus.so, instead of the larger OCI Instant Client Data Shared Library,
libociei.so. In Microsoft Windows, the PATH environment variable should
contain oraociicus11.dll instead of oraociei11.dll.

■ From Oracle Universal Installer

If the Instant Client option is selected from Oracle Universal Installer, then
libociei.so (or oraociei11.dll on Microsoft Windows) is installed in the
base directory of the installation which is going to be placed on the LD_LIBRARY_
PATH environment variable. This is so that Instant Client Light is not enabled by
default. The Instant Client Light Data Shared Library, libociicus.so (or
oraociicus11.dll on Microsoft Windows), is installed in the light
subdirectory of the base directory. Therefore, to operate in the Instant Client Light
mode, the OCI Data Shared Library, libociei.so (or oraociei11.dll on
Windows) must be deleted or renamed and the Instant Client Light Data Shared
Library must be copied from the light subdirectory to the base directory of the
installation.

For example, if Oracle Universal Installer has installed the Instant Client in my_
oraic_11_1 directory on the LD_LIBRARY_PATH environment variable, then
one would need to do the following to operate in the Instant Client Light mode:

cd my_oraic_11_1
rm libociei.so
mv light/libociicus.so .

Instant Client Light (English)

6-14 Oracle Database JDBC Developer's Guide

Note: All the Instant Client files should always be copied or installed
in an empty directory. This is to ensure that no incompatible binaries
exist in the installation.

Server-Side Internal Driver 7-1

7
Server-Side Internal Driver

This chapter covers the following topics:

■ Overview of the Server-Side Internal Driver

■ Connecting to the Database

■ Session and Transaction Context

■ Testing JDBC on the Server

■ Loading an Application into the Server

Overview of the Server-Side Internal Driver
The server-side internal driver is intrinsically tied to Oracle Database and to the Oracle
Java Virtual Machine (Oracle JVM). The driver runs as part of the same process as the
Database. It also runs within the default session, the same session in which the Oracle
JVM was started. Each Oracle JVM session has a single implicit native connection to
the Database session in which it exists. This connection is conceptual and is not a Java
object. It is an inherent aspect of the session and cannot be opened or closed from
within the JVM.

The server-side internal driver is optimized to run within the database server and
provide direct access to SQL data and PL/SQL subprograms on the local database.
The entire JVM operates in the same address space as the database and the SQL
engine. Access to the SQL engine is a function call. This enhances the performance of
your Java Database Connectivity (JDBC) applications and is much faster than running
a remote Oracle Net call to access the SQL engine.

The server-side internal driver supports the same features, application programming
interfaces (APIs), and Oracle extensions as the client-side drivers. This makes
application partitioning very straightforward. For example, if you have a Java
application that is data-intensive, then you can easily move it into the database server
for better performance, without having to modify the application-specific calls.

Connecting to the Database
As described in the preceding section, the server-side internal driver runs within a
default session. Therefore, you are already connected. There are two methods to access
the default connection:

■ Use the OracleDataSource.getConnection method, with any of the
following forms as the URL string:

– jdbc:oracle:kprb

Connecting to the Database

7-2 Oracle Database JDBC Developer's Guide

– jdbc:default:connection

– jdbc:oracle:kprb:

– jdbc:default:connection:

■ Use the Oracle-specific defaultConnection method of the OracleDriver
class.

Using defaultConnection is generally recommended.

Connecting with the OracleDriver Class defaultConnection Method
The defaultConnection method of the oracle.jdbc.OracleDriver class is an
Oracle extension and always returns the same connection object. Even if you call this
method multiple times, assigning the resulting connection object to different variable
names, then only a single connection object is reused.

You need not include a connection string in the defaultConnection call. For
example:

import java.sql.*;
import oracle.jdbc.*;

class JDBCConnection
{
 public static Connection connect() throws SQLException
 {
 Connection conn = null;
 try {
 // connect with the server-side internal driver
 conn = ora.defaultConnection();
 }

 } catch (SQLException e) {...}
 return conn;
 }
}

Note that there is no conn.close call in the example. When JDBC code is running
inside the target server, the connection is an implicit data channel, not an explicit
connection instance as from a client. It should not be closed.

OracleDriver has a static variable to store a default connection instance. The method
OracleDriver.defaultConnection returns this default connection instance if the
connection exists and is not closed. Otherwise, it creates a new, open instance and
stores it in the static variable and returns it to the caller.

Typically, you should use the OracleDriver.defaultConnection method. This
method is faster and uses less resources. Java stored procedures should be carefully
written. For example, to close statements before the end of each call.

Typically, you should not close the default connection instance because it is a single
instance that can be stored in multiple places, and if you close the instance, each
would become unusable. If it is closed, a later call to the
OracleDriver.defaultConnection method gets a new, open instance.

Note: You are no longer required to register the OracleDriver
class for connecting with the server-side internal driver.

Session and Transaction Context

Server-Side Internal Driver 7-3

Connecting with the OracleDataSource.getConnection Method
To connect to the internal server connection from code that is running within the
target server, you can use the OracleDataSource.getConnection method with
either of the following URLs:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:kprb");
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:default:connection");
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:kprb:");
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:default:connection:");
Connection conn = ods.getConnection();

Any user name or password you include in the URL is ignored in connecting to the
default server connection.

The OracleDataSource.getConnection method returns a new Java Connection
object every time you call it. The fact that OracleDataSource.getConnection
returns a new connection object every time you call it is significant if you are working
with object maps or type maps. A type map is associated with a specific Connection
object and with any state that is part of the object. If you want to use multiple type
maps as part of your program, then you can call getConnection to create a new
Connection object for each type map.

Session and Transaction Context
The server-side driver operates within a default session and default transaction
context. The default session is the session in which the JVM was started. In effect, you
are already connected to the database on the server. This is different from the
client-side where there is no default session. You must explicitly connect to the
database.

Auto-commit mode is disabled in the server. You must manage transaction COMMIT
and ROLLBACK operations explicitly by using the appropriate methods on the
connection object:

conn.commit();

or:

Note: Although the OracleDataSource.getConnection method
returns a new object every time you call it, it does not create a new
database connection every time. They all utilize the same implicit
native connection and share the same session state, in particular, the
local transaction.

Testing JDBC on the Server

7-4 Oracle Database JDBC Developer's Guide

conn.rollback();

Testing JDBC on the Server
Almost any JDBC program that can run on a client can also run on the server. All the
programs in the samples directory can be run on the server, with only minor
modifications. Usually, these modifications concern only the connection statement.

Consider the following code fragment which obtains a connection to a database:

ods.setUrl(
"jdbc:oracle:oci:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias)
 (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))");
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

We can modify this code fragment for use in the server-side internal driver. In the
server-side internal driver, no user, password, or database information is necessary.
For the connection statement, you use:

ods.setUrl(
"jdbc:oracle:kprb:@");
Connection conn = ods.getConnection();

However, the most convenient way to get a connection is to call the
OracleDriver.defaultConnection method, as follows:

Connection conn = OracleDriver.defaultConnection();

Loading an Application into the Server
When loading an application into the server, you can load .class files that you have
already compiled on the client or you can load .java source files and have them
automatically compiled on the server.

Using the Loadjava Utility
You can use the loadjava utility to load your files. You can either specify source file
names on the command line or put the files into a Java Archive (JAR) file and specify
the JAR file name on the command line.

The loadjava script, which runs the actual utility, is in the bin directory in your
Oracle home. This directory should already be in your path once Oracle has been
installed.

Note: As a best practice, it is recommended not to commit or
rollback a transaction inside the server.

Note: The loadjava utility supports compressed files.

Loading an Application into the Server

Server-Side Internal Driver 7-5

Loading Class Files into the Server
Consider a case where you have the following three class files in your application:
Foo1.class, Foo2.class, and Foo3.class. Each class is written into its own class
schema object in the server.

You can load the class files using the default JDBC Oracle Call Interface (OCI) driver in
the following ways:

■ Specifying the individual class file names, as follows:

loadjava -user scott Foo1.class Foo2.class Foo3.class
Password: password

■ Specifying the class file names using a wildcard, as follows:

loadjava -user scott Foo*.class
Password: password

■ Specifying a JAR file that contains the class files, as follows:

loadjava -user scott Foo.jar
Password: password

You can load the files using the JDBC Thin driver, as follows:

loadjava -thin -user scott@localhost:1521:ORCL Foo.jar
Password: password

Loading Source Files into the Server
If you enable the loadjava -resolve option when loading a .java source file,
then the server-side compiler will compile your application as it is loaded, resulting in
both a source schema object for the original source code and one or more class schema
objects for the compiled output.

If you do not specify -resolve, then the source is loaded into a source schema object
without any compilation. In this case, however, the source is implicitly compiled the
first time an attempt is made to use a class defined in the source.

For example, run loadjava as follows to load and compile Foo.java, using the
default JDBC OCI driver:

loadjava -user scott -resolve Foo.java
Password: password

Or, use the following command to load using the JDBC Thin driver:

loadjava -thin -user scott@localhost:1521:ORCL -resolve Foo.java
Password: password

Either of these will result in appropriate class schema objects being created in addition
to the source schema object.

Note: Because the server-side embedded JVM uses Java
Development Kit (JDK) 1.5, it is advisable to compile classes under
JDK 1.5, if they will be loaded into the server. This will catch
incompatibilities during compilation, instead of at run time.

Loading an Application into the Server

7-6 Oracle Database JDBC Developer's Guide

Using the JVM Command-Line
You can also use the JVM command-line option to load your files. The command-line
interface to Oracle JVM is analogous to using the JDK or JRE shell commands. You
can:

■ Use the standard -classpath syntax to indicate where to find the classes to load

■ Set the system properties by using the standard -D syntax

The interface is a PL/SQL function that takes a string (VARCHAR2) argument, parses it
as a command-line input and if it is properly formed, runs the indicated Java method
in Oracle JVM. To do this, PL/SQL package DBMS_JAVA provides the following
functions:

■ runjava

You can use the runjava function in the following way:

FUNCTION runjava(cmdline VARCHAR2) RETURN VARCHAR2;

■ runjava_in_current_session

You can use the runjava_in_current_session function in the following way:

FUNCTION runjava_in_current_session(cmdline VARCHAR2) RETURN VARCHAR2;

Note: Oracle generally recommends compiling source on the
client, whenever possible, and loading the .class files instead of
the source files into the server.

See Also: Oracle Database Java Developer's Guide

Note: Starting with Oracle 11g release 1 (11.1), there is a just-in-time
(JIT) compiler for Oracle JVM environment. A JIT compiler for Oracle
JVM enables much faster execution because the JIT compiler uses
advanced techniques as compared to the old Native compiler and
compiles dynamically generated code. Unlike the old Native compiler,
the JIT compiler does not require a C compiler. It is enabled without
the support of any plug-ins.

For more information, refer to Oracle Database Java Developer's Guide.

Part III
Connection and Security

This part consists of chapters that discuss the use of data sources and URLs to connect
to the database. It also includes chapters that discuss the security features supported
by the Oracle Java Database Connectivity (JDBC) Oracle Call Interface (OCI) and Thin
drivers, Secure Sockets Layer (SSL) support in JDBC Thin driver, and middle-tier
authentication through proxy connections.

Part III contains the following chapters:

■ Chapter 8, "Data Sources and URLs"

■ Chapter 9, "JDBC Client-Side Security Features"

■ Chapter 10, "Proxy Authentication"

Data Sources and URLs 8-1

8
Data Sources and URLs

This chapter discusses connecting applications to databases using Java Database
Connectivity (JDBC) data sources, as well as the URLs that describe databases. This
chapter contains the following sections:

■ Data Sources

■ Database URLs and Database Specifiers

Data Sources
Data sources are standard, general-use objects for specifying databases or other
resources to use. The JDBC 2.0 extension application programming interface (API)
introduced the concept of data sources. For convenience and portability, data sources
can be bound to Java Naming and Directory Interface (JNDI) entities, so that you can
access databases by logical names.

The data source facility provides a complete replacement for the previous JDBC
DriverManager facility. You can use both facilities in the same application, but it is
recommended that you transition your application to data sources.

This section covers the following topics:

■ Overview of Oracle Data Source Support for JNDI

■ Features and Properties of Data Sources

■ Creating a Data Source Instance and Connecting

■ Creating a Data Source Instance, Registering with JNDI, and Connecting

■ Supported Connection Properties

■ Using Roles for SYS Login

■ Configuring Database Remote Login

■ Bequeath Connection and SYS Logon

■ Properties for Oracle Performance Extensions

Overview of Oracle Data Source Support for JNDI
The JNDI standard provides a way for applications to find and access remote services
and resources. These services can be any enterprise services. However, for a JDBC
application, these services would include database connections and services.

Data Sources

8-2 Oracle Database JDBC Developer's Guide

JNDI allows an application to use logical names in accessing these services, removing
vendor-specific syntax from application code. JNDI has the functionality to associate a
logical name with a particular source for a desired service.

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required to
use this functionality, but accessing databases through JNDI logical names makes the
code more portable.

Features and Properties of Data Sources
By using the data source functionality with JNDI, you do not need to register the
vendor-specific JDBC driver class name and you can use logical names for URLs and
other properties. This ensures that the code for opening database connections is
portable to other environments.

The DataSource Interface and Oracle Implementation
A JDBC data source is an instance of a class that implements the standard
javax.sql.DataSource interface:

public interface DataSource
{
 Connection getConnection() throws SQLException;
 Connection getConnection(String username, String password)
 throws SQLException;
 ...
}

Oracle implements this interface with the OracleDataSource class in the
oracle.jdbc.pool package. The overloaded getConnection method returns a
connection to the database.

To use other values, you can set properties using appropriate setter methods. For
alternative user names and passwords, you can also use the getConnection method
that takes these parameters as input. This would take priority over the property
settings.

Properties of DataSource
The OracleDataSource class, as with any class that implements the DataSource
interface, provides a set of properties that can be used to specify a database to connect
to. These properties follow the JavaBeans design pattern.

Note: Using JNDI functionality requires the jndi.jar file to be
in the CLASSPATH environment variable. This file is included with
the Java products on the installation CD. You must add it to the
CLASSPATH environment variable separately. You can also obtain it
from the Sun Microsystems Web site, but it is advisable to use the
version from Oracle, because it has been tested with the Oracle
drivers.

Note: The OracleDataSource class and all subclasses
implement the java.io.Serializable and
javax.naming.Referenceable interfaces.

Data Sources

Data Sources and URLs 8-3

Table 8–1 and Table 8–2 list OracleDataSource properties. The properties in
Table 8–1 are standard properties according to the Sun Microsystems specification.
The properties in Table 8–2 are Oracle extensions.

Note: Oracle does not implement the standard roleName property.

Table 8–1 Standard Data Source Properties

Name Type Description

databaseName String Name of the particular database on the server. Also
known as the SID in Oracle terminology.

dataSourceName String Name of the underlying data source class. For
connection pooling, this is an underlying pooled
connection data source class. For distributed
transactions, this is an underlying XA data source class.

description String Description of the data source.

networkProtocol String Network protocol for communicating with the server.
For Oracle, this applies only to the JDBC Oracle Call
Interface (OCI) drivers and defaults to tcp.

password String Password for the connecting user.

portNumber int Number of the port where the server listens for requests

serverName String Name of the database server

user String Name for the login

Note: For security reasons, there is no getPassword() method.

Table 8–2 Oracle Extended Data Source Properties

Name Type Description

connectionCacheName String Specifies the name of the cache. This cannot be
changed after the cache has been created.

connectionCacheProperties java.util.P
roperties

Specifies properties for implicit connection cache.

connectionCachingEnabled Boolean Specifies whether implicit connection cache is in use.

connectionProperties java.util.P
roperties

Specifies the connection properties.

driverType String Specifies Oracle JDBC driver type. It can be one of
oci, thin, or kprb.

fastConnectionFailoverEnabled Boolean Specifies whether Fast Connection Failover is in use.

implicitCachingEnabled Boolean Specifies whether the implicit statement connection
cache is enabled.

loginTimeout int Specifies the maximum time in seconds that this
data source will wait while attempting to connect to
a database.

logWriter java.io.Pri
ntWriter

Specifies the log writer for this data source.

Data Sources

8-4 Oracle Database JDBC Developer's Guide

Use the setConnectionProperties method to set the properties of the connection
and the setConnectionCacheProperties method to set the properties of the
connection cache.

For more information about the properties of the connection refer to "Supported
Connection Properties" on page 8-7.

For more information about the properties of the connection cache refer to
"Connection Cache Properties" on page 21-9.

If you are using the server-side internal driver, that is, the driverType property is set
to kprb, then any other property settings are ignored.

If you are using the JDBC Thin or OCI driver, then note the following:

maxStatements int Specifies the maximum number of statements in the
application cache.

serviceName String Specifies the database service name for this data
source.

tnsEntry String Specifies the TNS entry name. The TNS entry name
corresponds to the TNS entry specified in the
tnsnames.ora configuration file.

Enable this OracleXADataSource property when
using the Native XA feature with the OCI driver, to
access Oracle pre-8.1.6 databases and later. If the
tnsEntry property is not set when using the
Native XA feature, then a SQLException with
error code ORA-17207 is thrown

url String Specifies the URL of the database connection string.
Provided as a convenience, it can help you migrate
from an older Oracle Database. You can use this
property in place of the Oracle tnsEntry and
driverType properties and the standard
portNumber, networkProtocol, serverName,
and databaseName properties.

nativeXA Boolean Allows an OracleXADataSource using the Native
XA feature with the OCI driver, to access Oracle
pre-8.1.6 databases and later. If the nativeXA
property is enabled, be sure to set the tnsEntry
property as well. This property is only for
OracleXADatasource.

This DataSource property defaults to false.

ONSConfiguration String Specifies the ONS configuration string that is used
to remotely subscribe to FAN/ONS events.

Note:

■ This table omits properties that supported the deprecated
connection cache based on OracleConnectionCache.

■ Because Native XA performs better than Java XA, use Native
XA whenever possible.

Table 8–2 (Cont.) Oracle Extended Data Source Properties

Name Type Description

Data Sources

Data Sources and URLs 8-5

■ A URL setting can include settings for user and password, as in the following
example, in which case this takes precedence over individual user and password
property settings:

jdbc:oracle:thin:scott/tiger@localhost:1521:orcl

■ Settings for user and password are required, either directly through the URL
setting or through the getConnection call. The user and password settings in
a getConnection call take precedence over any property settings.

■ If the url property is set, then any tnsEntry, driverType, portNumber,
networkProtocol, serverName, and databaseName property settings are
ignored.

■ If the tnsEntry property is set, which presumes the url property is not set, then
any databaseName, serverName, portNumber, and networkProtocol
settings are ignored.

■ If you are using an OCI driver, which presumes the driverType property is set
to oci, and the networkProtocol is set to ipc, then any other property settings
are ignored.

Also, note that getConnectionCacheName() will return the name of the cache only
if the ConnectionCacheName property of the data source is set after caching is
enabled on the data source.

Creating a Data Source Instance and Connecting
This section shows an example of the most basic use of a data source to connect to a
database, without using JNDI functionality. Note that this requires vendor-specific,
hard-coded property settings.

Create an OracleDataSource instance, initialize its connection properties as
appropriate, and get a connection instance, as in the following example:

OracleDataSource ods = new OracleDataSource();
ods.setDriverType("oci");
ods.setServerName("dlsun999");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(1521);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

Or, optionally, override the user name and password, as follows:

Connection conn = ods.getConnection("bill", "lion");

Creating a Data Source Instance, Registering with JNDI, and Connecting
This section exhibits JNDI functionality in using data sources to connect to a database.
Vendor-specific, hard-coded property settings are required only in the portion of code
that binds a data source instance to a JNDI logical name. From that point onward, you
can create portable code by using the logical name in creating data sources from which
you will get your connection instances.

Data Sources

8-6 Oracle Database JDBC Developer's Guide

Initialize Data Source Properties
Create an OracleDataSource instance, and then initialize its properties as
appropriate, as in the following example:

OracleDataSource ods = new OracleDataSource();
ods.setDriverType("oci");
ods.setServerName("dlsun999");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(1521);
ods.setUser("scott");
ods.setPassword("tiger");

Register the Data Source
Once you have initialized the connection properties of the OracleDataSource
instance ods, as shown in the preceding example, you can register this data source
instance with JNDI, as in the following example:

Context ctx = new InitialContext();
ctx.bind("jdbc/sampledb", ods);

Calling the JNDI InitialContext() constructor creates a Java object that references
the initial JNDI naming context. System properties, which are not shown, instruct
JNDI which service provider to use.

The ctx.bind call binds the OracleDataSource instance to a logical JNDI name.
This means that anytime after the ctx.bind call, you can use the logical name
jdbc/sampledb in opening a connection to the database described by the properties
of the OracleDataSource instance ods. The logical name jdbc/sampledb is
logically bound to this database.

The JNDI namespace has a hierarchy similar to that of a file system. In this example,
the JNDI name specifies the subcontext jdbc under the root naming context and
specifies the logical name sampledb within the jdbc subcontext.

The Context interface and InitialContext class are in the standard
javax.naming package.

Open a Connection
To perform a lookup and open a connection to the database logically bound to the
JNDI name, use the logical JNDI name. Doing this requires casting the lookup result,
which is otherwise a Java Object, to OracleDataSource and then using its
getConnection method to open the connection.

Here is an example:

OracleDataSource odsconn = (OracleDataSource)ctx.lookup("jdbc/sampledb");
Connection conn = odsconn.getConnection();

Note: Creating and registering data sources is typically handled
by a JNDI administrator, not in a JDBC application.

Note: The JDBC 2.0 Specification requires that all JDBC data
sources be registered in the jdbc naming subcontext of a JNDI
namespace or in a child subcontext of the jdbc subcontext.

Data Sources

Data Sources and URLs 8-7

Supported Connection Properties
For a detailed list of connection properties that Oracle JDBC drivers support, see the
Javadoc.

Using Roles for SYS Login
To specify the role for the SYS login, use the internal_logon connection property.
To log on as SYS, set the internal_logon connection property to SYSDBA or
SYSOPER.

For a bequeath connection, we can get a connection as SYS by setting the internal_
logon property. For a remote connection, we need additional password file setting
procedures.

Configuring Database Remote Login
Before the JDBC Thin driver can connect to the database as SYSDBA, you must
configure the user, because Oracle Database security system requires a password file
for remote connections as an administrator. Perform the following:

1. Set a password file on the server-side or on the remote database, using the orapwd
password utility. You can add a password file for user sys as follows:

■ In UNIX

orapwd file=$ORACLE_HOME/dbs/orapw entries=200
Enter password: password

■ In Microsoft Windows

orapwd file=%ORACLE_HOME%\database\PWDsid_name.ora entries=200
Enter password: password

file must be the name of the password file. password is the password for the
user SYS. It can be altered using the ALTER USER statement in SQL Plus. You
should set entries to a value higher than the number of entries you expect.

The syntax for the password file name is different on Microsoft Windows and
UNIX.

2. Enable remote login as sysdba. This step grants SYSDBA and SYSOPER system
privileges to individual users and lets them connect as themselves.

Stop the database, and add the following line to initservice_name.ora, in
UNIX, or init.ora, in Microsoft Windows:

remote_login_passwordfile=exclusive

The initservice_name.ora file is located at ORACLE_HOME/dbs/ and also at
ORACLE_HOME/admin/db_name/pfile/. Ensure that you keep the two files
synchronized.

The init.ora file is located at %ORACLE_BASE%\ADMIN\db_name\pfile\.

3. Change the password for the SYS user. This is an optional step.

PASSWORD sys

See Also: Oracle Database Administrator's Guide

Data Sources

8-8 Oracle Database JDBC Developer's Guide

 Changing password for sys
New password: password
Retype new password: password

4. Verify whether SYS has the SYSDBA privilege.

SQL> select * from v$pwfile_users;
USERNAME SYSDB SYSOP
---------------------- --------- ---------
SYS TRUE TRUE

5. Restart the remote database.

Example 8–1 Using SYS Login To Make a Remote Connection

//This example works regardless of language settings of the database.
 /** case of remote connection using sys **/
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;
// create an OracleDataSource
OracleDataSource ods = new OracleDataSource();
// set connection properties
java.util.Properties prop = new java.util.Properties();
prop.put("user", "sys");
prop.put("password", "sys");
prop.put("internal_logon", "sysoper");
ods.setConnectionProperties(prop);
// set the url
// the url can use oci driver as well as:
// url = "jdbc:oracle:oci8:@inst1"; the inst1 is a remote database
String url = "jdbc:oracle:thin:@//myHost:1521/service_name";
ods.setURL(url);
// get the connection
Connection conn = ods.getConnection();
...

Bequeath Connection and SYS Logon
The following example illustrates how to use the internal_logon and SYSDBA
arguments to specify the SYS login. This example works regardless of the database's
national-language settings of the database.

/** Example of bequeath connection **/
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;

// create an OracleDataSource instance
OracleDataSource ods = new OracleDataSource();

// set neccessary properties
java.util.Properties prop = new java.util.Properties();
prop.put("user", "sys");
prop.put("password", "sys");
prop.put("internal_logon", "sysdba");
ods.setConnectionProperties(prop);

// the url for bequeath connection
String url = "jdbc:oracle:oci8:@";

Database URLs and Database Specifiers

Data Sources and URLs 8-9

ods.setURL(url);

// retrieve the connection
Connection conn = ods.getConnection();
...

Properties for Oracle Performance Extensions
Some of the connection properties are for use with Oracle performance extensions.
Setting these properties is equivalent to using corresponding methods on the
OracleConnection object, as follows:

■ Setting the defaultRowPrefetch property is equivalent to calling
setDefaultRowPrefetch.

■ Setting the remarksReporting property is equivalent to calling
setRemarksReporting.

■ Setting the defaultBatchValue property is equivalent to calling
setDefaultExecuteBatch

Example
The following example shows how to use the put method of the
java.util.Properties class, in this case, to set Oracle performance extension
parameters.

//import packages and register the driver
import java.sql.*;
import java.math.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

//specify the properties object
java.util.Properties info = new java.util.Properties();
info.put ("user", "scott");
info.put ("password", "tiger");
info.put ("defaultRowPrefetch","20");
info.put ("defaultBatchValue", "5");

//specify the datasource object
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:@//myhost:1521/orcl");
ods.setUser("scott");
ods.setPassword("tiger");
ods.setConnectionProperties(info);
...

Database URLs and Database Specifiers
Database URLs are strings. The complete URL syntax is:

jdbc:oracle:driver_type:[username/password]@database_specifier

See Also: "Reporting DatabaseMetaData TABLE_REMARKS" on
page 23-20

See Also: "Oracle Update Batching" on page 23-3

Database URLs and Database Specifiers

8-10 Oracle Database JDBC Developer's Guide

The first part of the URL specifies which JDBC driver is to be used. The supported
driver_type values are thin, oci, and kprb.

The remainder of the URL contains an optional user name and password separated by
a slash, an @, and the database specifier, which uniquely identifies the database to
which the application is connected. Some database specifiers are valid only for the
JDBC Thin driver, some only for the JDBC OCI driver, and some for both.

Internet Protocol Version 6 Support
This release of Oracle JDBC drivers supports Internet Protocol Version 6 (IPv6)
addresses in the JDBC URL and machine names that resolve to IPv6 addresses. IPv6 is
a new Network layer protocol designed by the Internet Engineering Task Force (IETF)
to replace the current version of Internet Protocol, Internet Protocol Version 4 (IPv4).
The primary benefit of IPv6 is a large address space, derived from the use of 128-bit
addresses. IPv6 also improves upon IPv4 in areas such as routing, network
autoconfiguration, security, quality of service, and so on.

If you want to use a literal IPv6 address in a URL, then you should enclose the literal
address enclosed in a left bracket ([) and a right bracket (]). For example:
[2001:0db8:7654:3210:FEDC:BA98:7654:3210]. So, a JDBC URL, using a IPv6
address will look like the following:

 jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=[2001:0db8:7654:3210:FEDC:BA98:7654:3210])(PORT=5521))
 (CONNECT_DATA=(SERVICE_NAME=sales.example.com))

Database Specifiers
Table 8–3, shows the possible database specifiers, listing which JDBC drivers support
each specifier.

Note:

■ The brackets indicate that the username/password pair is
optional.

■ kprb, the internal server-side driver, uses an implicit
connection. Database URLs for the server-side driver end after
the driver_type.

Note: All the new System classes that are required for IPv6 support
are loaded when Java is enabled during database initialization. So, if
your application does not have any IPv6 addressing, then you do not
need to change your code to use IPv6 functionality. However, if your
application has either IPv6 only or both IPv6 and IPv4 addressing,
then you should set the java.net.preferIPv6Addresses system property
in the command line. This enables the Oracle JVM to load appropriate
libraries. These libraries are loaded once and cannot be reloaded
without restarting the Java process. For more information about this
system property, refer to Oracle Database Java Developer's Guide.

Database URLs and Database Specifiers

Data Sources and URLs 8-11

Thin-style Service Name Syntax
Thin-style service names are supported only by the JDBC Thin driver. The syntax is:

@//host_name:port_number/service_name

For example:

jdbc:oracle:thin:scott/tiger@//myhost:1521/myservicename

TNSNames Alias Syntax
You can find the available TNSNAMES entries listed in the tnsnames.ora file on the
client computer from which you are connecting. On Windows, this file is located in the
ORACLE_HOME\NETWORK\ADMIN directory. On UNIX systems, you can find it in the

Note:

■ Starting Oracle Database 10g, Oracle Service IDs are not
supported.

■ Starting Oracle Database 10g, Oracle no longer supports Oracle
Names as a naming method.

Table 8–3 Supported Database Specifiers

Specifier
Supported
Drivers Example

Oracle Net
connection
descriptor

Thin, OCI Thin, using an address list:

url="jdbc:oracle:thin:@(DESCRIPTION=
 (LOAD_BALANCE=on)
(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"

OCI, using a cluster:

"jdbc:oracle:oci:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias)
 (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"

Thin-style service
name

Thin Refer to "Thin-style Service Name Syntax" for details.

"jdbc:oracle:thin:scott/tiger@//myhost:1521/myservic
ename"

LDAP syntax Thin Refer to LDAP Syntax for details.

"jdbc:oracle:thin:@ldap://ldap.example.com:7777/sale
s,cn=OracleContext,dc=com"

Bequeath
connection

OCI Empty. That is, nothing after @

"jdbc:oracle:oci:scott/tiger/@"

TNSNames alias Thin, OCI Refer to "TNSNames Alias Syntax" for details.

OracleDataSource ods = new OracleDataSource();
ods.setTNSEntryName("MyTNSAlias");

Note: The JDBC Thin driver supports only the TCP/IP protocol.

Database URLs and Database Specifiers

8-12 Oracle Database JDBC Developer's Guide

ORACLE_HOME directory or the directory indicated in your TNS_ADMIN environment
variable.

For example, if you want to connect to the database on host myhost as user scott
with password tiger that has a TNSNAMES entry of MyHostString, then write the
following:

OracleDataSource ods = new OracleDataSource();
ods.setTNSEntryName("MyTNSAlias");
ods.setUser("scott");
ods.setPassword("tiger");
ods.setDriverType("oci");
Connection conn = ods.getConnection();

The oracle.net.tns_admin system property must be set to the location of the
tnsnames.ora file so that the JDBC Thin driver can locate the tnsnames.ora file.
For example:

System.setProperty("oracle.net.tns_admin", "c:\\Temp");
String url = "jdbc:oracle:thin:@tns_entry";

LDAP Syntax
An example of database specifier using the Lightweight Directory Access Protocol
(LDAP) syntax is as follows:

"jdbc:oracle:thin:@ldap://ldap.example.com:7777/sales,cn=OracleContext,dc=com"

When using SSL, change this to:

"jdbc:oracle:thin:@ldaps://ldap.example.com:7777/sales,cn=OracleContext,dc=com"

The JDBC Thin driver supports failover of a list of LDAP servers during the service
name resolution process, without the need for a hardware load balancer. Also,
client-side load balancing is supported for connecting to LDAP servers. A list of space
separated LDAP URLs syntax is used to support failover and load balancing.

When a list of LDAP URLs is specified, both failover and load balancing are enabled
by default. The oracle.net.ldap_loadbalance connection property can be used
to disable load balancing, and the oracle.net.ldap_failover connection
property can be used to disable failover.

An example, which uses failover, but with client-side load balancing disabled, is as
follows:

Note: When using TNSNames with the JDBC Thin driver, you must
set the oracle.net.tns_admin property to the directory that
contains your tnsnames.ora file.

java -Doracle.net.tns_admin=$ORACLE_HOME/network/admin

Note: The JDBC Thin driver can use LDAP over SSL to
communicate with Oracle Internet Directory if you substitute
ldaps: for ldap: in the database specifier. The LDAP server must
be configured to use SSL. If it is not, then the connection attempt
will hang.

Database URLs and Database Specifiers

Data Sources and URLs 8-13

Properties prop = new Properties();
String url =
"jdbc:oracle:thin:@ldap://ldap1.example.com:3500/cn=salesdept,cn=OracleContext,dc=
com/salesdb " +
"ldap://ldap2.example.com:3500/cn=salesdept,cn=OracleContext,dc=com/salesdb " +
"ldap://ldap3.example.com:3500/cn=salesdept,cn=OracleContext,dc=com/salesdb";

prop.put("oracle.net.ldap_loadbalance", "OFF");
OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setConnectionProperties(prop);

The JDBC Thin driver supports LDAP nonanonymous bind. A set of JNDI
environment properties, which contains authentication information, can be specified
for a data source. If a LDAP server is configured as not allowing anonymous bind,
then authentication information must be provided to connect to the LDAP server. The
following example shows a simple clear-text password authentication:

String url =
"jdbc:oracle:thin:@ldap://ldap.example.com:7777/sales,cn=salesdept,cn=OracleContex
t,dc=com";

Properties prop = new Properties();
prop.put("java.naming.security.authentication", "simple");
prop.put("java.naming.security.principal","cn=salesdept,cn=OracleContext,dc=com");
prop.put("java.naming.security.credentials", "mysecret");

OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setConnectionProperties(prop);

Since JDBC passes down the three properties to JNDI, the authentication mechanism
chosen by client is consistent with how these properties are interpreted by JNDI. For
example, if the client specifies authentication information without explicitly specifying
the java.naming.security.authentication property, then the default
authentication mechanism is "simple". Please refer to relevant JDNI documentation for
details.

Database URLs and Database Specifiers

8-14 Oracle Database JDBC Developer's Guide

JDBC Client-Side Security Features 9-1

9
JDBC Client-Side Security Features

This chapter discusses support in the Oracle Java Database Connectivity (JDBC) Oracle
Call Interface (OCI) and JDBC Thin drivers for login authentication, data encryption,
and data integrity, particularly, with respect to features of the Oracle Advanced
Security option.

Oracle Advanced Security, previously known as the Advanced Networking Option
(ANO) or Advanced Security Option (ASO), provides industry standards-based data
encryption, data integrity, third-party authentication, single sign-on, and access
authorization. In 11g release 2 (11.2), both the JDBC OCI and thin drivers support all
the Oracle Advanced Security features. Earlier releases of the JDBC drivers did not
support some of the ASO features.

This chapter contains the following sections:

■ Support for Oracle Advanced Security

■ Support for Login Authentication

■ Support for Strong Authentication

■ Support for OS Authentication

■ Support for Data Encryption and Integrity

■ Support for SSL

■ Support for Kerberos

■ Support for RADIUS

■ Secure External Password Store

Support for Oracle Advanced Security
Oracle Advanced Security provides the following security features:

■ Data Encryption

Sensitive information communicated over enterprise networks and the Internet
can be protected by using encryption algorithms, which transform information
into a form that can be deciphered only with a decryption key. Some of the
supported encryption algorithms are RC4, DES, 3DES, and AES.

Note: This discussion is not relevant to the server-side internal
driver because all communication through server-side internal
driver is completely internal to the server.

Support for Oracle Advanced Security

9-2 Oracle Database JDBC Developer's Guide

To ensure data integrity during transmission, Oracle Advanced Security generates
a cryptographically secure message digest, using MD5 or SHA-1 hashing
algorithms, and includes it with each message sent across a network. This protects
the communicated data from attacks, such as data modification, deleted packets,
and replay attacks.

■ Strong Authentication

To ensure network security in distributed environments, it is necessary to
authenticate the user and check his credentials. Password authentication is the
most common means of authentication. Oracle Advanced Security enables strong
authentication with Oracle authentication adapters, which support various
third-party authentication services, including SSL with digital certificates. Oracle
Advanced Security supports the following industry-standard authentication
methods:

– Kerberos

– Remote Authentication Dial-In User Service (RADIUS)

– Secure Sockets Layer (SSL)

JDBC OCI Driver Support for Oracle Advanced Security
If you are using the JDBC OCI driver, which presumes you are running from a
computer with an Oracle client installation, then support for Oracle Advanced
Security and incorporated third-party features is fairly similar to the support provided
by in any Oracle client situation. Your use of Advanced Security features is
determined by related settings in the sqlnet.ora file on the client computer.

Starting from Oracle Database 11g Release 1 (11.1), the JDBC OCI driver attempts to
use external authentication if you try connecting to a database without providing a
password. The following are some examples using the JDBC OCI driver to connect to a
database without providing a password:

SSL Authentication
Example 9–1 Using SSL authentication to connect to the database.

Example 9–1 Using SSL Authentication to Connect to the Database

import java.sql.*;
import java.util.Properties;

public class test
{
 public static void main(String [] args) throws Exception
 {
 String url = "jdbc:oracle:oci:@"
 +"(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=stadh25)(PORT=1529))"
 +"(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))";
 Driver driver = new oracle.jdbc.OracleDriver();
 Properties props = new Properties();
 Connection conn = driver.connect(url, props);
 conn.close();
 }
}

Tip: Oracle Database Advanced Security Administrator's Guide

Support for Strong Authentication

JDBC Client-Side Security Features 9-3

Using Data Source
Example 9–2 uses a data source to connect to the database.

Example 9–2 Using a Data Source to Connect to the Database

import java.sql.*;
import javax.sql.*;
import java.util.Properties;
import oracle.jdbc.pool.*;

public class testpool {
 public static void main(String args) throws Exception
 { String url = "jdbc:oracle:oci:@"
+"(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=stadh25)(PORT=1529))"
 +"(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))";
 OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource();
 ocpds.setURL(url);
 PooledConnection pc = ocpds.getPooledConnection();
 Connection conn = pc.getConnection();
 }
 }

JDBC Thin Driver Support for Oracle Advanced Security
The JDBC Thin driver cannot assume the existence of an Oracle client installation or
the presence of the sqlnet.ora file. Therefore, it uses a Java approach to support
Oracle Advanced Security. Java classes that implement Oracle Advanced Security are
included in the ojdbc5.jar and ojdbc6.jar files. Security parameters for
encryption and integrity, usually set in sqlnet.ora, are set using a Java
Properties object or through system properties.

Support for Login Authentication
Basic login authentication through JDBC consists of user names and passwords, as
with any other means of logging in to an Oracle server. Specify the user name and
password through a Java properties object or directly through the getConnection
method call. This applies regardless of which client-side Oracle JDBC driver you are
using, but is irrelevant if you are using the server-side internal driver, which uses a
special direct connection and does not require a user name or password.

Starting with 11g release 1 (11.1), the Oracle JDBC Thin driver implements a
challenge-response protocol to authenticate the user.

Support for Strong Authentication
Oracle Advanced Security enables Oracle Database users to authenticate externally.
External authentication can be with RADIUS, KERBEROS, Certificate-Based
Authentication, Token Cards, and Smart Cards. This is called strong authentication.
Oracle JDBC drivers provide support for the following strong authentication methods:

■ Kerberos

■ RADIUS

■ SSL (certificate-based authentication)

Support for OS Authentication

9-4 Oracle Database JDBC Developer's Guide

Support for OS Authentication
Operating System (OS) authentication allows Oracle to pass control of user
authentication to the operating system. It allows the users to connect to the database
by authenticating their OS user name in the database. No password is associated with
the account since it is assumed that OS authentication is sufficient. In other words, the
server delegates the authentication to the client OS. You need to perform the following
steps to achieve this:

■ Use the following command to check the value of the Oracle OS_AUTHENT_
PREFIX initialization parameter:

SQL> SHOW PARAMETER os_authent_prefix
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
os_authent_prefix string ops$
SQL>

■ Add the following line in the t_init1.ora file:

REMOTE_OS_AUTHENT = TRUE

When a connection is attempted from the local database server, the OS user name is
passed to the Oracle server. If the user name is recognized, the Oracle the connection is
accepted, otherwise the connection is rejected.

Configuration Steps for Linux
The configuration steps necessary to set up OS authentication on Linux are the
following:

1. Use the following commands to create an OS user w_rose:

useradd w_rose
passwd w_rose
Changing password for w_rose
New password: password
Retype new password: password

2. Use the following command to create a database user to allow an OS authenticated
connection:

CREATE USER ops$w_rose IDENTIFIED EXTERNALLY;
GRANT CONNECT TO ops$w_rose;

3. Use the following commands to test the OS authentication connection:

su - w_rose
export ORACLE_HOME=/u01/app/oracle/product/10.1.0/db_1
export PATH=$PATH:$ORACLE_HOME/bin
export ORACLE_SID=DEV1
sqlplus /

SQL*Plus: Release 10.1.0.3.0 - Production on Wed Jun 7 08:41:15 2006

Note: Remember the OS authentication prefix. You need to create a
database user to allow an OS authenticated connection, where the user
name must be the prefix value concatenated to the OS user name.

Support for OS Authentication

JDBC Client-Side Security Features 9-5

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, Oracle Label Security, OLAP and Data Mining options

SQL>

Configuration Steps for Windows
The configuration steps necessary to set up OS authentication on Windows are the
following:

1. Create a local user, say, w_rose, using the Computer Management dialog box. For
this you have to do the following:

1. Click Start.

2. From the Start menu, select Programs, then select Administrative Tools and
then select Computer Management.

3. Expand Local Users and Groups by clicking on the Plus ("+") sign.

4. Click Users.

5. Select New User from the Action menu.

6. Enter details of the user in the New User dialog box and click Create.

2. Use the following command to create a database user to allow an OS authenticated
connection:

CREATE USER "OPS$yourdomain.com\p_floyd" IDENTIFIED EXTERNALLY;
GRANT CONNECT TO "OPS$yourdomain.com\p_floyd";

When using a Windows server, there is an additional consideration. The following
option must be set in the %ORACLE_HOME%\network\admin\sqlnet.ora file:

SQLNET.AUTHENTICATION_SERVICES= (NTS)

3. Use the following commands to test the OS authentication connection:

C:\> set ORACLE_SID=DB11G
C:\> sqlplus /
SQL*Plus: Release 11.2.0.1.0 - Production on Thu July 12 11:47:01 2007

Note: Oracle JDBC Thin drivers do not support NTS.

Note: The preceding steps are only for creating a local user. Domain
users can be created in Active Directory.

Note: When you create the database user in Windows environment,
the user name should be in the following format:

<OS_authentication_prefix_parameter>$<DOMAIN>\<OS_user_name>

Support for Data Encryption and Integrity

9-6 Oracle Database JDBC Developer's Guide

Copyright (c) 1982, 2008, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL>

JDBC Code Using OS Authentication
Now that you have set up OS authentication to connect to the database, you can use
the following JDBC code for connecting to the database:

String url = "jdbc:oracle:thin:@oracleserver.mydomain.com:5521:dbja"
Driver driver = new oracle.jdbc.OracleDriver();
DriverManager.registerDriver(driver);
Properties props = new Properties();
Connection conn = DriverManager.getConnection(url, props);

The preceding code assumes that it is executed by p_floyd on the client machine. The
JDBC drivers retrieve the OS user name from the user.name system property that is
set by the JVM. As a result, the following thin driver-specific error no longer exists:

ORA-17443=Null user or password not supported in THIN driver

Support for Data Encryption and Integrity
You can use Oracle Advanced Security data encryption and integrity features in your
Java database applications, depending on related settings in the server. When using
the JDBC OCI driver, set parameters as you would in any Oracle client situation.
When using the Thin driver, set parameters through a Java properties object.

Encryption is enabled or disabled based on a combination of the client-side
encryption-level setting and the server-side encryption-level setting. Similarly,
integrity is enabled or disabled based on a combination of the client-side
integrity-level setting and the server-side integrity-level setting.

Encryption and integrity support the same setting levels, REJECTED, ACCEPTED,
REQUESTED, and REQUIRED. Table 9–1 shows how these possible settings on the
client-side and server-side combine to either enable or disable the feature. By default,
remote OS authentication (through TCP) is disabled in the database for security
reasons.

Note: By default, the JDBC driver retrieves the OS user name from
the user.name system property, which is set by the JVM. If the JDBC
driver is unable to retrieve this system property or if you want to
override the value of this system property, then you can use the
OracleConnection.CONNECTION_PROPERTY_THIN_VSESSION_
OSUSER connection property. For more information, see Oracle
Javadoc at

http://download.oracle.com/otn/utilities_
drivers/jdbc/111060/doc/javadoc/index.html

Support for Data Encryption and Integrity

JDBC Client-Side Security Features 9-7

Table 9–1 shows, for example, that if encryption is requested by the client, but rejected
by the server, it is disabled. The same is true for integrity. As another example, if
encryption is accepted by the client and requested by the server, it is enabled. And,
again, the same is true for integrity.

This section covers the following topics:

■ JDBC OCI Driver Support for Encryption and Integrity

■ JDBC Thin Driver Support for Encryption and Integrity

■ Setting Encryption and Integrity Parameters in Java

JDBC OCI Driver Support for Encryption and Integrity
If you are using the JDBC OCI driver, which presumes an Oracle-client setting with an
Oracle client installation, then you can enable or disable data encryption or integrity
and set related parameters as you would in any Oracle client situation, through
settings in the SQLNET.ORA file on the client.

To summarize, the client parameters are shown in Table 9–2:

Table 9–1 Client/Server Negotiations for Encryption or Integrity

Client
Rejected

Client
Accepted
(default)

Client
Requested

Client
Required

Server Rejected OFF OFF OFF connection
fails

Server Accepted
(default)

OFF OFF ON ON

Server Requested OFF ON ON ON

Server Required connection
fails

ON ON ON

See Also: Oracle Database Advanced Security Administrator's Guide

Note: The term checksum still appears in integrity parameter
names, but is no longer used otherwise. For all intents and
purposes, checksum and integrity are synonymous.

Support for Data Encryption and Integrity

9-8 Oracle Database JDBC Developer's Guide

JDBC Thin Driver Support for Encryption and Integrity
The JDBC Thin driver support for data encryption and integrity parameter settings
parallels the JDBC OCI driver support discussed in the preceding section.
Corresponding parameters can be set through a Java properties object that you would
then be used when opening a database connection.

Table 9–3 lists the parameter information for the JDBC Thin driver. These parameters
are defined in the oracle.jdbc.OracleConnection interface.

Table 9–2 OCI Driver Client Parameters for Encryption and Integrity

Parameter Description Parameter Name Possible Settings

Client encryption level SQLNET.ENCRYPTION_CLIENT REJECTED
ACCEPTED
REQUESTED
REQUIRED

Client encryption selected list SQLNET.ENCRYPTION_TYPES_CLIENT RC4_40, RC4_56,
DES, DES40, AES128,
AES192, AES256,
3DES112, 3DES168

(see Note)

Client integrity level SQLNET.CRYPTO_CHECKSUM_CLIENT REJECTED
ACCEPTED
REQUESTED
REQUIRED

Client integrity selected list SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT MD5, SHA-1

Note: For the Oracle Advanced Security domestic edition only,
settings of RC4_128 and RC4_256 are also possible.

See Also: Oracle Database Advanced Security Administrator's Guide

Table 9–3 Thin Driver Client Parameters for Encryption and Integrity

Parameter Name
Parameter
Type Possible Settings

CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL String REJECTED
ACCEPTED
REQUESTED
REQUIRED

CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES String AES256, AES192, AES128, 3DES168,
3DES112, DES56C, DES40C, RC4_256,
RC4_128, RC4_40, RC4_56

CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL String REJECTED
ACCEPTED
REQUESTED
REQUIRED

CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES String MD5, SHA1

Support for Data Encryption and Integrity

JDBC Client-Side Security Features 9-9

Setting Encryption and Integrity Parameters in Java
Use a Java properties object, that is, an instance of java.util.Properties, to set
the data encryption and integrity parameters supported by the JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the
parameters in Table 9–3, and then uses the properties object in opening a connection to
the database:

...
Properties prop = new Properties();
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL,
"REQUIRED");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES,
"(DES40C)");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL,
"REQUESTED");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES, "(
MD5)");

OracleDataSource ods = new OracleDataSource();
ods.setProperties(prop);
ods.setURL("jdbc:oracle:thin:@localhost:1521:main");
Connection conn = ods.getConnection();
...

The parentheses around the values encryption type and checksum type allow for lists
of values. When multiple values are supplied, the server and the client negotiate to
determine which value is to be actually used.

Example
Example 9–3 is a complete class that sets data encryption and integrity parameters
before connecting to a database to perform a query.

Before running this example, you must turn on encryption in the sqlnet.ora file.
For example, the following lines will turn on AES256, AES192, and AES128 for the
encryption and MD5 and SHA1 for the checksum:

 SQLNET.ENCRYPTION_SERVER = ACCEPTED
 SQLNET.CRYPTO_CHECKSUM_SERVER = ACCEPTED

Note:

■ Because Oracle Advanced Security support for the Thin driver
is incorporated directly into the JDBC classes JAR file, there is
only one version, not separate domestic and export editions.
Only parameter settings that would be suitable for an export
edition are possible.

■ The letter C in DES40C and DES56C refers to Cipher Block
Chaining (CBC) mode.

Note: In the example, the string "REQUIRED" is retrieved
dynamically through functionality of the AnoServices and
Service classes. You have the option of retrieving the strings in
this manner or including them in the software code as shown in the
previous examples

Support for Data Encryption and Integrity

9-10 Oracle Database JDBC Developer's Guide

 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER= (MD5, SHA1)
 SQLNET.ENCRYPTION_TYPES_SERVER= (AES256, AES192, AES128)
 SQLNET.CRYPTO_SEED = 2z0hslkdharUJCFtkwbjOLbgwsj7vkqt3bGoUylihnvkhgkdsbdskkKGhdk

Example 9–3 Setting Data Encryption and Integrity Parameters

import java.sql.*;
import java.util.Properties;
import oracle.net.ano.AnoServices;
import oracle.jdbc.*;

public class DemoAESAndSHA1
{
 static final String USERNAME= "scott";
 static final String PASSWORD= "tiger";
 static final String URL =
"jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=WXYZ)(PORT=5561))"
 +"(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))";

 public static final void main(String[] argv)
 {
 DemoAESAndSHA1 demo = new DemoAESAndSHA1();
 try
 {
 demo.run();
 }catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }

 void run() throws SQLException
 {
 OracleDriver dr = new OracleDriver();
 Properties prop = new Properties();

 // We require the connection to be encrypted with either AES256 or AES192.
 // If the database doesn't accept such a security level, then the connection
attempt will fail.

 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_
LEVEL,AnoServices.ANO_REQUIRED);
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_
TYPES,"(" + AnoServices.ENCRYPTION_AES256
 + "," + AnoServices.ENCRYPTION_AES192 + ")");

 // We also require the use of the SHA1 algorithm for data integrity checking.

 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_
LEVEL,AnoServices.ANO_REQUIRED);
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES,
"(" + AnoServices.CHECKSUM_SHA1 + ")");
 prop.setProperty("user",DemoAESAndSHA1.USERNAME);
 prop.setProperty("password",DemoAESAndSHA1.PASSWORD);
 OracleConnection oraConn =
(OracleConnection)dr.connect(DemoAESAndSHA1.URL,prop);
 System.out.println("Connection created! Encryption algorithm is: " +
oraConn.getEncryptionAlgorithmName() + ", data
 integrity algorithm is: " + oraConn.getDataIntegrityAlgorithmName());
 oraConn.close();

Support for SSL

JDBC Client-Side Security Features 9-11

 }

}

Support for SSL
Oracle Database 11g provides support for the Secure Sockets Layer (SSL) protocol. SSL
is a widely used industry standard protocol that provides secure communication over
a network. SSL provides authentication, data encryption, and data integrity. It
provides a secure enhancement to the standard TCP/IP protocol, which is used for
Internet communication.

SSL uses digital certificates that comply with the X.509v3 standard for authentication
and a public and private key pair for encryption. SSL also uses secret key
cryptography and digital signatures to ensure privacy and integrity of data. When a
network connection over SSL is initiated, the client and server perform an SSL
handshake that includes the following steps:

■ Client and server negotiate about the cipher suites to use. This includes deciding
on the encryption algorithms to be used for data transfer.

■ Server sends its certificate to the client, and the client verifies that the certificate
was signed by a trusted certification authority (CA). This step verifies the identity
of the server.

■ If client authentication is required, the client sends its own certificate to the server,
and the server verifies that the certificate was signed by a trusted CA.

■ Client and server exchange key information using public key cryptography. Based
on this information, each generates a session key. All subsequent communications
between the client and the server is encrypted and decrypted by using this set of
session keys and the negotiated cipher suite.

SSL Terminology
The following terms are commonly used in the SSL context:

■ certificate: A certificate is a digitally signed document that binds a public key with
an entity. The certificate can be used to verify that the public key belongs to that
individual.

■ certification authority: A certification authority (CA), also known as certificate
authority, is an entity which issues digitally signed certificates for use by other
parties.

■ cipher suite: A cipher suite is a set of cryptographic algorithms and key sizes used
to encrypt data sent over an SSL-enabled network.

■ private key: A private key is a secret key, which is never transmitted over a
network. The private key is used to decrypt a message that has been encrypted
using the corresponding public key. It is also used to sign certificates. The
certificate is verified using the corresponding public key.

■ public key: A public key is an encryption key that can be made public or sent by
ordinary means such as an e-mail message. The public key is used for encrypting

Note: In Oracle Database 11g Release 1 (11.1), SSL authentication is
supported in the thin driver. So, you do not need to provide a user
name/password pair if you are using SSL authentication.

Support for SSL

9-12 Oracle Database JDBC Developer's Guide

the message sent over SSL. It is also used to verify a certificate signed by the
corresponding private key.

■ wallet: A wallet is a password-protected container that is used to store
authentication and signing credentials, including private keys, certificates, and
trusted certificates required by SSL.

Java Version of SSL
The Java Secure Socket Extension (JSSE) provides a framework and an implementation
for a Java version of the SSL and TLS protocols. JSSE provides support for data
encryption, server and client authentication, and message integrity. It abstracts the
complex security algorithms and handshaking mechanisms and simplifies application
development by providing a building block for application developers, which they can
directly integrate into their applications. JSSE is integrated into Java Development Kit
(JDK) 1.4 and later, and supports SSL version 2.0 and 3.0.

Oracle strongly recommends that you have a clear understanding of the JavaTM
Secure Socket Extension (JSSE) framework by Sun Microsystems before using SSL in
the Oracle JDBC drivers.

The JSSE standard application programming interface (API) is available in the
javax.net, javax.net.ssl, and javax.security.cert packages. These
packages provide classes for creating and configuring sockets, server sockets, SSL
sockets, and SSL server sockets. The packages also provide a class for secure HTTP
connections, a public key certificate API compatible with JDK1.1-based platforms, and
interfaces for key and trust managers.

SSL works the same way, as in any networking environment, in Oracle Database 11g.
This section covers the following:

■ Managing Certificates and Wallets

■ Keys and certificates containers

Managing Certificates and Wallets
To establish an SSL connection with a JDBC client, Thin or OCI, Oracle database server
sends its certificate, which is stored in its wallet. The client may or may not need a
certificate or wallet depending on the server configuration.

The Oracle JDBC Thin driver uses the JSSE framework to create an SSL connection. It
uses the default provider (SunJSSE) to create an SSL context. However you can
provide your own provider.

You do not need a certificate for the client, unless the SSL_CLIENT_
AUTHENTICATION parameter is set on the server.

Keys and certificates containers
Java clients can use multiple types of containers such as Oracle wallets, JKS, PKCS12,
and so on, as long as a provider is available. For Oracle wallets, OraclePKI provider
must be used because the PKCS12 support provided by SunJSSE provider does not
support all the features of PKCS12. In order to use OraclePKI provider, the following
JARs are required:

■ oraclepki.jar

■ osdt_cert.jar

■ osdt_core.jar

Support for Kerberos

JDBC Client-Side Security Features 9-13

All these JAR files should be under $ORACLE_HOME/jlib directory.

Support for Kerberos
Since Oracle Database 11g Release 1 (11.1) support for Kerberos has been introduced.
Kerberos is a network authentication protocol that provides the tools of authentication
and strong cryptography over the network. Kerberos helps you secure your
information systems across your entire enterprise by using secret-key cryptography.
The Kerberos protocol uses strong cryptography so that a client or a server can prove
its identity to its server or client across an insecure network connection. After a client
and server have used Kerberos to prove their identity, they can also encrypt all of their
communications to assure privacy and data integrity as they go about their business.

The Kerberos architecture is centered around a trusted authentication service called
the key distribution center, or KDC. Users and services in a Kerberos environment are
referred to as principals; each principal shares a secret, such as a password, with the
KDC. A principal can be a user such as scott or a database server instance.

Configuring Windows to Use Kerberos
A good Kerberos client providing klist, kinit, and other tools, can be found at
the following link:

http://web.mit.edu/kerberos/dist/index.html

This client also provides a nice GUI.

You need to make the following changes to configure Kerberos on your Windows
machine:

1. Right-click the My Computer icon on your desktop.

2. Select Properties. The System Properties dialog box is displayed.

3. Select the Advanced tab.

4. Click Environment Variables. The Environment Variables dialog box is displayed.

5. Click New to add a new user variable. The New User Variable dialog box is
displayed.

6. Enter KRB5CCNAME in the Variable name field.

7. Enter FILE:C:\Documents and Settings\<user_name>\krb5cc in the
Variable value field.

8. Click OK to close the New User Variable dialog box.

9. Click OK to close the Environment Variables dialog box.

10. Click OK to close the System Properties dialog box.

Configuring Oracle Database to Use Kerberos
Perform the following steps to configure Oracle Database to use Kerberos:

1. Use the following command to connect to the database:

SQL> connect system

Note: C:\WINDOWS\krb5.ini file has the same content as
krb5.conf file.

Support for Kerberos

9-14 Oracle Database JDBC Developer's Guide

Enter password: password

2. Use the following commands to create a user CLIENT@US.ORACLE.COM that is
identified externally:

SQL> create user "CLIENT@US.ORACLE.COM" identified externally;
SQL> grant create session to "CLIENT@US.ORACLE.COM";

3. Use the following commands to connect to the database as sysdba and dismount
it:

SQL> connect / as sysdba
SQL> shutdown immediate;

4. Add the following line to $T_WORK/t_init1.ora file:

OS_AUTHENT_PREFIX=""

5. Use the following command to restart the database:

SQL> startup pfile=t_init1.ora

6. Modify the sqlnet.ora file to include the following lines:

names.directory_path = (tnsnames)
#Kerberos
sqlnet.authentication_services = (beq,kerberos5)
sqlnet.authentication_kerberos5_service = dbji
sqlnet.kerberos5_conf = /home/Jdbc/Security/kerberos/krb5.conf
sqlnet.kerberos5_keytab = /home/Jdbc/Security/kerberos/dbji.oracleserver
sqlnet.kerberos5_conf_mit = true
sqlnet.kerberos_cc_name = /tmp/krb5cc_5088
logging (optional):
trace_level_server=16
trace_directory_server=/scratch/sqlnet/

7. Use the following commands to verify that you can connect through SQL*Plus:

> kinit client
> klist
 Ticket cache: FILE:/tmp/krb5cc_5088
 Default principal: client@US.ORACLE.COM

 Valid starting Expires Service principal
 06/22/06 07:13:29 06/22/06 17:13:29 krbtgt/US.ORACLE.COM@US.ORACLE.COM

 Kerberos 4 ticket cache: /tmp/tkt5088
 klist: You have no tickets cached
> sqlplus
'/@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oracleserver.mydomain.com)(PORT=55
29))
(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))'

Support for Kerberos

JDBC Client-Side Security Features 9-15

Code Example
This following example demonstrates the new Kerberos authentication feature that is
part of Oracle Database 11g Release 2 (11.2) JDBC thin driver. This demo covers two
scenarios:

■ In the first scenario, the OS maintains the user name and credentials. The
credentials are stored in the cache and the driver retrieves the credentials before
trying to authenticate to the server. This scenario is in the module
connectWithDefaultUser().

■ The second scenario covers the case where the application wants to control the
user credentials. This is the case of the application server where multiple web
users have their own credentials. This scenario is in the module
connectWithSpecificUser().

Example 9–4 Using Kerberos Authentication to Connect to the Database

import com.sun.security.auth.module.Krb5LoginModule;
import java.io.IOException;

import java.security.PrivilegedExceptionAction;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.HashMap;
import java.util.Properties;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.PasswordCallback;

Note: For information about using Kerberos, refer to the following
web sites

http://www.microsoft.com/windowsserver2003/technologies/s
ecurity/kerberos/default.mspx
http://redhatpartnerweb.com/docs/manuals/linux/RHL-7.3-Ma
nual/ref-guide/s1-kerberos-server.html

Note: 1.Before you run this part of the demo, use the following command to
verify that you have valid credentials:

> /usr/kerberos/bin/kinit client
where, the password is welcome.

2. Use the following command to list your tickets:

> /usr/kerberos/bin/klist

Note: To run this demo, you need to have a working setup, that is, a
Kerberos server up and running, and an Oracle database server that is
configured to use Kerberos authentication. You then need to change
the URLs used in the example to compile and run it.

Support for Kerberos

9-16 Oracle Database JDBC Developer's Guide

import javax.security.auth.callback.UnsupportedCallbackException;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.net.ano.AnoServices;
public class KerberosJdbcDemo
{
 String url ="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"+
 "(HOST=oracleserver.mydomain.com)(PORT=5561))(CONNECT_DATA=" +
 "(SERVICE_NAME=mydatabaseinstance)))";

 public static void main(String[] arv)
 {
 /* If you see the following error message [Mechanism level: Could not load
 * configuration file c:\winnt\krb5.ini (The system cannot find the path
 * specified] it's because the JVM cannot locate your kerberos config file.
 * You have to provide the location of the file. For example, on Windows,
 * the MIT Kerberos client uses the config file: C\WINDOWS\krb5.ini:
 */
 // System.setProperty("java.security.krb5.conf","C:\\WINDOWS\\krb5.ini");

System.setProperty("java.security.krb5.conf","/home/Jdbc/Security/kerberos/krb5.co
nf");

 KerberosJdbcDemo kerberosDemo = new KerberosJdbcDemo();
 try
 {
 System.out.println("Attempt to connect with the default user:");
 kerberosDemo.connectWithDefaultUser();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 try
 {
 System.out.println("Attempt to connect with a specific user:");
 kerberosDemo.connectWithSpecificUser();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 void connectWithDefaultUser() throws SQLException
 {
 OracleDriver driver = new OracleDriver();
 Properties prop = new Properties();

 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_
SERVICES,
 "("+AnoServices.AUTHENTICATION_KERBEROS5+")");
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_
KRB5_MUTUAL,
 "true");

 /* If you get the following error [Unable to obtain Princpal Name for
 * authentication] although you know that you have the right TGT in your

Support for Kerberos

JDBC Client-Side Security Features 9-17

 * credential cache, then it's probably because the JVM can't locate your
 * cache.
 *
 * Note that the default location on windows is "C:\Documents and
Settings\krb5cc_username".
 */

 // prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_
AUTHENTICATION_KRB5_CC_NAME,
 /*
 On linux:
 > which kinit
 /usr/kerberos/bin/kinit
 > ls -l /etc/krb5.conf
 lrwxrwxrwx 1 root root 47 Jun 22 06:56 /etc/krb5.conf ->
/home/Jdbc/Security/kerberos/krb5.conf

 > kinit client
 Password for client@US.ORACLE.COM:
 > klist
 Ticket cache: FILE:/tmp/krb5cc_5088
 Default principal: client@US.ORACLE.COM

 Valid starting Expires Service principal
 11/02/06 09:25:11 11/02/06 19:25:11 krbtgt/US.ORACLE.COM@US.ORACLE.COM

 Kerberos 4 ticket cache: /tmp/tkt5088
 klist: You have no tickets cached
 */
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_
KRB5_CC_NAME,
 "/tmp/krb5cc_5088");
 Connection conn = driver.connect(url,prop);
 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void connectWithSpecificUser() throws Exception
 {
 Subject specificSubject = new Subject();

 // This first part isn't really meaningful to the sake of this demo. In
 // a real world scenario, you have a valid "specificSubject" Subject that
 // represents a web user that has valid Kerberos credentials.
 Krb5LoginModule krb5Module = new Krb5LoginModule();
 HashMap sharedState = new HashMap();
 HashMap options = new HashMap();
 options.put("doNotPrompt","false");
 options.put("useTicketCache","false");
 options.put("principal","client@US.ORACLE.COM");

krb5Module.initialize(specificSubject,newKrbCallbackHandler(),sharedState,options)
;
 boolean retLogin = krb5Module.login();
 krb5Module.commit();

Support for Kerberos

9-18 Oracle Database JDBC Developer's Guide

 if(!retLogin)
 throw new Exception("Kerberos5 adaptor couldn't retrieve credentials (TGT)
from the cache");

 // to use the TGT from the cache:
 // options.put("useTicketCache","true");
 // options.put("doNotPrompt","true");
 // options.put("ticketCache","C:\\Documents and Settings\\user\\krb5cc");
 // krb5Module.initialize(specificSubject,null,sharedState,options);

 // Now we have a valid Subject with Kerberos credentials. The second scenario
 // really starts here:
 // execute driver.connect(...) on behalf of the Subject 'specificSubject':
 Connection conn =
 (Connection)Subject.doAs(specificSubject, new PrivilegedExceptionAction()
 {
 public Object run()
 {
 Connection con = null;
 Properties prop = new Properties();
 prop.setProperty(AnoServices.AUTHENTICATION_PROPERTY_SERVICES,
 "(" + AnoServices.AUTHENTICATION_KERBEROS5 + ")");
 try
 {
 OracleDriver driver = new OracleDriver();
 con = driver.connect(url, prop);

 } catch (Exception except)
 {
 except.printStackTrace();
 }
 return con;
 }
 });

 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void printUserName(Connection conn) throws SQLException
 {
 Statement stmt = null;
 try
 {
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select user from dual");
 while(rs.next())
 System.out.println("User is:"+rs.getString(1));
 rs.close();
 }
 finally
 {
 if(stmt != null)
 stmt.close();
 }
 }
}

Support for RADIUS

JDBC Client-Side Security Features 9-19

class KrbCallbackHandler implements CallbackHandler
{
 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException
 {
 for (int i = 0; i < callbacks.length; i++)
 {
 if (callbacks[i] instanceof PasswordCallback)
 {
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 System.out.println("set password to 'welcome'");
 pc.setPassword((new String("welcome")).toCharArray());
 } else
 {
 throw new UnsupportedCallbackException(callbacks[i],
 "Unrecognized Callback");
 }
 }
 }
}

Support for RADIUS
Since Oracle Database 11g Release 1 (11.1), support for Remote Authentication Dial-In
User Service (RADIUS) has been introduced. RADIUS is a client/server security
protocol that is most widely known for enabling remote authentication and access.
Oracle Advanced Security uses this standard in a client/server network environment
to enable use of any authentication method that supports the RADIUS protocol.
RADIUS can be used with a variety of authentication mechanisms, including token
cards and smart cards. This section contains the following sections:

■ Configuring Oracle Database to Use RADIUS

■ Code Example

Configuring Oracle Database to Use RADIUS
Perform the following steps to configure Oracle Database to use RADIUS:

1. Use the following command to connect to the database:

SQL> connect system
Enter password: password

2. Use the following commands to create a new user aso from within a database:

SQL> create user aso identified externally;
SQL> grant create session to aso;

3. Use the following commands to connect to the database as sysdba and dismount
it:

SQL> connect / as sysdba
SQL> shutdown immediate;

4. Add the following lines to the t_init1.ora file:

os_authent_prefix = ""

Support for RADIUS

9-20 Oracle Database JDBC Developer's Guide

5. Use the following command to restart the database:

SQL> startup pfile=?/work/t_init1.ora

6. Modify the sqlnet.ora file so that it contains only these lines:

sqlnet.authentication_services = (beq, radius)
sqlnet.radius_authentication = <RADUIUS_SERVER_HOST_NAME>
sqlnet.radius_authentication_port = 1812
sqlnet.radius_authentication_timeout = 120
sqlnet.radius_secret=/home/Jdbc/Security/radius/radius_key
logging (optional):
trace_level_server=16
trace_directory_server=/scratch/sqlnet/

7. Use the following command to verify that you can connect through SQL*Plus:

>sqlplus
'aso/1234@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oracleserver.mydomain.com)(
PORT=5529))
(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))'

Code Example
This example demonstrates the new RADIUS authentication feature that is a part of
Oracle Database 11g Release 2 (11.2) JDBC thin driver. You need to have a working
setup, that is, a RADIUS server up and running, and an Oracle database server that is
configured to use RADIUS authentication. You then need to change the URLs given in
the example to compile and run it.

Example 9–5 Using RADIUS Authentication to Connect to the Database

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.net.ano.AnoServices;
public class RadiusJdbcDemo
{
 String url ="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"+
 "(HOST=oracleserver.mydomain.com)(PORT=5561))(CONNECT_DATA=" +
 "(SERVICE_NAME=mydatabaseinstance)))";

 public static void main(String[] arv)
 {
 RadiusJdbcDemo radiusDemo = new RadiusJdbcDemo();
 try
 {
 radiusDemo.connect();
 }
 catch (Exception e)
 {

Note: Once the test is over, you need to revert the preceding changes
made to the t_init1.ora file.

Secure External Password Store

JDBC Client-Side Security Features 9-21

 e.printStackTrace();
 }
 }

 /*
 * This method attempts to logon to the database using the RADIUS
 * authentication protocol.
 *
 * It should print the following output to stdout:
 * ---
 * Authentication adaptor=RADIUS
 * User is:ASO
 * ---
 */
 void connect() throws SQLException
 {
 OracleDriver driver = new OracleDriver();
 Properties prop = new Properties();

 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_
SERVICES,
 "("+AnoServices.AUTHENTICATION_RADIUS+")");
 // The user "aso" needs to be properly setup on the radius server with
 // password "1234".
 prop.setProperty("user","aso");
 prop.setProperty("password","1234");

 Connection conn = driver.connect(url,prop);
 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void printUserName(Connection conn) throws SQLException
 {
 Statement stmt = null;
 try
 {
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select user from dual");
 while(rs.next())
 System.out.println("User is:"+rs.getString(1));
 rs.close();
 }
 finally
 {
 if(stmt != null)
 stmt.close();
 }
 }
}

Secure External Password Store
As an alternative for large-scale deployments where applications use password
credentials to connect to databases, it is possible to store such credentials in a

Secure External Password Store

9-22 Oracle Database JDBC Developer's Guide

client-side Oracle wallet. An Oracle wallet is a secure software container that is used to
store authentication and signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the
need to embed user names and passwords in application code, batch jobs, or scripts.
This reduces the risk of exposing passwords in the scripts and application code, and
simplifies maintenance because you do not need to change your code each time user
names and passwords change. In addition, if you do not have to change the
application code, then it also becomes easier to enforce password management policies
for these user accounts.

You can set the oracle.net.wallet_location connection property to specify the
wallet location. The JDBC driver can then retrieve the user name and password pair
from this wallet.

See Also: Oracle Database Advanced Security Administrator's Guide for
information about configuring your client to use secure external
password store and for information about managing credentials in it.

Proxy Authentication 10-1

10
Proxy Authentication

Oracle Java Database Connectivity (JDBC) provides proxy authentication, also called
N-tier authentication. This feature is supported through both the JDBC Oracle Call
Interface (OCI) driver and the JDBC Thin driver. This chapter contains the following
sections:

■ About Proxy Authentication

■ Types of Proxy Connections

■ Creating Proxy Connections

■ Closing a Proxy Session

■ Caching Proxy Connections

■ Limitations of Proxy Connections

About Proxy Authentication
Proxy authentication is the process of using a middletier for user authentication. You
can design a middletier server to proxy clients in a secure fashion by using the
following three forms of proxy authentication:

■ The middletier server authenticates itself with the database server and a client. In
this case, an application user or another application, authenticates itself with the
middletier server. Client identities can be maintained all the way through to the
database.

■ The client, that is, a database user, is not authenticated by the middletier server.
The client's identity and database password are passed through the middletier
server to the database server for authentication.

■ The client, that is, a global user, is authenticated by the middletier server, and
passes either a Distinguished name (DN) or a Certificate through the middle tier
for retrieving the client's user name.

Note: Oracle Database supports proxy authentication functionality
in three tiers only. It does not support it across multiple middle tiers.

Note: Operations done on behalf of a client by a middletier server
can be audited. For more information, refer to Oracle Database Security
Guide.

Types of Proxy Connections

10-2 Oracle Database JDBC Developer's Guide

In all cases, an administrator must authorize the middletier server to proxy a client,
that is, to act on behalf of the client. Suppose, the middletier server initially connects to
the database as user scott and activates a proxy connection as user jeff, and then
issues the following statement to authorize the middletier server to proxy a client:

ALTER USER jeff GRANT CONNECT THROUGH scott;

You can also:

■ Specify roles that the middle tier is permitted to activate when connecting as the
client. For example,

CREATE ROLE role1;
GRANT SELECT ON emp TO role1;
ALTER USER jeff GRANT CONNECT THROUGH scott ROLE role1;

The role clause limits the access only to those database objects that are mentioned
in the list of the roles. The list of roles can be empty.

■ Find the users who are currently authorized to connect through a middle tier by
querying the PROXY_USERS data dictionary view.

■ Disallow a proxy connection by using the REVOKE CONNECT THROUGH clause of
ALTER USER statement.

You need to use the different fields and methods present in the
oracle.jdbc.OracleConnection interface to set up the different types of proxy
connections.

Types of Proxy Connections
You can create proxy connections using any one of the following options:

■ USER NAME

This is done by supplying the user name or the password or both. The SQL
statement for specifying authentication using password is:

ALTER USER jeff GRANT CONNECT THROUGH scott AUTHENTICATED USING password;

In this case, jeff is the user name and scott is the proxy for jeff.

The password option exists for additional security. Having no authenticated
clause implies default authentication, which is using only the user name without
the password. The SQL statement for specifying default authentication is:

ALTER USER jeff GRANT CONNECT THROUGH scott

■ DISTINGUISHED NAME

This is a global name in lieu of the password of the user being proxied for. An
example of the corresponding SQL statement using a distinguished name is:

CREATE USER jeff IDENTIFIED GLOBALLY AS
'CN=jeff,OU=americas,O=oracle,L=redwoodshores,ST=ca,C=us';

See Also: "Creating Proxy Connections" on page 10-3

Note: In this chapter, a JDBC connection to a database is a user
session in the database and vice versa.

Creating Proxy Connections

Proxy Authentication 10-3

The string that follows the identified globally as clause is the
distinguished name. It is then necessary to authenticate using this distinguished
name. The corresponding SQL statement to specify authentication using
distinguished name is:

ALTER USER jeff GRANT CONNECT THROUGH scott AUTHENTICATED USING DISTINGUISHED
NAME;

■ CERTIFICATE

This is a more encrypted way of passing the credentials of the user, who is to be
proxied, to the database. The certificate contains the distinguished name encoded
in it. One way of generating the certificate is by creating a wallet and then
decoding the wallet to get the certificate. The wallet can be created using runutl
mkwallet. It is then necessary to authenticate using the generated certificate. The
SQL statement for specifying authentication using certificate is:

ALTER USER jeff GRANT CONNECT THROUGH scott AUTHENTICATED USING CERTIFICATE;

Creating Proxy Connections
A user, say jeff, has to connect to the database through another user, say scott. The
proxy user, scott, should have an active authenticated connection. A proxy session is
then created on this active connection, with the driver issuing a command to the server
to create a session for the user, jeff. The server returns the new session ID, and the
driver sends a session switch command to switch to this new session.

The JDBC OCI and Thin driver switch sessions in the same manner. The drivers
permanently switch to the new session, jeff. As a result, the proxy session, scott, is
not available until the new session, jeff, is closed.

A new proxy session is opened by using the following method from the
oracle.jdbc.OracleConnection interface:

void openProxySession(int type, java.util.Properties prop) throws
SQLExceptionOpens

Note: The use of certificates for proxy authentication will be
desupported in future Oracle Database releases.

Note:

■ All the options can be associated with roles.

■ When opening a new proxied connection, a new session is started
on the database server. Along with this session a new local
transaction is created.

Note: You can use the isProxySession method from the
oracle.jdbc.OracleConnection interface to check if the current
session associated with your connection is a proxy session. This
method returns true if the current session associated with the
connection is a proxy session.

Creating Proxy Connections

10-4 Oracle Database JDBC Developer's Guide

Where,

type is the type of the proxy session and can have the following values:

■ OracleConnection.PROXYTYPE_USER_NAME

This type is used for specifying the user name.

■ OracleConnection.PROXYTYPE_DISTINGUISHED_NAME

This type is used for specifying the distinguished name of the user.

■ OracleConnection.PROXYTYPE_CERTIFICATE

This type is used for specifying the proxy certificate.

prop is the property value of the proxy session and can have the following values:

■ PROXY_USER_NAME

This property value should be used with the type
OracleConnection.PROXYTYPE_USER_NAME. The value should be a
java.lang.String.

■ PROXY_DISTINGUISHED_NAME

This property value should be used with the type
OracleConnection.PROXYTYPE_DISTINGUISHED_NAME. The value should be
a java.lang.String.

■ PROXY_CERTIFICATE

This property value should be used with the type
OracleConnection.PROXYTYPE_CERTIFICATE. The value is a bytep[] array
that contains the certificate.

■ PROXY_ROLES

This property value can be used with the following types:

– OracleConnection.PROXYTYPE_USER_NAME

– OracleConnection.PROXYTYPE_DISTINGUISHED_NAME

– OracleConnection.PROXYTYPE_CERTIFICATE

The value should be a java.lang.String.

■ PROXY_SESSION

This property value is used with the close method to close the proxy session.

■ PROXY_USER_PASSWORD

This property value should be used with the type
OracleConnection.PROXYTYPE_USER_NAME. The value should be a
java.lang.String.

The following code snippet shows the use of the openProxySession method:

 java.util.Properties prop = new java.util.Properties();
 prop.put(OracleConnection.PROXY_USER_NAME, "jeff");
 String[] roles = {"role1", "role2"};
 prop.put(OracleConnection.PROXY_ROLES, roles);
 conn.openProxySession(OracleConnection.PROXYTYPE_USER_NAME, prop);

See Also: Closing a Proxy Session on page 10-5

Limitations of Proxy Connections

Proxy Authentication 10-5

Closing a Proxy Session
You can close the proxy session opened with the
OracleConnection.openProxySession method by passing the
OracleConnection.PROXY_SESSION parameter to the
OracleConnection.close method in the following way:

OracleConnection.close(OracleConnection.PROXY_SESSION);

This is similar to closing a proxy session on a non-cached connection. The standard
close method must be called explicitly to close the connection itself. If the close
method is called directly, without closing the proxy session, then both the proxy
session and the connection are closed. This can be achieved in the following way:

OracleConnection.close(OracleConnection.INVALID_CONNECTION);

Caching Proxy Connections
Proxy connections, like standard connections, can be cached. Caching proxy
connections enhances the performance. To cache a proxy connection, you need to
create a connection using one of the getConnection methods on a cache enabled
OracleDataSource object.

A proxy connection may be cached in the connection cache using the connection
attributes feature of the connection cache. Connection attributes are name/value pairs
that are user-defined and help tag a connection before returning it to the connection
cache for reuse. When the tagged connection is retrieved, it can be directly used
without having to do a round-trip to create or close a proxy session. Implicit
connection cache supports caching of any user/password authenticated connection.
Therefore, any user authenticated proxy connection can be cached and retrieved.

It is recommended that proxy connections should not be closed without applying the
connection attributes. If a proxy connection is closed without applying the connection
attributes, the connection is returned to the connection cache for reuse, but cannot be
retrieved. The connection caching mechanism does not remember or reset session
state.

A proxy connection can be removed from the connection cache by closing the
connection directly.

Limitations of Proxy Connections
Closing a proxy connection automatically closes every SQL Statement created by the
proxy connection, during the proxy session or prior to the proxy session. This may
cause unexpected consequences on application pooling or statement caching. The
following code samples explain this limitation of proxy connections:

Example 1
....
public void displayName(String N) // Any function using the Proxy feature
{

See Also: Chapter 21, "Implicit Connection Caching"

See Also: Chapter 21, "Implicit Connection Caching"

See Also: "Closing a Proxy Session" on page 10-5

Limitations of Proxy Connections

10-6 Oracle Database JDBC Developer's Guide

 Properties props = new Properties();
 props.put("PROXY_USER_NAME", proxyUser);
 c.openProxySession(OracleConnection.PROXYTYPE_USER_NAME, props);

 c.close(OracleConnection.PROXY_SESSION);
}

public static void main (String args[]) throws SQLException
{

 PreparedStatement pstmt = conn.prepareStatement("SELECT empname FROM EMP WHERE
empno = ?");
 pstmt.setString(1, "28959");
 ResultSet rs = pstmt.executeQuery();
 while (rs.next())
 {
 displayName(rs.getString(1));
 if (rs.isClosed() // The ResultSet is already closed while closing the
connection!
 {
 throw new Exception("Your ResultSet has been prematurely closed!
Your Statement object is also dead now.");
 }
 }
}

In the preceding example, when you close the proxy connection in the displayName
method, then the PreparedStatement object and the ResultSet object also get
closed. So, if you do not check the status of the ResultSet object inside loop, then the
loop will fail when the next method is called for the second time.

Example 2

 PreparedStatement pstmt = conn.prepareStatement("SELECT empname FROM EMP WHERE
empno = ?");
 pstmt.setString(1, "28959");
 ResultSet rs = pstmt.executeQuery();
 while (rs.next())
 {

 }

 Properties props = new Properties();
 props.put("PROXY_USER_NAME", proxyUser);

 conn.openProxySession(OracleConnection.PROXYTYPE_USER_NAME, props);

 conn.close(OracleConnection.PROXY_SESSION);

 // Try to use the PreparedStatement again
 pstmt.setString(1, "28960");
// This line of code will fail because the Statement is already closed while
closing the connection!
 rs = pstmt.executeQuery();

In the preceding example, the PreparedStatement object and the ResultSet
object work fine before opening the proxy connection. But, if you try to execute the
same PreparedStatement object after closing the proxy connection, then the
statement fails.

Part IV
Data Access and Manipulation

This part provides a chapter that discusses about accessing and manipulating Oracle
data. It also includes chapters that provide information about Java Database
Connectivity (JDBC) support for user-defined object types, large object (LOB) and
binary file (BFILE) locators and data, object references, and Oracle collections, such as
nested tables. This part also provides chapters that discuss the result set functionality
in JDBC, JDBC row sets, and globalization support provided by Oracle JDBC drivers.

Part IV contains the following chapters:

■ Chapter 11, "Accessing and Manipulating Oracle Data"

■ Chapter 12, "Java Streams in JDBC"

■ Chapter 13, "Working with Oracle Object Types"

■ Chapter 14, "Working with LOBs and BFILEs"

■ Chapter 15, "Using Oracle Object References"

■ Chapter 16, "Working with Oracle Collections"

■ Chapter 17, "Result Set"

■ Chapter 18, "JDBC RowSets"

■ Chapter 19, "Globalization Support"

Accessing and Manipulating Oracle Data 11-1

11
Accessing and Manipulating Oracle Data

This chapter describes data access in oracle.sql.* formats, as opposed to standard
Java formats. Using oracle.sql.* formats involves casting your result sets and
statements to OracleResultSet, OracleStatement,
OraclePreparedStatement, and OracleCallableStatement, as appropriate,
and using the getOracleObject, setOracleObject, getXXX, and setXXX
methods of these classes, where XXX corresponds to the types in the oracle.sql
package.

This chapter covers the following topics:

■ Data Type Mappings

■ Data Conversion Considerations

■ Result Set and Statement Extensions

■ Comparison of Oracle get and set Methods to Standard JDBC

■ Using Result Set Metadata Extensions

■ Using SQL CALL and CALL INTO Statements

Data Type Mappings
The Oracle JDBC drivers support standard JDBC types as well as Oracle-specific data
types. This section documents standard and Oracle-specific SQL-Java default type
mappings. This section contains the following topics:

■ Table of Mappings

■ Notes Regarding Mappings

Table of Mappings
Table 11–1 shows the default mappings between SQL data types, JDBC type codes,
standard Java types, and Oracle extended types.

The SQL Data Types column lists the SQL types that exist in Oracle Database 11g. The
JDBC Type Codes column lists data type codes supported by the JDBC standard and
defined in the java.sql.Types class or by Oracle in the
oracle.jdbc.OracleTypes class. For standard type codes, the codes are identical
in these two classes.

The Standard Java Types column lists standard types defined in the Java language.
The Oracle Extension Java Types column lists the oracle.sql.* Java types that
correspond to each SQL data type in the database. These are Oracle extensions that let
you retrieve all SQL data in the form of a oracle.sql.* Java type.

Data Type Mappings

11-2 Oracle Database JDBC Developer's Guide

Note:

■ In general, the Oracle JDBC drivers are optimized to manipulate
SQL data using the standard JDBC types. In a few specialized
cases, it may be advantageous to use the Oracle extension classes
that are available in the oracle.sql package. But, Oracle
strongly recommends to use the standard JDBC types instead of
Oracle extensions, whenever possible. For more information about
when to use Oracle extension, refer to "Standard Types Versus
Oracle Types" on page 11-4.

■ Oracle JDBC drivers do not support sharing any JDBC types
across connections.

See Also: "Package oracle.sql" on page 4-5 for more information on
Oracle extensions

Table 11–1 Default Mappings Between SQL Types and Java Types

SQL Data Types JDBC Type Codes Standard Java Types
Oracle Extension Java
Types

STANDARD JDBC TYPES:

CHAR java.sql.Types.CHAR java.lang.String oracle.sql.CHAR

VARCHAR2 java.sql.Types.VARCHAR java.lang.String oracle.sql.CHAR

LONG java.sql.Types.LONGVARCHAR java.lang.String oracle.sql.CHAR

NUMBER java.sql.Types.NUMERIC java.math.BigDecima
l

oracle.sql.NUMBER

NUMBER java.sql.Types.DECIMAL java.math.BigDecima
l

oracle.sql.NUMBER

NUMBER java.sql.Types.BIT boolean oracle.sql.NUMBER

NUMBER java.sql.Types.TINYINT byte oracle.sql.NUMBER

NUMBER java.sql.Types.SMALLINT short oracle.sql.NUMBER

NUMBER java.sql.Types.INTEGER int oracle.sql.NUMBER

NUMBER java.sql.Types.BIGINT long oracle.sql.NUMBER

NUMBER java.sql.Types.REAL float oracle.sql.NUMBER

NUMBER java.sql.Types.FLOAT double oracle.sql.NUMBER

NUMBER java.sql.Types.DOUBLE double oracle.sql.NUMBER

RAW java.sql.Types.BINARY byte[] oracle.sql.RAW

RAW java.sql.Types.VARBINARY byte[] oracle.sql.RAW

LONGRAW java.sql.Types.LONGVARBINARY byte[] oracle.sql.RAW

DATE java.sql.Types.DATE java.sql.Date oracle.sql.DATE

DATE java.sql.Types.TIME java.sql.Time oracle.sql.DATE

TIMESTAMP java.sql.Types.TIMESTAMP javal.sql.Timestamp oracle.sql.TIMESTAMP

BLOB java.sql.Types.BLOB java.sql.Blob oracle.sql.BLOB

CLOB java.sql.Types.CLOB java.sql.Clob oracle.sql.CLOB

Data Type Mappings

Accessing and Manipulating Oracle Data 11-3

Notes Regarding Mappings
This section provides further detail regarding mappings for NUMBER and user-defined
types.

NUMBER Types
For the different type codes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work properly.
For example, call getByte to get a Java tinyint value for an item x, where -128 < x <
128.

User-Defined Types
User-defined types, such as objects, object references, and collections, map by default
to weak Java types, such as java.sql.Struct, but alternatively can map to strongly
typed custom Java classes. Custom Java classes can implement one of two interfaces:

user-defined
object

java.sql.Types.STRUCT java.sql.Struct oracle.sql.STRUCT

user-defined
reference

java.sql.Types.REF java.sql.Ref oracle.sql.REF

user-defined
collection

java.sql.Types.ARRAY java.sql.Array oracle.sql.ARRAY

ROWID java.sql.Types.ROWID java.sql.RowId oracle.sql.ROWID

NCLOB java.sql.Types.NCLOB java.sql.NClob oracle.sql.NCLOB

NCHAR java.sql.Types.NCHAR java.lang.String oracle.sql.CHAR

ORACLE EXTENSIONS:

BFILE oracle.jdbc.OracleTypes.BFIL
E

NA oracle.sql.BFILE

REF CURSOR oracle.jdbc.OracleTypes.CURS
OR

java.sql.ResultSet oracle.jdbc.OracleRe
sultSet

TIMESTAMP oracle.jdbc.OracleTypes.TIME
STAMP

java.sql.Timestamp oracle.sql.TIMESTAMP

TIMESTAMP
WITH TIME
ZONE

oracle.jdbc.OracleTypes.TIME
STAMPTZ

java.sql.Timestamp oracle.sql.TIMESTAMP
TZ

TIMESTAMP
WITH LOCAL
TIME ZONE

oracle.jdbc.OracleTypes.TIME
STAMPLTZ

java.sql.Timestamp oracle.sql.TIMESTAMP
LTZ

Note: For database versions, such as 8.1.7, which do not support
the TIMESTAMP data type, TIMESTAMP is mapped to DATE.

See Also :

■ "Valid SQL-JDBC Data Type Mappings" on page A-1

■ Chapter 4, "Oracle Extensions"

Table 11–1 (Cont.) Default Mappings Between SQL Types and Java Types

SQL Data Types JDBC Type Codes Standard Java Types
Oracle Extension Java
Types

Data Conversion Considerations

11-4 Oracle Database JDBC Developer's Guide

■ The standard java.sql.SQLData

■ The Oracle-specific oracle.sql.ORAData

Data Conversion Considerations
When JDBC programs retrieve SQL data into Java, you can use standard Java types, or
you can use types of the oracle.sql package. This section covers the following
topics:

■ Standard Types Versus Oracle Types

■ Converting SQL NULL Data

■ Testing for NULLs

Standard Types Versus Oracle Types
The Oracle data types in oracle.sql store data in the same bit format as used by the
database. In versions of the Oracle JDBC drivers prior to Oracle Database 10g, the
Oracle data types were generally more efficient. The Oracle Database 10g JDBC drivers
were substantially updated. As a result, in most cases the standard Java types are
preferred to the data types in oracle.sql.*. In particular, java.lang.String is
much more efficient than oracle.sql.CHAR.

In general, Oracle recommends that you use the Java standard types. The exceptions to
this are:

■ Use the oracle.sql.OraData rather than the java.sql.SqlData if the
OraData functionality better suits your needs.

■ Use oracle.sql.NUMBER rather than java.lang.Double if you need to retain
the exact values of floating point numbers. Oracle NUMBER is a decimal
representation and Java Double and Float are binary representations.
Conversion from one format to the other can result in slight variations in the
actual value represented. Additionally, the range of values that can be represented
using the two formats is different.

Use oracle.sql.NUMBER rather than java.math.BigDecimal when
performance is critical and you are not manipulating the values, just reading and
writing them.

■ Use oracle.sql.DATE or oracle.sql.TIMESTAMP rather than
java.sql.Date or java.sql.Timestamp if you are using a JDK version
earlier than JDK 1.6 or require maximum performance. You can also use the
oracle.sql data type if you want to read many date values, and compute or
display only a small percentage.

See Also: "Mapping Oracle Objects" on page 13-1 and "Creating and
Using Custom Object Classes for Oracle Objects" on page 13-5

Note: Due to a bug in all versions of Java prior to JDK 1.6,
construction of java.lang.Date and java.lang.Timestamp
objects is slow, especially in multithreaded environments. This bug is
fixed in JDK 1.6.

Result Set and Statement Extensions

Accessing and Manipulating Oracle Data 11-5

■ Use oracle.sql.CHAR only when you have data from some external source,
which has been represented in an Oracle character set encoding. In all other cases,
you should use java.lang.String.

■ STRUCT, ARRAY, BLOB, CLOB, REF, and ROWID are all the implementation classes
of the corresponding JDBC standard interface types. So, there is no benefit of using
the Oracle extension types as they are identical to the JDBC standard types.

■ BFILE, TIMESTAMPTZ, and TIMESTAMPLTZ have no representation in the JDBC
standard. You must use these Oracle extensions.

■ In all other cases, you should use the standard JDBC type rather than the Oracle
extensions.

Converting SQL NULL Data
Java represents a SQL NULL datum by the Java value null. Java data types fall into
two categories: primitive types, such as byte, int, and float, and object types, such
as class instances. The primitive types cannot represent null. Instead, they store null
as the value zero, as defined by the JDBC specification. This can lead to ambiguity
when you try to interpret your results.

In contrast, Java object types can represent null. The Java language defines an object
container type corresponding to every primitive type that can represent null. The
object container types must be used as the targets for SQL data to detect SQL NULL
without ambiguity.

Testing for NULLs
You cannot use a relational operator to compare NULL values with each other or with
other values. For example, the following SELECT statement does not return any row
even if the COMM column contains one or more NULL values.

PreparedStatement pstmt = conn.prepareStatement(
 "SELECT * FROM EMP WHERE COMM = ?");
pstmt.setNull(1, java.sql.Types.VARCHAR);

The next example shows how to compare values for equality when some return values
might be NULL. The following code returns all the ENAMES from the EMP table that are
NULL, if there is no value of 100 for COMM.

PreparedStatement pstmt = conn.prepareStatement("SELECT ENAME FROM EMP
 WHERE COMM =? OR ((COMM IS NULL) AND (? IS NULL))");
pstmt.setBigDecimal(1, new BigDecimal(100));
pstmt.setNull(2, java.sql.Types.VARCHAR);

Result Set and Statement Extensions
The JDBC Statement object returns an OracleResultSet object, typed as a
java.sql.ResultSet. If you want to apply only standard JDBC methods to the
object, then keep it as a ResultSet type. However, if you want to use the Oracle
extensions on the object, then you must cast it to OracleResultSet. All of the Oracle

Note: If you convert an oracle.sql data type to a Java standard
data type, then the benefits of using the oracle.sql data type are
lost.

Comparison of Oracle get and set Methods to Standard JDBC

11-6 Oracle Database JDBC Developer's Guide

Result Set extensions are in the oracle.jdbc.OracleResultSet interface and all
the Statement extensions are in the oracle.jdbc.OracleStatement interface.

For example, assuming you have a standard Statement object stmt, do the
following if you want to use only standard JDBC ResultSet methods:

ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

If you need the extended functionality provided by the Oracle extensions to JDBC, you
can select the results into a standard ResultSet variable and then cast that variable
to OracleResultSet later.

Key extensions to the result set and statement classes include the getOracleObject
and setOracleObject methods, used to access and manipulate data in
oracle.sql.* formats.

Comparison of Oracle get and set Methods to Standard JDBC
This section describes get and set methods, particularly the JDBC standard
getObject and setObject methods and the Oracle-specific getOracleObject
and setOracleObject methods, and how to access data in oracle.sql.* format
compared with Java format.

Although there are specific getXXX methods for all the Oracle SQL types, you can use
the general get methods for convenience or simplicity, or if you are not certain in
advance what type of data you will receive.

This section covers the following topics:

■ Standard getObject Method

■ Oracle getOracleObject Method

■ Summary of getObject and getOracleObject Return Types

■ Other getXXX Methods

■ Data Types For Returned Objects from getObject and getXXX

■ The setObject and setOracleObject Methods

■ Other setXXX Methods

Standard getObject Method
The standard getObject method of a result set or callable statement has a return
type of java.lang.Object. The class of the object returned is based on its SQL type,
as follows:

Note: You cannot qualify a column name with a table name and pass
it as a parameter to the getXXX method. For example:

ResultSet rset = stmt.executeQuery("SELECT emp.deptno, dept.deptno
FROM emp, dept");
rset.getInt("emp.deptno");

The getInt method in the preceding code will throw an exception.
To uniquely identify the columns in the getXXX method, you can
either use column index or specify column aliases in the query and
use these aliases in the getXXX method.

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 11-7

■ For SQL data types that are not Oracle-specific, getObject returns the default
Java type corresponding to the SQL type of the column, following the mapping in
the JDBC specification.

■ For Oracle-specific data types, getObject returns an object of the appropriate
oracle.sql.* class, such as oracle.sql.ROWID.

■ For Oracle database objects, getObject returns a Java object of the class specified
in your type map. Type maps specify a mapping from database named types to
Java classes. The getObject(parameter_index) method uses the default type
map of the connection. The getObject(parameter_index, map) enables you
to pass in a type map. If the type map does not provide a mapping for a particular
Oracle object, then getObject returns an oracle.sql.STRUCT object.

Oracle getOracleObject Method
If you want to retrieve data from a result set or callable statement as an
oracle.sql.* object, then you must follow a special process. For a Result Set, you
must cast the Result Set itself to oracle.jdbc.OracleResultSet and then call
getOracleObject instead of getObject. The same applies to
CallableStatement and oracle.jdbc.OracleCallableStatement.

The return type of getOracleObject is oracle.sql.Datum. The actual returned
object is an instance of the appropriate oracle.sql.* class. The method signature is:

public oracle.sql.Datum getOracleObject(int parameter_index)

When you retrieve data into a Datum variable, you can use the standard Java
instanceof operator to determine which oracle.sql.* type it really is.

Example: Using getOracleObject with a Result Set
The following example creates a table that contains a column of CHAR data and a
column containing a BFILE locator. A SELECT statement retrieves the contents of the
table as a result set. The getOracleObject then retrieves the CHAR data into the
char_datum variable and the BFILE locator into the bfile_datum variable. Note
that because getOracleObject returns a Datum object, the return values must be
cast to CHAR and BFILE, respectively.

stmt.execute ("CREATE TABLE bfile_table (x VARCHAR2 (30), b BFILE)");
stmt.execute
 ("INSERT INTO bfile_table VALUES ('one', BFILENAME ('TEST_DIR', 'file1'))");

ResultSet rset = stmt.executeQuery ("SELECT * FROM bfile_table");
while (rset.next ())
{
 CHAR char_datum = (CHAR) ((OracleResultSet)rset).getOracleObject (1);
 BFILE bfile_datum = (BFILE) ((OracleResultSet)rset).getOracleObject (2);
 ...
}

Example: Using getOracleObject in a Callable Statement
The following example prepares a call to the procedure myGetDate, which associates
a character string with a date. The program passes "SCOTT" to the prepared call and
registers the DATE type as an output parameter. After the call is run,
getOracleObject retrieves the date associated with "SCOTT". Note that because
getOracleObject returns a Datum object, the results are cast to DATE.

OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall

Comparison of Oracle get and set Methods to Standard JDBC

11-8 Oracle Database JDBC Developer's Guide

 ("begin myGetDate (?, ?); end;");

cstmt.setString (1, "SCOTT");
cstmt.registerOutParameter (2, Types.DATE);
cstmt.execute ();

DATE date = (DATE) ((OracleCallableStatement)cstmt).getOracleObject (2);
...

Summary of getObject and getOracleObject Return Types
Table 11–2 lists the underlying return types for the getObject and
getOracleObject methods for each Oracle SQL type.

Keep in mind the following when you use these methods:

■ getObjectalways returns data into a java.lang.Object instance

■ getOracleObject always returns data into an oracle.sql.Datum instance

You must cast the returned object to use any special functionality.

Table 11–2 getObject and getOracleObject Return Types

Oracle SQL Type
getObject
Underlying Return Type

getOracleObject
Underlying Return Type

CHAR String oracle.sql.CHAR

VARCHAR2 String oracle.sql.CHAR

NCHAR String oracle.sql.CHAR

LONG String oracle.sql.CHAR

NUMBER java.math.BigDecimal oracle.sql.NUMBER

RAW byte[] oracle.sql.RAW

LONGRAW byte[] oracle.sql.RAW

DATE java.sql.Date oracle.sql.DATE

TIMESTAMP java.sql.Timestamp1 oracle.sql.TIMESTAMP

TIMESTAMP WITH
TIME ZONE

oracle.sql.TIMESTAMPTZ oracle.sql.TIMESTAMPTZ

TIMESTAMP WITH
LOCAL TIME ZONE

oracle.sql.TIMESTAMPLTZ oracle.sql.TIMESTAMPLTZ

BINARY_FLOAT java.lang.Float oracle.sql.BINARY_FLOAT

BINARY_DOUBLE java.lang.Double oracle.sql.BINARY_DOUBLE

INTERVAL DAY TO
SECOND

oracle.sql.INTERVALDS oracle.sql.INTERVALDS

INTERVAL YEAR TO
MONTH

oracle.sql.INTERVALYM oracle.sql.INTERVALYM

ROWID oracle.sql.ROWID oracle.sql.ROWID

REF CURSOR java.sql.ResultSet (not supported)

BLOB oracle.sql.BLOB oracle.sql.BLOB

CLOB oracle.sql.CLOB oracle.sql.CLOB

NCLOB java.sql.NClob oracle.sql.NCLOB

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 11-9

Other getXXX Methods
Standard JDBC provides a getXXX for each standard Java type, such as getByte,
getInt, getFloat, and so on. Each of these returns exactly what the method name
implies.

In addition, the OracleResultSet and OracleCallableStatement classes
provide a full complement of getXXX methods corresponding to all the
oracle.sql.* types. Each getXXX method returns an oracle.sql.XXX object. For
example, getROWID returns an oracle.sql.ROWID object.

BFILE oracle.sql.BFILE oracle.sql.BFILE

Oracle object class specified in type map

or oracle.sql.STRUCT
(if no type map entry)

oracle.sql.STRUCT

Oracle object reference oracle.sql.REF oracle.sql.REF

collection (varray or
nested table)

oracle.sql.ARRAY oracle.sql.ARRAY

1 ResultSet.getObject returns java.sql.Timestamp only if the oracle.jdbc.J2EE13Compliant connection
property is set to TRUE, else the method returns oracle.sql.TIMESTAMP.

Note: The ResultSet.getObject method returns
java.sql.Timestamp for the TIMESTAMP SQL type, only when the
connection property oracle.jdbc.J2EE13Compliant is set to
TRUE. This property has to be set when the connection is obtained. If
this connection property is not set or if it is set after the connection is
obtained, then the ResultSet.getObject method returns
oracle.sql.TIMESTAMP for the TIMESTAMP SQL type.

The oracle.jdbc.J2EE13Compliant connection property can also
be set without changing the code in the following ways:

■ Including the ojdbc5dms.jar or ojdbc6dms.jar files in the
CLASSPATH. These files set oracle.jdbc.J2EE13Compliant
to TRUE by default. These are specific to the Oracle Application
Server release and are not available as part of the general JDBC
release. They are located in $ORACLE_HOME/jdbc/lib.

■ Setting the system property by calling the java command with
the flag -Doracle.jdbc.J2EE13Compliant=true. For
example,

java -Doracle.jdbc.J2EE13Compliant=true ...

When the J2EE13Compliant is set to TRUE the action is as in Table
B-3 of the JDBC specification.

See Also: Table A–1, " Valid SQL Data Type-Java Class Mappings"
on page A-1, for information about type compatibility between all
SQL and Java types.

Table 11–2 (Cont.) getObject and getOracleObject Return Types

Oracle SQL Type
getObject
Underlying Return Type

getOracleObject
Underlying Return Type

Comparison of Oracle get and set Methods to Standard JDBC

11-10 Oracle Database JDBC Developer's Guide

There is no performance advantage in using the specific getXXX methods. However,
they do save you the trouble of casting, because the return type is specific to the object
being returned.

This section covers the following topics:

■ Return Types of getXXX Methods

■ Special Notes about getXXX Methods

Return Types of getXXX Methods
Refer to the Java doc to know the return types for each getXXX method and also
which are Oracle extensions under Java Development Kit (JDK) 1.6. You must cast the
returned object to OracleResultSet or OracleCallableStatement to use
methods that are Oracle extensions.

Special Notes about getXXX Methods
This section provides additional details about some getXXX methods.

getBigDecimal
JDBC 2.0 simplified method signatures for the getBigDecimal method. The previous
input signatures were:

(int columnIndex, int scale) or (String columnName, int scale)

The simplified input signature is:

(int columnIndex) or (String columnName)

The scale parameter, used to specify the number of digits to the right of the decimal,
is no longer necessary. The Oracle JDBC drivers retrieve numeric values with full
precision.

getBoolean
Because there is no BOOLEAN database type, when you use getBoolean a data type
conversion always occurs. The getBoolean method is supported only for numeric
columns. When applied to these columns, getBoolean interprets any zero value as
false and any other value as true. When applied to any other sort of column,
getBoolean raises the exception java.lang.NumberFormatException.

Data Types For Returned Objects from getObject and getXXX
The return type of getObject is java.lang.Object. The returned value is an
instance of a subclass of java.lang.Object. Similarly, the return type of
getOracleObject is oracle.sql.Datum, and the class of the returned value is a
subclass of oracle.sql.Datum. You typically cast the returned object to the
appropriate class to use particular methods and functionality of that class.

In addition, you have the option of using a specific getXXX method instead of the
generic getObject or getOracleObject methods. The getXXX methods enable
you to avoid casting, because the return type of getXXX corresponds to the type of
object returned. For example, the return type of getCLOB is oracle.sql.CLOB, as
opposed to java.lang.Object.

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 11-11

Example of Casting Return Values
This example assumes that you have fetched data of the NUMBER type as the first
column of a result set. Because you want to manipulate the NUMBER data without
losing precision, cast your result set to OracleResultSet and use
getOracleObject to return the NUMBER data in oracle.sql.* format. If you do
not cast your result set, then you have to use getObject, which returns your numeric
data into a Java Float and loses some of the precision of your SQL data.

The getOracleObject method returns an oracle.sql.NUMBER object into an
oracle.sql.Datum return variable unless you cast the output. Cast the
getOracleObject output to oracle.sql.NUMBER if you want to use a NUMBER
return variable and any of the special functionality of that class.

NUMBER x = (NUMBER)ors.getOracleObject(1);

The setObject and setOracleObject Methods
Just as there is a standard getObject and Oracle-specific getOracleObject in
result sets and callable statements, there are also standard setObject and
Oracle-specific setOracleObject methods in OraclePreparedStatement and
OracleCallableStatement. The setOracleObject methods take
oracle.sql.* input parameters.

To bind standard Java types to a prepared statement or callable statement, use the
setObject method, which takes a java.lang.Object as input. The setObject
method does support a few of the oracle.sql.* types. However, the method has
been implemented so that you can enter instances of the oracle.sql.* classes that
correspond to the following JDBC standard types: Blob, Clob, Struct, Ref, and
Array.

To bind oracle.sql.* types to a prepared statement or callable statement, use the
setOracleObject method, which takes a subclass of oracle.sql.Datum as input.
To use setOracleObject, you must cast your prepared statement or callable
statement to OraclePreparedStatement or OracleCallableStatement.

Example of Using setObject and setOracleObject
For a prepared statement, the setOracleObject method binds the
oracle.sql.CHAR data represented by the charVal variable to the prepared
statement. To bind the oracle.sql.* data, the prepared statement must be cast to
OraclePreparedStatement. Similarly, the setObject method binds the Java
String data represented by the variable strVal.

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
((OraclePreparedStatement)ps).setOracleObject(1,charVal);
ps.setObject(2,strVal);

Other setXXX Methods
As with the getXXX methods, there are several specific setXXX methods. Standard
setXXX methods are provided for binding standard Java types, and Oracle-specific
setXXX methods are provided for binding Oracle-specific types.

Similarly, there are two forms of the setNull method:

■ void setNull(int parameterIndex, int sqlType)

This is specified in the standard java.sql.PreparedStatement interface. This
signature takes a parameter index and a SQL type code defined by the

Comparison of Oracle get and set Methods to Standard JDBC

11-12 Oracle Database JDBC Developer's Guide

java.sql.Types or oracle.jdbc.OracleTypes class. Use this signature to
set an object other than a REF, ARRAY, or STRUCT to NULL.

■ void setNull(int parameterIndex, int sqlType, String sql_
type_name)

With JDBC 2.0, this signature is also specified in the standard
java.sql.PreparedStatement interface. This method takes a SQL type name
in addition to a parameter index and a SQL type code. Use this method when the
SQL type code is java.sql.Types.REF, ARRAY, or STRUCT. If the type code is
other than REF, ARRAY, or STRUCT, then the given SQL type name is ignored.

Similarly, the registerOutParameter method has a signature for use with REF,
ARRAY, or STRUCT data:

void registerOutParameter
 (int parameterIndex, int sqlType, String sql_type_name)

Binding Oracle-specific types using the appropriate setXXX methods, instead of the
methods used for binding standard Java types, may offer some performance
advantage.

This section covers the following topics:

■ Input Data Binding

■ Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

Input Data Binding
There are three way to bind data for input:

■ Direct binding where the data itself is placed in a bind buffer

■ Stream binding where the data is streamed

■ LOB binding where a temporary lob is created, the data placed in the LOB using
the LOB APIs, and the bytes of the LOB locator are placed in the bind buffer

The three kinds of binding have some differences in performance and have an impact
on batching. Direct binding is fast and batching is fine. Stream binding is slower, may
require multiple round trips, and turns batching off. LOB binding is very slow and
requires many round trips. Batching works, but might be a bad idea. They also have
different size limits, depending on the type of the SQL statement.

For SQL parameters, the length of standard parameter types, such as RAW and
VARCHAR2, is fixed by the size of the target column. For PL/SQL parameters, the size
is limited to a fixed number of bytes, which is 32766.

In Oracle Database 10g release 2 (10.2), certain changes were made to the setString,
setCharacterStream, setAsciiStream, setBytes, and setBinaryStream
methods of PreparedStatement. The original behavior of these APIs were:

■ setString: Direct bind of characters

■ setCharacterStream: Stream bind of characters

■ setAsciiStream: Stream bind of bytes

■ setBytes: Direct bind of bytes

■ setBinaryStream: Stream bind of bytes

Comparison of Oracle get and set Methods to Standard JDBC

Accessing and Manipulating Oracle Data 11-13

Starting from Oracle Database 10g release 2 (10.2), automatic switching between
binding modes, based on the data size and on the type of the SQL statement is
provided.

setBytes and setBinaryStream
For SQL, direct bind is used for size up to 2000 and stream bind for larger.

For PL/SQL direct bind is used for size up to 32766 and LOB bind is used for larger.

setString, setCharacterStream, and setAsciiStream
For SQL, direct bind is used up to 32766 Java characters and stream bind is used for
larger. This is independent of character set.

For PL/SQL, you must be careful about the byte size of the character data in the
database character set or the national character set depending on the setting of the
form of use parameter. Direct bind is used for data where the byte length is less than
32766 and LOB bind is used for larger.

For fixed length character sets, multiply the length of the Java character data by the
fixed character size in bytes and compare that to the restrictive values. For variable
length character sets, there are three cases based on the Java character length, as
follows:

■ If character length is less than 32766 divided by the maximum character size, then
direct bind is used.

■ If character length is greater than 32766 divided by the minimum character size,
then LOB bind is used.

■ If character length is in between and if the actual length of the converted bytes is
less than 32766, then direct bind is used, else LOB bind is used.

The server-side internal driver has the following additional limitations:

■ setString, setCharacterStream, and setASCIIStream APIs are not
supported for SQL CLOB columns when the data size in characters is over 4000
bytes

■ setBytes and setBinaryStream APIs are not supported for SQL BLOB
columns when the data size is over 2000 bytes

Method setFixedCHAR for Binding CHAR Data into WHERE Clauses
CHAR data in the database is padded to the column width. This leads to a limitation in
using the setCHAR method to bind character data into the WHERE clause of a SELECT
statement. The character data in the WHERE clause must also be padded to the column

Note: When a PL/SQL procedure is embedded in a SQL statement,
the binding action is different. Refer to "Data Interface for LOBs" on
page 14-3 for more information.

Important: Do not use these APIs with the server-side internal
driver, without careful checking of the data size in client code.

See Also: JDBC Release Notes for further discussion and possible
workarounds

Using Result Set Metadata Extensions

11-14 Oracle Database JDBC Developer's Guide

width to produce a match in the SELECT statement. This is especially troublesome if
you do not know the column width.

To remedy this, Oracle has added the setFixedCHAR method to the
OraclePreparedStatement class. This method runs a non-padded comparison.

Example
The following example demonstrates the difference between the setCHAR and
setFixedCHAR methods.

/* Schema is :
 create table my_table (col1 char(10));
 insert into my_table values ('JDBC');
*/
 PreparedStatement pstmt = conn.prepareStatement
 ("select count(*) from my_table where col1 = ?");

 pstmt.setString (1, "JDBC"); // Set the Bind Value
 runQuery (pstmt); // This will print " No of rows are 0"

 CHAR ch = new CHAR("JDBC ", null);
 ((OraclePreparedStatement)pstmt).setCHAR(1, ch); // Pad it to 10 bytes
 runQuery (pstmt); // This will print "No of rows are 1"

 ((OraclePreparedStatement)pstmt).setFixedCHAR(1, "JDBC");
 runQuery (pstmt); // This will print "No of rows are 1"

 void runQuery (PreparedStatement ps)
 {
 // Run the Query
 ResultSet rs = pstmt.executeQuery ();

 while (rs.next())
 System.out.println("No of rows are " + rs.getInt(1));

 rs.close();
 rs = null;
 }

Using Result Set Metadata Extensions
The oracle.jdbc.OracleResultSetMetaData interface is JDBC 2.0-compliant
but does not implement the getSchemaName and getTableName methods because
Oracle Database does not make this feasible.

Note:

■ Remember to cast your prepared statement object to
OraclePreparedStatement to use the setFixedCHAR
method.

■ There is no need to use setFixedCHAR for an INSERT
statement. The database always automatically pads the data to
the column width as it inserts it.

Using SQL CALL and CALL INTO Statements

Accessing and Manipulating Oracle Data 11-15

The following code snippet uses several of the methods in the
OracleResultSetMetadata interface to retrieve the number of columns from the
EMP table and the numerical type and SQL type name of each column:

DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rset = dbmd.getTables("", "SCOTT", "EMP", null);

 while (rset.next())
 {
 OracleResultSetMetaData orsmd = ((OracleResultSet)rset).getMetaData();
 int numColumns = orsmd.getColumnCount();
 System.out.println("Num of columns = " + numColumns);

 for (int i=0; i<numColumns; i++)
 {
 System.out.print ("Column Name=" + orsmd.getColumnName (i+1));
 System.out.print (" Type=" + orsmd.getColumnType (i + 1));
 System.out.println (" Type Name=" + orsmd.getColumnTypeName (i + 1));
 }
}

The program returns the following output:

Num of columns = 5
Column Name=TABLE_CAT Type=12 Type Name=VARCHAR2
Column Name=TABLE_SCHEM Type=12 Type Name=VARCHAR2
Column Name=TABLE_NAME Type=12 Type Name=VARCHAR2
Column Name=TABLE_TYPE Type=12 Type Name=VARCHAR2
Column Name=TABLE_REMARKS Type=12 Type Name=VARCHAR2

Using SQL CALL and CALL INTO Statements
You can use the CALL statement to execute a routine from within SQL.

You can execute a routine in two ways:

■ By issuing a call to the routine itself by name or by using the routine_clause

■ By using an object_access_expression inside the type of an expression

You can specify one or more arguments to the routine, if the routine takes arguments.
You can use positional, named, or mixed notation for argument.

CALL INTO Statement
The INTO clause applies only to calls to functions. You can use the following types of
variables with this clause:

■ Host variable

■ Indicator variable

Note: A routine is a procedure or a function that is standalone or is
defined within a type or package. You must have EXECUTE privilege
on the standalone routine or on the type or package in which the
routine is defined. Refer to the "Oracle Database SQL Language
Reference" for more information about using the CALL statement.

Using SQL CALL and CALL INTO Statements

11-16 Oracle Database JDBC Developer's Guide

PL/SQL Blocks
The basic unit in PL/SQL is a block. All PL/SQL programs are made up of blocks,
which can be nested within each other. A PL/SQL block has three parts: a declarative
part, an executable part, and an exception-handling part. You get the following
advantages by using PL/SQL blocks in your application:

■ Better performance

■ Higher productivity

■ Full portability

■ Tight integration with Oracle

■ Tight security

Java Streams in JDBC 12-1

12
Java Streams in JDBC

This chapter describes how the Oracle Java Database Connectivity (JDBC) drivers
handle Java streams for several data types. Data streams enable you to read LONG
column data of up to 2 gigabytes (GB). Methods associated with streams let you read
the data incrementally.

This chapter covers the following topics:

■ Overview of Java Streams

■ Streaming LONG or LONG RAW Columns

■ Streaming CHAR, VARCHAR, or RAW Columns

■ Streaming LOBs and External Files

■ Data Streaming and Multiple Columns

■ Streaming and Row Prefetching

■ Closing a Stream

■ Notes and Precautions on Streams

Overview of Java Streams
Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary, ASCII,
and Unicode. Following is a brief description of each type of stream:

■ Binary

Used for RAW bytes of data, and corresponds to the getBinaryStream method

■ ASCII

Used for ASCII bytes in ISO-Latin-1 encoding, and corresponds to the
getAsciiStream method

■ Unicode

Used for Unicode bytes with the UTF-16 encoding, and corresponds to the
getUnicodeStream method

The getBinaryStream, getAsciiStream, and getUnicodeStream methods
return the bytes of data in an InputStream object.

See Also: Chapter 14, "Working with LOBs and BFILEs"

Streaming LONG or LONG RAW Columns

12-2 Oracle Database JDBC Developer's Guide

Streaming LONG or LONG RAW Columns
When a query selects one or more LONG or LONG RAW columns, the JDBC driver
transfers these columns to the client in streaming mode. In streaming mode, the JDBC
driver does not read the column data from the network for LONG or LONG RAW
columns, until required. The column data remains in the network communications
channel until your code calls a getXXX method to read the column data. Even after the
call, the column data is read only as needed to populate return value from the getXXX
call. Because the column data remains in the communications channel, the streaming
mode interferes with all other use of the connection. Any use of the connection, other
than reading the column data, will discard the column data from the channel. While
the streaming mode makes efficient use of memory and minimizes network round
trips, it interferes with many other database operations.

To access the data in a LONG column, you can get the column as a Java InputStream
object and use the read method of the InputStream object. As an alternative, you
can get the data as a String or byte array. In this case, the driver will do the
streaming for you.

You can get LONG and LONG RAW data with any of the three stream types. The driver
performs conversions for you, depending on the character set of the database and the
driver.

This section covers the following topics:

■ Streaming LONG or LONG RAW Columns

■ Streaming CHAR, VARCHAR, or RAW Columns

■ Streaming LOBs and External Files

■ Data Streaming and Multiple Columns

■ Closing a Stream

■ Notes and Precautions on Streams

LONG RAW Data Conversions
A call to getBinaryStream returns RAW data. A call to getAsciiStream converts
the RAW data to hexadecimal and returns the ASCII representation. A call to
getUnicodeStream converts the RAW data to hexadecimal and returns the Unicode
characters.

Note: Oracle recommends avoiding LONG and LONG RAW columns.
Use LOB instead.

Note: Do not create tables with LONG columns. Use large object
(LOB) columns, CLOB, NCLOB, and BLOB, instead. LONG columns
are supported only for backward compatibility. Oracle
recommends that you convert existing LONG columns to LOB
columns. LOB columns are subject to far fewer restrictions than
LONG columns.

Streaming LONG or LONG RAW Columns

Java Streams in JDBC 12-3

LONG Data Conversions
When you get LONG data with getAsciiStream, the drivers assume that the
underlying data in the database uses an US7ASCII or WE8ISO8859P1 character set. If
the assumption is true, then the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCII or WE8ISO8859P1 character set,
a call to getAsciiStream returns meaningless information.

When you get LONG data with getUnicodeStream, you get a stream of Unicode
characters in the UTF-16 encoding. This applies to all underlying database character
sets that Oracle supports.

When you get LONG data with getBinaryStream, there are two possible cases:

■ If the driver is JDBC OCI and the client character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream returns UTF-8. If the client
character set is US7ASCII or WE8ISO8859P1, then the call returns a US7ASCII
stream of bytes.

■ If the driver is JDBC Thin and the database character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream returns UTF-8. If the
server-side character set is US7ASCII or WE8ISO8859P1, then the call returns a
US7ASCII stream of bytes.

Table 12–1 summarizes LONG and LONG RAW data conversions for each stream type.

Streaming Example for LONG RAW Data
One of the features of a getXXXStream method is that it enables you to fetch data
incrementally. In contrast, getBytes fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the
getBinaryStream method to obtain LONG RAW data, and the second version uses the
getBytes method.

Getting a LONG RAW Data Column with getBinaryStream
This example writes the contents of a LONG RAW column to a file on the local file
system. In this case, the driver fetches the data incrementally.

Tip: Chapter 19, "Globalization Support" and "Data Streaming and
Multiple Columns" on page 12-7

Note: Receiving LONG or LONG RAW columns as a stream requires
you to pay special attention to the order in which you retrieve
columns from the database.

Table 12–1 LONG and LONG RAW Data Conversions

Data type BinaryStream AsciiStream UnicodeStream

LONG Bytes representing characters in
Unicode UTF-8. The bytes can
represent characters in US7ASCII or
WE8ISO8859P1 if the database
character set is US7ASCII or
WE8ISO8859P1.

Bytes representing
characters in ISO-Latin-1
(WE8ISO8859P1) encoding

Bytes representing
characters in Unicode
UTF-16 encoding

LONG RAW unchanged data ASCII representation of
hexadecimal bytes

Unicode representation
of hexadecimal bytes

Streaming LONG or LONG RAW Columns

12-4 Oracle Database JDBC Developer's Guide

The following code creates the table that stores a column of LONG RAW data associated
with the name LESLIE:

-- SQL code:
create table streamexample (NAME varchar2 (256), GIFDATA long raw);
insert into streamexample values ('LESLIE', '00010203040506070809');

The following Java code snippet writes the data from the LONG RAW column into a file
called leslie.gif:

ResultSet rset = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// get first row
if (rset.next())
{
 // Get the GIF data as a stream from Oracle to the client
 InputStream gif_data = rset.getBinaryStream (1);
 try
 {
 FileOutputStream file = null;
 file = new FileOutputStream ("leslie.gif");
 int chunk;
 while ((chunk = gif_data.read()) != -1)
 file.write(chunk);
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 finally
 {
 if file != null()
 file.close();
 }
}

In this example, the InputStream object returned by the call to getBinaryStream
reads the data directly from the database connection.

Getting a LONG RAW Data Column with getBytes
This example gets the content of the GIFDATA column with getBytes instead of
getBinaryStream. In this case, the driver fetches all the data in one call and stores it
in a byte array. The code snippet is as follows:

ResultSet rset2 = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// get first row
if (rset2.next())
{
 // Get the GIF data as a stream from Oracle to the client
 byte[] bytes = rset2.getBytes(1);
 try
 {
 FileOutputStream file = null;
 file = new FileOutputStream ("leslie2.gif");
 file.write(bytes);
 }

Streaming LONG or LONG RAW Columns

Java Streams in JDBC 12-5

 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 finally
 {
 if file != null()
 file.close();
 }
}

Because a LONG RAW column can contain up to 2 gigabytes of data, the getBytes
example can use much more memory than the getBinaryStream example. Use
streams if you do not know the maximum size of the data in your LONG or LONG RAW
columns.

Avoiding Streaming for LONG or LONG RAW
The JDBC driver automatically streams any LONG and LONG RAW columns. However,
there may be situations where you want to avoid data streaming. For example, if you
have a very small LONG column, then you may want to avoid returning the data
incrementally and, instead, return the data in one call.

To avoid streaming, use the defineColumnType method to redefine the type of the
LONG column. For example, if you redefine the LONG or LONG RAW column as
VARCHAR or VARBINARY type, then the driver will not automatically stream the data.

If you redefine column types with defineColumnType, then you must declare the
types of the columns in the query. If you do not declare the types of the columns, then
executeQuery will fail. In addition, you must cast the Statement object to
oracle.jdbc.OracleStatement.

As an added benefit, using defineColumnType saves the OCI and KPRB drivers a
database round-trip when running the query. Without defineColumnType, these
JDBC drivers must request the data types of the column types. The JDBC Thin driver
derives no benefit from defineColumnType, because it always uses the minimum
number of round-trips.

Using the example from the previous section, the Statement object stmt is cast to
OracleStatement and the column containing LONG RAW data is redefined to be of
the type VARBINARAY. The data is not streamed. Instead, it is returned in a byte array.
The code snippet is as follows:

//cast the statement stmt to an OracleStatement
oracle.jdbc.OracleStatement ostmt =
 (oracle.jdbc.OracleStatement)stmt;

//redefine the LONG column at index position 1 to VARBINARY
ostmt.defineColumnType(1, Types.VARBINARY);

// Do a query to get the images named 'LESLIE'
ResultSet rset = ostmt.executeQuery
 ("select GIFDATA from streamexample where NAME='LESLIE'");

// The data is not streamed here
rset.next();
byte [] bytes = rset.getBytes(1);

Streaming CHAR, VARCHAR, or RAW Columns

12-6 Oracle Database JDBC Developer's Guide

Streaming CHAR, VARCHAR, or RAW Columns
If you use the defineColumnType Oracle extension to redefine a CHAR, VARCHAR, or
RAW column as a LONGVARCHAR or LONGVARBINARY, then you can get the column as a
stream. The program will behave as if the column were actually of type LONG or LONG
RAW. Note that there is not much point to this, because these columns are usually
short.

If you try to get a CHAR, VARCHAR, or RAW column as a data stream without redefining
the column type, then the JDBC driver will return a Java InputStream, but no real
streaming occurs. In the case of these data types, the JDBC driver fully fetches the data
into an in-memory buffer during a call to the executeQuery method or the next
method. The getXXXStream entry points return a stream that reads data from this
buffer.

Streaming LOBs and External Files
The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table, which points to
the location of the actual data. External files are managed similarly. The JDBC drivers
can support the following types through the use of streams:

■ Binary large object (BLOB)

For unstructured binary data

■ Character large object (CLOB)

For character data

■ National Character large object (NCLOB)

For national character data

■ Binary file (BFILE)

For external files

LOBs and BFILEs behave differently from the other types of streaming data described
in this chapter. Instead of storing the actual data in the table, a locator is stored. The
actual data can be manipulated using this locator, including reading and writing the
data as a stream. Even when streaming, only the necessary bits of data move across the
network. By contrast, when streaming a LONG or LONG RAW, all the data always moves
across the network.

Streaming BLOBs, CLOBs, and NCLOBs
When a query fetches one or more BLOB, CLOB, or NCLOB columns, the JDBC driver
transfers the data to the client. This data can be accessed as a stream. To manipulate
BLOB, CLOB, or NCLOB data from JDBC, use methods in the Oracle extension classes
oracle.sql.BLOB, oracle.sql.CLOB and oracle.sql.NCLOB. These classes
provide specific functionality, such as reading from the BLOB, CLOB, or NCLOB into an
input stream, writing from an output stream into a BLOB, CLOB, or NCLOB,
determining the length of a BLOB, CLOB, or NCLOB, and closing a BLOB, CLOB, or
NCLOB.

See Also: "Data Interface for LOBs" on page 14-3

Data Streaming and Multiple Columns

Java Streams in JDBC 12-7

Streaming BFILEs
An external file, or BFILE, is used to store a locator to a file outside the database. The
file can be stored somewhere on the file system of the data server. The locator points to
the actual location of the file.

When a query fetches one or more BFILE columns, the JDBC driver transfers the file
to the client as required. The data can be accessed as a stream To manipulate BFILE
data from JDBC, use methods in the Oracle extension class oracle.sql.BFILE. This
class provides specific functionality, such as reading from the BFILE into an input
stream, writing from an output stream into a BFILE, determining the length of a
BFILE, and closing a BFILE.

Data Streaming and Multiple Columns
If a query fetches multiple columns and one of the columns contains a data stream,
then the contents of the columns following the stream column are not available until
the stream has been read, and the stream column is no longer available once any
following column is read. Any attempt to read a column beyond a streaming column
closes the streaming column.

Streaming Example with Multiple Columns
Consider the following code:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 //get the date data
 java.sql.Date date = rset.getDate(1);

 // get the streaming data
 InputStream is = rset.getAsciiStream(2);

 // Open a file to store the gif data
 FileOutputStream file = new FileOutputStream ("ascii.dat");

 // Loop, reading from the ascii stream and
 // write to the file
 int chunk;
 while ((chunk = is.read ()) != -1)
 file.write(chunk);
 // Close the file
 file.close();

 //get the number column data
 int n = rset.getInt(3);
}

The incoming data for each row has the following shape:

<a date><the characters of the long column><a number>

As you process each row of the result set, you must complete any processing of the
stream column before reading the number column.

See Also: "Streaming Data Precautions" on page 12-8

Tip: "Streaming LOBs and External Files" on page 12-6

Closing a Stream

12-8 Oracle Database JDBC Developer's Guide

Bypassing Streaming Data Columns
There may be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read such data, then call the close method of
the stream object. This method discards the stream data and enables the driver to
continue reading data from all the columns that contain non-streaming data and
follow the column containing streaming data. Even though you are intentionally
discarding the stream, it is a good programming practice to retrieve the columns in the
same order as in the SELECT statement.

In the following example, the stream data in the LONG column is discarded and the
data from only the DATE and NUMBER column is recovered:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");

while rset.next()
{
 //get the date
 java.sql.Date date = rset.getDate(1);

 // access the stream data and discard it with close()
 InputStream is = rset.getAsciiStream(2);
 is.close();

 // get the number column data
 int n = rset.getInt(3);
}

Closing a Stream
You can discard the data from a stream at any time by calling the close method. It is
a good programming practice to close the stream when you no longer need it.

Notes and Precautions on Streams
This section discusses several cautionary issues regarding the use of streams:

■ Streaming Data Precautions

■ Using Streams to Avoid Limits on setBytes and setString

■ Streaming and Row Prefetching

Streaming Data Precautions
This section describes some of the precautions you must take to ensure that you do not
accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the database,
other than reading the current stream. Two common precautions are:

See Also: "Bypassing Streaming Data Columns" on page 12-8 and
"Streaming Data Precautions" on page 12-8

Note: Closing a stream has little performance effect on a LONG or
LONG RAW column. All of the data still move across the network
and the driver must read the bits from the network.

Notes and Precautions on Streams

Java Streams in JDBC 12-9

■ Use the stream data after you access it.

To recover the data from a column containing a data stream, it is not enough to
fetch the column. You must immediately process the contents of the column.
Otherwise, the contents will be discarded when you fetch the next column.

■ Call the stream column in the same order as in the SELECT statement.

If your query fetches multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns
contains stream data, then the database sends the entire data stream before
proceeding to the next column.

If you do not use the order as in the SELECT statement to access data, then you
can lose the stream data. That is, if you bypass the stream data column and access
data in a column that follows it, then the stream data will be lost. For example, if
you try to access the data for the NUMBER column before reading the data from the
stream data column, then the JDBC driver first reads then discards the streaming
data automatically. This can be very inefficient if the LONG column contains a large
amount of data.

If you try to access the LONG column later in the program, then the data will not be
available and the driver will return a "Stream Closed" error.

The later point is illustrated in the following example:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 int n = rset.getInt(3); // This discards the streaming data
 InputStream is = rset.getAsciiStream(2);
 // Raises an error: stream closed.
}

If you get the stream but do not use it before you get the NUMBER column, then the
stream still closes automatically:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 InputStream is = rset.getAsciiStream(2); // Get the stream
 int n = rset.getInt(3);
 // Discards streaming data and closes the stream
}
int c = is.read(); // c is -1: no more characters to read-stream closed

Using Streams to Avoid Limits on setBytes and setString
Starting from Oracle Database 10g, the size limit of the data that is used with the
setBytes and setString methods, have been increased significantly. Any Java
byte array can be passed to setBytes, and any Java String can be passed to
setString. The JDBC driver automatically switches to using setBinaryStream or
setCharacterStream or to using setBytesForBlob or setStringForClob,
depending on the size of the data, whether the statement is SQL or PL/SQL, and the
driver used.

There are some limitation with earlier versions of Oracle Database and in the
server-side internal driver.

Notes and Precautions on Streams

12-10 Oracle Database JDBC Developer's Guide

Streaming and Row Prefetching
If the JDBC driver encounters a column containing a data stream, then row fetch size is
set back to one. Row fetch size is an Oracle performance enhancement that allows
multiple rows of data to be retrieved with each trip to the database.

See Also: "Data Interface for LOBs" on page 14-3 and release notes
for details

Working with Oracle Object Types 13-1

13
Working with Oracle Object Types

This chapter describes the Java Database Connectivity (JDBC) support for user-defined
object types. It discusses functionality of the generic, weakly typed
oracle.sql.STRUCT class, as well as how to map to custom Java classes that
implement either the JDBC standard SQLData interface or the Oracle ORAData
interface.

The following topics are covered:

■ Mapping Oracle Objects

■ Using the Default STRUCT Class for Oracle Objects

■ Creating and Using Custom Object Classes for Oracle Objects

■ Object-Type Inheritance

■ Using JPublisher to Create Custom Object Classes

■ Describing an Object Type

Mapping Oracle Objects
Oracle object types provide support for composite data structures in the database. For
example, you can define a Person type that has the attributes name of CHAR type,
phoneNumber of CHAR type, and employeeNumber of NUMBER type.

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can use a standard, generic JDBC type to map to Oracle objects, or
you can customize the mapping by creating custom Java type definition classes.

Custom object classes can implement either a standard JDBC interface or an Oracle
extension interface to read and write data. JDBC materializes Oracle objects as
instances of particular Java classes. Two main steps in using JDBC to access Oracle
objects are:

1. Creating the Java classes for the Oracle objects

See Also: Oracle Database Object-Relational Developer's Guide

Note: In this book, Java classes that you create to map to Oracle
objects will be referred to as custom Java classes or, more specifically,
custom object classes. This is as opposed to custom references
classes, which are Java classes that map to object references, and
custom collection classes, which are Java classes that map to Oracle
collections.

Using the Default STRUCT Class for Oracle Objects

13-2 Oracle Database JDBC Developer's Guide

2. Populating these classes. You have the following options:

■ Let JDBC materialize the object as a STRUCT object.

■ Explicitly specify the mappings between Oracle objects and Java classes.

This includes customizing your Java classes for object data. The driver then
must be able to populate instances of the custom object classes that you
specify. This imposes a set of constraints on the Java classes. To satisfy these
constraints, you can define your classes to implement either the JDBC
standard java.sql.SQLData interface or the Oracle extension
oracle.sql.ORAData interface.

You can use the Oracle JPublisher utility to generate custom Java classes.

Using the Default STRUCT Class for Oracle Objects
If you choose not to supply a custom Java class for your SQL-Java mapping for an
Oracle object, then Oracle JDBC materializes the object as an object that implements
the java.sql.Struct interface.

You would typically want to use STRUCT objects, instead of custom Java objects, in
situations where you do not know the actual SQL type. For example, your Java
application might be a tool to manipulate arbitrary object data within the database, as
opposed to being an end-user application. You can select data from the database into
STRUCT objects and create STRUCT objects for inserting data into the database.
STRUCT objects completely preserve data, because they maintain the data in SQL
format. Using STRUCT objects is more efficient and more precise in situations where
you do not need the information in an application specific form.

This section covers the following topics:

■ Retrieving STRUCT Objects and Attributes

■ Creating STRUCT Objects

■ Binding STRUCT Objects into Statements

■ STRUCT Automatic Attribute Buffering

STRUCT Class Functionality
This section discusses standard versus Oracle-specific features of the
oracle.sql.STRUCT class, introduces STRUCT descriptors, and lists methods of the
STRUCT class to give an overview of its functionality.

Standard java.sql.Struct Methods
If your code must comply with standard JDBC 2.0, then use a java.sql.Struct
instance and use the following standard methods:

■ getAttributes(map)

This method retrieves the values of the attributes, using entries in the specified
type map to determine the Java classes to use in materializing any attribute that is
a structured object type. The Java types for other attribute values would be the
same as for a getObject call on data of the underlying SQL type.

Note: When you use the SQLData interface, you must use a Java
type map to specify your SQL-Java mapping, unless weakly typed
java.sql.Struct objects will suffice.

Using the Default STRUCT Class for Oracle Objects

Working with Oracle Object Types 13-3

■ getAttributes

This method is the same as the preceding getAttributes(map) method, except
it uses the default type map for the connection.

■ getSQLTypeName

This method returns a Java String that represents the fully qualified name of the
Oracle object type that this Struct represents.

Retrieving STRUCT Objects and Attributes
This section discusses how to retrieve and manipulate Oracle objects and their
attributes, using either Oracle-specific features or JDBC 2.0 standard features.

Retrieving an Oracle Object as a java.sql.Struct Object
Alternatively, in the preceding example, you can use standard JDBC functionality,
such as getObject, to retrieve an Oracle object from the database as an instance of
java.sql.Struct. Because getObject returns a java.lang.Object, you must
cast the output of the method to Struct. For example:

ResultSet rs= stmt.executeQuery("SELECT * FROM struct_table");
java.sql.Struct jdbcStruct = (java.sql.Struct)rs.getObject(1);

Retrieving Attributes as oracle.sql Types
If you want to retrieve Oracle object attributes from a STRUCT or Struct instance as
oracle.sql types, then use the getOracleAttributes method of the
oracle.sql.STRUCT class, as follows:

oracle.sql.Datum[] attrs = oracleSTRUCT.getOracleAttributes();

or:

oracle.sql.Datum[] attrs = ((oracle.sql.STRUCT)jdbcStruct).getOracleAttributes();

Retrieving Attributes as Standard Java Types
If you want to retrieve Oracle object attributes as standard Java types from a STRUCT
or Struct instance, use the standard getAttributes method:

Object[] attrs = jdbcStruct.getAttributes();

Note: The JDBC driver seamlessly handles embedded objects, that
is, STRUCT objects that are attributes of STRUCT objects, in the same
way that it typically handles objects. When the JDBC driver
retrieves an attribute that is an object, it follows the same rules of
conversion by using the type map, if it is available, or by using
default mapping.

Using the Default STRUCT Class for Oracle Objects

13-4 Oracle Database JDBC Developer's Guide

Creating STRUCT Objects
For information about creating STRUCT objects, refer to "Overview of Class
oracle.sql.STRUCT" on page 4-6.

Binding STRUCT Objects into Statements
To bind an oracle.sql.STRUCT object to a prepared statement or callable
statement, you can either use the standard setObject method (specifying the type
code), or cast the statement object to an Oracle statement type and use the Oracle
extension setOracleObject method. For example:

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
STRUCT mySTRUCT = new STRUCT (...);
ps.setObject(1, mySTRUCT, Types.STRUCT);

or:

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
STRUCT mySTRUCT = new STRUCT (...);
((OraclePreparedStatement)ps).setOracleObject(1, mySTRUCT);

STRUCT Automatic Attribute Buffering
Oracle JDBC driver furnishes public methods to enable and disable buffering of
STRUCT attributes.

The following methods are included with the oracle.sql.STRUCT class:

■ public void setAutoBuffering(boolean enable)

■ public boolean getAutoBuffering()

The setAutoBuffering(boolean) method enables or disables auto-buffering. The
getAutoBuffering method returns the current auto-buffering mode. By default,
auto-buffering is disabled.

It is advisable to enable auto-buffering in a JDBC application when the STRUCT
attributes will be accessed more than once by the getAttributes and getArray
methods, presuming the ARRAY data is able to fit into the Java Virtual Machine (JVM)
memory without overflow.

When you enable auto-buffering, the oracle.sql.STRUCT object keeps a local copy
of all the converted attributes. This data is retained so that subsequent access of this
information does not require going through the data format conversion process.

Note: Oracle JDBC drivers cache array and structure descriptors.
This provides enormous performance benefits. However, it means
that if you change the underlying type definition of a structure type
in the database, the cached descriptor for that structure type will
become stale and your application will receive a SQLException
exception.

See Also: "ARRAY Automatic Element Buffering" on page 16-4

Note: Buffering the converted attributes may cause the JDBC
application to consume a significant amount of memory.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 13-5

Creating and Using Custom Object Classes for Oracle Objects
If you want to create custom object classes for your Oracle objects, then you must
define entries in the type map that specify the custom object classes that the drivers
will instantiate for the corresponding Oracle objects.

You must also provide a way to create and populate instances of the custom object
class from the Oracle object and its attribute data. The driver must be able to read from
a custom object class and write to it. In addition, the custom object class can provide
getXXX and setXXX methods corresponding to the attributes of the Oracle object,
although this is not necessary. To create and populate the custom classes and provide
these read/write capabilities, you can choose between the following interfaces:

■ The JDBC standard SQLData interface

■ The ORAData and ORADataFactory interfaces provided by Oracle

The custom object class you create must implement one of these interfaces. The
ORAData interface can also be used to implement the custom reference class
corresponding to the custom object class. However, if you are using the SQLData
interface, then you can use only weak reference types in Java, such as java.sql.Ref
or oracle.sql.REF. The SQLData interface is for mapping SQL objects only.

As an example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Name, which is of the CHAR type and EmpNum, which is
of the NUMBER type. You use the type map to specify that the EMPLOYEE object should
map to a custom object class that you call JEmployee. You can implement either the
SQLData or ORAData interface in the JEmployee class.

You can create custom object classes yourself, but the most convenient way to create
them is to use the Oracle JPublisher utility to create them for you. JPublisher supports
the standard SQLData interface as well as the Oracle-specific ORAData interface, and
is able to generate classes that implement either one.

This section covers the following topics:

■ Relative Advantages of ORAData versus SQLData

■ Understanding Type Maps for SQLData Implementations

■ Creating Type Map and Defining Mappings for a SQLData Implementation

■ Reading and Writing Data with a SQLData Implementation

■ Understanding the ORAData Interface

■ Reading and Writing Data with a ORAData Implementation

■ Additional Uses for ORAData

Relative Advantages of ORAData versus SQLData
In deciding which of the two interface implementations to use, you need to consider
the advantages of ORAData and SQLData.

The SQLData interface is for mapping SQL objects only. The ORAData interface is
more flexible, enabling you to map SQL objects as well as any other SQL type for
which you want to customize processing. You can create a ORAData object from any

See Also: "Using JPublisher to Create Custom Object Classes" on
page 13-27 and "Object-Type Inheritance" on page 13-15

Creating and Using Custom Object Classes for Oracle Objects

13-6 Oracle Database JDBC Developer's Guide

data type found in Oracle Database. This could be useful, for example, for serializing
RAW data in Java.

Advantages of ORAData
The advantages of ORAData are:

■ It does not require an entry in the type map for the Oracle object.

■ It has awareness of Oracle extensions.

■ You can construct an ORAData from an oracle.sql.STRUCT. This is more
efficient because it avoids unnecessary conversions to native Java types.

■ You can obtain the corresponding Datum object from the ORAData object, using
the toDatum method.

■ It provides better performance. ORAData works directly with Datum types, which
is the internal format used by the driver to hold Oracle objects.

Advantages of SQLData
SQLData is a JDBC standard that makes your code portable.

Understanding Type Maps for SQLData Implementations
If you use the SQLData interface in a custom object class, then you must create type
map entries that specify the custom object class to use in mapping the Oracle object
type to Java. You can either use the default type map of the connection object or a type
map that you specify when you retrieve the data from the result set. The getObject
method of the ResultSet interface has a signature that lets you specify a type map.
You can use either of the following:

rs.getObject(int columnIndex);

rs.getObject(int columnIndex, Map map);

When using a SQLData implementation, if you do not include a type map entry, then
the object will map to the oracle.sql.STRUCT class by default. ORAData
implementations, by contrast, have their own mapping functionality so that a type
map entry is not required. When using an ORAData implementation, use the Oracle
getORAData method instead of the standard getObject method.

The type map relates a Java class to the SQL type name of an Oracle object. This
one-to-one mapping is stored in a hash table as a keyword-value pair. When you read
data from an Oracle object, the JDBC driver considers the type map to determine
which Java class to use to materialize the data from the Oracle object type. When you
write data to an Oracle object, the JDBC driver gets the SQL type name from the Java
class by calling the getSQLTypeName method of the SQLData interface. The actual
conversion between SQL and Java is performed by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either Java
native types or Oracle native types to store attributes.

See Also: "Creating and Using Custom Object Classes for Oracle
Objects" on page 13-5

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 13-7

Creating Type Map and Defining Mappings for a SQLData Implementation
When using a SQLData implementation, the JDBC applications programmer is
responsible for providing a type map, which must be an instance of a class that
implements the standard java.util.Map interface.

You have the option of creating your own class to accomplish this, but the standard
java.util.Hashtable class meets the requirement.

Hashtable and other classes used for type maps implement a put method that takes
keyword-value pairs as input, where each key is a fully qualified SQL type name and
the corresponding value is an instance of a specified Java class.

A type map is associated with a connection instance. The standard
java.sql.Connection interface and the Oracle-specific
oracle.jdbc.OracleConnection interface include a getTypeMap method. Both
return a Map object.

This section covers the following topics:

■ Adding Entries to an Existing Type Map

■ Creating a New Type Map

■ Materializing Object Types not Specified in the Type Map

Adding Entries to an Existing Type Map
When a connection instance is first established, the default type map is empty. You
must populate it.

Perform the following general steps to add entries to an existing type map:

1. Use the getTypeMap method of your OracleConnection object to return the
type map object of the connection. The getTypeMap method returns a
java.util.Map object. For example, presuming an OracleConnection
instance oraconn:

java.util.Map myMap = oraconn.getTypeMap();

2. Use the put method of the type map to add map entries. The put method takes
two arguments: a SQL type name string and an instance of a specified Java class
that you want to map to.

myMap.put(sqlTypeName, classObject);

The sqlTypeName is a string that represents the fully qualified name of the SQL
type in the database. The classObject is the Java class object to which you want
to map the SQL type. Get the class object with the Class.forName method, as
follows:

myMap.put(sqlTypeName, Class.forName(className));

For example, if you have a PERSON SQL data type defined in the CORPORATE
database schema, then map it to a Person Java class defined as Person with this
statement:

Note: If the type map in the OracleConnection instance has
not been initialized, then the first call to getTypeMap returns an
empty map.

Creating and Using Custom Object Classes for Oracle Objects

13-8 Oracle Database JDBC Developer's Guide

myMap.put("CORPORATE.PERSON", Class.forName("Person"));
oraconn.setTypeMap(newMap);

The map has an entry that maps the PERSON SQL data type in the CORPORATE
database to the Person Java class.

Creating a New Type Map
Perform the following general steps to create a new type map. This example uses an
instance of java.util.Hashtable, which extends java.util.Dictionary and
implements java.util.Map.

1. Create a new type map object.

Hashtable newMap = new Hashtable();

2. Use the put method of the type map object to add entries to the map. For
example, if you have an EMPLOYEE SQL type defined in the CORPORATE database,
then you can map it to an Employee class object defined by Employee.java, as
follows:

newMap.put("CORPORATE.EMPLOYEE", class.forName("Employee"));

3. When you finish adding entries to the map, you must use the setTypeMap
method of the OracleConnection object to overwrite the existing type map of
the connection. For example:

oraconn.setTypeMap(newMap);

In this example, the setTypeMap method overwrites the original map of the
oraconn connection object with newMap.

Materializing Object Types not Specified in the Type Map
If you do not provide a type map with an appropriate entry when using a getObject
call, then the JDBC driver will materialize an Oracle object as an instance of the
oracle.sql.STRUCT class. If the Oracle object type contains embedded objects and
they are not present in the type map, then the driver will materialize the embedded
objects as instances of oracle.sql.STRUCT as well. If the embedded objects are
present in the type map, then a call to the getAttributes method will return
embedded objects as instances of the specified Java classes from the type map.

Reading and Writing Data with a SQLData Implementation
This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLData.

Note: SQL type names in the type map must be all uppercase,
because that is how Oracle Database stores SQL names.

Note: The default type map of a connection instance is used when
mapping is required but no map name is specified, such as for a
result set getObject call that does not specify the map as input.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 13-9

Reading SQLData Objects from a Result Set
The following text summarizes the steps to read data from an Oracle object into your
Java application when you choose the SQLData implementation for your custom
object class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object stmt.

1. Query the database to read the Oracle object into a JDBC result set.

ResultSet rs = stmt.executeQuery("SELECT emp_col FROM personnel");

The PERSONNEL table contains one column, EMP_COL, of SQL type EMP_OBJECT.
This SQL type is defined in the type map to map to the Java class Employee.

2. Use the getObject method of your result set to populate an instance of your
custom object class with data from one row of the result set. The getObject
method returns the user-defined SQLData object because the type map contains
an entry for Employee.

if (rs.next())
 Employee emp = (Employee)rs.getObject(1);

Note that if the type map did not have an entry for the object, then getObject
would return an oracle.sql.STRUCT object. Cast the output to type STRUCT,
because the getObject method signature returns the generic
java.lang.Object type.

if (rs.next())
 STRUCT empstruct = (STRUCT)rs.getObject(1);

The getObject method calls readSQL, which, in turn, calls readXXX from the
SQLData interface.

3. If you have get methods in your custom object class, then use them to read data
from your object attributes. For example, if EMPLOYEE has the attributes EmpName
of type CHAR and EmpNum of type NUMBER, then provide a getEmpName method
that returns a Java String and a getEmpNum method that returns an int value.
Then call them in your Java application, as follows:

String empname = emp.getEmpName();
int empnumber = emp.getEmpNum();

Retrieving SQLData Objects from a Callable Statement OUT Parameter
Consider you have a CallableStatement instance, cs, that calls a PL/SQL function
GETEMPLOYEE. The program passes an employee number to the function. The
function returns the corresponding Employee object. To retrieve this object you do the
following:

1. Prepare a CallableStatement to call the GETEMPLOYEE function, as follows:

CallableStatement ocs = conn.prepareCall("{ ? = call GETEMPLOYEE(?) }");

Note: If you want to avoid using the defined type map, then use
the getSTRUCT method. This method always returns a STRUCT
object, even if there is a mapping entry in the type map.

Creating and Using Custom Object Classes for Oracle Objects

13-10 Oracle Database JDBC Developer's Guide

2. Declare the empnumber as the input parameter to GETEMPLOYEE. Register the
SQLData object as the OUT parameter, with the type code
OracleTypes.STRUCT. Then, run the statement. This can be done as follows:

cs.setInt(2, empnumber);
cs.registerOutParameter(1, OracleTypes.STRUCT, "EMP_OBJECT");
cs.execute();

3. Use the getObject method to retrieve the employee object.

Employee emp = (Employee)cs.getObject(1);

If there is no type map entry, then getObject would return a
java.sql.Struct object.

Struct emp = cs.getObject(1);

Passing SQLData Objects to a Callable Statement as an IN Parameter
Suppose you have a PL/SQL function addEmployee(?) that takes an Employee
object as an IN parameter and adds it to the PERSONNEL table. In this example, emp is
a valid Employee object.

1. Prepare an CallableStatement to call the addEmployee(?) function.

CallableStatement cs =
 conn.prepareCall("{ call addEmployee(?) }");

2. Use setObject to pass the emp object as an IN parameter to the callable
statement. Then, call the statement.

cs.setObject(1, emp);
cs.execute();

Writing Data to an Oracle Object Using a SQLData Implementation
The following text describes the steps in writing data to an Oracle object from your
Java application when you choose the SQLData implementation for your custom
object class.

This description assumes you have already defined the Oracle object type, created the
corresponding Java class, and updated the type map to define the mapping between
the Oracle object and the Java class.

1. If you have set methods in your custom object class, then use them to write data
from Java variables in your application to attributes of your Java data type object.

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

2. Prepare a statement that updates an Oracle object in a row of a database table, as
appropriate, using the data provided in your Java data type object.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO PERSONNEL VALUES (?)");

3. Use the setObject method of the prepared statement to bind your Java data type
object to the prepared statement.

pstmt.setObject(1, emp);

4. Run the statement, which updates the database.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 13-11

pstmt.executeUpdate();

Understanding the ORAData Interface
One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the
oracle.sql.ORAData and oracle.sql.ORADataFactory interfaces. The
ORAData and ORADataFactory interfaces are supplied by Oracle and are not a part
of the JDBC standard.

Understanding ORAData Features
The ORAData interface has the following advantages:

■ It supports Oracle extensions to the standard JDBC types.

■ It does not require a type map to specify the names of the Java custom classes you
want to create.

■ It provides better performance. ORAData works directly with Datum types, the
internal format the driver uses to hold Oracle objects.

The ORAData and ORADataFactory interfaces do the following:

■ The toDatum method of the ORAData class transforms the data into an
oracle.sql.* representation.

■ ORADataFactory specifies a create method equivalent to a constructor for
your custom object class. It creates and returns an ORAData instance. The JDBC
driver uses the create method to return an instance of the custom object class to
your Java application or applet. It takes as input an oracle.sql.Datum object
and an integer indicating the corresponding SQL type code as specified in the
OracleTypes class.

ORAData and ORADataFactory have the following definitions:

public interface ORAData
{
 Datum toDatum (OracleConnection conn) throws SQLException;
}

public interface ORADataFactory
{
 ORAData create (Datum d, int sql_Type_Code) throws SQLException;
}

Where conn represents the Connection object, d represents an object of type
oracle.sql.Datum and sql_Type_Code represents the SQL type code of the
Datum object.

Retrieving and Inserting Object Data
The JDBC drivers provide the following methods to retrieve and insert object data as
instances of ORAData.

You can retrieve the object data in one of the following ways:

Note: The JPublisher utility supports the generation of classes that
implement the ORAData and ORADataFactory interfaces.

Creating and Using Custom Object Classes for Oracle Objects

13-12 Oracle Database JDBC Developer's Guide

■ Use the following getORAData method of the Oracle-specific OracleResultSet
class:

ors.getORAData (int col_index, ORADataFactory factory);

This method takes as input the column index of the data in your result set and a
ORADataFactory instance. For example, you can implement a getORAFactory
method in your custom object class to produce the ORADataFactory instance to
input to getORAData. The type map is not required when using Java classes that
implement ORAData.

■ Use the standard getObject(index, map) method specified by the
ResultSet interface to retrieve data as instances of ORAData. In this case, you
must have an entry in the type map that identifies the factory class to be used for
the given object type and its corresponding SQL type name.

You can insert object data in one of the following ways:

■ Use the following setORAData method of the Oracle-specific
OraclePreparedStatement class:

ops.setORAData (int bind_index, ORAData custom_obj);

This method takes as input the parameter index of the bind variable and the name
of the object containing the variable.

■ Use the standard setObject method specified by the PreparedStatement
interface. You can also use this method, in its different forms, to insert ORAData
instances without requiring a type map.

The following sections describe the getORAData and setORAData methods.

To continue the example of an Oracle object EMPLOYEE, you might have something
like the following in your Java application:

ORAData datum = ors.getORAData(1, Employee.getORAFactory());

In this example, ors is an Oracle result set, getORAData is a method in the
OracleResultSet class used to retrieve a ORAData object, and the EMPLOYEE is in
column 1 of the result set. The static Employee.getORAFactory method will
return a ORADataFactory to the JDBC driver. The JDBC driver will call create()
from this object, returning to your Java application an instance of the Employee class
populated with data from the result set.

Reading and Writing Data with a ORAData Implementation
This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements ORAData.

Note:

■ ORAData and ORADataFactory are defined as separate
interfaces so that different Java classes can implement them if
you wish.

■ To use the ORAData interface, your custom object classes must
import oracle.sql.*.

Creating and Using Custom Object Classes for Oracle Objects

Working with Oracle Object Types 13-13

Reading Data from an Oracle Object Using a ORAData Implementation
The following text summarizes the steps in reading data from an Oracle object into
your Java application. These steps apply whether you implement ORAData manually
or use JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class or had JPublisher create it for you, and defined a
statement object stmt.

1. Query the database to read the Oracle object into a result set, casting it to an
Oracle result set.

OracleResultSet ors = (OracleResultSet)stmt.executeQuery
 ("SELECT Emp_col FROM PERSONNEL");

Where PERSONNEL is a one-column table. The column name is Emp_col of type
Employee_object.

2. Use the getORAData method of your Oracle result set to populate an instance of
your custom object class with data from one row of the result set. The
getORAData method returns an oracle.sql.ORAData object, which you can
cast to your specific custom object class.

if (ors.next())
 Employee emp = (Employee)ors.getORAData(1, Employee.getORAFactory());

or:

if (ors.next())
 ORAData datum = ors.getORAData(1, Employee.getORAFactory());

This example assumes that Employee is the name of your custom object class and
ors is the name of your OracleResultSet object.

In case you do not want to use getORAData, the JDBC drivers let you use the
getObject method of a standard JDBC ResultSet to retrieve ORAData data.
However, you must have an entry in the type map that identifies the factory class
to be used for the given object type and its corresponding SQL type name.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Employee, which will implement ORAData. The
corresponding Factory class is EmployeeFactory, which will implement
ORADataFactory.

Use this statement to declare the EmployeeFactory entry for your type map:

map.put ("EMPLOYEE", Class.forName ("EmployeeFactory"));

Then use the form of getObject where you specify the map object:

Employee emp = (Employee) rs.getObject (1, map);

If the default type map of the connection already has an entry that identifies the
factory class to be used for the given object type and its corresponding SQL type
name, then you can use this form of getObject:

Employee emp = (Employee) rs.getObject (1);

3. If you have get methods in your custom object class, then use them to read data
from your object attributes into Java variables in your application. For example, if
EMPLOYEE has EmpName of type CHAR and EmpNum of type NUMBER, provide a

Creating and Using Custom Object Classes for Oracle Objects

13-14 Oracle Database JDBC Developer's Guide

getEmpName method that returns a Java String and a getEmpNum method that
returns an integer. Then call them in your Java application as follows:

String empname = emp.getEmpName();
int empnumber = emp.getEmpNum();

Writing Data to an Oracle Object Using a ORAData Implementation
The following text summarizes the steps in writing data to an Oracle object from your
Java application. These steps apply whether you implement ORAData manually or use
JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type and created the
corresponding custom object class.

1. If you have set methods in your custom object class, then use them to write data
from Java variables in your application to attributes of your Java data type object.

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java data type
object.

OraclePreparedStatement opstmt = conn.prepareStatement
 ("UPDATE PERSONNEL SET Employee = ? WHERE Employee.EmpNum = 28959);

This assumes conn is your Connection object.

3. Use the setORAData method of the Oracle prepared statement to bind your Java
data type object to the prepared statement.

opstmt.setORAData(1, emp);

The setORAData method calls the toDatum method of the custom object class
instance to retrieve an oracle.sql.STRUCT object that can be written to the
database.

In this step you could also use the setObject method to bind the Java data type.
For example:

opstmt.setObject(1,emp);

Note: Alternatively, you can fetch data using a callable statement
object. The OracleCallableStatement class also has a
getORAData method.

Note: The type map is not used when you are performing
database INSERT and UPDATE operations.

Note: You can use your Java data type objects as either IN or OUT
bind variables.

Object-Type Inheritance

Working with Oracle Object Types 13-15

Additional Uses for ORAData
The ORAData interface offers far more flexibility than the SQLData interface. The
SQLData interface is designed to let you customize the mapping of only Oracle object
types to Java types of your choice. Implementing the SQLData interface lets the JDBC
driver populate fields of a custom Java class instance from the original SQL object
data, and the reverse, after performing the appropriate conversions between Java and
SQL types.

The ORAData interface goes beyond supporting the customization of Oracle object
types to Java types. It lets you provide a mapping between Java object types and any
SQL type supported by the oracle.sql package.

It may be useful to provide custom Java classes to wrap oracle.sql.* types and
perhaps implement customized conversions or functionality as well. The following are
some possible scenarios:

■ Performing encryption and decryption or validation of data

■ Performing logging of values that have been read or are being written

■ Parsing character columns, such as character fields containing URL information,
into smaller components

■ Mapping character strings into numeric constants

■ Making data into more desirable Java formats, such as mapping a DATE field to
java.util.Date format

■ Customizing data representation, for example, data in a table column is in feet but
you want it represented in meters after it is selected

■ Serializing and deserializing Java objects

For example, use ORAData to store instances of Java objects that do not correspond to
a particular SQL object type in the database in columns of SQL type RAW. The create
method in ORADataFactory would have to implement a conversion from an object
of type oracle.sql.RAW to the desired Java object. The toDatum method in
ORAData would have to implement a conversion from the Java object to an
oracle.sql.RAW object. This can be done, for example, by using Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an oracle.sql.RAW and calls the create method of ORADataFactory to
convert the oracle.sql.RAW object to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a column
of type RAW to store it. The driver transparently calls the ORAData.toDatum method
to convert the Java object to an oracle.sql.RAW object. This object is then stored in a
column of type RAW in the database.

Support for the ORAData interfaces is also highly efficient because the conversions are
designed to work using oracle.sql.* formats, which happen to be the internal
formats used by the JDBC drivers. Moreover, the type map, which is necessary for the
SQLData interface, is not required when using Java classes that implement ORAData.

Object-Type Inheritance
Object-type inheritance allows a new object type to be created by extending another
object type. The new object type is then a subtype of the object type from which it

See Also: "Understanding the ORAData Interface" on page 13-11

Object-Type Inheritance

13-16 Oracle Database JDBC Developer's Guide

extends. The subtype automatically inherits all the attributes and methods defined in
the supertype. The subtype can add attributes and methods and overload or override
methods inherited from the supertype.

Object-type inheritance introduces substitutability. Substitutability is the ability of a
slot declared to hold a value of type T in addition to any subtype of type T. Oracle
JDBC drivers handle substitutability transparently.

A database object is returned with its most specific type without losing information.
For example, if the STUDENT_T object is stored in a PERSON_T slot, Oracle JDBC
driver returns a Java object that represents the STUDENT_T object.

This section covers the following topics:

■ Creating Subtypes

■ Implementing Customized Classes for Subtypes

■ Retrieving Subtype Objects

■ Creating Subtype Objects

■ Sending Subtype Objects

■ Accessing Subtype Data Fields

■ Inheritance Metadata Methods

Creating Subtypes
Create custom object classes if you want to have Java classes that explicitly correspond
to the Oracle object types. If you have a hierarchy of object types, you may want a
corresponding hierarchy of Java classes.

The most common way to create a database subtype in JDBC is to run a SQL CREATE
TYPE command using the execute method of the java.sql.Statement interface.
For example, you want to create a type inheritance hierarchy as depicted in the
following diagram:

The JDBC code for this can be as follows:

Statement s = conn.createStatement();
s.execute ("CREATE TYPE Person_T (SSN NUMBER, name VARCHAR2(30),
 address VARCHAR2(255))");
s.execute ("CREATE TYPE Student_T UNDER Person_t (deptid NUMBER,
 major VARCHAR2(100))");
s.execute ("CREATE TYPE PartTimeStudent_t UNDER Student_t (numHours NUMBER)");

In the following code, the foo member procedure in type ST is overloaded and the
member procedure print overwrites the copy it inherits from type T.

PERSON_T

PARTTIMESTUDENT_T

STUDENT_T

Object-Type Inheritance

Working with Oracle Object Types 13-17

CREATE TYPE T AS OBJECT (...,
 MEMBER PROCEDURE foo(x NUMBER),
 MEMBER PROCEDURE Print(),
 ...
 NOT FINAL;

CREATE TYPE ST UNDER T (...,
 MEMBER PROCEDURE foo(x DATE), <-- overload "foo"
 OVERRIDING MEMBER PROCEDURE Print(), <-- override "print"
 STATIC FUNCTION bar(...) ...
 ...
);

Once the subtypes have been created, they can be used as both columns of a base table
as well as attributes of a object type.

Implementing Customized Classes for Subtypes
In most cases, a customized Java class represents a database object type. When you
create a customized Java class for a subtype, the Java class can either mirror the
database object type hierarchy or not.

You can use either the ORAData or SQLData solution in creating classes to map to the
hierarchy of object types.

This section covers the following topics:

■ Use of ORAData for Type Inheritance Hierarchy

■ Use of SQLData for Type Inheritance Hierarchy

■ JPublisher Utility

Use of ORAData for Type Inheritance Hierarchy
Oracle recommends customized mappings, where Java classes implement the
oracle.sql.ORAData interface. ORAData mapping requires the JDBC application to
implement the ORAData and ORADataFactory interfaces. The class implementing
the ORADataFactory interface contains a factory method that produces objects. Each
object represents a database object.

The hierarchy of the class implementing the ORAData interface can mirror the
database object type hierarchy. For example, the Java classes mapping to PERSON_T
and STUDENT_T are as follows:

Person.java using ORAData
Code for the Person.java class which implements the ORAData and
ORADataFactory interfaces:

class Person implements ORAData, ORADataFactory
{
 static final Person _personFactory = new Person();

 public NUMBER ssn;
 public CHAR name;
 public CHAR address;

 public static ORADataFactory getORADataFactory()
 {

See Also: Oracle Database Object-Relational Developer's Guide

Object-Type Inheritance

13-18 Oracle Database JDBC Developer's Guide

 return _personFactory;
 }

 public Person () {}

 public Person(NUMBER ssn, CHAR name, CHAR address)
 {
 this.ssn = ssn;
 this.name = name;
 this.address = address;
 }

 public Datum toDatum(OracleConnection c) throws SQLException
 {
 StructDescriptor sd =
 StructDescriptor.createDescriptor("SCOTT.PERSON_T", c);
 Object [] attributes = { ssn, name, address };
 return new STRUCT(sd, c, attributes);
 }

 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Object [] attributes = ((STRUCT) d).getOracleAttributes();
 return new Person((NUMBER) attributes[0],
 (CHAR) attributes[1],
 (CHAR) attributes[2]);
 }
}

Student.java extending Person.java
Code for the Student.java class, which extends the Person.java class:

class Student extends Person
{
 static final Student _studentFactory = new Student ();

 public NUMBER deptid;
 public CHAR major;

 public static ORADataFactory getORADataFactory()
 {
 return _studentFactory;
 }

 public Student () {}

 public Student (NUMBER ssn, CHAR name, CHAR address,
 NUMBER deptid, CHAR major)
 {
 super (ssn, name, address);
 this.deptid = deptid;
 this.major = major;
 }

 public Datum toDatum(OracleConnection c) throws SQLException
 {
 StructDescriptor sd =
 StructDescriptor.createDescriptor("SCOTT.STUDENT_T", c);

Object-Type Inheritance

Working with Oracle Object Types 13-19

 Object [] attributes = { ssn, name, address, deptid, major };
 return new STRUCT(sd, c, attributes);
 }

 public CustomDatum create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Object [] attributes = ((STRUCT) d).getOracleAttributes();
 return new Student((NUMBER) attributes[0],
 (CHAR) attributes[1],
 (CHAR) attributes[2],
 (NUMBER) attributes[3],
 (CHAR) attributes[4]);
 }
}

Customized classes that implement the ORAData interface do not have to mirror the
database object type hierarchy. For example, you could have declared the Student
class without a superclass. In this case, Student would contain fields to hold the
inherited attributes from PERSON_T as well as the attributes declared by STUDENT_T.

ORADataFactory Implementation
The JDBC application uses the factory class in querying the database to return
instances of Person or its subclasses, as in the following example:

ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 Object s = rset.getORAData (1, PersonFactory.getORADataFactory());
 ...
}

A class implementing the ORADataFactory interface should be able to produce
instances of the associated custom object type, as well as instances of any subtype, or
at least all the types you expect to support.

In the following example, the PersonFactory.getORADataFactory method
returns a factory that can handle PERSON_T, STUDENT_T, and PARTTIMESTUDENT_T
objects, by returning person, student, or parttimestudent Java instances.

class PersonFactory implements ORADataFactory
{
 static final PersonFactory _factory = new PersonFactory ();

 public static ORADataFactory getORADataFactory()
 {
 return _factory;
 }

 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 STRUCT s = (STRUCT) d;
 if (s.getSQLTypeName ().equals ("SCOTT.PERSON_T"))
 return Person.getORADataFactory ().create (d, sqlType);
 else if (s.getSQLTypeName ().equals ("SCOTT.STUDENT_T"))
 return Student.getORADataFactory ().create(d, sqlType);
 else if (s.getSQLTypeName ().equals ("SCOTT.PARTTIMESTUDENT_T"))
 return ParttimeStudent.getORADataFactory ().create(d, sqlType);
 else
 return null;

Object-Type Inheritance

13-20 Oracle Database JDBC Developer's Guide

 }
}

The following example assumes a table tabl1, such as the following:

CREATE TABLE tabl1 (idx NUMBER, person PERSON_T);
INSERT INTO tabl1 VALUES (1, PERSON_T (1000, 'Scott', '100 Oracle Parkway'));
INSERT INTO tabl1 VALUES (2, STUDENT_T (1001, 'Peter', '200 Oracle Parkway', 101,
'CS'));
INSERT INTO tabl1 VALUES (3, PARTTIMESTUDENT_T (1002, 'David', '300 Oracle
Parkway', 102, 'EE'));

Use of SQLData for Type Inheritance Hierarchy
The customized classes that implement the java.sql.SQLData interface can mirror
the database object type hierarchy. The readSQL and writeSQL methods of a
subclass typically call the corresponding superclass methods to read or write the
superclass attributes before reading or writing the subclass attributes. For example, the
Java classes mapping to PERSON_T and STUDENT_T are as follows:

Person.java using SQLData
Code for the Person.java class, which implements the SQLData interface:

import java.sql.*;

public class Person implements SQLData
{
 private String sql_type;
 public int ssn;
 public String name;
 public String address;

 public Person () {}

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 ssn = stream.readInt();
 name = stream.readString();
 address = stream.readString();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeInt (ssn);
 stream.writeString (name);
 stream.writeString (address);
 }
}

Student.java extending Student.java
Code for the Student.java class, which extends the Person.java class:

import java.sql.*;

public class Student extends Person

Object-Type Inheritance

Working with Oracle Object Types 13-21

{
 private String sql_type;
 public int deptid;
 public String major;

 public Student () { super(); }

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 super.readSQL (stream, typeName); // read supertype attributes
 sql_type = typeName;
 deptid = stream.readInt();
 major = stream.readString();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 super.writeSQL (stream); // write supertype
 // attributes
 stream.writeInt (deptid);
 stream.writeString (major);
 }
}

Although not required, it is recommended that the customized classes, which
implement the SQLData interface, mirror the database object type hierarchy. For
example, you could have declared the Student class without a superclass. In this
case, Student would contain fields to hold the inherited attributes from PERSON_T as
well as the attributes declared by STUDENT_T.

Student.java using SQLData
Code for the Student.java class, which does not extend the Person.java class,
but implements the SQLData interface directly:

import java.sql.*;

public class Student implements SQLData
{
 private String sql_type;

 public int ssn;
 public String name;
 public String address;
 public int deptid;
 public String major;

 public Student () {}

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 ssn = stream.readInt();
 name = stream.readString();
 address = stream.readString();
 deptid = stream.readInt();
 major = stream.readString();

Object-Type Inheritance

13-22 Oracle Database JDBC Developer's Guide

 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeInt (ssn);
 stream.writeString (name);
 stream.writeString (address);
 stream.writeInt (deptid);
 stream.writeString (major);
 }
}

JPublisher Utility
Even though you can manually create customized classes that implement the
SQLData, ORAData, and ORADataFactory interfaces, it is recommended that you
use Oracle JPublisher to automatically generate these classes. The customized classes
generated by Oracle JPublisher that implement the SQLData, ORAData, and
ORADataFactory interfaces, can mirror the inheritance hierarchy.

Retrieving Subtype Objects
In a typical JDBC application, a subtype object is returned as one of the following:

■ A query result

■ A PL/SQL OUT parameter

■ A type attribute

You can use either the default mapping or the SQLData mapping or the ORAData
mapping to retrieve a subtype.

Using Default Mapping
By default, a database object is returned as an instance of the oracle.sql.STRUCT
class. This instance may represent an object of either the declared type or subtype of
the declared type. If the STRUCT class represents a subtype object in the database, then
it contains the attributes of its supertype as well as those defined in the subtype.

Oracle JDBC driver returns database objects in their most specific type. The JDBC
application can use the getSQLTypeName method of the STRUCT class to determine
the SQL type of the STRUCT object. The following code shows this:

// tab1.person column can store PERSON_T, STUDENT_T and PARTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getObject(1);
 if (s != null)
 System.out.println (s.getSQLTypeName()); // print out the type name which
 // may be SCOTT.PERSON_T, SCOTT.STUDENT_T or SCOTT.PARTTIMESTUDENT_T
}

See Also:

■ "Using JPublisher to Create Custom Object Classes" on page 13-27

■ Oracle Database JPublisher User's Guide

Object-Type Inheritance

Working with Oracle Object Types 13-23

Using SQLData Mapping
With SQLData mapping, the JDBC driver returns the database object as an instance of
the class implementing the SQLData interface.

To use SQLData mapping in retrieving database objects, do the following:

1. Implement the container classes that implement the SQLData interface for the
desired object types.

2. Populate the connection type map with entries that specify what custom Java type
corresponds to each Oracle object type.

3. Use the getObject method to access the SQL object values.

The JDBC driver checks the type map for an entry match. If one exists, then the
driver returns the database object as an instance of the class implementing the
SQLData interface.

The following code shows the whole SQLData customized mapping process:

// The JDBC application developer implements Person.java for PERSON_T,
// Student.java for STUDENT_T
// and ParttimeStudent.java for PARTTIMESTUDEN_T.

Connection conn = ...; // make a JDBC connection

// obtains the connection typemap
java.util.Map map = conn.getTypeMap ();

// populate the type map
map.put ("SCOTT.PERSON_T", Class.forName ("Person"));
map.put ("SCOTT.STUDENT_T", Class.forName ("Student"));
map.put ("SCOTT.PARTTIMESTUDENT_T", Class.forName ("ParttimeStudent"));

// tab1.person column can store PERSON_T, STUDENT_T and PARTTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 // "s" is instance of Person, Student or ParttimeStudent
 Object s = rset.getObject(1);

 if (s != null)
 {
 if (s instanceof Person)
 System.out.println ("This is a Person");
 else if (s instanceof Student)
 System.out.println ("This is a Student");
 else if (s instanceof ParttimeStudent)
 System.out.pritnln ("This is a PartimeStudent");
 else
 System.out.println ("Unknown type");
 }
}

The JDBC drivers check the connection type map for each call to the following:

■ getObject method of the java.sql.ResultSet and
java.sql.CallableStatement interfaces

■ getAttribute method of the java.sql.Struct interface

■ getArray method of the java.sql.Array interface

Object-Type Inheritance

13-24 Oracle Database JDBC Developer's Guide

■ getValue method of the oracle.sql.REF interface

Using ORAData Mapping
With ORAData mapping, the JDBC driver returns the database object as an instance of
the class implementing the ORAData interface.

Oracle JDBC driver needs to be informed of what Java class is mapped to the Oracle
object type. The following are the two ways to inform Oracle JDBC drivers:

■ The JDBC application uses the
getORAData(int idx, ORADataFactory f) method to access database
objects. The second parameter of the getORAData method specifies an instance of
the factory class that produces the customized class. The getORAData method is
available in the OracleResultSet and OracleCallableStatement classes.

■ The JDBC application populates the connection type map with entries that specify
what custom Java type corresponds to each Oracle object type. The getObject
method is used to access the Oracle object values.

The second approach involves the use of the standard getObject method. The
following code example demonstrates the first approach:

// tab1.person column can store both PERSON_T and STUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 Object s = rset.getORAData (1, PersonFactory.getORADataFactory());
 if (s != null)
 {
 if (s instanceof Person)
 System.out.println ("This is a Person");
 else if (s instanceof Student)
 System.out.println ("This is a Student");
 else if (s instanceof ParttimeStudent)
 System.out.pritnln ("This is a PartimeStudent");
 else
 System.out.println ("Unknown type");
 }
}

Creating Subtype Objects
There are cases where JDBC applications create database subtype objects with JDBC
drivers. These objects are sent either to the database as bind variables or are used to
exchange information within the JDBC application.

With customized mapping, the JDBC application creates either SQLData- or
ORAData-based objects, depending on the approach you choose, to represent database
subtype objects. With default mapping, the JDBC application creates STRUCT objects
to represent database subtype objects. All the data fields inherited from the supertype
as well as all the fields defined in the subtype must have values. The following code
demonstrates this:

Connection conn = ... // make a JDBC connection
StructDescriptor desc = StructDescriptor.createDescriptor
("SCOTT.PARTTIMESTUDENT", conn);
Object[] attrs = {
 new Integer(1234), "Scott", "500 Oracle Parkway", // data fields defined in
 // PERSON_T

Object-Type Inheritance

Working with Oracle Object Types 13-25

 new Integer(102), "CS", // data fields defined in
 // STUDENT_T
 new Integer(4) // data fields defined in
 // PARTTIMESTUDENT_T
};
STRUCT s = new STRUCT (desc, conn, attrs);

s is initialized with data fields inherited from PERSON_T and STUDENT_T, and data
fields defined in PARTTIMESTUDENT_T.

Sending Subtype Objects
In a typical JDBC application, a Java object that represents a database object is sent to
the databases as one of the following:

■ A data manipulation language (DML) bind variable

■ A PL/SQL IN parameter

■ An object type attribute value

The Java object can be an instance of the STRUCT class or an instance of the class
implementing either the SQLData or ORAData interface. Oracle JDBC driver will
convert the Java object into the linearized format acceptable to the database SQL
engine. Binding a subtype object is the same as binding a standard object.

Accessing Subtype Data Fields
While the logic to access subtype data fields is part of the customized class, this logic
for default mapping is defined in the JDBC application itself. The database objects are
returned as instances of the oracle.sql.STRUCT class. The JDBC application needs
to call one of the following access methods in the STRUCT class to access the data
fields:

■ Object[] getAttribute()

■ oracle.sql.Datum[] getOracleAttribute()

Subtype Data Fields from the getAttribute Method
The getAttribute method of the java.sql.Struct interface is used in JDBC 2.0
to access object data fields. This method returns a java.lang.Object array, where
each array element represents an object attribute. You can determine the individual
element type by referencing the corresponding attribute type in the JDBC conversion
matrix. For example, a SQL NUMBER attribute is converted to a
java.math.BigDecimal object. The getAttribute method returns all the data
fields defined in the supertype of the object type as well as data fields defined in the
subtype. The supertype data fields are listed first followed by the subtype data fields.

Subtype Data Fields from the getOracleAttribute Method
The getOracleAttribute method is an Oracle extension method and is more
efficient than the getAttribute method. The getOracleAttribute method
returns an oracle.sql.Datum array to hold the data fields. Each element in the
oracle.sql.Datum array represents an attribute. You can determine the individual
element type by referencing the corresponding attribute type in the Oracle conversion
matrix. For example, a SQL NUMBER attribute is converted to an
oracle.sql.NUMBER object. The getOracleAttribute method returns all the
attributes defined in the supertype of the object type, as well as attributes defined in

Object-Type Inheritance

13-26 Oracle Database JDBC Developer's Guide

the subtype. The supertype data fields are listed first followed by the subtype data
fields.

The following code shows the use of the getAttribute method:

// tab1.person column can store PERSON_T, STUDENT_T and PARTIMESTUDENT_T objects
ResultSet rset = stmt.executeQuery ("select person from tab1");
while (rset.next())
{
 oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getObject(1);
 if (s != null)
 {
 String sqlname = s.getSQLTypeName();

 Object[] attrs = s.getAttribute();

 if (sqlname.equals ("SCOTT.PERSON")
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));
 }
 else if (sqlname.equals ("SCOTT.STUDENT"))
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));
 System.out.println ("deptid="+((BigDecimal)attrs[3]).intValue());
 System.out.println ("major="+((String)attrs[4]));
 }
 else if (sqlname.equals ("SCOTT.PARTTIMESTUDENT"))
 {
 System.out.println ("ssn="+((BigDecimal)attrs[0]).intValue());
 System.out.println ("name="+((String)attrs[1]));
 System.out.println ("address="+((String)attrs[2]));
 System.out.println ("deptid="+((BigDecimal)attrs[3]).intValue());
 System.out.println ("major="+((String)attrs[4]));
 System.out.println ("numHours="+((BigDecimal)attrs[5]).intValue());
 }
 else
 throw new Exception ("Invalid type name: "+sqlname);
 }
}
rset.close ();
stmt.close ();
conn.close ();

Inheritance Metadata Methods
Oracle JDBC drivers provide a set of metadata methods to access inheritance
properties. The inheritance metadata methods are defined in the
oracle.sql.StructDescriptor and oracle.jdbc.StructMetaData classes.

The StructMetaData class provides inheritance metadata methods for subtype
attributes. The getMetaData method of the StructDescriptor class returns an
instance of StructMetaData of the type. The StructMetaData class contains the
following inheritance metadata methods:

Using JPublisher to Create Custom Object Classes

Working with Oracle Object Types 13-27

Using JPublisher to Create Custom Object Classes
A convenient way to create custom object classes, as well as other kinds of custom Java
classes, is to use the Oracle JPublisher utility. It generates a full definition for a custom
Java class, which you can instantiate to hold the data from an Oracle object.
JPublisher-generated classes include methods to convert data from SQL to Java and
from Java to SQL, as well as getter and setter methods for the object attributes.

This section covers the following topics:

■ JPublisher Functionality

■ JPublisher Type Mappings

JPublisher Functionality
You can direct JPublisher to create custom object classes that implement either the
SQLData interface or the ORAData interface, according to how you set the JPublisher
type mappings.

If you use the ORAData interface, then JPublisher will also create a custom reference
class to map to object references for the Oracle object type. If you use the SQLData
interface, then JPublisher will not produce a custom reference class. You would use
standard java.sql.Ref instances instead.

If you want additional functionality, you can subclass the custom object class and add
features as desired. When you run JPublisher, there is a command-line option for
specifying both a generated class name and the name of the subclass you will
implement. For the SQL-Java mapping to work properly, JPublisher must know the
subclass name, which is incorporated into some of the functionality of the generated
class.

JPublisher Type Mappings
JPublisher offers various choices for how to map user-defined types and their attribute
types between SQL and Java. This section lists categories of SQL types and the
mapping options available for each category.

Categories of SQL Types
JPublisher categorizes SQL types into the following groups, with corresponding
JPublisher options as specifies:

■ User-defined types (UDT)

This includes Oracle objects, references, and collections. You use the JPublisher
-usertypes option to specify the type-mapping implementation for UDTs, either
a standard SQLData implementation or an Oracle-specific ORAData
implementation.

■ Numeric types

See Also: Oracle Database JPublisher User's Guide.

Note: Hand-editing the JPublisher-generated class, instead of
subclassing it, is not recommended. If you hand-edit this class and
later have to re-run JPublisher for some reason, you would have to
re-implement your changes.

Using JPublisher to Create Custom Object Classes

13-28 Oracle Database JDBC Developer's Guide

This includes anything stored in the database as the NUMBER SQL type. You use
the JPublisher -numbertypes option to specify type-mapping for numeric types.

■ Large object (LOB) types

This includes the SQL types, BLOB and CLOB. You use the JPublisher -lobtypes
option to specify type-mapping for LOB types.

■ Built-in types

This includes anything stored in the database as a SQL type not covered by the
preceding categories. For example, CHAR, VARCHAR2, LONG, and RAW. You use the
JPublisher -builtintypes option to specify type-mapping for built-in types.

Type-Mapping Modes
JPublisher defines the following type-mapping modes, two of which apply to numeric
types only:

■ JDBC mapping (setting jdbc)

Uses standard default mappings between SQL types and Java native types. For a
custom object class, uses a SQLData implementation.

■ Oracle mapping (setting oracle)

Uses corresponding oracle.sql types to map to SQL types. For a custom object,
reference, or collection class, uses a ORAData implementation.

■ Object-JDBC mapping (setting objectjdbc)

Is an extension of the JDBC mapping. Where relevant, object-JDBC mapping uses
numeric object types from the standard java.lang package, such as
java.lang.Integer, Float, and Double, instead of primitive Java types, such
as int, float, and double. The java.lang types are nullable, while the
primitive types are not.

■ BigDecimal mapping (setting bigdecimal)

Uses java.math.BigDecimal to map to all numeric attributes. This is
appropriate if you are dealing with large numbers but do not want to map to the
oracle.sql.NUMBER class.

Mapping the Oracle object type to Java
Use the JPublisher -usertypes option to determine how JPublisher will implement
the custom Java class that corresponds to a Oracle object type:

■ A setting of -usertypes=oracle, which is the default setting, instructs
JPublisher to create a ORAData implementation for the custom object class. This
will also result in JPublisher producing a ORAData implementation for the
corresponding custom reference class.

■ A setting of -usertypes=jdbc instructs JPublisher to create a SQLData
implementation for the custom object class. No custom reference class can be
created. You must use java.sql.Ref or oracle.sql.REF for the reference
type.

Note: Using BigDecimal mapping can significantly degrade
performance.

Describing an Object Type

Working with Oracle Object Types 13-29

Mapping Attribute Types to Java
If you do not specify mappings for the attribute types of the Oracle object type, then
JPublisher uses the following defaults:

■ For numeric attribute types, the default mapping is object-JDBC.

■ For LOB attribute types, the default mapping is Oracle.

■ For built-in type attribute types, the default mapping is JDBC.

If you want alternate mappings, then use the -numbertypes, -lobtypes, and
-builtintypes options, as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself an Oracle object type, then it will be mapped according to
the -usertypes setting.

Summary of SQL Type Categories and Mapping Settings
Table 13–1 summarizes JPublisher categories for SQL types, the mapping settings
relevant for each category, and the default settings.

Describing an Object Type
Oracle JDBC includes functionality to retrieve information about a structured object
type regarding its attribute names and types. This is similar conceptually to retrieving
information from a result set about its column names and types, and in fact uses an
almost identical method.

This section covers the following topics:

■ Functionality for Getting Object Metadata

Note: You can also use JPublisher with a -usertypes=oracle
setting in creating ORAData implementations to map SQL
collection types.

The -usertypes=jdbc setting is not valid for mapping SQL
collection types. The SQLData interface is intended only for
mapping Oracle object types.

Important: Be aware that if you specify an SQLData
implementation for the custom object class and want the code to be
portable, then you must be sure to use portable mappings for the
attribute types. The defaults for numeric types and built-in types
are portable, but for LOB types you must specify
-lobtypes=jdbc.

Table 13–1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type
Category

JPublisher
Mapping Option Mapping Settings Default

UDT types -usertypes oracle, jdbc oracle

numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc

LOB types -lobtypes oracle, jdbc oracle

built-in types -builtintypes oracle, jdbc jdbc

Describing an Object Type

13-30 Oracle Database JDBC Developer's Guide

■ Steps for Retrieving Object Metadata

Functionality for Getting Object Metadata
The oracle.sql.StructDescriptor class includes functionality to retrieve
metadata about a structured object type. The StructDescriptor class has a
getMetaData method with the same functionality as the standard getMetaData
method available in result set objects. It returns a set of attribute information, such as
attribute names and types. Call this method on a StructDescriptor object to get
metadata about the Oracle object type that the StructDescriptor object describes.

The signature of the StructDescriptor class getMetaData method is the same as
the signature specified for getMetaData in the standard ResultSet interface. The
signature is as follows:

ResultSetMetaData getMetaData() throws SQLException

However, this method actually returns an instance of
oracle.jdbc.StructMetaData, a class that supports structured object metadata in
the same way that the standard java.sql.ResultSetMetaData interface specifies
support for result set metadata.

The following method is also supported by StructMetaData:

String getOracleColumnClassName(int column) throws SQLException

This method returns the fully qualified name of the oracle.sql.Datum subclass
whose instances are manufactured if the OracleResultSet class
getOracleObject method is called to retrieve the value of the specified attribute.
For example, oracle.sql.NUMBER.

To use the getOracleColumnClassName method, you must cast the
ResultSetMetaData object, which that was returned by the getMetaData method,
to StructMetaData.

Steps for Retrieving Object Metadata
Use the following steps to obtain metadata about a structured object type:

1. Create or acquire a StructDescriptor instance that describes the relevant
structured object type.

2. Call the getMetaData method on the StructDescriptor instance.

3. Call the metadata getter methods, getColumnName, getColumnType, and
getColumnTypeName, as desired.

Note: In all the preceding method signatures, column is
something of a misnomer. Where you specify a value of 4 for
column, you really refer to the fourth attribute of the object.

Note: If one of the structured object attributes is itself a structured
object, repeat steps 1 through 3.

Describing an Object Type

Working with Oracle Object Types 13-31

Example
The following method shows how to retrieve information about the attributes of a
structured object type. This includes the initial step of creating a StructDescriptor
instance.

//
// Print out the ADT's attribute names and types
//
void getAttributeInfo (Connection conn, String type_name) throws SQLException
{
 // get the type descriptor
 StructDescriptor desc = StructDescriptor.createDescriptor (type_name, conn);

 // get type metadata
 ResultSetMetaData md = desc.getMetaData ();

 // get # of attrs of this type
 int numAttrs = desc.length ();

 // temporary buffers
 String attr_name;
 int attr_type;
 String attr_typeName;

 System.out.println ("Attributes of "+type_name+" :");
 for (int i=0; i<numAttrs; i++)
 {
 attr_name = md.getColumnName (i+1);
 attr_type = md.getColumnType (i+1);
 System.out.println (" index"+(i+1)+" name="+attr_name+" type="+attr_type);

 // drill down nested object
 if (attrType == OracleTypes.STRUCT)
 {
 attr_typeName = md.getColumnTypeName (i+1);

 // recursive calls to print out nested object metadata
 getAttributeInfo (conn, attr_typeName);
 }
 }
}

Describing an Object Type

13-32 Oracle Database JDBC Developer's Guide

Working with LOBs and BFILEs 14-1

14
Working with LOBs and BFILEs

This chapter describes how to use Java Database Connectivity (JDBC) to access and
manipulate large objects (LOB) using either the data interface or the locator interface.

In previous releases, Oracle JDBC drivers required Oracle extensions to standard JDBC
types to perform many operations in the Oracle Database. JDBC 3.0 reduced the
requirement of using Oracle extensions and JDBC 4.0 nearly eliminated this limitation.
Refer to the Javasoft Javadoc for the java.sql and javax.sql packages, and to the
Oracle JDBC Javadoc for details on Oracle extensions.

This chapter contains the following sections:

■ The LOB Data Types

■ Oracle SecureFiles

■ Data Interface for LOBs

■ LOB Locator Interface

■ Working With Temporary LOBs

■ Opening Persistent LOBs with the Open and Close Methods

■ Working with BFILEs

The LOB Data Types
Prior to Oracle Database 10g, the maximum size of a LOB was 2^32 bytes. This
restriction has been removed since Oracle Database 10g, and the maximum size is
limited to the size of available physical storage.

The Oracle database supports the following four LOB data types:

■ Binary large object (BLOB)

This data type is used for unstructured binary data.

■ Character large object (CLOB)

This data type is used for character data.

■ National character large object (NCLOB)

This data type is used for national character data.

■ BFILE

See Also: Oracle Database SecureFiles and Large Objects
Developer's Guide

Oracle SecureFiles

14-2 Oracle Database JDBC Developer's Guide

This data type is used for large binary data objects stored in operating system files,
outside of database tablespaces.

BLOBs, CLOBs, and NCLOBs are stored persistently in a database tablespace and all
operations performed on these data types are under transaction control.

BFILE is an Oracle proprietary data type that provides read-only access to data located
outside the database tablespaces on tertiary storage devices, such as hard disks,
network mounted files systems, CD-ROMs, PhotoCDs, and DVDs. BFILE data is not
under transaction control and is not stored by database backups.

The PL/SQL language supports the LOB data types and the JDBC interface allows
passing IN parameters to PL/SQL procedures or functions, and retrieval of OUT
parameters or returns. PL/SQL uses value semantics for all data types including
LOBs, but reference semantics only for BFILE.

Oracle SecureFiles
Oracle Database 11g Release 1 (11.1) introduced Oracle SecureFiles, a completely new
storage for LOBs.

Following Features of Oracle SecureFiles are transparently available to JDBC programs
through the existing APIs:

■ SecureFile compression enables users to compress data to save disk space.

■ SecureFile encryption introduces a new encryption facility that allows for random
reads and writes of the encrypted data.

■ Deduplication enables Oracle database to automatically detect duplicate LOB data
and conserve space by storing only one copy of data.

■ LOB data path optimization includes logical cache above storage layer and new
caching modes.

■ High performance space management.

The setLobOptions and getLobOptions APIs are described in the PL/SQL
Packages and Types Reference, and may be accessed from JDBC through callable
statements.

Following Features of Oracle SecureFiles are implemented in the database through
updation to the existing APIs:

■ isSecureFile Method

■ Zero-Copy I/O for Oracle SecureFiles

isSecureFile Method
Starting from Oracle Database 11g Release 2 (11.2), you can check whether or not your
BLOB or CLOB data uses Oracle SecureFile storage. To achieve this, use the following
method from oracle.sql.BLOB or oracle.sql.CLOB class:

public boolean isSecureFile() throws SQLException

If this method returns true, then your data uses SecureFile storage.

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide

Data Interface for LOBs

Working with LOBs and BFILEs 14-3

Zero-Copy I/O for Oracle SecureFiles
With the release of Oracle Database 11g Release 2 (11.2) JDBC Drivers, the
performance of Oracle SecureFiles operations is greatly improved because Oracle Net
Services now uses zero-copy I/O framework for better buffer management.

Oracle Database 11g Release 2 (11.2) introduces a new connection property
oracle.net.useZeroCopyIO. This property can be used to enable or disable the
zero-copy I/O protocol. This connection property is defined as the following constant:
OracleConnection.CONNECTION_PROPERTY_THIN_NET_USE_ZERO_COPY_IO. If
you want to disable the zero-copy I/O framework, then set the value of this
connection property to false. By default, the value of this connection property is
true.

Data Interface for LOBs
This section describes the following topics:

■ Streamlined Mechanism

■ Input

■ Output

■ CallableSatement and IN OUT Parameter

■ Size Limitations

Streamlined Mechanism
The Oracle 11.2 drivers provide a streamlined mechanism for writing and reading the
entire LOB contents. This is referred to as the data interface. The data interface uses
standard JDBC methods such as getString and setBytes to read and write LOB
data. It is simpler to code and faster in many cases. Unlike the standard
java.sql.Blob, java.sql.Clob and java.sql.NClob interfaces, it does not
provide random access capability and cannot access data beyond 2147483648 elements.

Input
In Oracle Database 11g release 2 (11.2), the setBytes, setBinaryStream,
setString, setCharacterStream, and setAsciiStream methods of
PreparedStatement are extended to enhance the ability to work with BLOB, CLOB,
and NCLOB target columns.

For the JDBC Oracle Call Interface (OCI) and Thin drivers, there is no limitation on the
size of the byte array or String, and no limitation on the length specified for the
stream functions, except the limits imposed by the Java language.

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide

Note: This enhancement does not affect the BFILE data because it is
read-only.

Note: In Java, the array size is limited to positive Java int or
2147483648 elements.

Data Interface for LOBs

14-4 Oracle Database JDBC Developer's Guide

For the server-side internal driver there is currently a limitation of 4000 bytes for
operations on SQL statements, such as an INSERT statement. This limitation does not
apply for PL/SQL statements. There is a simple workaround for an INSERT statement,
where it is wrapped in a PL/SQL block in the following way:

BEGIN
 INSERT id, c INTO clob_tab VALUES(?,?);
END;

You must bear in mind the following automatic switching of the input mode for large
data:

■ There are three input modes as follows:

– Direct binding

This binding is limited in size but most efficient. It places the data for all input
columns inline in the block of data sent to the server. All data, including
multiple executions of a batch, is sent in a single network operation.

– Stream binding

This binding places data at the end. It limits batch size to one and may require
multiple round trips to complete.

– LOB binding

This binding creates a temporary LOB, copies data to the LOB, and binds the
LOB locator. The temporary LOB is automatically freed after execution. The
operation to create the temporary LOB and then to writing to the LOB requires
multiple round trips. The input of the locators may be batched.

■ For SQL statements:

– The setBytes and setBinaryStream methods use direct binding for data
less than 4001 bytes.

– The setBytes and setBinaryStream methods use stream binding for data
larger than 4000 bytes.

– In JDBC 4.0 has introduced new forms of the setAsciiStream,
setBinaryStream, and setCharacterStream methods. The form, where
the methods take a long argument as length, uses LOB binding for length
larger than 2147483648. The form, where the length is not specified, always
uses LOB binding.

– The setString, setCharacterStream, and setAsciiStream methods
use direct binding for data smaller than 32767 characters.

– The setString, setCharacterStream, and setAsciiStream methods
use stream binding for data larger than 32766 characters.

– The new form of setCharacterStream method, which takes a long
argument for length, uses LOB binding for length larger than 2147483647, in
JDBC 4.0. The form, where the length is not specified, always uses LOB
binding.

■ PL/SQL statements

– The setBytes and setBinary stream methods use direct binding for data
less than 32767 bytes.

Data Interface for LOBs

Working with LOBs and BFILEs 14-5

– The setBytes and setBinaryStream methods use LOB binding for data
larger than 32766 bytes.

– The setString, setCharacterStream, and setAsciiStream methods
use direct binding for data smaller than 32767 bytes in the database character
set.

– The setString, setCharacterStream, and setAsciiStream methods
use LOB binding for data larger than 32766 bytes in the database character set.

The automatic switching of the input mode for large data has impact on certain
programs. Previously, you used to get ORA-17157 errors for attempts to use
setString method for String values larger than 32766 characters. Now, depending
on the type of the target parameter, an error may occur while the statement is executed
or the operation may succeed.

Another impact is that the automatic switching may result in additional server-side
parsing to adapt to the change in the parameter type. This would result in a
performance effect, if the data sizes vary above and below the limit for repeated
executions of the statement. Switching to the stream modes will effect batching as
well.

Forcing conversion to LOB
The setBytesForBlob and setStringForClob methods, present in the
oracle.jdbc.OraclePreparedStatement interface, use LOB binding for any
data size.

The SetBigStringTryClob connection property of Oracle Database 10g Release 1
(10.1) is no longer used or needed.

Output
The getBytes, getBinaryStream, getString, getCharacterStream, and
getAsciiStream methods of ResultSet and CallableStatement are extended
to work with BLOB, CLOB, and BFILE columns or OUT parameters. These methods
work for any LOB of length less than 2147483648.

The data interface operates by accessing the LOB locators within the driver and is
transparent to application programming. It works with any supported version of the
database, that is, Oracle Database 9.2 and later. For database version 11.1 or later, LOB

Note: If the underlying Database is Oracle Database release 10.x,
then this data size limit is 32512 bytes, though you are working with
11g release 2 (11.2) JDBC drivers.

Note: If the underlying Database is Oracle Database release 10.x,
then this data size limit is 32512 bytes, though you are working with
11g release 2 (11.2) JDBC drivers.

Note: The getString and getNString methods cannot be used
for retrieving BLOB column values. For more information about
getNString method, refer to New Methods for National Character
Set Type Data in JDK 1.6 on page 19-4.

LOB Locator Interface

14-6 Oracle Database JDBC Developer's Guide

prefetching may be used to reduce or eliminate any additional database round trips
required. For more information, refer to LOB prefetching on page 14-7.

BLOB or CLOB data can be read and written using the same streaming mechanism as
for LONG RAW and LONG data. BFILE data can be read using the same streaming
mechanism. To read, use defineColumnType(nn, Types.LONGVARBINARY) or
defineColumnType(nn,Types.LONGVARCHAR) method on the column. This
produces a direct stream on the data as if it were a LONG RAW or LONG column. This
technique is limited to Oracle Database 10g release 1 (10.1) and later.

CallableSatement and IN OUT Parameter
It is a PL/SQL requirement that the Java types used as input and output for an IN
OUT parameter must be the same. The automatic switching of types done by the
extensions described in this chapter may cause problems with this.

Consider that you have an IN OUT CLOB parameter of a stored procedure and you
wish to use setString method for setting the value for this parameter. For any IN
and OUT parameter, the binds must be of the same type. The automatic switching of
the input mode will cause problems unless you are sure of the data sizes. For example,
if it is known that neither the input nor output data will ever be larger than 32766
bytes, then you could use setString method for the input parameter and register the
OUT parameter as Types.VARCHAR and use getString method for the output
parameter.

A better solution is to change the stored procedure to have separate IN and OUT
parameters. That is, if you have:

CREATE PROCEDURE clob_proc(c IN OUT CLOB);

then, change it to:

CREATE PROCEDURE clob_proc(c_in IN CLOB, c_out OUT CLOB);

Another workaround is to use a container block to make the call. The clob_proc
procedure can be wrapped with a Java String to use for the prepareCall statement,
as follows:

"DECLARE c_temp; BEGIN c_temp := ?; clob_proc(c_temp); ? := c_temp; END;"

In either case, you may use the setString method on the first parameter and the
registerOutParameter method with Types.CLOB on the second.

Size Limitations
Be aware of the effect on the performance of the Java memory management system
due to creation of very large byte array or String. Read the information provided by
your Java virtual machine (JVM) vendor about the impact of very large data elements
on memory management, and consider using the stream interfaces instead.

LOB Locator Interface
Locators are small data structures, which contain information that may be used to
access the actual data of the LOB. In a database table, the locator is stored directly in
the table, while the data may be in the table or in separate storage. It is common to use
separate tablespaces for large LOBs.

LOB Locator Interface

Working with LOBs and BFILEs 14-7

In JDBC 4.0, LOBs should be read or written using the interfaces java.sql.Blob,
java.sql.Clob, and java.sql.NClob. These provide random access to the data in
the LOB.

The Oracle implementation classes oracle.sql.BLOB, oracle.sql.CLOB, and
oracle.sql.NCLOB store the locator and access the data with it. The
oracle.sql.BLOB and oracle.sql.CLOB classes implement the java.sql.Blob
and java.sql.Clob interfaces respectively. In ojdbc6.jar, oracle.sql.NCLOB
implements java.sql.NClob, but in ojdbc5.jar, it implements the
java.sql.Clob interface.

In Oracle Database 11g, the Oracle JDBC drivers support the JDBC 4.0
java.sql.NClob interface in ojdbc6.jar, which is compiled with JDK 1.6 and
must be used with JRE 6 or greater. The drivers support the JDBC 3.0 standard in
ojdbc5.jar, which must be used with JRE 5 or greater.

In contrast, oracle.sql.BFILE is an Oracle extension, without a corresponding
java.sql interface.

Certain Oracle extensions, such as some of the read and write methods present in the
oracle.sql.CLOB and oracle.sql.BLOB interfaces, in earlier Oracle Database
releases are no longer necessary and are deprecated. You should port your application
to the standard JDBC 3.0 interface or to JDBC 4.0 interface, if you are using JDK 1.6 or
above, and ojdbc6.jar.

LOB prefetching
For Oracle Database 11g Release 2 (11.2) JDBC drivers, the number of round trips is
reduced by prefetching the metadata such as the LOB length and the chunk size as
well as the beginning of the LOB data along with the locator during regular fetch
operations. If you select LOB columns into a result set, a new capability in the server
and JDBC drivers allow some or all of the data to be prefetched to the client, when the
locator is fetched. Subsequent read API calls will get the data from the prefetch buffers
without any need to make database round trips.

The prefetch size is specified in bytes for BLOBs and in characters for CLOBs. It can be
specified by setting the connection property
oracle.jdbc.defaultLobPrefetchSize. The value of this property can be
overridden in the following two ways:

■ At the statement level: by using the
oracle.jdbc.OracleStatement.setLobPrefetchSize(int) method

■ At the column level: by using the form of defineColumnType method that takes
length as argument

The default prefetch size is 4000.

See Also: The Javadoc for more details

Note: Be aware of the possible memory consumption while setting
large LOB prefetch sizes in combination with a large row prefetch size
and a large number of LOB columns.

See Also: The Javadoc for more details

Working With Temporary LOBs

14-8 Oracle Database JDBC Developer's Guide

New LOB APIs in JDBC 4.0
Starting from Oracle Database 11g Release 1 (11.1), there is a new interface
java.sql.NClob. The Oracle drivers implement the oracle.sql.NCLOB interface
in both ojdbc5.jar and ojdbc6.jar. In ojdbc6.jar, it is declared to implement
java.sql.NClob, whereas in ojdbc5.jar, it only extends the oracle.sql.CLOB
interface.

The Oracle drivers implement the new factory methods, createBlob, createClob,
and createNClob in the java.sql.Connection interface to create temporary
LOBs.

Starting from JDK 1.6, the java.sql.Blob, java.sql.Clob, and
java.sql.NClob interfaces have a new method free to free an LOB and release the
associated resources. The Oracle drivers use this method to free an LOB, if it is a
temporary LOB.

Working With Temporary LOBs
You can use temporary LOBs to store transient data. The data is stored in temporary
table space rather than regular table space. You should free temporary LOBs after you
no longer need them. If you do not, then the space the LOB consumes in temporary
table space will not be reclaimed.

You can insert temporary LOBs into a table. When you do this, a permanent copy of
the LOB is created and stored.

You create a temporary LOB with the static method createTemporary, defined in
both the oracle.sql.BLOB and oracle.sql.CLOB classes. You free a temporary
LOB with the freeTemporary method.

You can also create a temporary LOB by using the connection factory methods
available in JDBC 4.0. For more information, refer to "LOB Creation" on page 3-10.

You can test whether a LOB is temporary or not by calling the isTemporary method.
If the LOB was created by calling the createTemporary method, then the
isTemporary method returns true, else it returns false.

You can free a temporary LOB by calling the freeTemporary method. Free any
temporary LOBs before ending the session or call.

Note: Inserting a temporary LOB may be preferable in some
situations. For example, when the LOB data is relatively small and the
overhead of copying the data is less than the cost of a database round
trip to retrieve the empty locator. Remember that the data is initially
stored in the temporary table space on the server and then moved into
permanent storage.

Opening Persistent LOBs with the Open and Close Methods

Working with LOBs and BFILEs 14-9

Creating Temporary NCLOBs in JDK 1.5
You create temporary national character large objects (NCLOBs) using a variant of the
createTemporary method.

Creating Temporary NCLOBs in JDK 1.6
JDBC 4.0 supports NCLOBs directly. You can use the standard factory method of
java.sql.Connection interface to create an NCLOB.

Opening Persistent LOBs with the Open and Close Methods
This section discusses how to open and close your LOBs. The JDBC implementation of
this functionality is provided using the following methods of oracle.sql.BLOB and
oracle.sql.CLOB interfaces:

■ void open (int mode)

■ void close()

■ boolean isOpen()

If you do not wrap LOB operations inside an Open/Close call operation, then each
modification to the LOB will implicitly open and close the LOB, thereby firing any
triggers on a domain index. Note that in this case, any domain indexes on the LOB will
become updated as soon as LOB modifications are made. Therefore, domain LOB
indexes are always valid and may be used at any time within the same transaction.

If you wrap your LOB operations inside the Open/Close call operation, then triggers
will not be fired for each LOB modification. Instead, the trigger on domain indexes
will be fired at the Close call. For example, you might design your application so that
domain indexes are not be updated until you call the close method. However, this
means that any domain indexes on the LOB will not be valid in-between the
Open/Close calls.

Notes:

■ If you do not free a temporary LOB, then it will make the
storage used by that LOB in the database unavailable. Frequent
failure to free temporary LOBs will result in filling up
temporary table space with unavailable LOB storage.

■ When fetching data from a ReultSet with columns that are
temporary LOBs, use getClob or getBlob methods instead of
getString or getBytes.

■ The JDBC 4.0 method free, present in java.sql.Blob,
java.sql.Clob, and java.sql.NClob interfaces,
supercedes the freeTemporary method.

Note: You do not have to necessarily open and close your LOBs. You
may choose to open and close them for performance reasons.

See Also: Oracle Database SecureFiles and Large Objects
Developer's Guide

Working with BFILEs

14-10 Oracle Database JDBC Developer's Guide

You open a LOB by calling the open or open(int) method. You may then read and
write the LOB without any triggers associated with that LOB firing. When you finish
accessing the LOB, close the LOB by calling the close method. When you close the
LOB, any triggers associated with the LOB will fire.

You can check if a LOB is open or closed by calling the isOpen method. If you open
the LOB by calling the open(int) method, then the value of the argument must be
either MODE_READONLY or MODE_READWRITE, as defined in the oracle.sql.BLOB
and oracle.sql.CLOB classes. If you open the LOB with MODE_READONLY, then any
attempt to write to the LOB will result in a SQL exception.

Working with BFILEs
This section describes how to read data from BFILEs, using file locators. This section
covers the following topics:

■ Retrieving BFILE Locators

■ Writing to BFILES

Retrieving BFILE Locators
The BFILE data type and oracle.sql.BFILE classes are Oracle proprietary. So,
there is no standard interface for them. You must use Oracle extensions for this type of
data.

If you have a standard JDBC result set or callable statement object that includes BFILE
locators, then you can access the locators by using the standard result set getObject
method. This method returns an oracle.sql.BFILE object.

You can also access the locators by casting your result set to OracleResultSet or
your callable statement to OracleCallableStatement and using the
getOracleObject or getBFILE method.

Note:

■ An error occurs if you commit the transaction before closing all
LOBs that were opened by the transaction. The openness of the
open LOBs is discarded, but the transaction is successfully
committed. Hence, all the changes made to the LOB and non-LOB
data in the transaction are committed, but the triggers for domain
indexing are not fixed.

■ The open and close methods apply only to persistent LOBs. The
close method is not similar to the free or freeTemporary
methods used for temporary LOBs. The free and
freeTemporary methods release storage and make a LOB
unusable. On the other hand, the close method indicates to the
database that a modification on a LOB is complete, and triggers
should be fired and indexes should be updated. A LOB is still
usable after a call to the close method.

Note: If you are using getObject or getOracleObject methods,
then remember to cast the output, as necessary.

Working with BFILEs

Working with LOBs and BFILEs 14-11

Once you have a locator, you can access the BFILE data via the API in
oracle.sql.BFILE. These APIs are similar to the read methods of the
java.sql.BLOB interface.

Writing to BFILES
You cannot write data to the contents of the BFILE, but you can use an instance of
oracle.sql.BFILE as input to a SQL statement or to a PL/SQL procedure. You can
achieve this by performing one of the following:

■ Use the standard setObject method.

■ Cast the statement to OraclePreparedStatement or
OracleCallableStatement, and use the setOracleObject or setBFILE
method. These methods take the parameter index and an oracle.sql.BFILE
object as input.

BFILEs are read-only. The body of the data resides in the operating system (OS) file
system and can be written to using only OS tools and commands. You can create a
BFILE for an existing external file by executing the appropriate SQL statement either
from JDBC or by using any other way to execute SQL. However, you cannot create an
OS file that a BFILE would refer to by SQL or JDBC. Those are created only externally
by a process that has access to server file systems.

Note:

■ There is no standard java.sql interface for BFILEs.

■ Use the getBFILE methods in the OracleResultSet and
OracleCallableStatement classes to retrieve an
oracle.sql.BFILE object. The setBFILE methods in
OraclePreparedStatement and
OracleCallableStatement interfaces accept
oracle.sql.BFILE object as an argument. Use these methods
to write to a BFILE.

■ Oracle recommends that you use the getBFILE, setBFILE, and
updateBFILE methods instead of the getBfile, setBfile,
and updateBfile methods. For example, use the setBFILE
method instead of the setBfile method.

Note:

■ The code examples present in this chapter, in the earlier versions
of this guide, have been removed in favor of references to the
sample code available for download on OTN.

■ You can download the demo.zip file from the following link for
complete working programs:

http://www.oracle.com/technology/tech/java/sqlj_
jdbc/index.html

Working with BFILEs

14-12 Oracle Database JDBC Developer's Guide

Using Oracle Object References 15-1

15
Using Oracle Object References

This chapter describes the standard Java Database Connectivity (JDBC) that let you
access and manipulate object references.

This section discusses the following topics:

■ Oracle Extensions for Object References

■ Retrieving and Passing an Object Reference

■ Accessing and Updating Object Values Through an Object Reference

■ Custom Reference Classes with JPublisher

Oracle Extensions for Object References
Oracle supports the use of references to database objects. Oracle JDBC provides
support for object references as:

■ Columns in a SELECT clause

■ IN or OUT bind variables

■ Attributes in an Oracle object

■ Elements in a collection type object

In SQL, an object reference (REF) is strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference, be aware that you are retrieving only a pointer to
an object, not the object itself. You have the choice of materializing the reference as a
java.sql.Ref instance for portability, or materializing it as an instance of a custom
Java class that you have created in advance, which is strongly typed. Custom Java
classes used for object references are referred to as custom reference classes and must
implement the oracle.sql.ORAData interface.

You can retrieve a REF instance through a result set or callable statement object, and
pass an updated REF instance back to the database through a prepared statement or
callable statement object. The REF class includes functionality to get and set
underlying object attribute values, and get the SQL base type name of the underlying
object.

Custom reference classes include this same functionality, as well as having the
advantage of being strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until run time.

Retrieving and Passing an Object Reference

15-2 Oracle Database JDBC Developer's Guide

Retrieving and Passing an Object Reference
This section discusses JDBC functionality for retrieving and passing object references.
It covers the following topics:

■ Retrieving an Object Reference from a Result Set

■ Retrieving an Object Reference from a Callable Statement

■ Passing an Object Reference to a Prepared Statement

Retrieving an Object Reference from a Result Set
To demonstrate how to retrieve object references, the following example first defines
an Oracle object type ADDRESS, which is then referenced in the PEOPLE table:

create type ADDRESS as object
 (street_name VARCHAR2(30),
 house_no NUMBER);

create table PEOPLE
 (col1 VARCHAR2(30),
 col2 NUMBER,
 col3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1. Use a standard SQL SELECT statement to retrieve the reference from a database
table REF column.

2. Use getRef to get the address reference from the result set into a REF object.

3. Let Address be the Java custom class corresponding to the SQL object type
ADDRESS.

4. Add the correspondence between the Java class Address and the SQL type
ADDRESS to your type map.

Note:

■ If you are using the oracle.sql.ORAData interface for
custom object classes, then you will presumably use ORAData
for corresponding custom reference classes as well. However, if
you are using the standard java.sql.SQLData interface for
custom object classes, then you can only use weak Java types
for references. The SQLData interface is for mapping SQL
object types only.

■ You can create and retrieve REF objects in your JDBC
application only by running SQL statements. There is no
JDBC-specific functionality for creating and retrieving REF
objects.

■ You cannot have a reference to an array, even though arrays,
like objects, are structured types.

Accessing and Updating Object Values Through an Object Reference

Using Oracle Object References 15-3

5. Use the getObject method to retrieve the contents of the Address reference.
Cast the output to Address.

The PEOPLE database table is defined earlier in this section. The code for the
preceding steps, except the step of adding Address to the type map, is as follows:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
while (rs.next())
{
 REF ref = rs.getRef(1);
 Address a = (Address)
ref.getObject();
}

Retrieving an Object Reference from a Callable Statement
To retrieve an object reference as an OUT parameter in PL/SQL blocks, you must
register the bind type for your OUT parameter.

1. Cast your callable statement to OracleCallableStatement, as follows:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");

2. Register the OUT parameter with the following form of the
registerOutParameter method:

ocs.registerOutParameter (int param_index, int sql_type, String sql_type_name);

param_index is the parameter index and sql_type is the SQL type code. The
sql_type_name is the name of the structured object type that this reference is
used for. For example, if the OUT parameter is a reference to an ADDRESS object,
then ADDRESS is the sql_type_name that should be passed in.

3. Run the call, as follows:

ocs.execute();

Passing an Object Reference to a Prepared Statement
Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the setObject method or the setREF method of a
prepared statement object.

Use a prepared statement to update an address reference based on ROWID, as follows:

PreparedStatement pstmt =
 conn.prepareStatement ("update PEOPLE set ADDR_REF = ? where ROWID = ?");
pstmt.setRef (1, addr_ref);
 pstmt.setRowId (2, rowid);

Accessing and Updating Object Values Through an Object Reference
You can use the Ref object setObject method to update the value of an object in the
database through an object reference. To do this, you must first retrieve the reference
to the database object and create a Java object that corresponds to the database object.

Note: In the preceding code, stmt is a previously defined statement
object.

Custom Reference Classes with JPublisher

15-4 Oracle Database JDBC Developer's Guide

For example, you can use the code in "Retrieving and Passing an Object Reference" on
page 15-2, to retrieve the reference to a database ADDRESS object, as follows:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
if (rs.next())
{
 Ref ref = rs.getRef(1);
 Address a = (Address)ref.getObject();
}

Then, you can create a Java Address object that corresponds to the database ADDRESS
object. Use the setObject method of the Ref interface to set the value of the
database object, as follows:

Address addr = new Address(...);
ref.setObject(addr);

Here, the setValue method updates the database ADDRESS object immediately.

Custom Reference Classes with JPublisher
This chapter primarily describes the functionality of the java.sql.Ref class, but it is
also possible to access Oracle object references through custom Java classes or, more
specifically, custom reference classes.

Custom reference classes offer all the functionality described earlier in this chapter, as
well as the advantage of being strongly typed. A custom reference class must satisfy
three requirements:

■ It must implement the oracle.sql.ORAData interface. Note that the standard
JDBC SQLData interface, which is an alternative for custom object classes, is not
intended for custom reference classes.

■ It, or a companion class, must implement the oracle.sql.ORADataFactory
interface, for creating instances of the custom reference class.

■ It must provide a way to refer to the object data. JPublisher accomplishes this by
using an oracle.sql.REF attribute.

You can create custom reference classes yourself, but the most convenient way to
produce them is through the Oracle JPublisher utility. If you use JPublisher to generate
a custom object class to map to an Oracle object and you specify that JPublisher use a
ORAData implementation, then JPublisher will also generate a custom reference class
that implements ORAData and ORADataFactory and includes an oracle.sql.REF
attribute. The ORAData implementation will be used if the JPublisher -usertypes
mapping option is set to oracle, which is the default.

Custom reference classes are strongly typed. For example, if you define an Oracle
object EMPLOYEE, then JPublisher can generate an Employee custom object class and
an EmployeeRef custom reference class. Using EmployeeRef instances instead of
generic oracle.sql.REF instances makes it easier to catch errors during compilation
instead of at run time. For example, if you accidentally assign some other kind of
object reference into an EmployeeRef variable.

Be aware that the standard SQLData interface supports only SQL object mappings.
For this reason, if you instruct JPublisher to implement the standard SQLData
interface in creating a custom object class, then JPublisher will not generate a custom
reference class. In this case, your only option is to use standard java.sql.Ref
instances or oracle.sql.REF instances to map to your object references.

Custom Reference Classes with JPublisher

Using Oracle Object References 15-5

See Also:

■ "Using JPublisher to Create Custom Object Classes" on page 13-27

■ Oracle Database JPublisher User's Guide

Custom Reference Classes with JPublisher

15-6 Oracle Database JDBC Developer's Guide

Working with Oracle Collections 16-1

16
Working with Oracle Collections

This chapter describes Oracle extensions to standard Java Database Connectivity
(JDBC) that let you access and manipulate Oracle collections, which map to Java
arrays, and their data. The following topics are discussed:

■ Oracle Extensions for Collections

■ Overview of Collection Functionality

■ ARRAY Performance Extension Methods

■ Creating and Using Arrays

■ Using a Type Map to Map Array Elements

■ Custom Collection Classes with JPublisher

Oracle Extensions for Collections
An Oracle collection, either a variable array (VARRAY) or a nested table in the
database, maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle
collections in Java. The terms collection and array are sometimes used
interchangeably. However, collection is more appropriate on the database side and
array is more appropriate on the JDBC application side.

Oracle supports only named collections, where you specify a SQL type name to
describe a type of collection. JDBC enables you to use arrays as any of the following:

■ Columns in a SELECT clause

■ IN or OUT bind variables

■ Attributes in an Oracle object

■ Elements of other arrays

This section covers the following topics:

■ Choices in Materializing Collections

■ Creating Collections

■ Creating Multilevel Collection Types

Choices in Materializing Collections
In your application, you have the choice of materializing a collection as an instance of
the oracle.sql.ARRAY class, which is weakly typed, or materializing it as an
instance of a custom Java class that you have created in advance, which is strongly
typed. Custom Java classes used for collections are referred to as custom collection

Oracle Extensions for Collections

16-2 Oracle Database JDBC Developer's Guide

classes. A custom collection class must implement the Oracle oracle.sql.ORAData
interface. In addition, the custom class or a companion class must implement
oracle.sql.ORADataFactory. The standard java.sql.SQLData interface is for
mapping SQL object types only.

The oracle.sql.ARRAY class implements the standard java.sql.Array interface.

The ARRAY class includes functionality to retrieve the array as a whole, retrieve a
subset of the array elements, and retrieve the SQL base type name of the array
elements. However, you cannot write to the array, because there are no setter
methods.

Custom collection classes, as with the ARRAY class, enable you to retrieve all or part of
the array and get the SQL base type name. They also have the advantage of being
strongly typed, which can help you find coding errors during compilation that might
not otherwise be discovered until run time.

Furthermore, custom collection classes produced by JPublisher offer the feature of
being writable, with individually accessible elements.

Creating Collections
Because Oracle supports only named collections, you must declare a particular
VARRAY type name or nested table type name. VARRAY and nested table are not types
themselves, but categories of types.

A SQL type name is assigned to a collection when you create it using the SQL CREATE
TYPE statement:

CREATE TYPE <sql_type_name> AS <datatype>;

A VARRAY is an array of varying size. It has an ordered set of data elements, and all
the elements are of the same data type. Each element has an index, which is a number
corresponding to the position of the element in the VARRAY. The number of elements
in a VARRAY is the size of the VARRAY. You must specify a maximum size when you
declare the VARRAY type. For example:

CREATE TYPE myNumType AS VARRAY(10) OF NUMBER;

This statement defines myNumType as a SQL type name that describes a VARRAY of
NUMBER values that can contain no more than 10 elements.

A nested table is an unordered set of data elements, all of the same data type. The
database stores a nested table in a separate table which has a single column, and the
type of that column is a built-in type or an object type. If the table is an object type,
then it can also be viewed as a multi-column table, with a column for each attribute of
the object type. You can create a nested table as follows:

CREATE TYPE myNumList AS TABLE OF integer;

Note: There is no difference in the code between accessing
VARRAYs and accessing nested tables. ARRAY class methods can
determine if they are being applied to a VARRAY or nested table,
and respond by taking the appropriate actions.

See Also: For more information about custom collection classes, see
"Custom Collection Classes with JPublisher" on page 16-13.

Overview of Collection Functionality

Working with Oracle Collections 16-3

This statement identifies myNumList as a SQL type name that defines the table type
used for the nested tables of the type INTEGER.

Creating Multilevel Collection Types
The most common way to create a new multilevel collection type in JDBC is to pass
the SQL CREATE TYPE statement to the execute method of the
java.sql.Statement class. The following code creates a one-level nested table,
first_level, and a two- levels nested table, second_level:

Connection conn = // make a database
 // connection
Statement stmt = conn.createStatement(); // open a database
 // cursor
stmt.execute("CREATE TYPE first_level AS TABLE OF NUMBER"); // create a nested
 // table of number
stmt.execute("CREATE TYPE second_level AS TABLE OF first_level"); // create a
 // two-levels nested table
... // other operations here
stmt.close(); // release the
 // resource
conn.close(); // close the
 // database connection

Once the multilevel collection types have been created, they can be used as both
columns of a base table as well as attributes of a object type.

Overview of Collection Functionality
You can obtain collection data in an array instance through a result set or callable
statement and pass it back as a bind variable in a prepared statement or callable
statement.

The oracle.sql.ARRAY class, which implements the standard java.sql.Array
interface, provides the necessary functionality to access and update the data of an
Oracle collection.

This section covers Array Getter and Setter Methods. Use the following result set,
callable statement, and prepared statement methods to retrieve and pass collections as
Java arrays.

Result Set and Callable Statement Getter Methods
The OracleResultSet and OracleCallableStatement classes support
getARRAY and getArray methods to retrieve ARRAY objects as output parameters,
either as oracle.sql.ARRAY instances or java.sql.Array instances. You can also
use the getObject method. These methods take as input a String column name or
int column index.

Prepared and Callable Statement Setter Methods
The OraclePreparedStatement and OracleCallableStatement classes
support setARRAY and setArray methods to take updated ARRAY objects as bind
variables and pass them to the database. You can also use the setObject method.
These methods take as input a String parameter name or int parameter index as
well as an oracle.sql.ARRAY instance or a java.sql.Array instance.

ARRAY Performance Extension Methods

16-4 Oracle Database JDBC Developer's Guide

ARRAY Performance Extension Methods
This section discusses the following topics:

■ Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types

■ ARRAY Automatic Element Buffering

■ ARRAY Automatic Indexing

Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types
The oracle.sql.ARRAY class contains methods that return array elements as Java
primitive types. These methods allow you to access collection elements more
efficiently than accessing them as Datum instances and then converting each Datum
instance to its Java primitive value.

Each method using the first signature returns collection elements as an XXX[], where
XXX is a Java primitive type. Each method using the second signature returns a slice of
the collection containing the number of elements specified by count, starting at the
index location.

ARRAY Automatic Element Buffering
Oracle JDBC driver provides public methods to enable and disable buffering of ARRAY
contents.

The following methods are included with the oracle.sql.ARRAY class:

■ setAutoBuffering

■ getAutoBuffering

It is advisable to enable auto-buffering in a JDBC application when the ARRAY
elements will be accessed more than once by the getAttributes and getArray
methods, presuming the ARRAY data is able to fit into the Java Virtual Machine (JVM)
memory without overflow.

When you enable auto-buffering, the oracle.sql.ARRAY object keeps a local copy of
all the converted elements. This data is retained so that a second access of this
information does not require going through the data format conversion process.

ARRAY Automatic Indexing
If an array is in auto-indexing mode, then the array object maintains an index table to
hasten array element access.

The oracle.sql.ARRAY class contains the following methods to support automatic
array-indexing:

■ setAutoIndexing

Note: These specialized methods of the oracle.sql.ARRAY
class are restricted to numeric collections.

Important: Buffering the converted elements may cause the JDBC
application to consume a significant amount of memory.

Creating and Using Arrays

Working with Oracle Collections 16-5

■ setAutoIndexing

By default, auto-indexing is not enabled. For a JDBC application, enable auto-indexing
for ARRAY objects if random access of array elements may occur through the
getArray and getResultSet methods.

Creating and Using Arrays
This section discusses how to create array objects and how to retrieve and pass
collections as array objects, including the following topics.

■ Creating ARRAY Objects

■ Retrieving an Array and Its Elements

■ Passing Arrays to Statement Objects

Creating ARRAY Objects

This section describes how to create ARRAY objects. This section covers the following
topics:

■ Steps in Creating ARRAY Objects

■ Creating Multilevel Collections

Steps in Creating ARRAY Objects
Starting from Oracle Database 11g Release 1 (11.1), you can use the createARRAY
factory method of oracle.jdbc.OracleConnection interface to create an array
object. The factory method for creating arrays has been defined as follows:

public ARRAY createARRAY(java.lang.String typeName,java.lang.Object
elements)throws SQLException

where, typeName is the name of the SQL type of the created object and elements is
the elements of the created object.

Perform the following to create an array:

1. Create a collection with the CREATE TYPE statement as follows:

CREATE TYPE elements AS varray(22) OF NUMBER(5,2);

The two possibilities for the contents of elements are:

■ An array of Java primitives. For example, int[].

■ An array of Java objects, such as xxx[], where xxx is the name of a Java class.
For example, Integer[].

2. Construct the ARRAY object by passing the Java string specifying the user-defined
SQL type name of the array and a Java object containing the individual elements
you want the array to contain.

Note: Oracle JDBC does not support the JDBC 4.0 method
createArrayOf method of java.sql.Connection interface. This
method only allows anonymous array types, while all Oracle array
types are named. Use the Oracle specific method
oracle.jdbc.OracleConnection.createARRAY instead.

Creating and Using Arrays

16-6 Oracle Database JDBC Developer's Guide

ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name,
elements);

Creating Multilevel Collections
As with single-level collections, the JDBC application can create an
oracle.sql.ARRAY instance to represent a multilevel collection, and then send the
instance to the database. The same createARRAY factory method you use to create
single-level collections, can be used to create multilevel collections as well. To create a
single-level collection, the elements are a one dimensional Java array, while to create a
multilevel collection, the elements can be either an array of oracle.sql.ARRAY[]
elements or a nested Java array or the combinations.

The following code shows how to create collection types with a nested Java array:

// prepare the multilevel collection elements as a nested Java array
int[][][] elements = { {{1}, {1, 2}}, {{2}, {2, 3}}, {{3}, {3, 4}} };

// create the ARRAY using the factory method
ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name, elements);

Retrieving an Array and Its Elements
This section first discusses how to retrieve an ARRAY instance as a whole from a result
set, and then how to retrieve the elements from the ARRAY instance. This section
covers the following topics:

■ Retrieving the Array

■ Data Retrieval Methods

■ Comparing the Data Retrieval Methods

■ Retrieving Elements of a Structured Object Array According to a Type Map

■ Retrieving a Subset of Array Elements

■ Retrieving Array Elements into an oracle.sql.Datum Array

■ Accessing Multilevel Collection Elements

Retrieving the Array
You can retrieve a SQL array from a result set by casting the result set to
OracleResultSet and using the getARRAY method, which returns an
oracle.sql.ARRAY object. If you want to avoid casting the result set, then you can
get the data with the standard getObject method specified by the
java.sql.ResultSet interface and cast the output to oracle.sql.ARRAY.

Data Retrieval Methods
Once you have an ARRAY object, you can retrieve the data using one of these three
overloaded methods of the oracle.sql.ARRAY class:

■ getArray

■ getOracleArray

■ getResultSet

Oracle also provides methods that enable you to retrieve all the elements of an array,
or a subset.

Creating and Using Arrays

Working with Oracle Collections 16-7

getOracleArray
The getOracleArray method is an Oracle-specific extension that is not specified in
the standard Array interface. The getOracleArray method retrieves the element
values of the array into a Datum[] array. The elements are of the oracle.sql.* data
type corresponding to the SQL type of the data in the original array.

For an array of structured objects, this method will use oracle.sql.STRUCT
instances for the elements.

Oracle also provides a getOracleArray(index,count) method to get a subset of
the array elements.

getResultSet
The getResultSet method returns a result set that contains elements of the array
designated by the ARRAY object. The result set contains one row for each array
element, with two columns in each row. The first column stores the index into the
array for that element, and the second column stores the element value. In the case of
VARRAYs, the index represents the position of the element in the array. In the case of
nested tables, which are by definition unordered, the index reflects only the return
order of the elements in the particular query.

Oracle recommends using getResultSet when getting data from nested tables.
Nested tables can have an unlimited number of elements. The ResultSet object
returned by the method initially points at the first row of data. You get the contents of
the nested table by using the next method and the appropriate getXXX method. In
contrast, getArray returns the entire contents of the nested table at one time.

The getResultSet method uses the default type map of the connection to determine
the mapping between the SQL type of the Oracle object and its corresponding Java
data type. If you do not want to use the default type map of the connection, another
version of the method, getResultSet(map), enables you to specify an alternate type
map.

Oracle also provides the getResultSet(index,count) and
getResultSet(index,count,map) methods to retrieve a subset of the array
elements.

getArray
The getArray method is a standard JDBC method that returns the array elements as
a java.lang.Object, which you can cast as appropriate. The elements are
converted to the Java types corresponding to the SQL type of the data in the original
array.

Oracle also provides a getArray(index,count) method to retrieve a subset of the
array elements.

Comparing the Data Retrieval Methods
If you use getOracleArray to return the array elements, then the use by that
method of oracle.sql.Datum instances avoids the expense of data conversion from

Note: In case you are working with an array of structured objects,
Oracle provides versions of these three methods that enable you to
specify a type map so that you can choose how to map the objects
to Java.

Creating and Using Arrays

16-8 Oracle Database JDBC Developer's Guide

SQL to Java. The non-character data inside the instance of a Datum class or any of its
subclass remains in raw SQL format.

If you use getResultSet to return an array of primitive data types, then the JDBC
driver returns a ResultSet object that contains, for each element, the index into the
array for the element and the element value. For example:

ResultSet rset = intArray.getResultSet();

In this case, the result set contains one row for each array element, with two columns
in each row. The first column stores the index into the array and the second column
stores the element value.

If the elements of an array are of a SQL type that maps to a Java type, then getArray
returns an array of elements of this Java type. The return type of the getArray
method is java.lang.Object. Therefore, the result must be cast before it can be
used.

BigDecimal[] values = (BigDecimal[]) intArray.getArray();

Here intArray is an oracle.sql.ARRAY, corresponding to a VARRAY of type
NUMBER. The values array contains an array of elements of type
java.math.BigDecimal, because the SQL NUMBER data type maps to Java
BigDecimal, by default, according to Oracle JDBC drivers.

Retrieving Elements of a Structured Object Array According to a Type Map
By default, if you are working with an array whose elements are structured objects,
and you use getArray or getResultSet, then the Oracle objects in the array will be
mapped to their corresponding Java data types according to the default mapping. This
is because these methods use the default type map of the connection to determine the
mapping.

However, if you do not want default behavior, then you can use the getArray(map)
or getResultSet(map) method to specify a type map that contains alternate
mappings. If there are entries in the type map corresponding to the Oracle objects in
the array, then each object in the array is mapped to the corresponding Java type
specified in the type map. For example:

Object[] object = (Object[])objArray.getArray(map);

Where objArray is an oracle.sql.ARRAY object and map is a java.util.Map
object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an oracle.sql.STRUCT object.

The getResultSet(map) method behaves similarly to the getArray(map)
method.

Note: Using BigDecimal is a resource-intensive operation in
Java. Because Oracle JDBC maps numeric SQL data to
BigDecimal by default, using getArray may impact
performance, and is not recommended for numeric collections.

See Also: "Using a Type Map to Map Array Elements" on page 16-12

Creating and Using Arrays

Working with Oracle Collections 16-9

Retrieving a Subset of Array Elements
If you do not want to retrieve the entire contents of an array, then you can use
signatures of getArray, getResultSet, and getOracleArray that let you retrieve
a subset. To retrieve a subset of the array, pass in an index and a count to indicate
where in the array you want to start and how many elements you want to retrieve. As
previously described, you can specify a type map or use the default type map for your
connection to convert to Java types. For example:

Object object = arr.getArray(index, count, map);
Object object = arr.getArray(index, count);

Similar examples using getResultSet are:

ResultSet rset = arr.getResultSet(index, count, map);
ResultSet rset = arr.getResultSet(index, count);

A similar example using getOracleArray is:

Datum[] arr = arr.getOracleArray(index, count);

Where arr is an oracle.sql.ARRAY object, index is type long, count is type int,
and map is a java.util.Map object.

Retrieving Array Elements into an oracle.sql.Datum Array
Use getOracleArray to return an oracle.sql.Datum[] array. The elements of
the returned array will be of the oracle.sql.* type that correspond to the SQL data
type of the elements of the original array. For example:

Datum arraydata[] = arr.getOracleArray();

arr is an oracle.sql.ARRAY object.

The following example assumes that a connection object conn and a statement object
stmt have already been created. In the example, an array with the SQL type name
NUM_ARRAY is created to store a VARRAY of NUMBER data. The NUM_ARRAY is in turn
stored in a table VARRAY_TABLE.

A query selects the contents of the VARRAY_TABLE. The result set is cast to
OracleResultSet; getARRAY is applied to it to retrieve the array data into my_
array, which is an oracle.sql.ARRAY object.

Because my_array is of type oracle.sql.ARRAY, you can apply the methods
getSQLTypeName and getBaseType to it to return the name of the SQL type of each
element in the array and its integer code.

The program then prints the contents of the array. Because the contents of NUM_ARRAY
are of the SQL data type NUMBER, the elements of my_array are of the type,
BigDecimal. Before you can use the elements, they must first be cast to
BigDecimal. In the for loop, the individual values of the array are cast to
BigDecimal and printed to standard output.

stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");
stmt.execute ("CREATE TABLE varray_table (col1 num_varray)");
stmt.execute ("INSERT INTO varray_table VALUES (num_varray(100, 200))");

ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table");

Note: There is no performance advantage in retrieving a subset of
an array, as opposed to the entire array.

Creating and Using Arrays

16-10 Oracle Database JDBC Developer's Guide

ARRAY my_array = ((OracleResultSet)rs).getARRAY(1);

// return the SQL type names, integer codes,
// and lengths of the columns
System.out.println ("Array is of type " + array.getSQLTypeName());
System.out.println ("Array element is of type code " + array.getBaseType());
System.out.println ("Array is of length " + array.length());

// get Array elements
BigDecimal[] values = (BigDecimal[]) my_array.getArray();

for (int i=0; i<values.length; i++)
{
 BigDecimal out_value = (BigDecimal) values[i];
 System.out.println(">> index " + i + " = " + out_value.intValue());
}

Note that if you use getResultSet to obtain the array, then you must would first get
the result set object, and then use the next method to iterate through it. Notice the use
of the parameter indexes in the getInt method to retrieve the element index and the
element value.

ResultSet rset = my_array.getResultSet();
while (rset.next())
{
 // The first column contains the element index and the
 // second column contains the element value
 System.out.println(">> index " + rset.getInt(1)+" = " + rset.getInt(2));
}

Accessing Multilevel Collection Elements
The oracle.sql.ARRAY class provides three methods, which are overloaded, to
access collection elements. The JDBC drivers extend these methods to support
multilevel collections. These methods are:

■ getArray method

■ getOracleArray method

■ getResultSet method

The getArray method returns a Java array that holds the collection elements. The
array element type is determined by the collection element type and the JDBC default
conversion matrix.

For example, the getArray method returns a java.math.BigDecimal array for
collection of SQL NUMBER. The getOracleArray method returns a Datum array that
holds the collection elements in Datum format. For multilevel collections, the
getArray and getOracleArray methods both return a Java array of
oracle.sql.ARRAY elements.

The getResultSet method returns a ResultSet object that wraps the multilevel
collection elements. For multilevel collections, the JDBC applications use the
getObject, getARRAY, or getArray method of the ResultSet class to access the
collection elements as instances of oracle.sql.ARRAY.

The following code shows how to use the getOracleArray, getArray, and
getResultSet methods:

Connection conn = ...; // make a JDBC connection
Statement stmt = conn.createStatement ();

Creating and Using Arrays

Working with Oracle Collections 16-11

ResultSet rset = stmt.executeQuery ("select col2 from tab2 where idx=1");

while (rset.next())
{
 ARRAY varray3 = (ARRAY) rset.getObject (1);
 Object varrayElems = varray3.getArray (1);
// access array elements of "varray3"
 Datum[] varray3Elems = (Datum[]) varrayElems;

 for (int i=0; i<varray3Elems.length; i++)
 {
 ARRAY varray2 = (ARRAY) varray3Elems[i];
 Datum[] varray2Elems = varray2.getOracleArray();
 // access array elements of "varray2"

 for (int j=0; j<varray2Elems.length; j++)
 {
 ARRAY varray1 = (ARRAY) varray2Elems[j];
 ResultSet varray1Elems = varray1.getResultSet();
 // access array elements of "varray1"

 while (varray1Elems.next())
 System.out.println ("idx="+varray1Elems.getInt(1)+"
 value="+varray1Elems.getInt(2));
 }
 }
}
rset.close ();
stmt.close ();
conn.close ();

Passing Arrays to Statement Objects
This section discusses how to pass arrays to prepared statement objects or callable
statement objects.

Passing an Array to a Prepared Statement
Pass an array to a prepared statement as follows.

1. Define the array that you want to pass to the prepared statement as an
oracle.sql.ARRAY object.

ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name,
elements);

sql_type_name is a Java string specifying the user-defined SQL type name of
the array and elements is a java.lang.Object containing a Java array of the
elements.

2. Create a java.sql.PreparedStatement object containing the SQL statement
to be run.

3. Cast your prepared statement to OraclePreparedStatement, and use
setARRAY to pass the array to the prepared statement.

(OraclePreparedStatement)stmt.setARRAY(parameterIndex, array);

Note: you can use arrays as either IN or OUT bind variables.

Using a Type Map to Map Array Elements

16-12 Oracle Database JDBC Developer's Guide

parameterIndex is the parameter index and array is the oracle.sql.ARRAY
object you constructed previously.

4. Run the prepared statement.

Passing an Array to a Callable Statement
To retrieve a collection as an OUT parameter in PL/SQL blocks, perform the following
to register the bind type for your OUT parameter.

1. Cast your callable statement to OracleCallableStatement, as follows:

OracleCallableStatement ocs = (OracleCallableStatement)conn.prepareCall("{? =
call func()}");

2. Register the OUT parameter with the following form of the
registerOutParameter method:

ocs.registerOutParameter
 (int param_index, int sql_type, string sql_type_name);

param_index is the parameter index, sql_type is the SQL type code, and sql_
type_name is the name of the array type. In this case, the sql_type is
OracleTypes.ARRAY.

3. Run the call, as follows:

ocs.execute();

4. Get the value, as follows:

oracle.sql.ARRAY array = ocs.getARRAY(1);

Using a Type Map to Map Array Elements
If your array contains Oracle objects, then you can use a type map to associate the
objects in the array with the corresponding Java class. If you do not specify a type
map, or if the type map does not contain an entry for a particular Oracle object, then
each element is returned as an oracle.sql.STRUCT object.

If you want the type map to determine the mapping between the Oracle objects in the
array and their associated Java classes, then you must add an appropriate entry to the
map.

The following example illustrates how you can use a type map to map the elements of
an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE_LIST is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE is created to store the names of departments
within a corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LIST tables.

stmt.execute("CREATE TYPE EMPLOYEE AS OBJECT
 (EmpName VARCHAR2(50),EmpNo INTEGER))");

stmt.execute("CREATE TYPE EMPLOYEE_LIST AS TABLE OF EMPLOYEE");

stmt.execute("CREATE TABLE EMPLOYEE_TABLE (DeptName VARCHAR2(20),
 Employees EMPLOYEE_LIST) NESTED TABLE Employees STORE AS ntable1");

stmt.execute("INSERT INTO EMPLOYEE_TABLE VALUES ("SALES", EMPLOYEE_LIST
 (EMPLOYEE('Susan Smith', 123), EMPLOYEE('Scott Tiger', 124)))");

Custom Collection Classes with JPublisher

Working with Oracle Collections 16-13

If you want to retrieve all the employees belonging to the SALES department into an
array of instances of the custom object class EmployeeObj, then you must add an
entry to the type map to specify mapping between the EMPLOYEE SQL type and the
EmployeeObj custom object class.

To do this, first create your statement and result set objects, then select the EMPLOYEE_
LIST associated with the SALES department into the result set. Cast the result set to
OracleResultSet so you can use the getARRAY method to retrieve the EMPLOYEE_
LIST into an ARRAY object (employeeArray in the following example).

The EmployeeObj custom object class in this example implements the SQLData
interface.

Statement s = conn.createStatement();
OracleResultSet rs = (OracleResultSet)s.executeQuery
 ("SELECT Employees FROM employee_table WHERE DeptName = 'SALES'");

// get the array object
ARRAY employeeArray = ((OracleResultSet)rs).getARRAY(1);

Now that you have the EMPLOYEE_LIST object, get the existing type map and add an
entry that maps the EMPLOYEE SQL type to the EmployeeObj Java type.

// add type map entry to map SQL type
// "EMPLOYEE" to Java type "EmployeeObj"
Map map = conn.getTypeMap();
map.put("EMPLOYEE", Class.forName("EmployeeObj"));

Next, retrieve the SQL EMPLOYEE objects from the EMPLOYEE_LIST. To do this, call
the getArray method of the employeeArray array object. This method returns an
array of objects. The getArray method returns the EMPLOYEE objects into the
employees object array.

// Retrieve array elements
Object[] employees = (Object[]) employeeArray.getArray();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the
EmployeeObj Java object emp.

// Each array element is mapped to EmployeeObj object.
for (int i=0; i<employees.length; i++)
{
 EmployeeObj emp = (EmployeeObj) employees[i];
 ...
}

Custom Collection Classes with JPublisher
This chapter primarily describes the functionality of the oracle.sql.ARRAY class,
but it is also possible to access Oracle collections through custom Java classes or, more
specifically, custom collection classes.

You can create custom collection classes yourself, but the most convenient way is to
use the Oracle JPublisher utility. Custom collection classes generated by JPublisher
offer all the functionality described earlier in this chapter, as well as the following
advantages:

■ They are strongly typed. This can help you find coding errors during compilation
that might not otherwise be discovered until run time.

Custom Collection Classes with JPublisher

16-14 Oracle Database JDBC Developer's Guide

■ They can be changeable, or mutable. Custom collection classes produced by
JPublisher, unlike the ARRAY class, allow you to get and set individual elements
using the getElement and setElement methods.

A custom collection class must satisfy three requirements:

■ It must implement the oracle.sql.ORAData interface. Note that the standard
JDBC SQLData interface, which is an alternative for custom object classes, is not
intended for custom collection classes.

■ It, or a companion class, must implement the oracle.sql.ORADataFactory
interface, for creating instances of the custom collection class.

■ It must have a means of storing the collection data. Typically it will directly or
indirectly include an oracle.sql.ARRAY attribute for this purpose.

A JPublisher-generated custom collection class implements ORAData and
ORADataFactory and indirectly includes an oracle.sql.ARRAY attribute. The
custom collection class will have an oracle.jpub.runtime.MutableArray
attribute. The MutableArray class has an oracle.sql.ARRAY attribute.

As an example of custom collection classes being strongly typed, if you define an
Oracle collection MYVARRAY, then JPublisher can generate a MyVarray custom
collection class. Using MyVarray instances, instead of generic oracle.sql.ARRAY
instances, makes it easier to catch errors during compilation instead of at run time. For
example, if you accidentally assign some other kind of array into a MyVarray
variable.

If you do not use custom collection classes, then you would use standard
java.sql.Array instances, or oracle.sql.ARRAY instances, to map to your
collections.

Note: When you use JPublisher to create a custom collection class,
you must use the ORAData implementation. This will be true if the
JPublisher -usertypes mapping option is set to oracle, which is
the default.

You cannot use a SQLData implementation for a custom collection
class. Setting the -usertypes mapping option to jdbc is invalid.

See Also:

■ "Using JPublisher to Create Custom Object Classes" on page 13-27

■ Oracle Database JPublisher User's Guide

Result Set 17-1

17
Result Set

Standard Java Database Connectivity (JDBC) features in Java Development Kit (JDK)
include enhancements to result set functionality, such as processing forward or
backward, positioning relatively or absolutely, seeing changes to the database made
internally or externally, and updating result set data and then copying the changes to
the database.

This chapter discusses the following topics:

■ Oracle JDBC Implementation Overview for Result Set Support

■ Resultset Limitations and Downgrade Rules

■ Avoiding Update Conflicts

■ Fetch Size

■ Refetching Rows

■ Viewing Database Changes Made Internally and Externally

Oracle JDBC Implementation Overview for Result Set Support
This section discusses key aspects of the Oracle JDBC implementation of result set
support for scrollability, through use of a client-side cache, and for updatability,
through use of ROWIDs.

It is permissible for customers to implement their own client-side caching mechanism,
and Oracle provides an interface to use in doing so.

Oracle JDBC Implementation for Result Set Scrollability
Because the underlying server does not support scrollable cursors, Oracle JDBC must
implement scrollability in a separate layer.

It is important to be aware that this is accomplished by using a client-side memory
cache to store rows of a scrollable result set.

Important: Because all rows of any scrollable result set are stored
in the client-side cache, a situation, where the result set contains
many rows, many columns, or very large columns, might cause the
client-side Java Virtual Machine (JVM) to fail. Do not specify
scrollability for a large result set.

Resultset Limitations and Downgrade Rules

17-2 Oracle Database JDBC Developer's Guide

Oracle JDBC Implementation for Result Set Updatability
To support updatability, Oracle JDBC uses ROWID to uniquely identify database rows
that appear in a result set. For every query into an updatable result set, Oracle JDBC
driver automatically retrieves the ROWID along with the columns you select.

Resultset Limitations and Downgrade Rules
Some types of result sets are not feasible for certain kinds of queries. If you specify an
unfeasible result set type or concurrency type for the query you run, then the JDBC
driver follows a set of rules to determine the best feasible types to use instead.

The actual result set type and concurrency type are determined when the statement is
run, with the driver issuing a SQLWarning on the statement object if the desired result
set type or concurrency type is not feasible. The SQLWarning object will contain the
reason why the requested type was not feasible. Check for warnings to verify whether
you received the type of result set that you requested.

Result Set Limitations
The following limitations are placed on queries for enhanced result sets. Failure to
follow these guidelines will result in the JDBC driver choosing an alternative result set
type or concurrency type.

To produce an updatable result set:

■ A query can select from only a single table and cannot contain any join operations.

In addition, for inserts to be feasible, the query must select all non-nullable
columns and all columns that do not have a default value.

■ A query cannot use SELECT * .

However, there is a workaround for this.

■ A query must select table columns only.

It cannot select derived columns or aggregates, such as the SUM or MAX of a set of
columns.

To produce a scroll-sensitive result set:

■ A query cannot use SELECT * .

However, there is a workaround for this.

■ A query can select from only a single table.

Scrollable and updatable result sets cannot have any column as Stream. When the
server has to fetch a Stream column, it reduces the fetch size to one and blocks all
columns following the Stream column until the Stream column is read. As a result,
columns cannot be fetched in bulk and scrolled through.

Workaround
As a workaround for the SELECT * limitation, you can use table aliases, as shown in
the following example:

SELECT t.* FROM TABLE t ...

Note: Client-side caching is not required by updatability in and of
itself. In particular, a forward-only updatable result set will not
require a client-side cache.

Avoiding Update Conflicts

Result Set 17-3

Result Set Downgrade Rules
If the specified result set type or concurrency type is not feasible, then Oracle JDBC
driver uses the following rules in choosing alternate types:

■ If the specified result set type is TYPE_SCROLL_SENSITIVE, but the JDBC driver
cannot fulfill that request, then the driver attempts a downgrade to TYPE_
SCROLL_INSENSITIVE.

■ If the specified or downgraded result set type is TYPE_SCROLL_INSENSITIVE,
but the JDBC driver cannot fulfill that request, then the driver attempts a
downgrade to TYPE_FORWARD_ONLY.

■ If the specified concurrency type is CONCUR_UPDATABLE, but the JDBC driver
cannot fulfill that request, then the JDBC driver attempts a downgrade to
CONCUR_READ_ONLY.

Verifying Result Set Type and Concurrency Type
After a query has been run, you can verify the result set type and concurrency type
that the JDBC driver actually used, by calling methods on the result set object.

■ int getType() throws SQLException

This method returns an int value for the result set type used for the query.
ResultSet.TYPE_FORWARD_ONLY, ResultSet.TYPE_SCROLL_SENSITIVE,
or ResultSet.TYPE_SCROLL_INSENSITIVE are the possible values.

■ int getConcurrency() throws SQLException

This method returns an int value for the concurrency type used for the query.
ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE are the
possible values.

Avoiding Update Conflicts
It is important to be aware of the following facts regarding updatable result sets with
the JDBC drivers:

■ The drivers do not enforce write locks for an updatable result set.

■ The drivers do not check for conflicts with a result set DELETE or UPDATE
operation.

A conflict will occur if you try to perform a DELETE or UPDATE operation on a row
updated by another committed transaction.

Note: There is a simple way to determine if your query will
probably produce a scroll-sensitive or updatable result set: If you
can legally add a ROWID column to the query list, then the query is
probably suitable for either a scroll-sensitive or an updatable result
set.

Note: Any manipulations of the result set type and concurrency
type by the JDBC driver are independent of each other.

Fetch Size

17-4 Oracle Database JDBC Developer's Guide

Oracle JDBC drivers use the ROWID to uniquely identify a row in a database table. As
long as the ROWID is valid when a driver tries to send an UPDATE or DELETE operation
to the database, the operation will be run.

The driver will not report any changes made by another committed transaction. Any
conflicts are silently ignored and your changes will overwrite the previous changes.

To avoid such conflicts, use the Oracle FOR UPDATE feature when running the query
that produces the result set. This will avoid conflicts, but will also prevent
simultaneous access to the data. Only a single write lock can be held concurrently on a
data item.

Fetch Size
By default, when Oracle JDBC runs a query, it retrieves a result set of 10 rows at a time
from the database cursor. This is the default Oracle row fetch size value. You can
change the number of rows retrieved with each trip to the database cursor by
changing the row fetch size value.

Standard JDBC also enables you to specify the number of rows fetched with each
database round-trip for a query, and this number is referred to as the fetch size. In
Oracle JDBC, the row-prefetch value is used as the default fetch size in a statement
object. Setting the fetch size overrides the row-prefetch setting and affects subsequent
queries run through that statement object.

Fetch size is also used in a result set. When the statement object run a query, the fetch
size of the statement object is passed to the result set object produced by the query.
However, you can also set the fetch size in the result set object to override the
statement fetch size that was passed to it.

The result set fetch size, either set explicitly, or by default equal to the statement fetch
size that was passed to it, determines the number of rows that are retrieved in any
subsequent trips to the database for that result set. This includes any trips that are still
required to complete the original query, as well as any refetching of data into the
result set. Data can be refetched, either explicitly or implicitly, to update a
scroll-sensitive or scroll-insensitive/updatable result set.

Setting the Fetch Size
The following methods are available in all Statement, PreparedStatement,
CallableStatement, and ResultSet objects for setting and getting the fetch size:

■ void setFetchSize(int rows) throws SQLException

■ int getFetchSize() throws SQLException

To set the fetch size for a query, call setFetchSize on the statement object prior to
running the query. If you set the fetch size to N, then N rows are fetched with each trip
to the database.

After you have run the query, you can call setFetchSize on the result set object to
override the statement object fetch size that was passed to it. This will affect any
subsequent trips to the database to get more rows for the original query, as well as
affecting any later refetching of rows.

Note: Changes made to the fetch size of a statement object after a
result set is produced will have no affect on that result set.

Refetching Rows

Result Set 17-5

Presetting the Fetch Direction
The standard JDBC enables to pre-specify the direction, known as the fetch direction,
for use in processing a result set. This allows the JDBC driver to optimize its
processing. The following result set methods are specified:

■ void setFetchDirection(int direction) throws SQLException

■ int getFetchDirection() throws SQLException

Oracle JDBC drivers support only the forward preset value, which you can specify by
entering the ResultSet.FETCH_FORWARD static constant value.

The values ResultSet.FETCH_REVERSE and ResultSet.FETCH_UNKNOWN are not
supported. Attempting to specify them causes a SQL warning, and the settings are
ignored.

Refetching Rows
The result set refreshRow method is supported for some types of result sets for
refetching data. This consists of going back to the database to re-obtain the database
rows that correspond to n rows in the result set, starting with the current row, where n
is the fetch size. This lets you see the latest updates to the database that were made
outside of your result set, subject to the isolation level of the enclosing transaction.

Because refetching re-obtains only rows that correspond to rows already in your result
set, it does nothing about rows that have been inserted or deleted in the database since
the original query. It ignores rows that have been inserted, and rows will remain in
your result set even after the corresponding rows have been deleted from the
database. When there is an attempt to refetch a row that has been deleted in the
database, the corresponding row in the result set will maintain its original values.

Following is the signature of the refreshRow method:

void refreshRow() throws SQLException

You must be at a valid current row when you call this method, not outside the row
bounds and not at the insert-row.

The refreshRow method is supported for the following result set categories:

■ scroll-sensitive/read-only

■ scroll-sensitive/updatable

■ scroll-insensitive/updatable

Note: If you declare a TYPE_SCROLL_SENSITIVE Result Set based
on a query with certain criteria and then externally update the row so
that the column values no longer match the query criteria, the driver
behaves as if the row has been deleted from the database and the row
is not retrieved by the query issued. So, you do not see the updates to
the particular row when you call the refreshRow method.

Note: Scroll-sensitive result set functionality is implemented
through implicit calls to refreshRow.

Viewing Database Changes Made Internally and Externally

17-6 Oracle Database JDBC Developer's Guide

Viewing Database Changes Made Internally and Externally
This section discusses the ability of a result set to view the following:

■ Own changes of the result set, referred to as internal changes

■ Changes made from elsewhere, either from your own transaction outside the
result set, or from other committed transactions, referred to as external changes

This section covers the following topics:

■ Visibility versus Detection of External Changes

■ Summary of Visibility of Internal and External Changes

■ Oracle Implementation of Scroll-Sensitive Result Sets

Visibility versus Detection of External Changes
Regarding the changes made to an underlying database by external sources, there are
two similar but distinct concepts with respect to visibility of the changes from your
local result set:

■ Visibility of changes

■ Detection of changes

A "visible" change means that when you look at a row in the result set, you can see
new data values from changes made by external sources, to the corresponding row in
the database.

A "detected" change, however, means that the result set is aware that this is a new
value since the result set was first populated.

Even when an Oracle result set sees new data, as with an external UPDATE in a
scroll-sensitive result set, it has no awareness that this data has changed since the
result set was populated. Such changes are not detected.

Summary of Visibility of Internal and External Changes
Table 17–1 summarizes how a result set object in the Oracle JDBC implementation can
see changes made internally through the result set itself, and changes made externally
to the underlying database from elsewhere in your transaction or from other
committed transactions.

Note: External changes are referred to as other's changes in the
Sun Microsystems standard JDBC specification.

Table 17–1 Visibility of Internal and External Changes for Oracle JDBC

Result Set Type

Can See
Internal
DELETE?

Can See
Internal
UPDATE
?

Can See
Internal
INSERT?

Can See
External
DELETE?

Can See
External
UPDATE?

Can See
External
INSERT?

forward-only no yes no no no no

scroll-sensitive yes yes no no yes no

scroll-insensitive yes yes no no no no

Viewing Database Changes Made Internally and Externally

Result Set 17-7

Oracle Implementation of Scroll-Sensitive Result Sets
The Oracle implementation of scroll-sensitive result sets involves the concept of a
window, with a window size that is based on the fetch size. The window size affects
how often rows are updated in the result set.

Once you establish a current row by moving to a specified row, the window consists
of the n rows in the result set starting with that row, where n is the fetch size being
used by the result set. Note that there is no current row, and therefore no window,
when a result set is first created. The default position is before the first row, which is
not a valid current row.

As you move from row to row, the window remains unchanged as long as the current
row stays within that window. However, once you move to a new current row outside
the window, you redefine the window to be the N rows starting with the new current
row.

Whenever the window is redefined, the N rows in the database corresponding to the
rows in the new window are automatically refetched through an implicit call to the
refreshRow method, thereby updating the data throughout the new window.

So external updates are not instantaneously visible in a scroll-sensitive result set. They
are only visible after the automatic refetches just described.

Note:

■ Remember that explicit use of the refreshRow method, is
distinct from the concept of visibility of external changes.

■ Remember that even when external changes are visible, as with
UPDATE operations underlying a scroll-sensitive result set, they
are not detected. The result set rowDeleted, rowUpdated,
and rowInserted methods always return false.

Note: Because this kind of refetching is not a highly efficient or
optimized methodology, there are significant performance
concerns. Consider carefully before using scroll-sensitive result sets
as currently implemented. There is also a significant trade-off
between sensitivity and performance. The most sensitive result set
is one with a fetch size of 1, which would result in the new current
row being refetched every time you move between rows. However,
this would have a significant impact on the performance of your
application.

Viewing Database Changes Made Internally and Externally

17-8 Oracle Database JDBC Developer's Guide

JDBC RowSets 18-1

18
JDBC RowSets

This chapter contains the following sections:

■ Overview of JDBC RowSets

■ CachedRowSet

■ JdbcRowSet

■ WebRowSet

■ FilteredRowSet

■ JoinRowSet

Overview of JDBC RowSets
A RowSet is an object that encapsulates a set of rows from either java Database
Connectivity (JDBC) result sets or tabular data sources. RowSets support
component-based development models like JavaBeans, with a standard set of
properties and an event notification mechanism.

RowSets were introduced in JDBC 2.0 through the optional packages. However, the
implementation of RowSets was standardized in the JDBC RowSet Implementations
Specification (JSR-114), which is available as non-optional package since Java Platform,
Standard Edition (Java SE) 5.0. Java SE 6.0 RowSets contain more APIs supporting
features like RowId, National Language Charactersets, and so on. The Java SE
Javadocs provide information about the standard interfaces and base classes for JDBC
RowSet implementations.

The JSR-114 specification includes implementation details for five types of RowSet:

See Also:

■ JSR-114 specification at:
http://jcp.org/en/jsr/detail?id=114

■ Java SE 5.0 Javadoc at:
http://download.oracle.com/javase/1.5.0/docs/api/

■ Java SE 6.0 Javadoc at:
http://download.oracle.com/javase/6/docs/api/

Note: In case of any conflict, the JSR-114 specification takes
precedence over the JDK 5.0 Javadoc.

Overview of JDBC RowSets

18-2 Oracle Database JDBC Developer's Guide

■ CachedRowSet

■ JdbcRowSet

■ WebRowSet

■ FilteredRowSet

■ JoinRowSet

Oracle JDBC supports all five types of RowSets through the interfaces and classes
present in the oracle.jdbc.rowset package. Since Oracle Database 11g Release 1
(11.1), RowSets support has been added in the server-side drivers. Therefore, starting
from Oracle Database 11g Release 1 (11.1), RowSets support is uniform across all
Oracle JDBC driver types. The standard Oracle JDBC Java Archive (JAR) files, for
example, ojdbc5.jar and ojdbc6.jar contain the oracle.jdbc.rowset
package.

To use the Oracle RowSet implementations, you need to import either the entire
oracle.jdbc.rowset package or specific classes and interfaces from the package
for the required RowSet type. For client-side usage, you also need to include the
standard Oracle JAR files like ojdbc5.jar or ojdbc6.jar in the CLASSPATH
environment variable.

This section covers the following topics:

■ RowSet Properties

■ Events and Event Listeners

■ Command Parameters and Command Execution

■ Traversing RowSets

RowSet Properties
The javax.sql.RowSet interface provides a set of JavaBeans properties that can be
altered to access the data in the data source through a single interface. Example of
properties are connection string, user name, password, type of connection, and the
query string.

For a complete list of properties and property descriptions, refer to the Java2 Platform,
Standard Edition (J2SE) Javadoc for javax.sql.RowSet at

Note:

■ The other JAR files with different file suffix names, for example,
ojdbc5_g.jar, ojdbc5dms.jar, and so on also contain the
oracle.jdbc.rowset package.

■ In Oracle Database 10g release 2 (10.2), the implementation classes
were packaged in the ojdbc14.jar file.

■ Prior to Oracle Database 10g release 2 (10.2), the implementation
classes were packaged in the ocrs12.jar file.

■ Prior to Oracle Database 11g Release 1 (11.1), RowSets support
was not available in the server-side drivers.

See Also: "Check the Environment Variables" on page 2-3 for
information about setting the CLASSPATH environment variable.

Overview of JDBC RowSets

JDBC RowSets 18-3

http://download.oracle.com/javase/1.5.0/docs/api/javax/sql/RowSe
t.html

The interface provides standard accessor methods for setting and retrieving the
property values. The following code illustrates setting some of the RowSet properties:

...
rowset.setUrl("jdbc:oracle:oci:@");
rowset.setUsername("SCOTT");
rowset.setPassword("TIGER");
rowset.setCommand("SELECT empno, ename, sal FROM emp");
...

In this example, the URL, user name, password, and SQL query are set as the RowSet
properties to retrieve the employee number, employee name, and salary of all the
employees into the RowSet object.

Events and Event Listeners
RowSets support JavaBeans events. The following types of events are supported by the
RowSet interface:

■ cursorMoved

This event is generated whenever there is a cursor movement. For example, when
the next or previous method is called.

■ rowChanged

This event is generated when a row is inserted, updated, or deleted from the
RowSet.

■ rowSetChanged

This event is generated when the whole RowSet is created or changed. For
example, when the execute method is called.

An application component can implement a RowSet listener to listen to these RowSet
events and perform desired operations when the event occurs. Application
components, which are interested in these events, must implement the standard
javax.sql.RowSetListener interface and register such listener objects with a
RowSet object. A listener can be registered using the RowSet.addRowSetListener
method and unregistered using the RowSet.removeRowSetListener method.
Multiple listeners can be registered with the same RowSet object.

The following code illustrates the registration of a RowSet listener:

 ...
 MyRowSetListener rowsetListener = new MyRowSetListener ();
 // adding a rowset listener
 rowset.addRowSetListener (rowsetListener);
 ...

The following code illustrates a listener implementation:

 public class MyRowSetListener implements RowSetListener
 {
 public void cursorMoved(RowSetEvent event)
 {
 // action on cursor movement
 }

 public void rowChanged(RowSetEvent event)

Overview of JDBC RowSets

18-4 Oracle Database JDBC Developer's Guide

 {
 // action on change of row
 }

 public void rowSetChanged(RowSetEvent event)
 {
 // action on changing of rowset
 }
 }// end of class MyRowSetListener

Applications that need to handle only selected events can implement only the required
event handling methods by using the
oracle.jdbc.rowset.OracleRowSetListenerAdapter class, which is an
abstract class with empty implementation for all the event handling methods. In the
following code, only the rowSetChanged event is handled, while the remaining
events are not handled by the application:

 ...
 rowset.addRowSetListener(new oracle.jdbc.rowset.OracleRowSetListenerAdapter ()
 {
 public void rowSetChanged(RowSetEvent event)
 {
 // your action for rowSetChanged
 }
 }
);
 ...

Command Parameters and Command Execution
The command property of a RowSet object typically represents a SQL query string,
which when processed would populate the RowSet object with actual data. Like in
regular JDBC processing, this query string can take input or bind parameters. The
javax.sql.RowSet interface also provides methods for setting input parameters to
this SQL query. After the required input parameters are set, the SQL query can be
processed to populate the RowSet object with data from the underlying data source.
The following code illustrates this simple sequence:

 ...
 rowset.setCommand("SELECT ename, sal FROM emp WHERE empno = ?");
 // setting the employee number input parameter for employee named "KING"
 rowset.setInt(1, 7839);
 rowset.execute();
 ...

In the preceding example, the employee number 7839 is set as the input or bind
parameter for the SQL query specified in the command property of the RowSet object.
When the SQL query is processed, the RowSet object is filled with the employee name
and salary information of the employee whose employee number is 7839.

Traversing RowSets
The javax.sql.RowSet interface extends the java.sql.ResultSet interface. The
RowSet interface, therefore, provides cursor movement and positioning methods,
which are inherited from the ResultSet interface, for traversing through data in a
RowSet object. Some of the inherited methods are absolute, beforeFirst,
afterLast, next, and previous.

Overview of JDBC RowSets

JDBC RowSets 18-5

The RowSet interface can be used just like a ResultSet interface for retrieving and
updating data. The RowSet interface provides an optional way to implement a
scrollable and updatable result set. All the fields and methods provided by the
ResultSet interface are implemented in RowSet.

The following code illustrates how to scroll through a RowSet:

/**
 * Scrolling forward, and printing the empno in
 * the order in which it was fetched.
 */
...
rowset.setCommand("SELECT empno, ename, sal FROM emp");
rowset.execute();
...
// going to the first row of the rowset
rowset.beforeFirst ();
while (rowset.next ())
 System.out.println ("empno: " +rowset.getInt (1));

In the preceding code, the cursor position is initialized to the position before the first
row of the RowSet by the beforeFirst method. The rows are retrieved in forward
direction using the next method.

The following code illustrates how to scroll through a RowSet in the reverse direction:

/**
 * Scrolling backward, and printing the empno in
 * the reverse order as it was fetched.
 */
//going to the last row of the rowset
rowset.afterLast ();
while (rowset.previous ())
 System.out.println ("empno: " +rowset.getInt (1));

In the preceding code, the cursor position is initialized to the position after the last row
of the RowSet. The rows are retrieved in reverse direction using the previous
method of RowSet.

Inserting, updating, and deleting rows are supported by the Row Set feature as they
are in the Result Set feature. In order to make the Row Set updatable, you must call the
setReadOnly(false) and acceptChanges methods.

The following code illustrates the insertion of a row at the fifth position of a Row Set:

...
/**
 * Make rowset updatable
 */
rowset.setReadOnly (false);
/**
 * Inserting a row in the 5th position of the rowset.
 */
// moving the cursor to the 5th position in the rowset
if (rowset.absolute(5))
{

Note: The Oracle implementation of ResultSet provides the
scrollable and updatable properties of the java.sql.ResultSet
interface.

CachedRowSet

18-6 Oracle Database JDBC Developer's Guide

 rowset.moveToInsertRow ();
 rowset.updateInt (1, 193);
 rowset.updateString (2, "Ashok");
 rowset.updateInt (3, 7200);

 // inserting a row in the rowset
 rowset.insertRow ();

 // Synchronizing the data in RowSet with that in the database.
 rowset.acceptChanges ();
}
...

In the preceding code, a call to the absolute method with a parameter 5 takes the
cursor to the fifth position of the RowSet and a call to the moveToInsertRow method
creates a place for the insertion of a new row into the RowSet. The updateXXX
methods are used to update the newly created row. When all the columns of the row
are updated, the insertRow is called to update the RowSet. The changes are
committed through acceptChanges method.

CachedRowSet
A CachedRowSet is a RowSet in which the rows are cached and the RowSet is
disconnected, that is, it does not maintain an active connection to the database. The
oracle.jdbc.rowset.OracleCachedRowSet class is the Oracle implementation
of CachedRowSet. It can interoperate with the reference implementation of Sun
Microsystems. The OracleCachedRowSet class in the ojdbc5.jar and
ojdbc6.jar files implements the standard JSR-114 interface
javax.sql.rowset.CachedRowSet.

In the following code, an OracleCachedRowSet object is created and the connection
URL, user name, password, and the SQL query for the RowSet object is set as
properties. The RowSet object is populated using the execute method. After the
execute method has been processed, the RowSet object can be used as a
java.sql.ResultSet object to retrieve, scroll, insert, delete, or update data.

...
RowSet rowset = new OracleCachedRowSet();
rowset.setUrl("jdbc:oracle:oci:@");
rowset.setUsername("SCOTT");
rowset.setPassword("TIGER");
rowset.setCommand("SELECT empno, ename, sal FROM emp");
rowset.execute();
while (rowset.next ())
{
 System.out.println("empno: " +rowset.getInt (1));
 System.out.println("ename: " +rowset.getString (2));
 System.out.println("sal: " +rowset.getInt (3));
}
...

To populate a CachedRowSet object with a query, complete the following steps:

1. Instantiate OracleCachedRowSet.

2. Set the Url, which is the connection URL, Username, Password, and Command,
which is the query string, properties for the RowSet object. You can also set the
connection type, but it is optional.

CachedRowSet

JDBC RowSets 18-7

3. Call the execute method to populate the CachedRowSet object. Calling
execute runs the query set as a property on this RowSet.

 OracleCachedRowSet rowset = new OracleCachedRowSet ();
 rowset.setUrl ("jdbc:oracle:oci:@");
 rowset.setUsername ("SCOTT");
 rowset.setPassword ("TIGER");
 rowset.setCommand ("SELECT empno, ename, sal FROM emp");
 rowset.execute ();

A CachedRowSet object can be populated with an existing ResultSet object, using
the populate method. To do so, complete the following steps:

1. Instantiate OracleCachedRowSet.

2. Pass the already available ResultSet object to the populate method to
populate the RowSet object.

 // Executing a query to get the ResultSet object.
 ResultSet rset = pstmt.executeQuery ();

 OracleCachedRowSet rowset = new OracleCachedRowSet ();
 // the obtained ResultSet object is passed to the populate method
 // to populate the data in the rowset object.
 rowset.populate (rset);

In the preceding example, a ResultSet object is obtained by running a query and the
retrieved ResultSet object is passed to the populate method of the
CachedRowSet object to populate the contents of the result set into the
CachedRowSet.

The following code illustrates how an OracleCachedRowSet object is serialized to a
file and then retrieved:

// writing the serialized OracleCachedRowSet object
{
 FileOutputStream fileOutputStream = new FileOutputStream("emp_tab.dmp");
 ObjectOutputStream ostream = new ObjectOutputStream(fileOutputStream);
 ostream.writeObject(rowset);
 ostream.close();
 fileOutputStream.close();
}

// reading the serialized OracleCachedRowSet object
{
 FileInputStream fileInputStream = new FileInputStream("emp_tab.dmp");
 ObjectInputStream istream = new ObjectInputStream(fileInputStream);
 RowSet rowset1 = (RowSet) istream.readObject();
 istream.close();
 fileInputStream.close();
}

Note: Connection properties, like transaction isolation or the
concurrency mode of the result set, and the bind properties cannot
be set in the case where a pre-existent ResultSet object is used to
populate the CachedRowSet object, because the connection or
result set on which the property applies would have already been
created.

CachedRowSet

18-8 Oracle Database JDBC Developer's Guide

In the preceding code, a FileOutputStream object is opened for an emp_tab.dmp
file, and the populated OracleCachedRowSet object is written to the file using
ObjectOutputStream. The serialized OracleCachedRowSet object is retrieved
using the FileInputStream and ObjectInputStream objects.

OracleCachedRowSet takes care of the serialization of non-serializable form of data
like InputStream, OutputStream, binary large objects (BLOBs), and character large
objects (CLOBs). OracleCachedRowSets also implements metadata of its own,
which could be obtained without any extra server round-trip. The following code
illustrates how you can obtain metadata for the RowSet:

...
ResultSetMetaData metaData = rowset.getMetaData();
int maxCol = metaData.getColumnCount();
for (int i = 1; i <= maxCol; ++i)
 System.out.println("Column (" + i +") " + metaData.getColumnName(i));
...

Because the OracleCachedRowSet class is serializable, it can be passed across a
network or between Java Virtual Machines (JVMs), as done in Remote Method
Invocation (RMI). Once the OracleCachedRowSet class is populated, it can move
around any JVM, or any environment that does not have JDBC drivers. Committing
the data in the RowSet requires the presence of JDBC drivers.

The complete process of retrieving the data and populating it in the
OracleCachedRowSet class is performed on the server and the populated RowSet is
passed on to the client using suitable architectures like RMI or Enterprise Java Beans
(EJB). The client would be able to perform all the operations like retrieving, scrolling,
inserting, updating, and deleting on the RowSet without any connection to the
database. Whenever data is committed to the database, the acceptChanges method
is called, which synchronizes the data in the RowSet to that in the database. This
method makes use of JDBC drivers, which require the JVM environment to contain
JDBC implementation. This architecture would be suitable for systems involving a
Thin client like a Personal Digital Assistant (PDA).

After populating the CachedRowSet object, it can be used as a ResultSet object or
any other object, which can be passed over the network using RMI or any other
suitable architecture.

Some of the other key-features of CachedRowSet are the following:

■ Cloning a RowSet

■ Creating a copy of a RowSet

■ Creating a shared copy of a RowSet

CachedRowSet Constraints
All the constraints that apply to an updatable result set are applicable here, except
serialization, because OracleCachedRowSet is serializable. The SQL query has the
following constraints:

■ References only a single table in the database

■ Contains no join operations

■ Selects the primary key of the table it references

In addition, a SQL query should also satisfy the following conditions, if new rows are
to be inserted:

■ Selects all non-nullable columns in the underlying table

JdbcRowSet

JDBC RowSets 18-9

■ Selects all columns that do not have a default value

Connection properties like, transaction isolation and concurrency mode of the result
set, cannot be set after populating the RowSet, because the properties cannot be
applied to the connection after retrieving the data from the same.

JdbcRowSet
A JdbcRowSet is a RowSet that wraps around a ResultSet object. It is a connected
RowSet that provides JDBC interfaces in the form of a JavaBean interface. The Oracle
implementation of JdbcRowSet is oracle.jdbc.rowset.OracleJDBCRowSet. The
OracleJDBCRowSet class in ojdbc5.jar and ojdbc6.jar implements the
standard JSR-114 interface javax.sql.rowset.JdbcRowSet.

Table 18–1 shows how the JdbcRowSet interface differs from CachedRowSet
interface.

JdbcRowSet is a connected RowSet, which has a live connection to the database and all
the calls on the JdbcRowSet are percolated to the mapping call in the JDBC connection,
statement, or result set. A CachedRowSet does not have any connection to the
database open.

JdbcRowSet requires the presence of JDBC drivers unlike a CachedRowSet, which
does not require JDBC drivers during manipulation. However, both JdbcRowSet and
CachedRowSet require JDBC drivers during population of the RowSet and while
committing the changes of the RowSet.

The following code illustrates how a JdbcRowSet is used:

...
RowSet rowset = new OracleJDBCRowSet();
rowset.setUrl("java:oracle:oci:@");
rowset.setUsername("SCOTT");
rowset.setPassword("TIGER");
rowset.setCommand("SELECT empno, ename, sal FROM emp");
rowset.execute();
while (rowset.next())
{
 System.out.println("empno: " + rowset.getInt(1));
 System.out.println("ename: " + rowset.getString(2));
 System.out.println("sal: " + rowset.getInt(3));
}
...

Note: The CachedRowSet cannot hold a large quantity of data,
because all the data is cached in memory. Oracle, therefore,
recommends against using OracleCachedRowSet with queries
that could potentially return a large volume of data.

Table 18–1 The JDBC and Cached Row Sets Compared

RowSet Type Serializable

Connected
to
Database

Movable
Across
JVMs

Synchronization
of data to
database

Presence
of JDBC
Drivers

JDBC Yes Yes No No Yes

Cached Yes No Yes Yes No

WebRowSet

18-10 Oracle Database JDBC Developer's Guide

In the preceding example, the connection URL, user name, password, and SQL query
are set as properties of the RowSet object, the SQL query is processed using the
execute method, and the rows are retrieved and printed by traversing through the
data populated in the RowSet object.

WebRowSet
A WebRowSet is an extension to CachedRowSet. It represents a set of fetched rows or
tabular data that can be passed between tiers and components in a way such that no
active connections with the data source need to be maintained. The WebRowSet
interface provides support for the production and consumption of result sets and their
synchronization with the data source, both in Extensible Markup Language (XML)
format and in disconnected fashion. This allows result sets to be shipped across tiers
and over Internet protocols.

The Oracle implementation of WebRowSet is
oracle.jdbc.rowset.OracleWebRowSet. This class, which is in the ojdbc5.jar
and ojdbc6.jar files, implements the standard JSR-114 interface
javax.sql.rowset.WebRowSet. This class also extends the
oracle.jdbc.rowset.OracleCachedRowSet class. Besides the methods available
in OracleCachedRowSet, the OracleWebRowSet class provides the following
methods:

public OracleWebRowSet() throws SQLException

This is the constructor for creating an OracleWebRowSet object, which is
initialized with the default values for an OracleCachedRowSet object, a default
OracleWebRowSetXmlReader, and a default OracleWebRowSetXmlWriter.

public void writeXml(java.io.Writer writer) throws SQLException
public void writeXml(java.io.OutputStream ostream) throws SQLException

These methods write the OracleWebRowSet object to the supplied Writer or
OutputStream object in the XML format that conforms to the JSR-114 XML
schema. In addition to the RowSet data, the properties and metadata of the
RowSet are written.

public void writeXml(ResultSet rset, java.io.Writer writer) throws SQLException
public void writeXml(ResultSet rset, java.io.OutputStream ostream) throws
SQLException

These methods create an OracleWebRowSet object, populate it with the data in
the given ResultSet object, and write it to the supplied Writer or
OutputStream object in the XML format that conforms to the JSR-114 XML
schema.

public void readXml(java.io.Reader reader) throws SQLException
public void readXml(java.io.InputStream istream) throws SQLException

These methods read the OracleWebRowSet object in the XML format according
to its JSR-114 XML schema, using the supplied Reader or InsputStream object.

The Oracle WebRowSet implementation supports Java API for XML Processing (JAXP)
1.2. Both Simple API for XML (SAX) 2.0 and Document Object Model (DOM)
JAXP-conforming XML parsers are supported. It follows the current JSR-114 W3C
XML schema for WebRowSet from:
http://java.sun.com/xml/ns/jdbc/webrowset.xsd

WebRowSet

JDBC RowSets 18-11

Applications that use the readXml(...) methods should set one of the following
two standard JAXP system properties before calling the methods:

■ javax.xml.parsers.SAXParserFactory

This property is for a SAX parser.

■ javax.xml.parsers.DocumentBuilderFactory

This property is for a DOM parser.

The following code illustrates the use of OracleWebRowSet for both writing and
reading in XML format:

import java.sql.*;
import java.io.*;
import oracle.jdbc.rowset.*;

...
String url = "jdbc:oracle:oci8:@";

Connection conn = DriverManager.getConnection(url,"scott","tiger");
Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery("select * from emp");

// Create an OracleWebRowSet object and populate it with the ResultSet object
OracleWebRowSet wset = new OracleWebRowSet();
wset.populate(rset);

try
{
 // Create a java.io.Writer object
 FileWriter out = new FileWriter("xml.out");

 // Now generate the XML and write it out
 wset.writeXml(out);
}
catch (IOException exc)
{
 System.out.println("Couldn’t construct a FileWriter");
}
System.out.println("XML output file generated.");

// Create a new OracleWebRowSet for reading from XML input
OracleWebRowSet wset2 = new OracleWebRowSet();

// Use Oracle JAXP SAX parser
System.setProperty("javax.xml.parsers.SAXParserFactory","oracle.xml.jaxp.JXSAXPars
erFactory");

try
{

See Also:

■ JSR-114 specification at:
http://jcp.org/en/jsr/detail?id=114

■ Java SE 5.0 Javadoc at:
http://download.oracle.com/javase/1.5.0/docs/api/

■ Java SE 6.0 Javadoc at:
http://download.oracle.com/javase/6/docs/api/

FilteredRowSet

18-12 Oracle Database JDBC Developer's Guide

 // Use the preceding output file as input
 FileReader fr = new FileReader("xml.out");

 // Now read XML stream from the FileReader
 wset2.readXml(fr);
}
catch (IOException exc)
{
 System.out.println("Couldn’t construct a FileReader");
}
...

FilteredRowSet
A FilteredRowSet is an extension to WebRowSet that provides programmatic support
for filtering its content. This enables you to avoid the overhead of supplying a query
and the processing involved. The Oracle implementation of FilteredRowSet is
oracle.jdbc.rowset.OracleFilteredRowSet. The OracleFilteredRowSet
class in the ojdbc5.jar and ojdbc6.jar files implements the standard JSR-114
interface javax.sql.rowset.FilteredRowSet.

The OracleFilteredRowSet class defines the following new methods:

public Predicate getFilter();

This method returns a Predicate object that defines the filtering criteria active
on the OracleFilteredRowSet object.

public void setFilter(Predicate p) throws SQLException;

This method takes a Predicate object as a parameter. The Predicate object
defines the filtering criteria to be applied on the OracleFilteredRowSet object.
The methods throws a SQLException exception.

The predicate set on an OracleFilteredRowSet object defines a filtering criteria
that is applied to all the rows in the object to obtain the set of visible rows. The
predicate also defines the criteria for inserting, deleting, and modifying rows. The set
filtering criteria acts as a gating mechanism for all views and updates to the
OracleFilteredRowSet object. Any attempt to update the
OracleFilteredRowSet object, which violates the filtering criteria, throws a
SQLException exception.

The filtering criteria set on an OracleFilteredRowSet object can be modified by
applying a new Predicate object. The new criteria is immediately applied on the
object, and all further views and updates must adhere to this new criteria. A new
filtering criteria can be applied only if there are no reference to the
OracleFilteredRowSet object.

Rows that fall outside of the filtering criteria set on the object cannot be modified until
the filtering criteria is removed or a new filtering criteria is applied. Also, only the
rows that fall within the bounds of the filtering criteria will be synchronized with the
data source, if an attempt is made to persist the object.

The following code example illustrates the use of OracleFilteredRowSet. Assume a
table, test_table, with two NUMBER columns, col1 and col2. The code retrieves

Note: The preceding code uses the Oracle SAX XML parser, which
supports schema validation.

JoinRowSet

JDBC RowSets 18-13

those rows from the table that have value of col1 between 50 and 100 and value of
col2 between 100 and 200.

The predicate defining the filtering criteria is as follows:

public class PredicateImpl implements Predicate
{
 private int low[];
 private int high[];
 private int columnIndexes[];

 public PredicateImpl(int[] lo, int[] hi, int[] indexes)
 {
 low = lo;
 high = hi;
 columnIndexes = indexes;
 }

 public boolean evaluate(RowSet rs)
 {
 boolean result = true;
 for (int i = 0; i < columnIndexes.length; i++)
 {
 int columnValue = rs.getInt(columnIndexes[i]);
 if (columnValue < low[i] || columnValue > high[i])
 result = false;
 }
 return result;
 }

// the other two evaluate(...) methods simply return true

}

The predicate defined in the preceding code is used for filtering content in an
OracleFilteredRowSet object, as follows:

...
OracleFilteredRowSet ofrs = new OracleFilteredRowSet();
int low[] = {50, 100};
int high[] = {100, 200};
int indexes[] = {1, 2};
ofrs.setCommand("select col1, col2 from test_table");

// set other properties on ofrs like usr/pwd ...
...
ofrs.execute();
ofrs.setPredicate(new PredicateImpl(low, high, indexes));

// this will only get rows with col1 in (50,100) and col2 in (100,200)
while (ofrs.next()) {...}
...

JoinRowSet
A JoinRowSet is an extension to WebRowSet that consists of related data from
different RowSets. There is no standard way to establish a SQL JOIN between
disconnected RowSets without connecting to the data source. A JoinRowSet addresses
this issue. The Oracle implementation of JoinRowSet is the

JoinRowSet

18-14 Oracle Database JDBC Developer's Guide

oracle.jdbc.rowset.OracleJoinRowSet class. This class, which is in the
ojdbc5.jar and ojdbc6.jar files, implements the standard JSR-114 interface
javax.sql.rowset.JoinRowSet.

Any number of RowSet objects, which implement the Joinable interface, can be
added to a JoinRowSet object, provided they can be related in a SQL JOIN. All five
types of RowSet support the Joinable interface. The Joinable interface provides
methods for specifying the columns based on which the JOIN will be performed, that
is, the match columns.

A match column can be specified in the following ways:

■ Using the setMatchColumn method

This method is defined in the Joinable interface. It is the only method that can
be used to set the match column before a RowSet object is added to a
JoinRowSet object. This method can also be used to reset the match column at
any time.

■ Using the addRowSet method

This is an overloaded method in JoinRowSet. Four of the five implementations
of this method take a match column as a parameter. These four methods can be
used to set or reset a match column at the time a RowSet object is being added to a
JoinRowSet object.

In addition to the inherited methods, OracleJoinRowSet provides the following
methods:

public void addRowSet(Joinable joinable) throws SQLException;
public void addRowSet(RowSet rowSet, int i) throws SQLException;
public void addRowSet(RowSet rowSet, String s) throws SQLException;
public void addRowSet(RowSet arowSet[], int an[]) throws SQLException;
public void addRowSet(RowSet arowSet[], String as[]) throws SQLException;

These methods are used to add a RowSet object to the OracleJoinRowSet
object. You can pass one or more RowSet objects to be added to the
OracleJoinRowSet object. You can also pass names or indexes of one or more
columns, which need to be set as match column.

public Collection getRowSets() throws SQLException;

This method retrieves the RowSet objects added to the OracleJoinRowSet
object. The method returns a java.util.Collection object that contains the
RowSet objects.

public String[] getRowSetNames() throws SQLException;

This method returns a String array containing the names of the RowSet objects
that are added to the OracleJoinRowSet object.

public boolean supportsCrossJoin();
public boolean supportsFullJoin();
public boolean supportsInnerJoin();
public boolean supportsLeftOuterJoin();
public boolean supportsRightOuterJoin();

These methods return a boolean value indicating whether the
OracleJoinRowSet object supports the corresponding JOIN type.

public void setJoinType(int i) throws SQLException;

JoinRowSet

JDBC RowSets 18-15

This method is used to set the JOIN type on the OracleJoinRowSet object. It
takes an integer constant as defined in the javax.sql.rowset.JoinRowSet
interface that specifies the JOIN type.

public int getJoinType() throws SQLException;

This method returns an integer value that indicates the JOIN type set on the
OracleJoinRowSet object. This method throws a SQLException exception.

public CachedRowSet toCachedRowSet() throws SQLException;

This method creates a CachedRowSet object containing the data in the
OracleJoinRowSet object.

public String getWhereClause() throws SQLException;

This method returns a String containing the SQL-like description of the WHERE
clause used in the OracleJoinRowSet object. This methods throws a
SQLException exception.

The following code illustrates how OracleJoinRowSet is used to perform an inner
join on two RowSets, whose data come from two different tables. The resulting
RowSet contains data as if they were the result of an inner join on these two tables.
Assume that there are two tables, an Order table with two NUMBER columns Order_
id and Person_id, and a Person table with a NUMBER column Person_id and a
VARCHAR2 column Name.

...
// RowSet holding data from table Order
OracleCachedRowSet ocrsOrder = new OracleCachedRowSet();
...
ocrsOrder.setCommand("select order_id, person_id from order");
...
// Join on person_id column
ocrsOrder.setMatchColumn(2);
ocrsOrder.execute();

// Creating the JoinRowSet
OracleJoinRowSet ojrs = new OracleJoinRowSet();
ojrs.addRowSet(ocrsOrder);

// RowSet holding data from table Person
OracleCachedRowSet ocrsPerson = new OracleCachedRowSet();
...
ocrsPerson.setCommand("select person_id, name from person");
...
// do not set match column on this RowSet using setMatchColumn().
//use addRowSet() to set match column
ocrsPerson.execute();

// Join on person_id column, in another way
ojrs.addRowSet(ocrsPerson, 1);

// now we can go the JoinRowSet as usual
ojrs.beforeFirst();
while (ojrs.next())
System.out.println("order id = " + ojrs.getInt(1) + ", " + "person id = " +
ojrs.getInt(2) + ", " + "person's name = " + ojrs.getString(3));
...

JoinRowSet

18-16 Oracle Database JDBC Developer's Guide

Globalization Support 19-1

19
Globalization Support

The Oracle Java Database Connectivity (JDBC) drivers provide globalization support,
formerly known as National Language Support (NLS). Globalization support enables
you retrieve data or insert data into a database in any character set that Oracle
supports. If the clients and the server use different character sets, then the driver
provides the support to perform the conversions between the database character set
and the client character set.

This chapter contains the following sections:

■ Providing Globalization Support

■ NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property in JDK 1.5

■ New Methods for National Character Set Type Data in JDK 1.6

Providing Globalization Support
The basic Java Archive (JAR) files, ojdbc5.jar and ojdbc6.jar, contain all the
necessary classes to provide complete globalization support for:

■ Oracle character sets for CHAR, VARCHAR, LONGVARCHAR, or CLOB data that is not
being retrieved or inserted as a data member of an Oracle object or collection type.

See Also:

■ "Oracle Character Data Types Support" on page 4-10

■ Oracle Database Globalization Support Guide

■ Oracle Database Reference

Note:

■ Starting from Oracle Database 10g, the NLS_LANG variable is no
longer part of the JDBC globalization mechanism. The JDBC
driver does not check NLS environment. So, setting it has no
effect.

■ The JDBC server-side internal driver provides complete
globalization support and does not require any globalization
extension files.

■ JDBC 4.0 includes methods for reading and writing national
character set values. You should use these methods when using
JSE 6 or later.

Providing Globalization Support

19-2 Oracle Database JDBC Developer's Guide

■ CHAR or VARCHAR data members of object and collection for the character sets
US7ASCII, WE8DEC, WE8ISO8859P1, WE8MSWIN1252, and UTF8.

To use any other character sets in CHAR or VARCHAR data members of objects or
collections, you must include orai18n.jar in the CLASSPATH environment variable
of your application.

Compressing orai18n.jar
The orai18n.jar file contains many important character set and globalization
support files. You can reduce the size of orai18n.jar using the built-in
customization tool, as follows:

java -jar orai18n.jar -custom-charsets-jar [jar/zip_filename] -charset
characterset_name [characterset_name ...]

For example, if you want to create a custom character set file, custom_orai18n_
ja.jar, that includes the JA16SJIS and JA16EUC character sets, then issue the
following command:

$ java -jar orai18n.jar -custom-charsets-jar custom_orai18n_ja.jar -charset
JA16SJIS JA16EUC

The output of the command is as follows:

Added Character set : JA16SJIS
Added Character set : JA16EUC

If you do not specify a file name for your custom JAR/ZIP file, then a file with the
name jdbc_orai18n_cs.jar is created in the current working directory. Also, for
your custom JAR/ZIP file, you cannot specify a name that starts with orai18n.

If any invalid or unsupported character set name is specified in the command, then no
output JAR/ZIP file will be created. If the custom JAR/ZIP file exists, then the file will
not be updated or removed.

The custom character set JAR/ZIP does not accept any command. However, it prints
the version information and the command that was used to generate the JAR/ZIP file.
For example, you have jdbc_orai18n_cs.zip, the command that displays the
information and the displayed information is as follows:

$ java -jar jdbc_orai18n_cs.jar
Oracle Globalization Development Kit - 11.2.X.X.X Release
This custom character set jar/zip file was created with the following command:
java -jar orai18n.jar -custom-charsets-jar jdbc_orai18n_cs.jar -charset
WE8ISO8859P15

The limitation to the number of character sets that can be specified depends on that of
the shell or command prompt of the operating system. It is certified that all supported
character sets can be specified with the command.

Note: Previous releases depended on the nls_charset12.zip
file. This file is now obsolete.

NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property in JDK 1.5

Globalization Support 19-3

NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property in JDK 1.5
By default, the oracle.jdbc.OraclePreparedStatement interface treats the data
type of all the columns in the same way as they are encoded in the database character
set. However, since Oracle Database 10g, if you set the value of
oracle.jdbc.defaultNChar system property to true, then JDBC treats all
character columns as being national-language.

The default value of defaultNChar is false. If the value of defaultNChar is false,
then you must call the setFormOfUse(<column_Index>,
OraclePreparedStatement.FORM_NCHAR) method for those columns that
specifically need national-language characters. For example:

PreparedStatement pstmt =
conn.prepareStatement("insert into TEST values(?,?,?)");
pstmt.setFormOfUse(1, OraclePreparedStatement.FORM_NCHAR);
pstmt.setString(1, myUnicodeString1); // NCHAR column
pstmt.setFormOfUse(2, OraclePreparedeStatement.FORM_NCHAR);
pstmt.setString(2, myUnicodeString2); // NVARCHAR2 column

If you want to set the value of defaultNChar to true, then specify the following at
the command-line:

java -Doracle.jdbc.defaultNChar=true myApplication

If you prefer, then you can also specify defaultNChar as a connection property and
access NCHAR, NVARCHAR2, or NCLOB data.

Properties props = new Properties();
props.put(OracleConnection.CONNECTION_PROPERTY_DEFAULTNCHAR, "true");
// set URL, username, password, and so on.
...
Connection conn = DriverManager.getConnection(props);

If the value of defaultNChar is true, then you should call the
setFormOfUse(<column_Index>, FORM_CHAR) for columns that do not need
national-language characters. For example:

PreparedStatement pstmt =
conn.prepareStatement("insert into TEST values(?,?,?)");
pstmt.setFormOfUse(3, OraclePreparedStatement.FORM_CHAR);
pstmt.setString(3, myString); // CHAR column

Note: If you are using a custom character set, then you need to
perform the following so that JDBC supports the custom character set:

1. After creating the .nlt and .nlb files as part of the process of creating a
custom character set, create .glb files for the newly created character set
and also for the lx0boot.nlt file using the following command:

java -classpath $ORACLE_HOME/jlib/orai18n-tools.jar Ginstall
<nlt file>

2. Add the generated files and $ORACLE_
HOME/jlib/orai18n-mappings.jar into the classpath
environment variable while executing the JDBC code that connects to the
database with the custom character set.

For more information about creating a custom character set, refer to
Oracle Database Globalization Support Guide.

New Methods for National Character Set Type Data in JDK 1.6

19-4 Oracle Database JDBC Developer's Guide

New Methods for National Character Set Type Data in JDK 1.6
JDBC 4.0 introduces support for the following four additional SQL types to access the
national character set types:

■ NCHAR

■ NVARCHAR

■ LONGNVARCHAR

■ NCLOB

These types are similar to the CHAR, VARCHAR, LONGVARCHAR, and CLOB types, except
that the values are encoded using the national character set. The JDBC specification
uses the String class to represent NCHAR, NVARCHAR, and LONGNVARCHAR data, and
the NClob class to represent NCLOB values.

To retrieve a national character value, an application calls one of the following
methods:

■ getNString

■ getNClob

■ getNCharacterStream

Note:

■ Always use java.lang.String for character data instead of
oracle.sql.CHAR. CHAR is provided only for backward
compatibility.

■ You can also use the setObject method to access national
character set types, but if the setObject method is used, then
the target data type must be specified as Types.NCHAR,
Types.NCLOB, Types.NVARCHAR, or Types.LONGNVARCHAR.

Note: In Oracle Database, SQL strings are converted to the database
character set. Therefore you need to keep in mind the following:

■ In Oracle Database 10g release 1 (10.1) and earlier releases, JDBC
drivers do not support any NCHAR literal (n'...') containing
Unicode characters that are not representable in the database
character set. All Unicode characters that are not representable in
the database character set get corrupted.

■ If an Oracle Database 10g release 2 (10.2) JDBC driver is connected
to an Oracle Database 10g release 2 (10.2) database server, then all
NCHAR literals (n'...') are converted to Unicode literals (u'...') and
all non-ASCII characters are converted to their corresponding
Unicode escape sequence. This is done automatically to prevent
data corruption.

■ If an Oracle Database 10g release 2 (10.2) JDBC driver is connected
to an Oracle Database 10g release 1 (10.1) or earlier database
server, then NCHAR literals (n'...') are not converted and any
character that is not representable in the database character set
gets corrupted.

New Methods for National Character Set Type Data in JDK 1.6

Globalization Support 19-5

■ getObject

To specify a value for a parameter marker of national character type, an application
calls one of the following methods:

■ setNString

■ setNCharacterStream

■ setNClob

■ setObject

Note: You can use the setFormOfUse method to specify a national
character value in JDK 1.6. But this practice is discouraged because
this method will be deprecated in future release. So, Oracle
recommends you to use the methods discussed in this section.

Tip: If the setObject method is used, then the target data type
must be specified as Types.NCHAR, Types.NCLOB,
Types.NVARCHAR, or Types.LONGNVARCHAR.

New Methods for National Character Set Type Data in JDK 1.6

19-6 Oracle Database JDBC Developer's Guide

Part V
Performance and Scalability

This part consists of chapters that discuss the Oracle Java Database Connectivity
(JDBC) features that enhance performance, such as Statement caching, implicit
connection caching, run-time connection load balancing, and Oracle Call Interface
(OCI) connection pooling. It also includes a chapter that provides information about
Oracle performance extensions, such as update batching and row prefetching.

Part V contains the following chapters:

■ Chapter 20, "Statement and Result Set Caching"

■ Chapter 21, "Implicit Connection Caching"

■ Chapter 22, "Run-Time Connection Load Balancing"

■ Chapter 23, "Performance Extensions"

■ Chapter 24, "OCI Connection Pooling"

■ Chapter 25, "Oracle Advanced Queuing"

■ Chapter 26, "Database Change Notification"

Statement and Result Set Caching 20-1

20
Statement and Result Set Caching

This chapter describes the benefits and use of Statement caching, an Oracle Java
Database Connectivity (JDBC) extension.

This chapter contains the following sections:

■ About Statement Caching

■ Using Statement Caching

■ Reusing Statements Objects

■ Result Set Caching

About Statement Caching
Statement caching improves performance by caching executable statements that are
used repeatedly, such as in a loop or in a method that is called repeatedly. Starting
from JDBC 3.0, JDBC standards define a statement-caching interface.

Statement caching can do the following:

■ Prevent the overhead of repeated cursor creation

■ Prevent repeated statement parsing and creation

■ Reuse data structures in the client

This section covers the following topics:

■ Basics of Statement Caching

■ Implicit Statement Caching

■ Explicit Statement Caching

Note: In Oracle9i Database 9.2.0 and later Releases, Oracle JDBC
provides a new Statement cache interface and implementation,
replacing the application programming interface (API) supported
in Oracle9i Database release 1 (9.0.1). The previous API is now
deprecated.

Note: Oracle strongly recommends you use the implicit Statement
cache. Oracle JDBC drivers are designed on the assumption that the
implicit Statement cache is enabled. So, not using the Statement cache
will have a negative impact on performance.

About Statement Caching

20-2 Oracle Database JDBC Developer's Guide

Basics of Statement Caching
Applications use the Statement cache to cache statements associated with a particular
physical connection. The cache is associated with an OracleConnection object.
OracleConnection includes methods to enable Statement caching. When you
enable Statement caching, a statement object is cached when you call the close
method.

Because each physical connection has its own cache, multiple caches can exist if you
enable Statement caching for multiple physical connections. When you enable
Statement caching on a connection cache, the logical connections benefit from the
Statement caching that is enabled on the underlying physical connection. If you try to
enable Statement caching on a logical connection held by a connection cache, then this
will throw an exception.

There are two types of Statement caching: implicit and explicit. Each type of Statement
cache can be enabled or disabled independent of the other. You can have either,
neither, or both in effect. Both types of Statement caching share a single cache per
connection.

Implicit Statement Caching
When you enable implicit Statement caching, JDBC automatically caches the prepared
or callable statement when you call the close method of this statement object. The
prepared and callable statements are cached and retrieved using standard connection
object and statement object methods.

Plain statements are not implicitly cached, because implicit Statement caching uses a
SQL string as a key and plain statements are created without a SQL string. Therefore,
implicit Statement caching applies only to the OraclePreparedStatement and
OracleCallableStatement objects, which are created with a SQL string. You
cannot use implicit Statement caching with OracleStatement. When you create an
OraclePreparedStatement or OracleCallableStatement, the JDBC driver
automatically searches the cache for a matching statement. The match criteria are the
following:

■ The SQL string in the statement must be identical to one in the cache.

■ The statement type must be the same, that is, prepared or callable.

■ The scrollable type of result sets produced by the statement must be the same, that
is, forward-only or scrollable.

If a match is found during the cache search, then the cached statement is returned. If a
match is not found, then a new statement is created and returned. In either case, the
statement, along with its cursor and state are cached when you call the close method
of the statement object.

When a cached OraclePreparedStatement or OracleCallableStatement
object is retrieved, the state and data information are automatically reinitialized and
reset to default values, while metadata is saved. Statements are removed from the
cache to conform to the maximum size using a Least Recently Used (LRU) algorithm.

Note: The JDBC driver does not clear metadata. However,
although metadata is saved for performance reasons, it has no
semantic impact. A statement that comes from the implicit cache
appears as if it were newly created.

Using Statement Caching

Statement and Result Set Caching 20-3

You can prevent a particular statement from being implicitly cached.

Explicit Statement Caching
Explicit Statement caching enables you to cache and retrieve selected prepared and
callable statements. Explicit Statement caching relies on a key, an arbitrary Java
String that you provide.

Because explicit Statement caching retains statement data and state as well as
metadata, it has a performance edge over implicit Statement caching, which retains
only metadata. However, you must be cautious when using this type of caching,
because explicit Statement caching saves all three types of information for reuse and
you may not be aware of what data and state are retained from prior use of the
statements.

Implicit and explicit Statement caching can be differentiated on the following points:

■ Retrieving statements

In the case of implicit Statement caching, you take no special action to retrieve
statements from a cache. Instead, whenever you call prepareStatement or
prepareCall, JDBC automatically checks the cache for a matching statement and
returns it if found. However, in the case of explicit Statement caching, you use
specialized Oracle WithKey methods to cache and retrieve statement objects.

■ Providing key

Implicit Statement caching uses the SQL string of a prepared or callable statement
as the key, requiring no action on your part. In contrast, explicit Statement caching
requires you to provide a Java String, which it uses as the key.

■ Returning statements

During implicit Statement caching, if the JDBC driver cannot find a statement in
cache, then it will automatically create one. However, during explicit Statement
caching, if the JDBC driver cannot find a matching statement in cache, then it will
return a null value.

Table 20–1 compares the different methods employed in implicit and explicit
Statement caching.

Using Statement Caching
This section discusses the following topics:

See Also: "Disabling Implicit Statement Caching for a Particular
Statement" on page 20-6

Note: Plain statements cannot be cached.

Table 20–1 Comparing Methods Used in Statement Caching

Allocate Insert Into Cache Retrieve From Cache

Implicit prepareStatement
prepareCall

close prepareStatement
prepareCall

Explicit createStatement
prepareStatement
prepareCall

closeWithKey getStatementWithKey
getCallWithKey

Using Statement Caching

20-4 Oracle Database JDBC Developer's Guide

■ Enabling and Disabling Statement Caching

■ Closing a Cached Statement

■ Using Implicit Statement Caching

■ Using Explicit Statement Caching

Enabling and Disabling Statement Caching
When using the OracleConnection API, implicit and explicit Statement caching can
be enabled or disabled independent of one other. You can have either, neither, or both
in effect.

Enabling Implicit Statement Caching
There are two ways to enable implicit Statement caching. The first method enables
Statement caching on a nonpooled physical connection, where you need to explicitly
specify the Statement size for every connection, using the setStatementCacheSize
method. The second method enables Statement caching on a pooled logical
connection. Each connection in the pool has its own Statement cache with the same
maximum size that can be specified by setting the MaxStatementsLimit property.

Method 1
Perform the following steps:

■ Call the OracleDataSource.setImplicitCachingEnabled(true) method
on the connection to set the OracleDataSource property
implicitCachingEnabled to true. For example:

OracleDataSource ods = new OracleDataSource();
...
ods.setImplicitCachingEnabled(true);
...

■ Call the OracleConnection.setStatementCacheSize method on the
physical connection. The argument you supply is the maximum number of
statements in the cache. For example, the following code specifies a cache size of
ten statements:

((OracleConnection)conn).setStatementCacheSize(10);

Method 2
Perform the following steps:

■ Set the OracleDataSource properties implicitCachingEnabled and
connectionCachingEnabled to true. For example:

OracleDataSource ods = new OracleDataSource();
...
ods.setConnectionCachingEnabled(true);
ods.setImplicitCachingEnabled(true);
...

■ Set the MaxStatementsLimit property to a positive integer on the connection
cache, when using the connection cache. For example:

Properties cacheProps = new Properties();
...
cacheProps.put("MaxStatementsLimit", "50");

Using Statement Caching

Statement and Result Set Caching 20-5

To determine whether implicit caching is enabled, call
getImplicitCachingEnabled, which returns true if implicit caching is enabled,
false otherwise.

Disabling Implicit Statement Caching
Disable implicit Statement caching by calling
setImplicitCachingEnabled(false) on the connection or by setting the
ImplicitCachingEnabled property to false.

Enabling Explicit Statement Caching
To enable explicit Statement caching you must first set the Statement cache size. For
setting the cache size, call OracleConnection.setStatementCacheSize method
on the physical connection. The argument you supply is the maximum number of
statements in the cache. An argument of 0 specifies no caching. To check the cache
size, use the getStatementCacheSize method in the following way:

System.out.println("Stmt Cache size is " +
 ((OracleConnection)conn).getStatementCacheSize());

The following code specifies a cache size of ten statements:

((OracleConnection)conn).setStatementCacheSize(10);

Enable explicit Statement caching by calling setExplicitCachingEnabled(true)
on the connection.

To determine whether explicit caching is enabled, call
getExplicitCachingEnabled, which returns true if explicit caching is enabled,
false otherwise.

Disabling Explicit Statement Caching
Disable explicit Statement caching by calling
setExplicitCachingEnabled(false). Disabling caching or closing the cache
purges the cache. The following example disables explicit Statement caching:

((OracleConnection)conn).setExplicitCachingEnabled(false);

Closing a Cached Statement
Perform the following to close a Statement and assure that it is not returned to the
cache:

Note: Enabling Statement caching enables both implicit and explicit
Statement caching.

Note:

■ You enable implicit and explicit caching for a particular
physical connection independently. Therefore, it is possible to
do Statement caching both implicitly and explicitly during the
same session.

■ Implicit and explicit Statement caching share the same cache.
Remember this when you set the statement cache size.

Using Statement Caching

20-6 Oracle Database JDBC Developer's Guide

In J2SE 5.0
■ Disable caching for that statement

stmt.setDisableStatementCaching(true);

■ Call the close method of the statement object

stmt.close();

In JSE 6.0
stmt.setPoolable(false);
stmt.close();

Physically Closing a Cached Statement
With implicit Statement caching enabled, you cannot physically close statements
manually. The close method of a statement object caches the statement instead of
closing it. The statement is physically closed automatically under one of following
three conditions:

■ When the associated connection is closed

■ When the cache reaches its size limit and the least recently used statement object is
preempted from cache by the LRU algorithm

■ If you call the close method on a statement for which Statement caching is
disabled

Using Implicit Statement Caching
Once you enable implicit Statement caching, by default, all prepared and callable
statements are automatically cached. Implicit Statement caching includes the following
steps:

1. Enable implicit Statement caching.

2. Allocate a statement using one of the standard methods.

3. Disable implicit Statement caching for any particular statement you do not want to
cache. This is an optional step.

4. Cache the statement using the close method.

5. Retrieve the implicitly cached statement by calling the appropriate standard
prepare method.

Allocating a Statement for Implicit Caching
To allocate a statement for implicit Statement caching, use either the
prepareStatement or prepareCall method as you would typically.

The following code allocates a new statement object called pstmt:

PreparedStatement pstmt = conn.prepareStatement
 ("UPDATE emp SET ename = ? WHERE rowid = ?");

Disabling Implicit Statement Caching for a Particular Statement
With implicit Statement caching enabled for a connection, by default, all callable and
prepared statements of that connection are automatically cached. To prevent a
particular callable or prepared statement from being implicitly cached, use the
setDisableStatementCaching method of the statement object. You can manage

Using Statement Caching

Statement and Result Set Caching 20-7

cache space by calling the setDisableStatementCaching method on any
infrequently used statement.

The following code disables implicit Statement caching for pstmt:

PreparedStatement pstmt = conn.prepareStatement("SELECT 1 from DUAL");
((OraclePreparedStatement)pstmt).setDisableStmtCaching(true);
pstmt.close ();

Implicitly Caching a Statement
To cache an allocated statement, call the close method of the statement object. When
you call the close method on an OraclePreparedStatement or
OracleCallableStatement object, the JDBC driver automatically puts this
statement in cache, unless you have disabled caching for this statement.

The following code caches the pstmt statement:

pstmt.close ();

Retrieving an Implicitly Cached Statement
To retrieve an implicitly cached statement, call either the prepareStatement or
prepareCall method, depending on the statement type.

The following code retrieves pstmt from cache using the prepareStatement
method:

pstmt = conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

Table 20–2 describes the methods used to allocate statements and retrieve implicitly
cached statements.

Example 20–1 provides a sample code that shows how to enable implicit statement
caching.

Note: If you are using JSE 6, then you can disable Statement caching
by using the standard JDBC 4.0 method setPoolable:

PreparedStatement.setPoolable(false);

Use the following to check whether the Statement object is poolable:

Statement.isPoolable();

Table 20–2 Methods Used in Statement Allocation and Implicit Statement Caching

Method Functionality for Implicit Statement Caching

prepareStatement Performs a cache search that either finds and returns the
desired cached OraclePreparedStatement object or
allocates a new OraclePreparedStatement object if a
match is not found

prepareCall Performs a cache search that either finds and returns the
desired cached OracleCallableStatement object or
allocates a new OracleCallableStatement object if a
match is not found

Using Statement Caching

20-8 Oracle Database JDBC Developer's Guide

Example 20–1 Using Implicit Statement Cache

import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Properties;
import javax.sql.DataSource;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.pool.OracleDataSource;
public class TestJdbc
{
 /**
 * Get a Connection, prepare a statement, execute a query, fetch the results,
close the connection.
 * @param ods the DataSource used to get the connection.
 */
 private static void doSQL(DataSource ods) throws SQLException
 {
 final String SQL = "select username from all_users";
 OracleConnection conn = null;
 PreparedStatement ps = null;
 ResultSet rs = null;
 try
 {
 conn = (OracleConnection) ods.getConnection();
 System.out.println("Connection:" + conn);
 System.out.println("Connection getImplicitCachingEnabled:" +
conn.getImplicitCachingEnabled());
 System.out.println("Connection getStatementCacheSize:" +
conn.getStatementCacheSize());
 ps = conn.prepareStatement(SQL);
 System.out.println("PreparedStatement:" + ps);
 rs = ps.executeQuery();
 while (rs.next())
 {
 String owner = rs.getString(1);
 System.out.println(owner);
 }
 }
 finally
 {
 if (rs != null)
 {
 rs.close();
 }
 if (ps != null)
 {
 ps.close();
 conn.close();
 }
 }
 }
 public static void main(String[] args)
 {
 try
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setDriverType("thin");
 ods.setServerName("localhost");
 ods.setPortNumber(1521);
 ods.setServiceName("orcl");

Using Statement Caching

Statement and Result Set Caching 20-9

 ods.setUser("scott");
 ods.setPassword("tiger");
 ods.setConnectionCachingEnabled(true);
 ods.setImplicitCachingEnabled(true);
 Properties cacheProps = new Properties();
 cacheProps.put("InitialLimit", "1");
 cacheProps.put("MinLimit", "1");
 cacheProps.put("MaxLimit", "5");
 cacheProps.put("MaxStatementsLimit", "50");
 ods.setConnectionCacheProperties(cacheProps);
 System.out.println("DataSource getImplicitCachingEnabled: " +
ods.getImplicitCachingEnabled());
 for (int i = 0; i < 5; i++)
 {
 doSQL(ods);
 }
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }
}

Using Explicit Statement Caching
A prepared or callable statement can be explicitly cached when you enable explicit
Statement caching. Explicit Statement caching includes the following steps:

1. Enable explicit Statement caching.

2. Allocate a statement using one of the standard methods.

3. Explicitly cache the statement by closing it with a key, using the closeWithKey
method.

4. Retrieve the explicitly cached statement by calling the appropriate Oracle WithKey
method, specifying the appropriate key.

5. Re-cache an open, explicitly cached statement by closing it again with the
closeWithKey method. Each time a cached statement is closed, it is re-cached
with its key.

Allocating a Statement for Explicit Caching
To allocate a statement for explicit Statement caching, use either the
createStatement, prepareStatement, or prepareCall method as you would
typically.

The following code allocates a new statement object called pstmt:

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

Explicitly Caching a Statement
To explicitly cache an allocated statement, call the closeWithKey method of the
statement object, specifying a key. The key is an arbitrary Java String that you
provide. The closeWithKey method caches a statement as is. This means the data,
state, and metadata are retained and not cleared.

The following code caches the pstmt statement with the key "mykey":

Reusing Statements Objects

20-10 Oracle Database JDBC Developer's Guide

((OraclePreparedStatement)pstmt).closeWithKey ("mykey");

Retrieving an Explicitly Cached Statement
To recall an explicitly cached statement, call either the getStatementWithKey or
getCallWithKey methods depending on the statement type.

If you retrieve a statement with a specified key, then the JDBC driver searches the
cache for the statement, based on the specified key. If a match is found, then the
matching statement is returned along with its state, data, and metadata. This
information is as it was when the statement was last closed. If a match is not found,
then the JDBC driver returns null.

The following code recalls pstmt from cache using the "mykey" key with the
getStatementWithKey method. Recall that the pstmt statement object was cached
with the "mykey" key.

pstmt = ((OracleConnection)conn).getStatementWithKey ("mykey");

If you call the creationState method on the pstmt statement object, then the
method returns EXPLICIT.

Table 20–3 describes the methods used to retrieve explicitly cached statements.

Reusing Statements Objects
The JDBC 3.0 specification introduces the feature of statement pooling that allows an
application to reuse a PreparedStatement object in the same way as it uses a
Connection object. The PreparedStatement objects can be reused by multiple
logical connections in a transparent manner.

This section covers the following topics:

■ Using a Pooled Statement

■ Closing a Pooled Statement

Important: When you retrieve an explicitly cached statement,
ensure that you use the method that is appropriate for your
statement type when specifying the key. For example, if you used
the prepareStatement method to allocate a statement, then use
the getStatementWithKey method to retrieve that statement
from cache. The JDBC driver does not verify the type of statement it
is returning.

Table 20–3 Methods Used to Retrieve Explicitly Cached Statements

Method Functionality for Explicit Statement Caching

getStatementWithKey Specifies the key needed to retrieve a prepared
statement from cache

getCallWithKey Specifies the key needed to retrieve a callable
statement from cache

Note: The Oracle JDBC Drivers use implicit statement caching to
support statement pooling.

Reusing Statements Objects

Statement and Result Set Caching 20-11

Using a Pooled Statement
An application can find out whether a data source supports statement pooling by
calling the isPoolable method from the Statement interface. If the return value is
true, then the application knows that the PreparedStatement object is being
pooled. The application can also request a statement to be pooled or not pooled by
using the setPoolable method from the Statement interface.

Reusing of pooled statement should be completely transparent to the application, that
is, the application code should remain the same whether a PreparedStatement
object participates in statement pooling or not. If an application closes a
PreparedStatement object, it must still call Connection.prepareStatement
method in order to reuse it.

Closing a Pooled Statement
An application closes a pooled statement exactly the same way it closes a nonpooled
statement. Once a statement is closed, whether is it pooled or nonpooled, it is no
longer available for use by the application and an attempt to reuse it causes an
exception to be thrown. The only difference visible is that an application cannot
directly close a physical statement that is being pooled. This is done by the pool
manager. The method PooledConnection.closeAll closes all of the statements
open on a given physical connection, which releases the resources associated with
those statements.

The following methods can close a pooled statement:

■ close

This java.sql.Statement interface method is called by an application. If the
statement is being pooled, then it closes the logical statement used by the
application but does not close the physical statement being pooled.

■ close

This java.sql.Connection interface method is called by an application. This
method acts differently depending upon whether the connection using the
statement is being pooled or not:

– Nonpooled connection

This method closes the physical connection and all statements created by that
connection. This is necessary because the garbage collection mechanism is
unable to detect when externally managed resources can be released.

– Pooled connection

This method closes the logical connection and the logical statements it
returned, but leaves open the underlying PooledConnection object and any
associated pooled statements

■ PooledConnection.closeAll

This method is called by the connection pool manager to close all of the physical
statements being pooled by the PooledConnection object

Note: An application has no direct control over how statements are
pooled. A pool of statements is associated with a
PooledConnection object, whose behavior is determined by the
properties of the ConnectionPoolDataSource object that
produced it.

Result Set Caching

20-12 Oracle Database JDBC Developer's Guide

Result Set Caching
Your applications sometime send repetitive queries to the database. To improve the
response time of repetitive queries, results of queries, query fragments, and PL/SQL
functions can be cached in memory. A result cache stores the results of queries shared
across all sessions. When these queries are executed repeatedly, the results are
retrieved directly from the cache memory.

You must annotate a query or query fragment with a result cache hint to indicate that
results are to be stored in the query result cache.

The query result set can be cached in the following ways:

■ Server-side Cache

■ Client Result Cache

Server-side Cache
Support for server-side Result Set caching has been introduced for both JDBC Thin
and JDBC Oracle Call Interface (OCI) drivers since Oracle Database 11g Release 1
(11.1). The server-side result cache is used to cache the results of the current queries,
query fragments, and PL/SQL functions in memory and then to use the cached results
in future executions of the query, query fragment, or PL/SQL function. The cached
results reside in the result cache memory portion of the SGA. A cached result is
automatically invalidated whenever a database object used in its creation is
successfully modified. The server-side caching can be of the following two types:

■ SQL Query Result Cache

■ PL/SQL Function Result Cache

Client Result Cache
Since Oracle Database 11g Release 1 (11.1), support for client result cache has been
introduced for JDBC OCI driver. The client result cache improves performance of
applications by caching query result sets in a way that subsequent query executions
can access the cached result set without fetching rows from the server. This eliminates
many round-trips to the server for cached results and reduces CPU usage on the
server. The client cache transparently keeps the result set consistent with any session
state or database changes that can affect its cached result sets. This allows significant
improvements in response time for frequent client SQL query executions and for
fetching rows. The scalability on the server is increased since it expends less CPU time.

Note:

■ The server-side and client result set caches are most useful for
read-only or read-mostly data. They may reduce performance for
queries with highly dynamic results.

■ Both server-side and client result set caches use memory. So,
caching very large result sets can cause performance problems.

See Also:

■ Oracle Database Performance Tuning Guide for more information
about SQL Query Result Cache

■ Oracle Database PL/SQL Language Reference for more information
about PL/SQL Function Result Cache

Result Set Caching

Statement and Result Set Caching 20-13

See Also: Client Result Cache on page 6-1

Result Set Caching

20-14 Oracle Database JDBC Developer's Guide

Implicit Connection Caching 21-1

21
Implicit Connection Caching

Connection caching, generally implemented in the middle tier, is a means of keeping
and using the cache of physical database connections.

The implicit connection cache is an improved Java Database Connectivity (JDBC)
3.0-compliant connection cache implementation for DataSource. Java and Java2
Platform, Enterprise Edition (J2EE) applications benefit from transparent access to the
cache, support for multiple users, and the ability to request connections based on
user-defined profiles.

An application turns the implicit connection cache on by calling
setConnectionCachingEnabled(true) on an OracleDataSource. After
implicit caching is turned on, the first connection request to the OracleDataSource
transparently creates a connection cache. There is no need for application developers
to write their own cache implementations.

This chapter is divided into the following sections:

■ The Implicit Connection Cache

■ Using the Connection Cache

■ Connection Attributes

■ Connection Cache Properties

■ Connection Cache Manager API

■ Advanced Topics

Note: Starting from Oracle Database 11g Release 2 (11.2), this
feature has been deprecated, and replaced with Universal
Connection Pool (UCP) for JDBC. Oracle recommends that you take
advantage of the new architecture, which is more powerful and
offers better performance. Refer to the following link for more
information

http://www.oracle.com/technology/tech/java/sqlj_
jdbc/index.html

The Implicit Connection Cache

21-2 Oracle Database JDBC Developer's Guide

The Implicit Connection Cache
The connection caching architecture has been redesigned so that caching is
transparently integrated into the data source architecture.

The connection cache uses the concept of physical connections and logical connections.
Physical connections are the actual connections returned by the database and logical
connections are containers used by the cache to manipulate physical connections. You
can think of logical connections as handles. The caches always return logical
connections, which implement the same interfaces as physical connections.

The implicit connection cache offers the following:

■ Driver independence

Both the JDBC Thin and JDBC Oracle Call Interface (OCI) drivers support the
implicit connection cache.

■ Transparent access to the JDBC connection cache

After an application turns implicit caching on, it uses the standard
OracleDataSource application programming interfaces (APIs) to get
connections. With caching enabled, all connection requests are serviced from the
connection cache.

When an application calls the OracleConnection.close method to close the
logical connection, the physical connection is returned to the cache.

■ Single cache per OracleDataSource instance

When connection caching is turned on, each cache-enabled OracleDataSource
has exactly one cache associated with it. All connections obtained through that
data source, no matter what user name and password are used, are returned to the
cache. When an application requests a connection from the data source, the cache
either returns an existing connection or creates a new connection with matching
authentication information.

■ Heterogeneous user names and passwords per cache

Unlike the previous cache implementation, all connections obtained through the
same data source are stored in a common cache, no matter what user name and
password the connection requests.

■ Support for JDBC 3.0 connection caching, including support for multiple users and
the required cache properties

■ Property-based configuration

Note: The concept of connection caching is not relevant to the
server-side internal driver, where you always use the default
connection. Connection caching is relevant only to the client-side
JDBC drivers and the server-side Thin driver.

Note: Caches cannot be shared between DataSource instances.
There is a one-to-one mapping between cache-enabled
DataSource instances and caches.

Using the Connection Cache

Implicit Connection Caching 21-3

Cache properties define the behavior of the cache. The supported properties set
timeouts, the number of connections to be held in the cache, and so on. Using
these properties, applications can reclaim and reuse abandoned connections. The
implicit connection cache supports all the JDBC 3.0 connection cache properties.

■ OracleConnectionCacheManager

The new OracleConnectionCacheManager class provides a rich set of
administrative APIs that applications can use to manage the connection cache.
Each virtual machine has one distinguished instance of
OracleConnectionCacheManager. Applications manage a cache through the
single OracleConnectionCacheManager instance.

■ User-defined connection attributes

The implicit connection cache supports user-defined connection attributes that can
be used to determine which connections are retrieved from the cache. Connection
attributes can be thought of as labels whose semantics are defined by the
application, not by the caching mechanism.

■ Callback mechanism

The implicit connection cache provides a mechanism for users to define cache
behavior when a connection is returned to the cache, when handling abandoned
connections, and when a connection is requested but none is available in the
cache.

■ Connect-time load balancing

Implicit connection caching provides connect-time load balancing when a
connection is first created by the application. The database listener distributes
connection creation across Oracle Real Application Clusters instances that would
perform the best at the time of connection creation.

■ Run-time connection load balancing

Run-time connection load balancing of work requests uses Service Metrics to route
work requests to an Oracle Real Application Clusters instance that offers the best
performance. Selecting a connection from the cache based on service, to execute a
work request, greatly increases the throughput and scalability.

Using the Connection Cache
This section discusses how applications use the implicit connection cache. It covers the
following topics:

■ Turning Caching On

■ Opening a Connection

■ Setting Connection Cache Name

■ Setting Connection Cache Properties

■ Closing a Connection

See Also: Oracle Real Application Clusters Administration and
Deployment Guide

See Also: Chapter 22, "Run-Time Connection Load Balancing" and
Oracle Real Application Clusters Administration and Deployment Guide

Using the Connection Cache

21-4 Oracle Database JDBC Developer's Guide

■ Implicit Connection Cache Example

Turning Caching On
An application turns the implicit connection cache on by calling
OracleDataSource.setConnectionCachingEnabled(true). After implicit
caching is turned on, the first connection request to the OracleDataSource class
transparently creates a connection cache.

Example 21–1 provides a sample code that uses the implicit connection cache.

Example 21–1 Using the Implicit Connection Cache

// Example to show binding of OracleDataSource to JNDI,
// then using implicit connection cache

import oracle.jdbc.pool.*; // import the pool package

Context ctx = new InitialContext(ht);
OracleDataSource ods = new OracleDataSource();

// Set DataSource properties
ods.setUser("Scott");
ods.setConnectionCachingEnabled(true); // Turns on caching
ctx.bind("MyDS", ods);
// ...
// Retrieve DataSource from the InitialContext
ods =(OracleDataSource) ctx. lookup("MyDS");

// Transparently create cache and retrieve connection
conn = ods.getConnection();
// ...
conn.close(); // return connection to the cache
// ...
ods.close() // close datasource and clean up the cache

Opening a Connection
After you have turned connection caching on, whenever you retrieve a connection
through the OracleDataSource.getConnection method, the JDBC drivers check
to see if a connection is available in the cache.

The getConnection method checks if there are any free physical connections in the
cache that match the specified criteria. If a match is found, then a logical connection is
returned, wrapping the physical connection. If no physical connection match is found,
then a new physical connection is created, wrapped in a logical connection, and
returned.

There are four variations on getConnection, two that make no reference to the
connection cache and two that specify which sort of connections the cache may return.
The non-cache-specific getConnection methods behave in the standard manner.

Using the Connection Cache

Implicit Connection Caching 21-5

Setting Connection Cache Name
The ConnectionCacheName property of OracleDataSource is an optional
property used by the Connection Cache Manager to manage a connection cache. You
can set this property by calling the following method:

public void synchronized setConnectionCacheName(String cacheName) throws
SQLException

When this property is set, the name is used to uniquely identify the cache accessed by
the cache-enabled OracleDataSource. If the property is not set, then a default cache
name is created using the convention
DataSourceName#HexRepresentationOfNumberOfCaches.

Setting Connection Cache Properties
You can fine-tune the behavior of the implicit connection cache using the
setConnectionCacheProperties method to set various connection properties.

Closing a Connection
An application returns a connection to the cache by calling the close method. There
are two variants of the close method: one with no arguments and one that takes a
Connection object as argument.

Note: When implicit connection cache is enabled, the connection
returned by OracleDataSource.getConnection may not have
the state reset. You must, therefore, reset all the connection states,
such as auto-commit, batch size, prefetch size, transaction status, and
transaction isolation, before putting the connection back into the
cache.

Note: The getConnectionCacheName() method will return the
name of the connection cache only if the setConnectionCacheName
method is called after the setConnectionCachingEnabled
method is called.

See Also: "Connection Cache Properties" on page 21-9

Note:

■ Before setting the cache-specific properties, you must enable
caching on the data source; otherwise the
setConnectionCacheProperties method will have no effect.

■ Although these properties govern the behavior of the connection
cache, they are set on the data source, and not on the connection
or on the cache itself.

Using the Connection Cache

21-6 Oracle Database JDBC Developer's Guide

Implicit Connection Cache Example
Example 21–2 demonstrates creating a data source, setting its caching and data source
properties, retrieving a connection, and closing that connection in order to return it to
the cache.

Example 21–2 Connection Cache Example

import java.sql.*;
import javax.sql.*;
import java.util.*;
import javax.naming.*;
import javax.naming.spi.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;

...

 // create a DataSource
 OracleDataSource ods = new OracleDataSource();

 // set cache properties
 java.util.Properties prop = new java.util.Properties();
 prop.setProperty("MinLimit", "2");
 prop.setProperty("MaxLimit", "10");

 // set DataSource properties
 String url = "jdbc:oracle:oci8:@";
 ods.setURL(url);
 ods.setUser("hr");
 ods.setPassword("hr");
 ods.setConnectionCachingEnabled(true); // be sure set to true
 ods.setConnectionCacheProperties (prop);
 ods.setConnectionCacheName("ImplicitCache01"); // this cache's name

 // We need to create a connection to create the cache
 Connection conn = ds.getConnection(user, pass);
 Statement stmt = conn.createStatement();
 ResultSet rset = stmt.executeQuery("select user from dual");
 conn.close();

 ods.close();

Note:

■ Applications must close connections to ensure that the
connections are returned to the cache.

■ When implicit connection cache is enabled, you must reset all the
connection states, such as auto-commit, batch size, prefetch size,
transaction status, and transaction isolation, before putting the
connection back into the cache. This ensures that any subsequent
connection retrieved from the cache will have its state reset.

Connection Attributes

Implicit Connection Caching 21-7

Connection Attributes
Each connection obtained from a data source can have user-defined attributes.
Attributes are specified by the application developer and are
java.lang.Properties name and value pairs.

An application can use connection attributes to supply additional semantics to identify
connections. For instance, an application may create an attribute named
connection_type and then assign it the value payroll or inventory.

The methods that get and set connection attributes are found on the
OracleConnection interface. This section covers the following topics:

■ Getting Connections

■ Setting Connection Attributes

■ Checking Attributes of a Returned Connection

■ Connection Attribute Example

Getting Connections
The first connection you retrieve has no attributes. You must set them. After you have
set attributes on a connection, you can request the connection by specifying its
attribute, using the specialized forms of the getConnection method:

■ getConnection(java.util.Properties cachedConnectionAttributes

Requests a database connection that matches the specified
cachedConnectionAttributes.

■ getConnection(java.lang.String user, java.lang.String
password, java.util.Properties cachedConnectionAttributes)

Requests a database connection from the implicit connection cache that matches
the specified user, password and cachedConnectionAttributes. If null
values are passed for user and password, the DataSource defaults are used.

Attribute Matching Rules
The rules for matching connectionAttributes come in two variations:

■ Basic

In this variation, the cache is searched to retrieve the connection that matches the
attributes. The connection search mechanism as follows:

1. If an exact match is found, the connection is returned to the caller.

2. If an exact match is not found and the ClosestConnectionMatch data
source property is set, then the connection with the closest match is returned.
The closest matched connection is one that has the highest number of the
original attributes matched. Note that the closest matched connection may

Note: The semantics of connection attributes are entirely
application-defined. The connection cache itself enforces no
restrictions on the key or value of connection attributes.

See Also: For a discussion on connection attributes, see "Other
Properties" on page 21-11.

Connection Attributes

21-8 Oracle Database JDBC Developer's Guide

match a subset of the original attributes, but does not have any attributes that
are not part of the original list. For example, if the original list of attributes is
A, B and C, then a closest match may have A and B set, but never a D.

3. If none of the existing connections matches, a new connection is returned. The
new connection is created using the user name and password set on the
DataSource. If getConnection(String, String,
java.util.Properties) is called, then the user name and password
passed as arguments are used to open the new connection.

■ Advanced

In this variation, the attributes may be associated with weights. The connection
search mechanism is similar to the basic connectionAttributes based search,
except that the connections are searched not only based on the
connectionAttributes, but also using a set of weights that are associated with
the keys on the connectionAttributes. These weights are assigned to the keys
as a one-time operation and is supported as a connection cache property,
AttributeWeights.

Setting Connection Attributes
An application sets connection attributes using the following:

applyConnectionAttributes(java.util.Properties connAttr)

No validation is done on connAttr. Applying connection attributes is cumulative.
Each time you call applyConnectionAttributes, the connAttr attribute you
supply is added to those previously in force.

Checking Attributes of a Returned Connection
When an application requests a connection with specified attributes, it is possible that
no match will be found in the connection cache. When this happens, the connection
cache creates a connection with no attributes and returns it. The connection cache
cannot create a connection with the requested attributes, because the Connection
Cache manager is ignorant of the semantics of the attributes.

For this reason, applications should always check the attributes of a returned
connection. To do this, use the getUnMatchedConnectionAttributes method,
which returns a list of any attributes that were not matched in retrieving the
connection. If the return value of this method is null, you know that you must set all
the connection attributes.

Connection Attribute Example
Example 21–3 illustrates using connection attributes.

Example 21–3 Using Connection Attributes

 java.util.Properties connAttr = new java.util.Properties();
 connAttr.setProperty("connection_type", "payroll");

Note: If the closestConnectionMatch property has been set,
then the cache manager looks for close attribute matches rather than
exact matches.

Connection Cache Properties

Implicit Connection Caching 21-9

 // retrieve connection that matches attributes
 Connection conn = ds.getConnection(connAttr);
 // Check to see which attributes weren't matched
 unmatchedProp = ((OracleConnection)conn).getUnMatchedConnectionAttributes();
 if (unmatchedProp != null)
 {
 // apply attributes to the connection
 ((OracleConnection)conn).applyConnectionAttributes(connAttr);
 }
 // verify whether conn contains property after apply attributes
 connProp = ((OracleConnection)conn).getConnectionAttributes();
 listProperties (connProp);

Connection Cache Properties
The connection cache properties govern the characteristics of a connection cache. This
section lists the supported connection cache properties. It covers the following topics:

■ Limit Properties

■ TIMEOUT Properties

■ Other Properties

■ Connection Property Example

Applications set cache properties in one of the following ways:

■ Using the OracleDataSource method setConnectionCacheProperties

■ When creating a cache using OracleConnectionCacheManager

■ When reinitializing a cache using OracleConnectionCacheManager

Limit Properties
These properties control the size of the cache.

InitialLimit
Sets how many connections are created in the cache when it is created or reinitialized.
When this property is set to an integer value greater than 0, creating or reinitializing
the cache automatically creates the specified number of connections, filling the cache
in advance of need.

Default: 0

MaxLimit
Sets the maximum number of connection instances the cache can hold. The default
value is Integer.MAX_VALUE, meaning that there is no limit enforced by the
connection cache, so that the number of connections is limited only by the number of
database sessions configured for the database.

Default: Integer.MAX_VALUE (no limit)

Connection Cache Properties

21-10 Oracle Database JDBC Developer's Guide

MaxStatementsLimit
Sets the maximum number of statements that a connection keeps open. When a cache
has this property set, reinitializing the cache or closing the data source automatically
closes all cursors beyond the specified MaxStatementsLimit.

Default: 0

MinLimit
Sets the minimum number of connections the cache maintains.

Default: 0

TIMEOUT Properties
These properties control the lifetime of an element in the cache.

InactivityTimeout
Sets the maximum time a physical connection can remain idle in a connection cache.
An idle connection is one that is not active and does not have a logical handle
associated with it. When InactivityTimeout expires, the underlying physical
connection is closed. However, the size of the cache is not allowed to shrink below
minLimit, if it has been set.

Default: 0 (no timeout in effect)

TimeToLiveTimeout
Sets the maximum time in seconds that a logical connection can remain open. When
TimeToLiveTimeout expires, the logical connection is unconditionally closed, the
relevant statement handles are canceled, and the underlying physical connection is
returned to the cache for reuse.

Note: If the number of concurrent connections exceeds the
maximum number of sessions configured at the database server, then
you will get ORA-00018 error. To avoid this error, you must set a
value for the MaxLimit property. This value should be less than the
value of the SESSIONS parameter configured for the database server.

Note:

■ Setting the MinLimit property does not initialize the cache to
contain the minimum number of connections. To do this, use the
InitialLimit property.

■ When InitialLimit is greater than MinLimit, it is possible to
have any number of connections specified by InitialLimit up
to a value specified by MaxLimit. Therefore, InitialLimit
does not depend on MinLimit.

■ Connections can fall below the minimum limit set on the
connection pool when JDBC Fast Connection Failover DOWN
events are processed. The processing removes affected
connections from the pool. MinLimit will be honored as requests
to the connection pool increase and the number of connections get
past the MinLimit value.

Connection Cache Properties

Implicit Connection Caching 21-11

Default: 0 (no timeout in effect)

AbandonedConnectionTimeout
Sets the maximum time that a connection can remain unused before the connection is
closed and returned to the cache. A connection is considered unused if it has not had
SQL database activity.

When AbandonedConnectionTimeout is set, JDBC monitors SQL database activity
on each logical connection. For example, when stmt.execute is called on the
connection, a heartbeat is registered to convey that this connection is active. The
heartbeats are set at each database execution. If a connection has been inactive for the
specified amount of time, the underlying connection is reclaimed and returned to the
cache for reuse.

Default: 0 (no timeout in effect)

PropertyCheckInterval
Sets the time interval at which the Connection Cache Manager inspects and enforces
all specified cache properties. PropertyCheckInterval is set in seconds.

Default: 900 seconds

Other Properties
These properties control miscellaneous cache behavior.

AttributeWeights
AttributeWeights sets the weight for each attribute set on the connection.

ClosestConnectionMatch
ClosestConnectionMatch causes the connection cache to retrieve the connection
with the closest approximation to the specified connection attributes.

ConnectionWaitTimeout
Specifies cache behavior when a connection is requested and there are already
MaxLimit connections active. If ConnectionWaitTimeout is equal to zero, then each
connection request waits for zero seconds, that is, null connection is returned
immediately. If ConnectionWaitTimeout is greater than zero, then each connection
request waits for the specified number of seconds or until a connection is returned to
the cache. If no connection is returned to the cache before the timeout elapses, then the
connection request returns null.

Default: zero

See Also: "Use Cases for TimeToLiveTimeout and
AbandonedConnectionTimeout" on page 21-15

See Also: "Use Cases for TimeToLiveTimeout and
AbandonedConnectionTimeout" on page 21-15

See Also: Oracle Database Net Services Administrator's Guide

See Also: "AttributeWeights" on page 21-14

See Also: "ClosestConnectionMatch" on page 21-14

Connection Cache Properties

21-12 Oracle Database JDBC Developer's Guide

LowerThresholdLimit
Sets the lower threshold limit on the cache. The default is 20 percent of the MaxLimit
on the connection cache. This property is used whenever a releaseConnection()
cache callback method is registered.

ValidateConnection
Setting ValidateConnection to true causes the connection cache to test every
connection it retrieves against the underlying database. If a valid connection cannot be
retrieved, then an exception is thrown.

Default: false

Connection Property Example
Example 21–4 demonstrates how an application uses connection properties.

Example 21–4 Using Connection Properties

import java.sql.*;
import javax.sql.*;
import java.util.*;
import javax.naming.*;
import javax.naming.spi.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;
...
 OracleDataSource ds = (OracleDataSource) ctx.lookup("...");
 java.util.Properties prop = new java.util.Properties ();
 prop.setProperty("MinLimit", "5"); // the cache size is 5 at least
 prop.setProperty("MaxLimit", "25");
 prop.setProperty("InitialLimit", "3"); // create 3 connections at startup
 prop.setProperty("InactivityTimeout", "1800"); // seconds
 prop.setProperty("AbandonedConnectionTimeout", "900"); // seconds
 prop.setProperty("MaxStatementsLimit", "10");
 prop.setProperty("PropertyCheckInterval", "60"); // seconds

 ds.setConnectionCacheProperties (prop); // set properties
 Connection conn = ds.getConnection();
 conn.dosomework();
 java.util.Properties propList=ds.getConnectionCacheProperties(); // retrieve

Note: In Oracle Database 11g Release 1 (11.1) and later versions,
there is a change in connection cache behavior. If both the
ValidateConnection property and the Database CONNECT_TIME
resource limit are enabled, then the connection cache may return a
connection that exceeds the value set for the CONNECT_TIME limit,
without throwing an exception. An exception is instead thrown at the
next statement execution on this connection.

Oracle recommends not setting the CONNECT_TIME limit while
enabling the ValidateConnection property.

Advanced Topics

Implicit Connection Caching 21-13

Connection Cache Manager API
OracleConnectionCacheManager provides administrative APIs that the middle
tier can use to manage available connection caches. This section provides an example
of using the Connection Cache Manager.

Example of ConnectionCacheManager Use
Example 21–5 demonstrates the OracleConnectionCacheManager interface.

Example 21–5 Connection Cache Manager Example

import java.sql.*;
import javax.sql.*;
import java.util.*;
import javax.naming.*;
import javax.naming.spi.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;
...
// Get singleton ConnectionCacheManager instance
 OracleConnectionCacheManager occm =
 OracleConnectionCacheManager.getConnectionCacheManagerInstance();
 String cacheName = "foo"; // Look for a specific cache
 // Use Cache Manager to check # of available connections
 // and active connections
 System.out.println(occm.getNumberOfAvailableConnections(cacheName)
 " connections are available in cache " + cacheName);

 System.out.println(occm.getNumberOfActiveConnections(cacheName)
 + " connections are active");
 // Refresh all connections in cache
 occm.refreshCache(cacheName,
 OracleConnectionCacheManager.REFRESH_ALL_CONNECTIONS);
 // Reinitialize cache, closing all connections
 java.util.Properties newProp = new java.util.Properties();
 newProp.setProperty("MaxLimit", "50");
 occm.reinitializeCache(cacheName, newProp);

Advanced Topics
This section discusses cache functionality that is useful for advanced users, but is not
essential to understanding or using the implicit connection cache. This section covers
the following topics:

■ Attribute Weights and Connection Matching

■ Connection Cache Callbacks

Attribute Weights and Connection Matching
There are two connection cache properties that enable the developer to specify which
connections in the connection cache are accepted in response to a getConnection
request. When you set the ClosestConnectionMatch property to true, you are
telling the Connection Cache Manager to return connections that match only some of
the attributes you have specified.

If you do not specify attributeWeights, then the Connection Cache Manager
returns the connection that matches the highest number of attributes. If you specify

Advanced Topics

21-14 Oracle Database JDBC Developer's Guide

attributeWeights, then you can control the priority the manager uses in matching
attributes.

ClosestConnectionMatch
Setting ClosestConnectionMatch to true causes the connection cache to retrieve
the connection with the closest approximation to the specified connection attributes.
This can be used in combination with AttributeWeights to specify what is
considered a closest match.

Default: false

AttributeWeights
Sets the weights for each connectionAttribute. This property is used when
ClosestConnectionMatch is set to true to determine which attributes are given
highest priority when searching for matches. An attribute with a high weight is given
more importance in determining a match than an attribute with a low weight.

AttributeWeights contains a set of Strings representing key-value pairs. Each
key/value pair sets the weights for each connectionAttribute for which the user
intends to request a connection. Each String is in the format written by the
java.util.Properties.Store(OutputStream, String) method, and thus
can be read by the java.util.Properties.load(InputStream) method. The
Key is a connectionAttribute and the Value is the weight. A weight must be an
integer value greater than 0. The default weight is 1.

For example, TRANSACTION_ISOLATION could be assigned a weight of 10 and ROLE
a weight of 5. If ClosestConnectionMatch is set to true, when a
connectionAttribute based connection request is made on the cache, connections
with a matching TRANSACTION_ISOLATION will be favored over connections with a
matching ROLE.

Default: No AttributeWeights

Connection Cache Callbacks
The implicit connection cache offers a way for the application to specify callbacks to be
called by the connection cache. Callback methods are supported with the
OracleConnectionCacheCallback interface. This callback mechanism is useful to
take advantage of the special knowledge of the application about particular
connections, supplementing the default behavior when handling abandoned
connections or when the cache is empty.

OracleConnectionCacheCallback is an interface that must be implemented by
the user and registered with OracleConnection. The registration API is as follows:

public void
registerConnectionCacheCallback(
OracleConnectionCacheCallback cbk, Object usrObj, int cbkflag);

In this interface, cbk is the user implementation of the
OracleConnectionCacheCallback interface. The usrObj parameter contains any
parameters that the user wants supplied. This user object is passed back, unmodified,
when the callback method is called. The cbkflag parameter specifies which callback
method should be called. It must be one of the following values:

■ OracleConnection.ABANDONED_CONNECTION_CALLBACK

■ OracleConnection.RELEASE_CONNECTION_CALLBACK

Advanced Topics

Implicit Connection Caching 21-15

■ OracleConnection.ALL_CALLBACKS

When ALL_CALLBACKS is set, all the connection cache callback methods are called.
For example,

// register callback, to invoke all callback methods
((OracleConnection)conn).registerConnectionCacheCallback(new
UserConnectionCacheCallback(),
 new SomeUserObject(),
OracleConnection.ALL_CALLBACKS);

An application can register a ConnectionCacheCallback on an
OracleConnection. When a callback is registered, the connection cache calls the
handleAbandonedConnection method of the callback before reclaiming the
connection. If the callback returns true, then the connection is reclaimed. If the
callback returns false, then the connection remains active.

The UserConnectionCacheCallback interface supports two callback methods to
be implemented by the user, releaseConnection and
handleAbandonedConnection.

Use Cases for TimeToLiveTimeout and AbandonedConnectionTimeout
The following are the use cases for the TimeToLiveTimeout and
AbandonedConnectionTimeout timeout mechanisms when used with implicit
connection cache. Note that these timeout mechanisms are applicable to the logical
connection when it is retrieved from the connection cache.

■ The application considers the connections completely stateless.

When the connections are stateless, either of the timeout mechanisms can be used.
The connections for which the timeout expires are put back into the connection
cache for reuse. These connections are valid for reuse because there is no session
state associated with them.

■ The application maintains state on each connection, but has a cleanup routine that
can render the connections stateless when they are returned to the connection
cache.

In this case, TimeToLiveTimeout cannot be used. There is no way for the
connection cache to ensure that a connection returned to the cache is in a reusable
condition.

However, AbandonedConnectionTimeout can be used in this scenario, only if
OracleConnectionCacheCallback is registered on the connection. The
handleAbandonedConnection callback method is implemented by the
application and ensures that the necessary cleanup is done. The connection is
closed when the timeout processing invokes this callback method. The closing of
this connection by the callback method causes the connection to be put back into
the connection cache in a state where it is reusable.

Note: Do not to close the connection after calling
handleAbandonedConnection method because the connection could
be in an invalid state. JDBC internally knows how to reclaim a
connection even when it is in an invalid state.

See Also: "Connection Cache Callbacks" on page 21-14

Advanced Topics

21-16 Oracle Database JDBC Developer's Guide

■ The application maintains state on each connection, but has no control over the
connection and, therefore, cannot ensure cleaning up of state for reuse of
connections by other applications or users.

The use of either of the timeout mechanisms is not recommended.

Run-Time Connection Load Balancing 22-1

22
Run-Time Connection Load Balancing

Oracle Database 11g provides the run-time connection load balancing feature. This
chapter contains the following sections:

■ Overview of Run-Time Connection Load Balancing

■ Enabling Run-Time Connection Load Balancing

Overview of Run-Time Connection Load Balancing
In an Oracle Real Application Clusters environment, a connection could belong to any
instance that provides the relevant service. In the best case, all instances perform
equally well and randomly retrieving a connection from the cache is appropriate.
However, when one instance performs better than others, random selection of a
connection is inefficient. The run-time connection load balancing feature enables
routing of work requests to an instance that offers the best performance, minimizing
the need to relocate work.

Figure 22–1 illustrates run-time connection load balancing. When run-time connection
load balancing is enabled on the implicit connection cache, the following steps occur:

1. A client requests a connection from the connection cache by calling the
getConnection method on the DataSource object.

2. The run-time connection load balancing mechanism selects the connection that
belongs to the best instance from the connection cache. In Figure 22–1, this could
be either Instance1 or Instance2.

3. The client receives the connection that would process the work request with the
best response time.

Note: Starting from Oracle Database 11g Release 2 (11.2), this
feature has been deprecated, and replaced with Universal
Connection Pool (UCP) for JDBC. Oracle recommends that you take
advantage of the new architecture, which is more powerful and
offers better performance. Refer to the following link for more
information

http://www.oracle.com/technology/tech/java/sqlj_
jdbc/index.html

Enabling Run-Time Connection Load Balancing

22-2 Oracle Database JDBC Developer's Guide

Figure 22–1 Run-Time Connection Load Balancing

Connection retrieval based on the load balancing advisory is automatic. A request for
a connection is serviced by selecting a connection based on the service goal as
determined by the Load Balancing Advisory. The service goal determines whether the
connection provides best service quality, that is, how efficiently a single transaction
completes, or best throughput, that is, how efficiently an entire job or long-running
query completes. The advisory is used by the connection cache as long as the events
are posted by Oracle Real Application Clusters. When the events stop arriving, the
connection cache reverts to random retrieval of connections from the cache.

Run-time connection load balancing relies on the Oracle Notification Service (ONS)
infrastructure. It uses the same out-of-band ONS event mechanism that is used for Fast
Connection Failover processing. As a result, run-time connection load balancing is
enabled by default when Fast Connection Failover is enabled. There is no additional
setup or configuration of ONS required to benefit from run-time connection load
balancing.

Enabling Run-Time Connection Load Balancing
To enable and use run-time connection load balancing, you must configure the Oracle
Real Application Clusters database in the following manner:

■ The service goal must be set to one of the following:

– DBMS_SERVICE.SERVICE_TIME

– DBMS_SERVICE.THROUGHPUT

■ The connection balancing goal must be set to SHORT.

These goals must be set when calling dbms_service.create_service or dbms_
service.modify_service. The service goal can be set using the goal parameter,
and the connection balancing goal can be set using the clb_goal parameter.

See Also: "Using Fast Connection Failover" on page 27-2

1

2

3

Implicit Connection Cache

Client

RAC Database

Instance1-
Best

Instance2-
Best

Instance3-
Bad

Enabling Run-Time Connection Load Balancing

Run-Time Connection Load Balancing 22-3

Note: You can set the connection balancing goal to LONG. However,
this is mostly useful for closed workloads, that is, when the rate of
completing work is equal to the rate of starting new work.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide

Enabling Run-Time Connection Load Balancing

22-4 Oracle Database JDBC Developer's Guide

Performance Extensions 23-1

23
Performance Extensions

This chapter describes the Oracle performance extensions to the Java Database
Connectivity (JDBC) standard.

This chapter covers the following topics:

■ Update Batching

■ Additional Oracle Performance Extensions

Update Batching
You can reduce the number of round-trips to the database, thereby improving
application performance, by grouping multiple UPDATE, DELETE, or INSERT
statements into a single batch and having the whole batch sent to the database and
processed in one trip. This is referred to as update batching.

This is especially useful with prepared statements, when you are repeating the same
statement with different bind variables.

Oracle JDBC supports two distinct models for update batching:

■ The standard model, implementing the JDBC 2.0 specification, which is referred to
as standard update batching

■ The Oracle-specific model, independent of the JDBC 2.0 specification, which is
referred to as Oracle update batching

This section covers the following topics:

■ Overview of Update Batching Models

■ Oracle Update Batching

■ Standard Update Batching

■ Premature Batch Flush

Note: The JDBC 2.0 specification refers to update batching as batch
updates.

Note: It is important to be aware that you cannot mix these
models. In any single application, you can use one model or the
other, but not both. Oracle JDBC driver will throw exceptions when
you mix these.

Update Batching

23-2 Oracle Database JDBC Developer's Guide

Overview of Update Batching Models
This section compares and contrasts the general models and types of statements
supported for standard update batching and Oracle update batching.

Oracle Model Versus Standard Model
Oracle update batching uses a batch value that typically results in implicit processing
of a batch. The batch value is the number of operations you want to add to a batch for
each trip to the database. As soon as that many operations have been added to the
batch, the batch is processed. Note the following:

■ You can set a default batch for the connection object, which applies to any
prepared statement run in that connection.

■ For any individual prepared statement object, you can set a statement batch value
that overrides the connection batch value.

■ You can choose to explicitly process a batch at any time, overriding both the
connection batch value and the statement batch value.

Standard update batching is a manual, explicit model. There is no batch value. You
manually add operations to the batch, and then, explicitly choose when to process the
batch.

Types of Statements Supported
As implemented by Oracle, update batching is intended for use with prepared
statements, when you are repeating the same statement with different bind variables.
Be aware of the following:

■ Oracle update batching supports only prepared statement objects. For a callable
statement, both the connection default batch value and the statement batch value
are overridden with a value of 1. In an Oracle generic statement, there is no
statement batch value, and the connection default batch value is overridden with a
value of 1.

■ To adhere to the JDBC 2.0 standard, Oracle implementation of standard update
batching supports callable statements, without OUT parameters, and generic
statements, as well as prepared statements. You can migrate standard update
batching into an Oracle JDBC application without difficulty.

■ You can batch only UPDATE, INSERT, or DELETE operations. Processing a batch
that includes an operation that attempts to return a result set will cause an
exception.

Note:

■ Oracle recommends that you use JDBC standard features when
possible. This recommendation applies to update batching as well.
Oracle update batching is retained primarily for backwards
compatibility.

■ For both standard update batching and Oracle update batching,
Oracle recommends you to keep the batch sizes in the general
range of 50 to 100. This is because though the drivers support
larger batches, they in turn result in a large memory footprint
with no corresponding increase in performance. Very large
batches usually result in a decline in performance compared to
smaller batches.

Update Batching

Performance Extensions 23-3

Oracle Update Batching
The Oracle update batching feature associates a batch value with each prepared
statement object. With Oracle update batching, instead of the JDBC driver running a
prepared statement each time the executeUpdate method is called, the driver adds
the statement to a batch of accumulated processing requests. The driver will pass all
the operations to the database for processing once the batch value is reached. For
example, if the batch value is 10, then each batch of 10 operations will be sent to the
database and processed in one trip.

A method in the OracleConnection class enables you to set a default batch value
for the Oracle connection as a whole, and this batch value applies to any Oracle
prepared statement in the connection. For any particular Oracle prepared statement, a
method in the OraclePreparedStatement class enables you to set a statement
batch value that overrides the connection batch value. You can also override both
batch values by choosing to manually process the pending batch.

Oracle Update Batching Characteristics and Limitations
Note the following limitations and implementation details regarding Oracle update
batching:

■ By default, there is no statement batch value and the connection batch value is 1.

■ Batch values between 5 and 30 tend to be the most effective. Setting a very high
value might even have a negative effect. It is worth trying different values to
verify the effectiveness for your particular application.

■ Regardless of the batch value in effect, if any of the bind variables of an Oracle
prepared statement is a stream type, then Oracle JDBC driver sets the batch value
to 1 and sends any queued requests to the database for processing.

■ Oracle JDBC driver automatically runs the sendBatch method of an Oracle
prepared statement in any of the following circumstances:

– The connection receives a COMMIT request, either as a result of calling the
commit method or as a result of auto-commit mode.

– The statement receives a close request.

– The connection receives a close request.

Note: The Oracle implementation of standard update batching
does not implement true batching for generic statements and
callable statements. Although Oracle JDBC supports the use of
standard batching syntax for Statement and
CallableStatement objects, you will see performance
improvement for only PreparedStatement objects.

Note:

■ Do not mix standard update batching with Oracle update
batching in the same application. The JDBC driver will throw
an exception when you mix these.

■ Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are processing a batch,
this provides you the option of committing or rolling back the
operations that ran successfully prior to the error.

Update Batching

23-4 Oracle Database JDBC Developer's Guide

■ If the connection receives a ROLLBACK request before sendBatch has been called,
then the pending batched operations are not removed. You must explicitly call
clearBatch to do this.

Setting the Connection Batch Value
You can specify a default batch value for any Oracle prepared statement in your
Oracle connection. To do this, use the setDefaultExecuteBatch method of the
OracleConnection object. For example, the following code sets the default batch
value to 20 for all prepared statement objects associated with the conn connection
object:

((OracleConnection)conn).setDefaultExecuteBatch(20);

Even though this sets the default batch value for all the prepared statements of the
connection, you can override it by calling the setExecuteBatch method of the
oracle.jdbc.OraclePreparedStatement interface on individual Oracle
prepared statements.

The connection batch value will apply to statement objects created after this batch
value was set.

Note that instead of calling the setDefaultExecuteBatch method, you can set the
defaultBatchValue Java property if you use a Java Properties object in
establishing the connection.

Setting the Statement Batch Value
Use the following steps to set the statement batch value for a particular Oracle
prepared statement. This will override any connection batch value set using the
setDefaultExecuteBatch method of the OracleConnection instance for the
connection in which the statement is processed.

1. Write your prepared statement, and specify input values for the first row, as
follows:

PreparedStatement ps = conn.prepareStatement
 ("INSERT INTO dept VALUES (?,?,?)");
ps.setInt (1,12);
ps.setString (2,"Oracle");
ps.setString (3,"USA");

2. Cast your prepared statement to OraclePreparedStatement, and apply the
setExecuteBatch method. In this example, the batch size of the statement is set
to 2.

((OraclePreparedStatement)ps).setExecuteBatch(2);

If you wish, insert the getExecuteBatch method at any point in the program to
check the default batch value for the statement, as follows:

System.out.println (" Statement Execute Batch Value " +
 ((OraclePreparedStatement)ps).getExecuteBatch());

Note: A connection COMMIT request, statement close, or
connection close has an effect on a pending batch only if you use
Oracle update batching. However, if you use standard update
batching, then it has no effect on a pending batch.

Update Batching

Performance Extensions 23-5

3. If you send an execute-update call to the database at this point, then no data will
be sent to the database, and the call will return 0.

// No data is sent to the database by this call to executeUpdate
System.out.println ("Number of rows updated so far: "
 + ps.executeUpdate ());

4. If you enter a set of input values for a second row and an execute-update, then the
number of batch calls to executeUpdate will be equal to the batch value of 2.
The data will be sent to the database, and both rows will be inserted in a single
round-trip.

ps.setInt (1, 11);
ps.setString (2, "Applications");
ps.setString (3, "Indonesia");

int rows = ps.executeUpdate ();
System.out.println ("Number of rows updated now: " + rows);

ps.close ();

Checking the Batch Value
To check the overall connection batch value of an Oracle connection instance, use the
OracleConnection class getDefaultExecuteBatch method:

Integer batch_val = ((OracleConnection)conn).getDefaultExecuteBatch();

To check the particular statement batch value of an Oracle prepared statement, use the
OraclePreparedStatement class getExecuteBatch method:

Integer batch_val = ((OraclePreparedStatement)ps).getExecuteBatch();

Overriding the Batch Value
If you want to process accumulated operations before the batch value in effect is
reached, then use the sendBatch method of the OraclePreparedStatement
object.

For this example, presume you set the connection batch value to 20. This sets the
default batch value for all prepared statement objects associated with the connection to
20. You can accomplish this by casting your connection to OracleConnection and
applying the setDefaultExecuteBatch method for the connection, as follows:

((OracleConnection)conn).setDefaultExecuteBatch (20);

Override the batch value as follows:

1. Write your prepared statement, specify input values for the first row, and then
process the statement, as follows:

PreparedStatement ps =
 conn.prepareStatement ("insert into dept values (?, ?, ?)");

ps.setInt (1, 32);
ps.setString (2, "Oracle");

Note: If no statement batch value has been set, then
getExecuteBatch will return the connection batch value.

Update Batching

23-6 Oracle Database JDBC Developer's Guide

ps.setString (3, "USA");

System.out.println (ps.executeUpdate ());

The batch is not processed at this point. The ps.executeUpdate method returns
0.

2. If you enter a set of input values for a second operation and call executeUpdate
again, then the data will still not be sent to the database, because the batch value in
effect for the statement is the connection batch value, which is 20.

ps.setInt (1, 33);
ps.setString (2, "Applications");
ps.setString (3, "Indonesia");

// this batch is still not executed at this point
int rows = ps.executeUpdate ();

System.out.println ("Number of rows updated before calling sendBatch: "
 + rows);

Note that the value of rows in the println statement is 0.

3. If you apply the sendBatch method at this point, then the two previously
batched operations will be sent to the database in a single round-trip. The
sendBatch method also returns the total number of updated rows. This property
of sendBatch is used by println to print the number of updated rows.

// Execution of both previously batched executes will happen
// at this point. The number of rows updated will be
// returned by sendBatch.
rows = ((OraclePreparedStatement)ps).sendBatch ();

System.out.println ("Number of rows updated by calling sendBatch: "
 + rows);
ps.close ();

Committing the Changes in Oracle Batching
After you process the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Calling commit on the connection object in Oracle batching not only commits
operations in batches that have been processed, but also issues an implicit sendBatch
call to process all pending batches. So commit effectively commits changes for all
operations that have been added to a batch.

Update Counts in Oracle Batching
In a nonbatching situation, the executeUpdate method of an
OraclePreparedStatement object will return the number of database rows
affected by the operation.

In an Oracle batching situation, this method returns the number of rows affected at the
time the method is invoked, as follows:

■ If an executeUpdate call results in the operation being added to the batch, then
the method returns a value of 0, because nothing was written to the database yet.

Update Batching

Performance Extensions 23-7

■ If an executeUpdate call results in the batch value being reached and the batch
being processed, then the method will return the total number of rows affected by
all operations in the batch.

Similarly, the sendBatch method of an OraclePreparedStatement object returns
the total number of rows affected by all operations in the batch.

Example 23–1 illustrates the use of Oracle update batching.

Example 23–1 Oracle Update Batching

The following example illustrates how you use the Oracle update batching feature. It
assumes you have imported the oracle.driver.* interfaces.

...
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci);
ods.setUser("scott");
ods.setPassword("tiger");

Connection conn = ods.getConnection();
conn.setAutoCommit(false);

PreparedStatement ps =
 conn.prepareStatement("insert into dept values (?, ?, ?)");

//Change batch size for this statement to 3
((OraclePreparedStatement)ps).setExecuteBatch (3);

ps.setInt(1, 23);
ps.setString(2, "Sales");
ps.setString(3, "USA");
ps.executeUpdate(); //JDBC queues this for later execution

ps.setInt(1, 24);
ps.setString(2, "Blue Sky");
ps.setString(3, "Montana");
ps.executeUpdate(); //JDBC queues this for later execution

ps.setInt(1, 25);
ps.setString(2, "Applications");
ps.setString(3, "India");
ps.executeUpdate(); //The queue size equals the batch value of 3
 //JDBC sends the requests to the database

ps.setInt(1, 26);
ps.setString(2, "HR");
ps.setString(3, "Mongolia");
ps.executeUpdate(); //JDBC queues this for later execution

((OraclePreparedStatement)ps).sendBatch(); // JDBC sends the queued request
conn.commit();

ps.close();
...

Update Batching

23-8 Oracle Database JDBC Developer's Guide

Error Reporting in Oracle Update Batching
If any one of the batched operations fails to complete successfully or attempts to return
a result set during an executeBatch call, then the processing stops and a
java.sql.BatchUpdateException is generated.

If the exception is raised, you can call the getUpdateCounts method on the
BatchUpdateException object to retrieve the update count. This method returns an
int array of update counts, just as the executeBatch method does.

In Oracle Database 11g Release 2 (11.2), the integer array returned contains n
Statement.EXECUTE_FAILED entries, where n is the size of the batch. However, this
does not indicate where in the batch the error occurred. The only option you have is to
roll back the transaction.

In Oracle Database 11g Release 2 (11.2), the integer array returned contains n
Statement.SUCCESS_NO_INFO entries, where n is the number of elements in the
batch that have been successfully executed.

Standard Update Batching
JDBC standard update batching, unlike the Oracle update batching model, depends on
explicitly adding statements to the batch using an addBatch method and explicitly
processing the batch using an executeBatch method. In the Oracle model, you call
executeUpdate as in a nonbatching situation, but whether an operation is added to
the batch or the whole batch is processed is typically determined implicitly, depending
on whether or not a predetermined batch value is reached.

Limitations in the Oracle Implementation of Standard Batching
This section discusses the limitations and implementation details regarding the Oracle
implementation of standard update batching.

In Oracle JDBC applications, update batching is intended for use with prepared
statements that are being processed repeatedly with different sets of bind values.

Note: Updates deferred through batching can affect the results of
other queries. In the following example, if the first query is deferred
due to batching, then the second will return unexpected results:

UPDATE emp SET name = "Sue" WHERE name = "Bob";
SELECT name FROM emp WHERE name = "Sue";

Note: The execution of the batch always stops with the first element
of the batch that generates an error.

Note:

■ Do not mix standard update batching with Oracle update
batching in the same application. Oracle JDBC driver will
throw exceptions when these are mixed.

■ Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are processing a batch,
this provides you the option of committing or rolling back the
operations that ran successfully prior to the error.

Update Batching

Performance Extensions 23-9

The Oracle implementation of standard update batching does not implement true
batching for generic statements and callable statements. Even though Oracle JDBC
supports the use of standard batching for Statement and CallableStatement
objects, you are unlikely to see performance improvement.

Adding Operations to the Batch
When any statement object is first created, its statement batch is empty. Use the
standard addBatch method to add an operation to the statement batch. This method
is specified in the standard java.sql.Statement, PreparedStatement, and
CallableStatement interfaces, which are implemented by the
oracle.jdbc.OracleStatement, OraclePreparedStatement, and
OracleCallableStatement interfaces, respectively.

For a Statement object, the addBatch method takes a Java String with a SQL
operation as input. For example:

...
Statement stmt = conn.createStatement();

stmt.addBatch("INSERT INTO emp VALUES(1000, 'Joe Jones')");
stmt.addBatch("INSERT INTO dept VALUES(260, 'Sales')");
stmt.addBatch("INSERT INTO emp_dept VALUES(1000, 260)");
...

At this point, three operations are in the batch.

For prepared statements, update batching is used to batch multiple runs of the same
statement with different sets of bind parameters. For a PreparedStatement or
OraclePreparedStatement object, the addBatch method takes no input. It simply
adds the operation to the batch using the bind parameters last set by the appropriate
setXXX methods. This is also true for CallableStatement or
OracleCallableStatement objects, but remember that in the Oracle
implementation of standard update batching, you will probably see no performance
improvement in batching callable statements.

For example:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();
...

At this point, two operations are in the batch.

Because a batch is associated with a single prepared statement object, you can batch
only repeated runs of a single prepared statement, as in this example.

Note: Remember, however, that in the Oracle implementation of
standard update batching, you will probably see no performance
improvement in batching generic statements.

Update Batching

23-10 Oracle Database JDBC Developer's Guide

Processing the Batch
To process the current batch of operations, use the executeBatch method of the
statement object. This method is specified in the standard Statement interface, which
is extended by the standard PreparedStatement and CallableStatement
interfaces.

Following is an example that repeats the prepared statement addBatch calls shown
previously and then processes the batch:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();
...

Starting from Oracle Database 11g Release 1 (11.1), the executeBatch method has
been improved so that when an error occurs in the middle of the batch execution, the
BatchUpdateExecution exception that is thrown contains the position of the error
in the batch. The BatchUpdateExecution.getUpdateCounts method returns an
array of int containing the update counts for the updates that were executed
successfully before this error occurred. So if an error occurs in the 5th element of the
batch, then the size of the array returned is 4 and each value is
Statement.SUCCESS_NO_INFO.

Committing the Changes in the Oracle Implementation of Standard Batching
After you process the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Calling commit, commits nonbatched operations and batched operations for
statement batches that have been processed, but for the Oracle implementation of
standard batching, has no effect on pending statement batches that have not been
processed.

Clearing the Batch
To clear the current batch of operations instead of processing it, use the clearBatch
method of the statement object. This method is specified in the standard Statement
interface, which is extended by the standard PreparedStatement and
CallableStatement interfaces.

Keep the following things in mind:

■ When a batch is processed, operations are performed in the order in which they
were batched.

■ After calling addBatch, you must call either executeBatch or clearBatch
before a call to executeUpdate, otherwise there will be a SQL exception.

■ A clearBatch or executeBatch call resets the statement batch to empty.

Update Batching

Performance Extensions 23-11

■ The statement batch is not reset to empty if the connection receives a ROLLBACK
request. You must explicitly call clearBatch to reset it.

■ Invoking clearBatch method after a rollback works for all releases.

■ An executeBatch call closes the current result set of the statement object, if one
exists.

■ Nothing is returned by the clearBatch method.

Following is an example that repeats the prepared statement addBatch calls shown
previously but then clears the batch under certain circumstances:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

if (...condition...)
{
 int[] updateCounts = pstmt.executeBatch();
 ...
}
else
{
 pstmt.clearBatch();
 ...
}

Update Counts in the Oracle Implementation of Standard Batching
If a statement batch is processed successfully, then the integer array, or update counts
array, returned by the statement executeBatch call will always have one element for
each operation in the batch. In the Oracle implementation of standard update
batching, the values of the array elements are as follows:

■ For a prepared statement batch, it is not possible to know the number of rows
affected in the database by each individual statement in the batch. Therefore, all
array elements have a value of -2. According to the JDBC 2.0 specification, a value
of -2 indicates that the operation was successful but the number of rows affected
is unknown.

Note:

■ If you are using Oracle update batching in Oracle Database 11g,
then you do not have to clear your batches explicitly in the code
after a rollback. However, it is OK to invoke clearBatch method
after a rollback.

■ If you are using Oracle update batching in an earlier release, then
you have to invoke clearBatch method to clear your batches
explicitly after a rollback.

Update Batching

23-12 Oracle Database JDBC Developer's Guide

■ For a generic statement batch, the array contains the actual update counts
indicating the number of rows affected by each operation. The actual update
counts can be provided only in the case of generic statements in the Oracle
implementation of standard batching.

■ For a callable statement batch, the server always returns the value 1 as the update
count, irrespective of the number rows affected by each operation.

In your code, upon successful processing of a batch, you should be prepared to handle
either -2, 1, or true update counts in the array elements. For a successful batch
processing, the array contains either all -2, 1, or all positive integers.

Example 23–2 illustrates the use of standard update batching.

Example 23–2 Standard Update Batching

This example combines the sample fragments in the previous sections, accomplishing
the following steps:

1. Disabling auto-commit mode, which you should always do when using either
update batching model

2. Creating a prepared statement object

3. Adding operations to the batch associated with the prepared statement object

4. Processing the batch

5. Committing the operations from the batch

conn.setAutoCommit(false);

PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();

conn.commit();

pstmt.close();
...

You can process the update counts array to determine if the batch processed
successfully.

Error Handling in the Oracle Implementation of Standard Batching
If any one of the batched operations fails to complete successfully or attempts to return
a result set during an executeBatch call, then the processing stops and a
java.sql.BatchUpdateException is generated.

After a batch exception, the update counts array can be retrieved using the
getUpdateCounts method of the BatchUpdateException object. This returns an
int array of update counts, just as the executeBatch method does. In the Oracle

Update Batching

Performance Extensions 23-13

implementation of standard update batching, contents of the update counts array are
as follows, after a batch is processed:

■ For a prepared statement batch, it is not possible to know which operation failed.
The array has one element for each operation in the batch, and each element has a
value of -3. According to the JDBC 2.0 specification, a value of -3 indicates that
an operation did not complete successfully. In this case, it was presumably just
one operation that actually failed, but because the JDBC driver does not know
which operation that was, it labels all the batched operations as failures.

You should always perform a ROLLBACK operation in this situation.

■ For a generic statement batch or callable statement batch, the update counts array
is only a partial array containing the actual update counts up to the point of the
error. The actual update counts can be provided because Oracle JDBC cannot use
true batching for generic and callable statements in the Oracle implementation of
standard update batching.

For example, if there were 20 operations in the batch, the first 13 succeeded, and
the 14th generated an exception, then the update counts array will have 13
elements, containing actual update counts of the successful operations.

You can either commit or roll back the successful operations in this situation, as
you prefer.

In your code, upon failed processing of a batch, you should be prepared to handle
either -3 or true update counts in the array elements when an exception occurs. For a
failed batch processing, you will have either a full array of -3 or a partial array of
positive integers.

Intermixing Batched Statements and Nonbatched Statements
You cannot call executeUpdate for regular, nonbatched processing of an operation if
the statement object has a pending batch of operations.

However, you can intermix batched operations and nonbatched operations in a single
statement object if you process nonbatched operations either prior to adding any
operations to the statement batch or after processing the batch. Essentially, you can
call executeUpdate for a statement object only when its update batch is empty. If the
batch is non-empty, then an exception will be generated.

For example, it is valid to have a sequence, such as the following:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");

int scount = pstmt.executeUpdate(); // OK; no operations in pstmt batch

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch(); // Now start a batch

pstmt.setInt(1, 4000);
pstmt.setString(2, "Stan Leland");
pstmt.addBatch();

int[] bcounts = pstmt.executeBatch();

Update Batching

23-14 Oracle Database JDBC Developer's Guide

pstmt.setInt(1, 5000);
pstmt.setString(2, "Amy Feiner");

int scount = pstmt.executeUpdate(); // OK; pstmt batch was executed
...

Intermixing nonbatched operations on one statement object and batched operations on
another statement object within your code is permissible. Different statement objects
are independent of each other with regard to update batching operations. A COMMIT
request will affect all nonbatched operations and all successful operations in processed
batches, but will not affect any pending batches.

Premature Batch Flush
Premature batch flush happens due to a change in cached metadata. Cached metadata
can be changed due to various reasons, such as the following:

■ The initial bind was null and the following bind is not null.

■ A scalar type is initially bound as string and then bound as scalar type or the
reverse.

The premature batch flush count is summed to the return value of the next
executeUpdate or sendBatch method.

The old functionality lost all these batch flush values which can be obtained now. To
switch back to the old functionality, you can set the AccumulateBatchResult
property to false, as follows:

java.util.Properties info = new java.util.Properties();
info.setProperty("user", "SCOTT");
info.setProperty("passwd", "TIGER");
// other properties
...

// property: batch flush type
info.setProperty("AccumulateBatchResult", "false");

OracleDataSource ods = new OracleDataSource();
ods.setConnectionProperties(info);
ods.setURL("jdbc:oracle:oci:@"");
Connection conn = ods.getConnection();

Example 23–3 illustrates premature batch flushing.

Example 23–3 Premature Batch Flushing

((OraclePreparedStatement)pstmt).setExecuteBatch (2);

pstmt.setNull (1, OracleTypes.NUMBER);
pstmt.setString (2, "test11");
int count = pstmt.executeUpdate (); // returns 0

/*
* Premature batch flush happens here.

Note: The AccumulateBatchResult property is set to true by
default.

Additional Oracle Performance Extensions

Performance Extensions 23-15

*/
pstmt.setInt (1, 22);
pstmt.setString (2, "test22");
int count = pstmt.executeUpdate (); // returns 0

pstmt.setInt (1, 33);
pstmt.setString (2, "test33");
/*
* returns 3 with the new batching scheme where as,
* returns 2 with the old batching scheme.
*/
int count = pstmt.executeUpdate ();

Additional Oracle Performance Extensions
In addition to update batching, Oracle JDBC drivers support the following extensions
that improve performance by reducing round-trips to the database:

■ Prefetching rows

This reduces round-trips to the database by fetching multiple rows of data each
time data is fetched. The extra data is stored in client-side buffers for later access
by the client. The number of rows to prefetch can be set as desired.

■ Specifying column types

This avoids an inefficiency in the standard JDBC protocol for performing and
returning the results of queries.

■ Suppressing database metadata TABLE_REMARKS columns

This avoids an expensive outer join operation.

Oracle provides several extensions to connection properties objects to support these
performance extensions. These extensions enable you to set the remarksReporting
flag and default values for row prefetching and update batching.

This section covers the following topics:

■ Prefetching LOB Data

■ Oracle Row-Prefetching Limitations

■ Defining Column Types

■ Reporting DatabaseMetaData TABLE_REMARKS

Prefetching LOB Data
For the JDBC drivers prior to Oracle Database 11g Release 2 (11.2) JDBC drivers, if you
want to retrieve LOB data in one round trip, then you have to fetch the data as
VARCHAR2 type, that is, you have to use OracleTypes.VARCHAR or
OracleTypes.LONGVARCHAR with the JDBC defineColumnType method. The
limitation of this approach is that when LOB data is fetched as CHAR type, the locator
cannot be fetched along with the data. So, if the application wants to get the LOB data
at a later point of time, or if the application wants to perform other LOB operations,
then one more round trip is required to get the LOB locator, as LOB locator is not
available to the application.

Additional Oracle Performance Extensions

23-16 Oracle Database JDBC Developer's Guide

For Oracle Database 11g Release 2 (11.2) JDBC drivers, the number of round trips is
reduced by prefetching frequently used metadata, such as the LOB length and the
chunk size as well as the beginning of the LOB data along with the locator during
regular fetch operations. For small LOBs, the data may be totally prefetched in one
single round trip, that is, the select parse, execution, and fetch occurs in one round
trip, and performance is improved greatly. For large LOBs that are larger than 5 times
the prefetch size, the performance improvement is not very significant as only the
round trip for retrieving the chunk size is not needed.

defaultLobPrefetchSize Connection Property
Starting from Oracle Database 11g Release 2 (11.2), there is a new connection property
oracle.jdbc.defaultLobPrefetchSize that can be used to set the default LOB
prefetch size for the connection. This connection property is defined as the following
constant: OracleConnection.CONNECTION_PROPERTY_DEFAULT_LOB_
PREFETCH_SIZE. The value of this property is used as the default LOB prefetch size
for the current connection. The default value of this connection property is -1. If you
want to change the default value at the statement level, then use the
setLobPrefetchSize method defined in oracle.jdbc.OracleStatement
interface. You can change the default value to:

■ -1 to disable LOB prefetch for the current connection

■ 0 to enable LOB prefetch for metadata only

■ Any value greater than 0 to specify the number of bytes for BLOBs and the number
of characters for CLOBs to be prefetched along with the locator during fetch
operations

Use getLobPrefetchSize method defined in oracle.jdbc.OracleStatement
interface to retrieve the LOB prefetch size.

You can also set the value of LOB prefetch size at the column level by using the
defineColumnType method. The column-level value overrides any value that is set
at the connection or statement level.

Oracle Row-Prefetching Limitations
There is no maximum prefetch setting. The default value is 10. Larger or smaller
values may be appropriate depending on the number of rows and columns expected
from the query. You can set the default connection row-prefetch value using a
Properties object.

When a statement object is created, it receives the default row-prefetch setting from
the associated connection. Subsequent changes to the default connection row-prefetch
setting will have no effect on the statement row-prefetch setting.

If a column of a result set is of data type LONG, LONG RAW or LOBs returned through
the data interface, that is, the streaming types, then JDBC changes the statement

Note: Array operations on LOB locators are not supported in the
JDBC APIs.

See Also: The JavaDoc for more information

Note: If LOB prefetch is not disabled at the connection level or
statement level, it cannot be disabled at the column level.

Additional Oracle Performance Extensions

Performance Extensions 23-17

row-prefetch setting to 1, even if you never actually read a value of either of these
types.

Setting the prefetch size can affect the performance of an application. Increasing the
prefetch size will reduce the number of round-trips required to get all the data, but
will increase memory usage. This will depend on the number and size of the columns
in the query and the number of rows expected to be returned. It will also depend on
the memory and CPU loading of the JDBC client machine. The optimum for a
standalone client application will be different from a heavily loaded application
server. The speed and latency of the network connection should also be considered.

If you are migrating an application from earlier releases of Oracle JDBC drivers to 10g
Release 1 (10.1) or later releases of Oracle JDBC drivers, then you should revisit the
optimizations that you had done earlier, because the memory usage and performance
characteristics may have changed substantially.

A common situation that you may encounter is, say, you have a query that selects a
unique key. The query will return only zero or one row. Setting the prefetch size to 1
will decrease memory and CPU usage and cannot increase round-trips. However, you
must be careful to avoid the error of requesting an extra fetch by writing
while(rs.next()) instead of if(rs.next()).

If you are using the JDBC Thin driver, then use the useFetchSizeWithLongColumn
connection property, because it will perform PARSE, EXECUTE, and FETCH in a single
round-trip.

Tuning of the prefetch size should be done along with tuning of memory management
in your JVM under realistic loads of the actual application.

Defining Column Types
The implementation of defineColumnType changed significantly since Oracle
Database 10g. Previously, defineColumnType was used both as a performance
optimization and to force data type conversion. In previous releases, all of the drivers

Note: Starting from Oracle Database 11g Release 1 (11.1), the Thin
driver can fetch the first prefetch_size number of rows from the
server in the very first roundtrip. This saves one roundtrip in SELECT
statements.

Note:

■ Do not mix the JDBC 2.0 fetch size application programming
interface (API) and the Oracle row-prefetching API in your
application. You can use one or the other, but not both.

■ Be aware that setting the Oracle fetch size value can affect not
only queries, but also explicitly refetching rows in a result set
through the result set refreshRow method, which is relevant
for scroll-sensitive/read-only, scroll-sensitive/updatable, and
scroll-insensitive/updatable result sets, and the window size of
a scroll-sensitive result set, affecting how often automatic
refetches are performed. However, the Oracle fetch size value
will be overridden by any setting of the fetch size.

See Also: "Supported Connection Properties" on page 8-7

Additional Oracle Performance Extensions

23-18 Oracle Database JDBC Developer's Guide

benefited from calls to defineColumnType. Starting from Oracle Database 10g, the
JDBC Thin driver no longer needs the information provided. The JDBC Thin driver
achieves maximum performance without calls to defineColumnType. The JDBC
Oracle Call Interface (OCI) and server-side internal drivers still get better performance
when the application uses defineColumnType.

If your code is used with both the JDBC Thin and OCI drivers, you can disable the
defineColumnType method when using the Thin driver by setting the connection
property disableDefineColumnType to true. Doing this makes
defineColumnType have no effect. Do not set this connection property to true
when using the JDBC OCI or server-side internal drivers.

You can also use defineColumnType to control how much memory the client-side
allocates or to limit the size of variable-length data.

Follow these general steps to define column types for a query:

1. If necessary, cast your statement object to OracleStatement,
OraclePreparedStatement, or OracleCallableStatement, as applicable.

2. If necessary, use the clearDefines method of your Statement object to clear
any previous column definitions for this Statement object.

3. On each column, call the defineColumnType method of your Statement
object, passing it these parameters:

■ Column index (integer)

■ Type code (integer)

Use the static constants of the java.sql.Types class or
oracle.jdbc.OracleTypes class, such as Types.INTEGER,
Types.FLOAT, Types.VARCHAR, OracleTypes.VARCHAR, and
OracleTypes.ROWID. Type codes for standard types are identical in these
two classes.

■ Type name (string)

For structured objects, object references, and arrays, you must also specify the
type name. For example, Employee, EmployeeRef, or EmployeeArray.

■ Maximum field size (integer)

Optionally specify a maximum data length for this column.

You cannot specify a maximum field size parameter if you are defining the
column type for a structured object, object reference, or array. If you try to
include this parameter, it will be ignored.

■ Form of use (short)

Optionally specify a form of use for the column. This can be
OraclePreparedStatement.FORM_CHAR to use the database character set
or OraclePreparedStatement.FORM_NCHAR to use the national character
set. If this parameter is omitted, the default is FORM_CHAR.

For example, assuming stmt is an Oracle statement, use:

stmt.defineColumnType(column_index, typeCode);

If the column is VARCHAR or equivalent and you know the length limit:

stmt.defineColumnType(column_index, typeCode, max_size);

Additional Oracle Performance Extensions

Performance Extensions 23-19

For an NVARCHAR column where the original maximum length is desired and
conversion to the database character set is requested:

stmt.defineColumnType(column_index, typeCode, 0,
 OraclePreparedStatement.FORM_CHAR);

For structured object, object reference, and array columns:

stmt.defineColumnType(column_index, typeCode, typeName);

Set a maximum field size if you do not want to receive the full default length of
the data. Calling the setMaxFieldSize method of the standard JDBC
Statement class sets a restriction on the amount of data returned. Specifically,
the size of the data returned will be the minimum of the following:

■ The maximum field size set in defineColumnType

■ The maximum field size set in setMaxFieldSize

■ The natural maximum size of the data type

After you complete these steps, use the executeQuery method of the statement to
perform the query.

Example 23–4 illustrates the use of this feature. It assumes you have imported the
oracle.jdbc.* interfaces.

Example 23–4 Defining Column Types

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:@localhost:1502:orcl");
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

Statement stmt = conn.createStatement();
// Allocate only 2 chars for this column (truncation will happen)
((OracleStatement)stmt).defineColumnType(1, Types.VARCHAR, 2);
ResultSet rset = stmt.executeQuery("select ename from emp");
while (rset.next())
 System.out.println(rset.getString(1));
stmt.close();

As this example shows, you must cast the Statement object, stmt, to
OracleStatement in the invocation of the defineColumnType method. The
createStatement method of the connection returns an object of type
java.sql.Statement, which does not have the defineColumnType and
clearDefines methods. These methods are provided only in the
OracleStatement implementation.

The define-extensions use JDBC types to specify the desired types. The allowed define
types for columns depend on the internal Oracle type of the column.

All columns can be defined to their natural JDBC types. In most cases, they can be
defined to the Types.CHAR or Types.VARCHAR type code.

Note: It is no longer necessary to specify a data type for each
column of the expected result set.

Additional Oracle Performance Extensions

23-20 Oracle Database JDBC Developer's Guide

Table 23–1 lists the valid column definition arguments you can use in the
defineColumnType method.

It is always valid to use defineColumnType with the original data type of the
column.

Reporting DatabaseMetaData TABLE_REMARKS
The getColumns, getProcedureColumns, getProcedures, and getTables
methods of the database metadata classes are slow if they must report TABLE_
REMARKS columns, because this necessitates an expensive outer join. For this reason,
the JDBC driver does not report TABLE_REMARKS columns by default.

You can enable TABLE_REMARKS reporting by passing a true argument to the
setRemarksReporting method of an OracleConnection object.

Equivalently, instead of calling setRemarksReporting, you can set the
remarksReporting Java property if you use a Java Properties object in
establishing the connection.

If you are using a standard java.sql.Connection object, you must cast it to
OracleConnection to use setRemarksReporting.

Example 23–5 illustrates how to enable TABLE_REMARKS reporting.

Example 23–5 TABLE_REMARKS Reporting

Assuming conn is the name of your standard Connection object, the following
statement enables TABLE_REMARKS reporting:

((oracle.jdbc.OracleConnection)conn).setRemarksReporting(true);

Considerations for getColumns
By default, the getColumns method does not retrieve information about the columns
if a synonym is specified. To enable the retrieval of information if a synonym is
specified, you must call the setIncludeSynonyms method on the connection as
follows:

((oracle.jdbc.driver.OracleConnection)conn).setIncludeSynonyms(true)

Table 23–1 Valid Column Type Specifications

If the column has Oracle
SQL type:

You can use defineColumnType
to define it as:

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBINARY, VARBINARY, BINARY

RAW VARBINARY, BINARY

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR

ROWID ROWID

BLOB VARBINARY, BINARY

CLOB LONG, CHAR, VARCHAR

Additional Oracle Performance Extensions

Performance Extensions 23-21

This will cause all subsequent getColumns method calls on the connection to include
synonyms. This is similar to setRemarksReporting. Alternatively, you can set the
includeSynonyms connection property. This is similar to the remarksReporting
connection property.

However, bear in mind that if includeSynonyms is true, then the name of the object
returned in the table_name column will be the synonym name, if a synonym exists.
This is true even if you pass the table name to getColumns.

Considerations for getProcedures and getProcedureColumns Methods
According to JDBC versions 1.1 and 1.2, the methods getProcedures and
getProcedureColumns treat the catalog, schemaPattern,
columnNamePattern, and procedureNamePattern parameters in the same way.
In the Oracle definition of these methods, the parameters are treated differently:

■ catalog

Oracle does not have multiple catalogs, but it does have packages. Consequently,
the catalog parameter is treated as the package name. This applies both on
input, which is the catalog parameter, and the output, which is the catalog
column in the returned ResultSet. On input, the construct " ", which is an
empty string, retrieves procedures and arguments without a package, that is,
standalone objects. A null value means to drop from the selection criteria, that is,
return information about both standalone and packaged objects. That is, it has the
same effect as passing in the percent sign (%). Otherwise, the catalog parameter
should be a package name pattern, with SQL wild cards, if desired.

■ schemaPattern

All objects within Oracle database must have a schema, so it does not make sense
to return information for those objects without one. Thus, the construct " ", which
is an empty string, is interpreted on input to mean the objects in the current
schema, that is, the one to which you are currently connected. To be consistent
with the behavior of the catalog parameter, null is interpreted to drop the
schema from the selection criteria. That is, it has the same effect as passing in %. It
can also be used as a pattern with SQL wild cards.

■ procedureNamePattern and columnNamePattern

The empty string (" ") does not make sense for either parameter, because all
procedures and arguments must have names. Thus, the construct " " will raise an
exception. To be consistent with the behavior of other parameters, null has the
same effect as passing in percent sign (%).

Additional Oracle Performance Extensions

23-22 Oracle Database JDBC Developer's Guide

OCI Connection Pooling 24-1

24
OCI Connection Pooling

The Java Database Connectivity (JDBC) Oracle Call Interface (OCI) driver connection
pooling functionality is part of the JDBC client. This functionality is provided by the
OracleOCIConnectionPool class.

A JDBC application can have multiple pools at the same time. Multiple pools can
correspond to multiple application servers or pools to different data sources. The
connection pooling provided by the JDBC OCI driver enables applications to have
multiple logical connections, all using a small set of physical connections. Each call on
a logical connection gets routed on to the physical connection that is available at the
time of call.

This chapter contains the following sections:

■ OCI Driver Connection Pooling: Background

■ OCI Driver Connection Pooling and Shared Servers Compared

■ Defining an OCI Connection Pool

■ Connecting to an OCI Connection Pool

■ Sample Code for OCI Connection Pooling

■ Statement Handling and Caching

■ JNDI and the OCI Connection Pool

OCI Driver Connection Pooling: Background
The Oracle JDBC OCI driver provides several transaction monitor capabilities, such as
the fine-grained management of Oracle sessions and connections. It is possible for a
high-end application server or transaction monitor to multiplex several sessions over
fewer physical connections on a call-level basis, thereby achieving a high degree of
scalability by pooling of connections and back-end Oracle server processes.

The connection pooling provided by the OracleOCIConnectionPool interface
simplifies the session/connection separation interface hiding the management of the
physical connection pool. The Oracle sessions are the OracleOCIConnection objects
obtained from OracleOCIConnectionPool. The connection pool itself is usually
configured with a much smaller shared pool of physical connections, translating to a
back-end server pool containing an identical number of dedicated server processes.

Note: Use OCI connection pooling if you need session
multiplexing. Otherwise, Oracle recommends using the implicit
connection cache functionality.

OCI Driver Connection Pooling and Shared Servers Compared

24-2 Oracle Database JDBC Developer's Guide

Note that many more Oracle sessions can be multiplexed over this pool of fewer
shared connections and back-end Oracle processes.

OCI Driver Connection Pooling and Shared Servers Compared
In some ways, what OCI driver connection pooling offers on the middle tier is similar
to what shared server processes offer on the back end. OCI driver connection pooling
makes a dedicated server instance behaves as a shared instance by managing the
session multiplexing logic on the middle tier. Therefore, the pooling of dedicated
server processes and incoming connections into the dedicated server processes is
controlled by the OCI connection pool on the middle tier.

The main difference between OCI connection pooling and shared servers is that in the
case of shared servers, the connection from the client is typically to a dispatcher in the
database instance. The dispatcher is responsible for directing the client request to an
appropriate shared server. On the other hand, the physical connection from the OCI
connection pool is established directly from the middle tier to the Oracle dedicated
server process in the back-end server pool.

Note that OCI connection pool is mainly beneficial only if the middle tier is
multithreaded. Each thread could maintain a session to the database. The actual
connections to the database are maintained by OracleOCIConnectionPool, and
these connections, including the pool of dedicated database server processes, are
shared among all the threads in the middle tier.

Defining an OCI Connection Pool
An OCI connection pool is created at the beginning of the application. Creating
connections from a pool is quite similar to creating connections using the
OracleDataSource class.

The oracle.jdbc.pool.OracleOCIConnectionPool class, which extends the
OracleDataSource class, is used to create OCI connection pools. From an
OracleOCIConnectionPool instance, you can obtain logical connection objects.
These connection objects are of the OracleOCIConnection class type. This class
implements the OracleConnection interface. The Statement objects you create
from the OracleOCIConnection instance have the same fields and methods as
OracleStatement objects you create from OracleConnection instances.

The following code shows header information for the OracleOCIConnectionPool
class:

/*
 * @param us ConnectionPool user-id.
 * @param p ConnectionPool password
 * @param name logical name of the pool. This needs to be one in the
 * tnsnames.ora configuration file.
 @param config (optional) Properties of the pool, if the default does not
 suffice. Default connection configuration is min =1, max=1,
 incr=0
 Please refer setPoolConfig for property names.

 Since this is optional, pass null if the default configuration
 suffices.

 * @return
 *
 * Notes: Choose a userid and password that can act as proxy for the users

Defining an OCI Connection Pool

OCI Connection Pooling 24-3

 * in the getProxyConnection() method.

 If config is null, then the following default values will take
 effect
 CONNPOOL_MIN_LIMIT = 1
 CONNPOOL_MAX_LIMIT = 1
 CONNPOOL_INCREMENT = 0

*/

public synchronized OracleOCIConnectionPool
 (String user, String password, String name, Properties config)
 throws SQLException

/*
 * This will use the user-id, password and connection pool name values set
 LATER using the methods setUser, setPassword, setConnectionPoolName.

 * @return
 *
 * Notes:

 No OracleOCIConnection objects can be created on
 this class unless the methods setUser, setPassword, setPoolConfig
 are invoked.
 When invoking the setUser, setPassword later, choose a userid and
 password that can act as proxy for the users
 * in the getProxyConnection() method.
 */
 public synchronized OracleOCIConnectionPool ()
 throws SQLException

Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages
Before you create an OCI connection pool, import the following to have Oracle OCI
connection pooling functionality:

import oracle.jdbc.pool.*;
import oracle.jdbc.oci.*;

Creating an OCI Connection Pool
The following code show how you create an instance of the
OracleOCIConnectionPool class called cpool:

OracleOCIConnectionPool cpool = new OracleOCIConnectionPool
 ("SCOTT", "TIGER", "jdbc:oracle:oci:@(description=(address=(host=
 myhost)(protocol=tcp)(port=1521))(connect_data=(INSTANCE_NAME=orcl)))",
 poolConfig);

poolConfig is a set of properties that specify the connection pool. If poolConfig is
null, then the default values are used. For example, consider the following:

■ poolConfig.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT,
"4");

■ poolConfig.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT,
"10");

Defining an OCI Connection Pool

24-4 Oracle Database JDBC Developer's Guide

■ poolConfig.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT,
"2");

As an alternative to the constructor call, you can create an instance of the
OracleOCIConnectionPool class using individual methods to specify the user,
password, and connection string.

OracleOCIConnectionPool cpool = new OracleOCIConnectionPool ();
cpool.setUser("SCOTT");
cpool.setPassword("TIGER");
cpool.setURL("jdbc:oracle:oci:@(description=(address=(host=
 myhost)(protocol=tcp)(port=1521))(connect_data=(INSTANCE_NAME=orcl)))");
cpool.setPoolConfig(poolConfig); // In case you want to specify a different
 // configuration other than the default
 // values.

Setting the OCI Connection Pool Parameters
The connection pool configuration is determined by the following
OracleOCIConnectionPool class attributes:

■ CONNPOOL_MIN_LIMIT

Specifies the minimum number of physical connections that can be maintained by
the pool.

■ CONNPOOL_MAX_LIMIT

Specifies the maximum number of physical connections that can be maintained by
the pool.

■ CONNPOOL_INCREMENT

Specifies the incremental number of physical connections to be opened when all
the existing ones are busy and a call needs one more connection; the increment is
done only when the total number of open physical connections is less than the
maximum number that can be opened in that pool.

■ CONNPOOL_TIMEOUT

Specifies how much time must pass before an idle physical connection is
disconnected; this does not affect a logical connection.

■ CONNPOOL_NOWAIT

Specifies, if enabled, that an error is returned if a call needs a physical connection
while the maximum number of connections in the pool are busy. If disabled, a call
waits until a connection is available. Once this attribute is set to true, it cannot be
reset to false.

You can configure all of these attributes dynamically. Therefore, an application has the
flexibility of reading the current load, that is number of open connections and number
of busy connections, and adjusting these attributes appropriately, using the
setPoolConfig method.

Note: The default values for the CONNPOOL_MIN_LIMIT,
CONNPOOL_MAX_LIMIT, and CONNPOOL_INCREMENT parameters
are 1, 1, and 0, respectively.

Defining an OCI Connection Pool

OCI Connection Pooling 24-5

The setPoolConfig method is used to configure OCI connection pool properties.
The following is a typical example of how the OracleOCIConnectionPool class
attributes can be set:

...
java.util.Properties p = new java.util.Properties();
p.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, "1");
p.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, "5");
p.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT, "2");
p.put (OracleOCIConnectionPool.CONNPOOL_TIMEOUT, "10");
p.put (OracleOCIConnectionPool.CONNPOOL_NOWAIT, "true");
cpool.setPoolConfig(p);
...

Observe the following rules when setting these attributes:

■ CONNPOOL_MIN_LIMIT, CONNPOOL_MAX_LIMIT, and CONNPOOL_INCREMENT
are mandatory.

■ CONNPOOL_MIN_LIMIT must be a value greater than zero.

■ CONNPOOL_MAX_LIMIT must be a value greater than or equal to CONNPOOL_
MIN_LIMIT plus CONNPOOL_INCREMENT.

■ CONNPOOL_INCREMENT must be a value greater than or equal to zero.

■ CONNPOOL_TIMEOUT must be a value greater than zero.

■ CONNPOOL_NOWAIT must be true or false.

Checking the OCI Connection Pool Status
To check the status of the connection pool, use the following methods from the
OracleOCIConnectionPool class:

■ int getMinLimit()

Retrieves the minimum number of physical connections that can be maintained by
the pool.

■ int getMaxLimit()

Retrieves the maximum number of physical connections that can be maintained by
the pool.

■ int getConnectionIncrement()

Retrieves the incremental number of physical connections to be opened when all
the existing ones are busy and a call needs a connection.

■ int getTimeout()

Retrieves the specified time (in seconds) that a physical connection in a pool can
remain idle before it is disconnected; the age of a connection is based on the Least
Recently Used (LRU) algorithm.

■ String getNoWait()

Retrieves if the NOWAIT property is enabled. It returns a string of "true" or
"false".

■ int getPoolSize()

See Also: Oracle Call Interface Programmer's Guide

Connecting to an OCI Connection Pool

24-6 Oracle Database JDBC Developer's Guide

Retrieves the number of physical connections that are open. This should be used
only as an estimate and for statistical analysis.

■ int getActiveSize()

Retrieves the number of physical connections that are open and busy. This should
be used only as an estimate and for statistical analysis.

■ boolean isPoolCreated()

Retrieves if the pool has been created. The pool is actually created when
OracleOCIConnection(user, password, url, poolConfig) is called or
when setUser, setPassword, and setURL has been done after calling
OracleOCIConnection().

Connecting to an OCI Connection Pool
The OracleOCIConnectionPool class, through a getConnection method call,
creates an instance of the OracleOCIConnection class. This instance represents a
connection.

Because the OracleOCIConnection class extends OracleConnection class, it has
the functionality of this class too. Close the OracleOCIConnection objects once the
user session is over, otherwise, they are closed when the pool instance is closed.

There are two ways of calling getConnection:

■ OracleConnection getConnection()

If you do not supply the user name and password, then the default user name and
password used for the creation of the connection pool are used while creating the
connection objects.

■ OracleConnection getConnection(String user, String password)

If you this method, you will get a logical connection identified with the specified
user name and password, which can be different from that used for pool creation.

The following code shows the signatures of the overloaded getConnection method:

public synchronized OracleConnection getConnection()
 throws SQLException

/*
 * For getting a connection to the database.
 *
 * @param us Connection user-id
 * @param p Connection password
 * @return connection object
 */
public synchronized OracleConnection getConnection(String us, String p)
throws SQLException

As an enhancement to OracleConnection, the following new method is added into
OracleOCIConnection as a way to change the password for the user:

void passwordChange (String user, String oldPassword, String newPassword)

Sample Code for OCI Connection Pooling

OCI Connection Pooling 24-7

Sample Code for OCI Connection Pooling
The following code illustrates the use of OCI connection pooling in a sample
application:

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Properties;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.pool.OracleOCIConnectionPool;

public class conPoolAppl extends Thread
{
 public static final String query = "SELECT object_name FROM all_objects WHERE
rownum < 300";
 static public void main(String args[]) throws SQLException
 {
 int _maxCount = 10;
 Connection []conn = new Connection[_maxCount];
 try
 {
 DriverManager.registerDriver(new OracleDriver());

 String s = null; //System.getProperty ("JDBC_URL");

 //String url = (s == null ? "jdbc:oracle:oci8:@orcl" : s);
 String url = "jdbc:oracle:oci8:@orcl.rmmslang.com";

 OracleOCIConnectionPool cpool = new OracleOCIConnectionPool("scott",
"tiger", url, null);

 // Print out the default configuration for the OracleOCIConnectionPool
 System.out.println ("-- The default configuration for the
OracleOCIConnectionPool --");
 displayPoolConfig(cpool);

 //Set up the initial pool configuration
 Properties p1 = new Properties();
 p1.put (OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, Integer.toString(1));
 p1.put (OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, Integer.toString(_
maxCount));
 p1.put (OracleOCIConnectionPool.CONNPOOL_INCREMENT, Integer.toString(1));

 // Enable the initial configuration
 cpool.setPoolConfig(p1);

 Thread []t = new Thread[_maxCount];
 for (int i = 0; i < _maxCount; ++i)
 {
 conn[i] = cpool.getConnection("scott", "tiger");
 if (conn[i] == null)
 {
 System.out.println("Unable to create connection.");
 return;
 }
 t[i] = new conPoolAppl (i, conn[i]);
 t[i].start ();
 //displayPoolConfig(cpool);

Sample Code for OCI Connection Pooling

24-8 Oracle Database JDBC Developer's Guide

 }

 ((conPoolAppl)t[0]).startAllThreads ();
 try
 {
 Thread.sleep (200);
 }
 catch (Exception ea) {}

 displayPoolConfig(cpool);
 for (int i = 0; i < _maxCount; ++i)
 t[i].join ();
 }
 catch(Exception ex)
 {
 System.out.println("Error: " + ex);
 ex.printStackTrace ();
 return;
 }
 finally
 {
 for (int i = 0; i < _maxCount; ++i)
 if (conn[i] != null)
 conn[i].close ();
 }
 } //end of main

 private Connection m_conn;
 private static boolean m_startThread = false;
 private int m_threadId;

 public conPoolAppl (int i, Connection conn)
 {
 m_threadId = i;
 m_conn = conn;
 }

 public void startAllThreads ()
 {
 m_startThread = true;
 }

 public void run ()
 {
 while (!m_startThread) Thread.yield ();
 try
 {
 doQuery (m_conn);
 }
 catch (SQLException ea)
 {
 System.out.println ("*** Thread id: " + m_threadId);
 ea.printStackTrace ();
 }
 } // end of run

 private static void doQuery (Connection conn) throws SQLException
 {
 PreparedStatement pstmt = null;
 ResultSet rs = null;

Statement Handling and Caching

OCI Connection Pooling 24-9

 try
 {
 pstmt = conn.prepareStatement (query);
 rs = pstmt.executeQuery ();
 while (rs.next ())
 {
 //System.out.println ("Object name: " +rs.getString (1));
 }
 }
 catch (Exception ea)
 {
 System.out.println ("Error during execution: " +ea);
 ea.printStackTrace ();
 }
 finally
 {
 if (rs != null)
 rs.close ();
 if (pstmt != null)
 pstmt.close ();
 if (conn != null)
 conn.close ();
 }
 } // end of doQuery (Connection)

 // Display the current status of the OracleOCIConnectionPool
 private static void displayPoolConfig (OracleOCIConnectionPool cpool) throws
SQLException
 {
 System.out.println (" Min poolsize Limit: " + cpool.getMinLimit());
 System.out.println (" Max poolsize Limit: " + cpool.getMaxLimit());
 /*
 System.out.println (" Connection Increment: " +
cpool.getConnectionIncrement());
 System.out.println (" NoWait: " + cpool.getNoWait());
 System.out.println (" Timeout: " + cpool.getTimeout());
 */
 System.out.println (" PoolSize: " + cpool.getPoolSize());
 System.out.println (" ActiveSize: " + cpool.getActiveSize());
 }

} // end of class conPoolAppl

Statement Handling and Caching
Statement caching is supported with OracleOCIConnectionPool. The caching
improves performance by not having to open, parse, and close cursors. When
OracleOCIConnection.prepareStatement ("a_SQL_query") is processed, the
statement cache is searched for a statement that matches the SQL query. If a match is
found, then you can reuse the Statement object instead of incurring the cost of
creating another Statement object. The cache size can be dynamically increased or
decreased. The default cache size is zero.

Note: The OracleStatement object created from
OracleOCIConnection has the same behavior as one that is created
from OracleConnection.

JNDI and the OCI Connection Pool

24-10 Oracle Database JDBC Developer's Guide

JNDI and the OCI Connection Pool
The Java Naming and Directory Interface (JNDI) feature makes the properties of a Java
object persist, therefore these properties can be used to construct a new instance of the
object, such as cloning the object. The benefit is that the old object can be freed, and at
a later time a new object with exactly the same properties can be created. The
InitialContext.bind method makes the properties persist, either on file or in a
database, while the InitialContext.lookup method retrieves the properties from
the persistent store and creates a new object with these properties.

OracleOCIConnectionPool objects can be bound and looked up using the JNDI
feature. No new interface calls in OracleOCIConnectionPool are necessary.

Oracle Advanced Queuing 25-1

25
Oracle Advanced Queuing

Oracle Advanced Queuing (AQ) provides database-integrated message queuing
functionality. It is built on top of Oracle Streams and optimizes the functions of Oracle
Database so that messages can be stored persistently, propagated between queues on
different computers and databases, and transmitted using Oracle Net Services, HTTP,
and HTTPS. Because Oracle AQ is implemented in database tables, all operational
benefits of high availability, scalability, and reliability are also applicable to queue
data. This chapter provides information about the Java interface to Oracle AQ.

This chapters covers the following topics:

■ Functionality and Framework of Oracle Advanced Queuing

■ Making Changes to the Database

■ AQ Asynchronous Event Notification

■ Creating Messages

■ Enqueuing Messages

■ Dequeuing Messages

■ Examples: Enqueuing and Dequeuing

Functionality and Framework of Oracle Advanced Queuing
The Oracle JDBC package oracle.jdbc.aq provides a fast Java interface to AQ. This
package contains the following:

■ Classes

– AQDequeueOptions

Specifies the options available for the dequeue operation

– AQEnqueueOptions

Specifies the options available for the enqueue operation

– AQFactory

Note: In Oracle Database 11g Release 2 (11.2), support for XMLType
queues has been added. Till Oracle Database 11g Release 1 (11.1),
supported queue types were RAW, ADT, and ANYDATA queue types.

See Also: Oracle Streams Advanced Queuing User's Guide

Making Changes to the Database

25-2 Oracle Database JDBC Developer's Guide

Is a factory class for AQ

– AQNotificationEvent

Is created whenever a new message is enqueued in a queue for which you
have registered your interest

■ Interfaces

– AQAgent

Used to represent and identify a user of the queue or a producer or consumer
of the message

– AQMessage

Represents a message that is enqueued or dequeued

– AQMessageProperties

Contains message properties such as Correlation, Sender, Delay and
Expiration, Recipients, and Priority and Ordering

– AQNotificationListener

Is a listener interface for receiving AQ notification events

– AQNotificationRegistration

Represents your interest in being notified when a new message is enqueued in
a particular queue

These classes and interfaces enable you to access an existing queue, create messages,
and enqueue and dequeue messages.

Making Changes to the Database
The code snippets used in this chapter assume that user SCOTT is connecting to the
database. Therefore, in the database, you must grant the following privileges to
SCOTT:

GRANT EXECUTE ON DBMS_AQ to SCOTT;
GRANT EXECUTE ON DBMS_AQADM to SCOTT;
GRANT AQ_ADMINISTRATOR_ROLE TO SCOTT;
GRANT ADMINISTER DATABASE TRIGGER TO SCOTT;

Before you start enqueuing and dequeuing messages, you must have queues in the
Database. For this, you must perform the following:

1. Create a queue table in the following way:

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 QUEUE_TABLE =>'scott.RAW_SINGLE_QUEUE_TABLE',

Note: Oracle JDBC drivers do not provide any API to create a queue.
Queues must be created through the DBMS_AQADM PL/SQL package.

See Also: For more information about the APIs, refer to the Javadoc
at

http://download.oracle.com/otn/utilities_
drivers/jdbc/111060/doc/javadoc/index.html

AQ Asynchronous Event Notification

Oracle Advanced Queuing 25-3

 QUEUE_PAYLOAD_TYPE =>'RAW',
 COMPATIBLE => '10.0');
END;

2. Create a queue in the following way:

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 QUEUE_NAME =>'scott.RAW_SINGLE_QUEUE',
 QUEUE_TABLE =>'scott.RAW_SINGLE_QUEUE_TABLE',
END;

3. Start the queue in the following way:

BEGIN
 DBMS_AQADM.START_QUEUE(
 'scott.RAW_SINGLE_QUEUE',
END;

It is a good practice to stop the queue and remove the queue tables from the database.
You can perform this in the following way:

1. Stop the queue in the following way:

BEGIN
 DBMS_AQADM.STOP_QUEUE(
 scott.RAW_SINGLE_QUEUE',
END;

2. Remove the queue tables from the database in the following way:

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE(
 QUEUE_TABLE =>'scott.RAW_SINGLE_QUEUE_TABLE',
 FORCE => TRUE
END;

AQ Asynchronous Event Notification
A JDBC application can do the following:

■ Register to the AQ namespace and receive notification when an enqueue occurs.
This can be performed in the following way:

 public AQNotificationRegistration registerForAQEvents(
 OracleConnection conn,
 String queueName) throws SQLException
 {
 Properties globalOptions = new Properties();
 String[] queueNameArr = new String[1];
 queueNameArr[0] = queueName;
 Properties[] opt = new Properties[1];
 opt[0] = new Properties();
 opt[0].setProperty(OracleConnection.NTF_AQ_PAYLOAD,"true");
 AQNotificationRegistration[] regArr =
conn.registerAQNotification(queueNameArr,opt,globalOptions);
 AQNotificationRegistration reg = regArr[0];
 return reg;
 }

AQ Asynchronous Event Notification

25-4 Oracle Database JDBC Developer's Guide

■ Register subscriptions to database events and receive notifications when the
events are triggered

Registered clients are notified asynchronously when events are triggered or on an
explicit AQ enqueue (or a new message is enqueued in a queue for which you
have registered your interest). Clients do not need to be connected to a database.

The following code snippet shows how to subscribe to database events and receive
notifications when the events are triggered:

class DemoAQRawQueueListener implements AQNotificationListener
{
 OracleConnection conn;
 String queueName;
 String typeName;
 int eventsCount = 0;

 public DemoAQRawQueueListener(String _queueName, String _typeName)
 throws SQLException
 {
 queueName = _queueName;
 typeName = _typeName;
 conn = (OracleConnection)DriverManager.getConnection
 (DemoAQRawQueue.URL, DemoAQRawQueue.USERNAME, DemoAQRawQueue.PASSWORD);
 }

 public void onAQNotification(AQNotificationEvent e)
 {
 try
 {
 AQDequeueOptions deqopt = new AQDequeueOptions();
 deqopt.setRetrieveMessageId(true);
 if(e.getConsumerName() != null)
 deqopt.setConsumerName(e.getConsumerName());
 if((e.getMessageProperties()).getDeliveryMode()
 == AQMessageProperties.MESSAGE_BUFFERED)
 {
 deqopt.setDeliveryMode(AQDequeueOptions.DEQUEUE_BUFFERED);
 deqopt.setVisibility(AQDequeueOptions.DEQUEUE_IMMEDIATE);
 }
 AQMessage msg = conn.dequeue(queueName,deqopt,typeName);
 byte[] msgId = msg.getMessageId();
 if(msgId != null)
 {
 String mesgIdStr = DemoAQRawQueue.byteBufferToHexString(msgId,20);
 System.out.println("ID of message dequeued = "+mesgIdStr);
 }
 System.out.println(msg.getMessageProperties().toString());
 byte[] payload = msg.getPayload();
 if(typeName.equals("RAW"))
 {
 String payloadStr = new String(payload,0,10);
 System.out.println("payload.length="+payload.length+",
value="+payloadStr);
 }
 }
 catch(SQLException sqlex)
 {
 System.out.println(sqlex.getMessage());
 }
 eventsCount++;

Creating Messages

Oracle Advanced Queuing 25-5

 }
 public int getEventsCount()
 {
 return eventsCount;
 }
 public void closeConnection() throws SQLException
 {
 conn.close();
 }
}

■ Register to the listener in the following way:

AQNotificationRegistration reg = registerForAQEvents(conn,queueName+":BLUE");
DemoAQRawQueueListener demo_li = new
DemoAQRawQueueListener(queueName,queueType);
reg.addListener(demo_li);

Creating Messages
Before you enqueue a message, you must create the message. An instance of a class
implementing the AQMessage interface represents an AQ message. An AQ message
contains properties (metadata) and a payload (data). Perform the following to create
an AQ message:

1. Create an instance of AQMessageProperties in the following way:

AQMessageProperties msgprop = AQFactory.createAQMessageProperties();

2. Set the property attributes in the following way:

msgprop.setCorrelation("mycorrelation");
msgprop.setExceptionQueue("MY_EXCEPTION_QUEUE");
msgprop.setExpiration(0);
msgprop.setPriority(1);

3. Create the AQ message using the AQMessageProperties object in the following
way:

AQMessage mesg = AQFactory.createAQMessage(msgprop);

4. Set the payload in the following way:

byte[] rawPayload = "Example_Payload".getBytes();
mesg.setPayload(new oracle.sql.RAW(rawPayload));

AQ Message Properties
The properties of the AQ message are represented by an instance of the
AQMessageProperties interface. You can set or get the following message
properties:

■ Dequeue Attempts Count: Specifies the number of attempts that have been made
to dequeue the message. This property cannot be set.

■ Correlation: Is an identifier supplied by the producer of the message at the time of
enqueuing the message.

■ Delay: Is the number of seconds for which the message is in the WAITING state.
After the specified delay, the message is in the READY state and available for

Creating Messages

25-6 Oracle Database JDBC Developer's Guide

dequeuing. Dequeuing a message by using the message ID (msgid) overrides the
delay specification.

■ Delivery Mode: Specifies whether the message is a buffered message or a
persistent message. This property cannot be set.

■ Enqueue Time: Specifies the time at which the message was enqueued. This value
is determined by the system and cannot be set by the user.

■ Exception Queue: Specifies the name of the queue into which the message is
moved if it cannot be processed successfully. Messages are moved in two cases:

– The number of unsuccessful dequeue attempts has exceeded max_retries.

– The message has expired.

■ Expiration: Is the number of seconds during which the message is available for
dequeuing, starting from when the message reaches the READY state. If the
message is not dequeued before it expires, then it is moved to the exception queue
in the EXPIRED state.

■ Message State: Specifies the state of the message at the time of dequeuing the
message. This property cannot be set.

■ Previous Queue Message ID: Is the ID of the message in the last queue that
generated the current message. When a message is propagated from one queue to
another, this attribute identifies the ID of the queue from which it was last
propagated. This property cannot be set.

■ Priority: Specifies the priority of the message. It can be any integer including
negative integers; the smaller the value, the higher the priority.

■ Recipient list: Is a list of AQAgent objects that represent the recipients. The default
recipients are the queue subscribers. This parameter is valid only for
multiple-consumer queues.

■ Sender: Is an identifier specified by the producer at the time of enqueuing the
message. It is an instance of AQAgent.

■ Transaction group: Specifies the transaction group of the message for
transaction-grouped queues. It is set after a successful call to the dequeueArray
method.

AQ Message Payload
Depending on the type of the queue, the payload of the AQ message can be specified
using the setPayload method of the AQMessage interface. The following code
snippet illustrates how to set the payload:

...
byte[] rawPayload = "Example_Payload".getBytes();
mesg.setPayload(new oracle.sql.RAW(rawPayload));
...
You can retrieve the payload of an AQ message using the getPayload method or the
appropriate getXXXPayload method in the following way:

byte[] payload = mesg.getPayload();

These methods are defined in the AQMessage interface.

Note: Delay is not supported with buffered messaging.

Enqueuing Messages

Oracle Advanced Queuing 25-7

Example: Creating a Message and Setting a Payload
This section provides an example that illustrates how to create a message and set a
payload.

Example 25–1 Creating a Message and Setting a Payload

This example shows how to Create an instance of AQMessageProperties, set the
property attributes, create the AQ message, and set the payload.

 AQMessageProperties msgprop = AQFactory.createAQMessageProperties();
 msgprop.setCorrelation("mycorrelation");
 msgprop.setExceptionQueue("MY_EXCEPTION_QUEUE");
 AQAgent ag = AQFactory.createAQAgent();
 ag.setName("MY_SENDER_AGENT_NAME");
 ag.setAddress("MY_SENDER_AGENT_ADDRESS");
 msgprop.setSender(ag);
 // handle multi consumer case:
 if(recipients != null)
 msgprop.setRecipientList(recipients);
 System.out.println(msgprop.toString());
 AQMessage mesg = AQFactory.createAQMessage(msgprop);
byte[] rawPayload = "Example_Payload".getBytes();
mesg.setPayload(new oracle.sql.RAW(rawPayload));

Enqueuing Messages
After you create a message and set the message properties and payload, you can
enqueue the message using the enqueue method of the OracleConnection
interface. Before you enqueue the message, you can specify some enqueue options.
The AQEnqueueOptions class enables you to specify the following enqueue options:

■ Delivery mode: Specifies the delivery mode. Delivery mode can be set to either
persistent (ENQUEUE_PERSISTENT) or buffered (ENQUEUE_BUFFERED).

■ Retrieve Message ID: Specifies whether or not the message ID has to be retrieved
from the server when the message has been enqueued. By default, the message ID
is not retrieved.

■ Transformation: Specifies a transformation that will be applied before enqueuing
the message. The return type of the transformation function must match the type
of the queue.

■ Visibility: Specifies the transactional behavior of the enqueue request. The default
value for this option is ENQUEUE_ON_COMMIT. It indicates that the enqueue
operation is part of the current transaction. ENQUEUE_IMMEDIATE indicates that
the enqueue operation is an autonomous transaction, which commits at the end of
the operation. For buffered messaging, you must use ENQUEUE_IMMEDIATE.

The following code snippet illustrates how to set the enqueue options and enqueue the
message:

...
AQEnqueueOptions opt = new AQEnqueueOptions();
opt.setRetrieveMessageId(true);

Note: Transformations must be created in PL/SQL using DBMS_
TRANSFORM.CREATE_TRANSFORMATION(...).

Dequeuing Messages

25-8 Oracle Database JDBC Developer's Guide

conn.enqueue(queueName, opt, mesg);
...

Dequeuing Messages
Enqueued messages can be dequeued using the dequeue method of the
OracleConnection interface. Before you dequeue a message you must set the
dequeue options. The AQDequeueOptions class enables you to specify the following
dequeue options:

■ Condition: Specifies a conditional expression based on the message properties, the
message data properties, and PL/SQL functions. A dequeue condition is specified
as a Boolean expression using syntax similar to the WHERE clause of a SQL query.

■ Consumer name: If specified, only the messages matching the consumer name are
accessed.

■ Correlation: Specifies a correlation criterion (or search criterion) for the dequeue
operation.

■ Delivery Filter: Specifies the type of message to be dequeued. You dequeue
buffered messages only (DEQUEUE_BUFFERED) or persistent messages only
(DEQUEUE_PERSISTENT), which is the default, or both (DEQUEUE_PERSISTENT_
OR_BUFFERED).

■ Dequeue Message ID: Specifies the message identifier of the message to be
dequeued. This can be used to dequeue a unique message whose ID is known.

■ Dequeue mode: Specifies the locking behavior associated with the dequeue
operation. It can take one of the following values:

– DequeueMode.BROWSE: Message is dequeued without acquiring any lock.

– DequeueMode.LOCKED: Message is dequeued with a write lock that lasts for
the duration of the transaction.

– DequeueMode.REMOVE: (default) Message is dequeued and deleted. The
message can be retained in the queue based on the retention properties.

– DequeueMode.REMOVE_NO_DATA: Message is marked as updated or deleted.

■ Maximum Buffer Length: Specifies the maximum number of bytes that will be
allocated when dequeuing a message from a RAW queue. The default maximum is
DEFAULT_MAX_PAYLOAD_LENGTH but it can be changed to any other nonzero
value. If the buffer is not large enough to contain the entire message, then the
exceeding bytes will be silently ignored.

■ Navigation: Specifies the position of the message that will be retrieved. It can take
one of the following values:

– NavigationOption.FIRST_MESSAGE: The first available message
matching the search criteria is dequeued.

– NavigationOption.NEXT_MESSAGE: (default) The next available message
matching the search criteria is dequeued. If the previous message belongs to a
message group, then the next available message matching the search criteria in
the message group is dequeued.

Note: If the queue is a single-consumer queue, do not set this option.

Dequeuing Messages

Oracle Advanced Queuing 25-9

– NavigationOption.NEXT_TRANSACTION: Messages in the current
transaction group are skipped, and the first message of the next transaction
group is dequeued. This setting can be used only if message grouping is
enabled for the queue.

■ Retrieve Message ID: Specifies whether or not the message identifier of the
dequeued message needs to be retrieved. By default, it is not retrieved.

■ Transformation: Specifies a transformation that will be applied after dequeuing
the message. The source type of the transformation must match the type of the
queue.

■ Visibility: Specifies whether or not the message is dequeued as part of the current
transaction. It can take one of the following values:

– VisibilityOption.ON_COMMIT: (default) The dequeue operation is part of
the current transaction.

– VisibilityOption.IMMEDIATE: The dequeue operation is an autonomous
transaction that commits at the end of the operation.

■ Wait: Specifies the wait time for the dequeue operation, if none of the messages
matches the search criteria. The default value is DEQUEUE_WAIT_FOREVER
indicating that the operation waits forever. If set to DEQUEUE_NO_WAIT, then the
operation does not wait. If a number is specified, then the dequeue operation
waits for the specified number of seconds.

The following code snippet illustrates how to set the dequeue options and dequeue the
message:

...
AQDequeueOptions deqopt = new AQDequeueOptions();
deqopt.setRetrieveMessageId(true);
deqopt.setConsumerName(consumerName);
AQMessage msg = conn.dequeue(queueName,deqopt,queueType);

Note: Transformations must be created in PL/SQL using DBMS_
TRANSFORM.CREATE_TRANSFORMATION(...).

Note: The Visibility option is ignored in the DequeueMode.BROWSE
dequeue mode. If the delivery filter is DEQUEUE_BUFFERED or
DEQUEUE_PERSISTENT_OR_BUFFERED, then this option must be set
to VisibilityOption.IMMEDIATE.

Note: If you use DEQUEUE_WAIT_FOREVER, then the dequeue
operation will not return until a message that matches the search
criterion is available in the queue. However, you can interrupt the
dequeue operation by calling the cancel method on the
OracleConnection object.

Examples: Enqueuing and Dequeuing

25-10 Oracle Database JDBC Developer's Guide

Examples: Enqueuing and Dequeuing
This section provides a few examples that illustrate how to enqueue and dequeue
messages.

Example 25–2 illustrates how to enqueue a message, and Example 25–3 illustrates how
to dequeue a message.

Example 25–2 Enqueuing a Single Message

This example illustrates how to obtain access to a queue, create a message, and
enqueue it.

AQMessageProperties msgprop = AQFactory.createAQMessageProperties();
msgprop.setPriority(1);
msgprop.setExceptionQueue("EXCEPTION_QUEUE");
msgprop.setExpiration(0);
AQAgent agent = AQFactory.createAQAgent();
agent.setName("AGENTNAME");
agent.setAddress("AGENTADDRESS");
msgprop.setSender(agent);
AQMessage mesg = AQFactory.createAQMessage(msgprop);
mesg.setPayload(buffer); // where buffer is a byte array (for a RAW queue)
AQEnqueueOptions options = new AQEnqueueOptions();
conn.enqueue("SCOTT.MY_QUEUE", options, mesg);

Example 25–3 Dequeuing a Single Message

This example illustrates how to obtain access to a queue, set the dequeue options, and
dequeue the message.

AQDequeueOptions options = new AQDequeueOptions();
options.setDeliveryFilter(AQDequeueOptions.DeliveryFilter.BUFFERED);
AQMessage mesg = conn.dequeue("SCOTT.MY_QUEUE", options, "RAW");

26

Database Change Notification 26-1

26Database Change Notification

Generally, a middle-tier data cache duplicates some data from the back-end database
server. Its goal is to avoid redundant queries to the database. However, this is efficient
only when the data rarely changes in the database. The data cache has to be updated
or invalidated when the data changes in the database. Starting from 11g Release 1
(11.1), Oracle JDBC drivers provide support for the Database Change Notification
feature of Oracle Database. Using this functionality of the JDBC drivers, multitier
systems can take advantage of the Database Change Notification feature to maintain a
data cache as up-to-date as possible, by receiving invalidation events from the JDBC
drivers.

The JDBC drivers can register SQL queries with the database and receive notifications
in response to the following:

■ DML or DDL changes on the objects associated with the queries

■ DML or DDL changes that affect the result set

The notifications are published when the DML or DDL transaction commits (changes
made in a local transaction do not generate any event until they are committed).

To use Oracle JDBC driver support for Database Change Notification, perform the
following:

1. Registration: You first need to create a registration.

2. Query association: After you have created a registration, you can associate SQL
queries with it. These queries are part of the registration.

3. Notification: Notifications are created in response to changes in tables or result set.
Oracle database communicates these notifications to the JDBC drivers through a
dedicated network connection and JDBC drivers convert these notifications to Java
events.

Also, you need to grant the CHANGE NOTIFICATION privilege to the user. For
example, if you connect to the database using the SCOTT user name, then you need to
run the following command in the database:

grant change notification to scott;

This section describes the following topics:

■ Creating a Registration

■ Associating a Query with a Registration

■ Notifying Database Change Events

■ Deleting a Registration

Creating a Registration

26-2 Oracle Database JDBC Developer's Guide

Creating a Registration
Creating a registration is a one-time process and is done outside of the currently used
transaction. The API for creating a registration in the server is executed in its own
transaction and is committed immediately. You need a JDBC connection to create a
registration, however, the registration is not attached to the connection. You can close
the connection after creating a registration, and the registration survives. In an Oracle
RAC environment, a registration is a persistent entity that exists on all nodes. If a node
goes down, then the registration continues to exist and will be notified when the tables
change.

There are two ways to create a registration:

■ The JDBC-style of registration: Use the JDBC driver to create a registration on the
server. The JDBC driver launches a new thread that listens to notifications from
the server (through a dedicated channel) and converts these notification messages
into Java events. The driver then notifies all the listeners registered with this
registration.

■ The PL/SQL-style of registration: If you want a PL/SQL stored procedure to
handle the notifications, then create a PL/SQL-style registration. As in the
JDBC-style of registration, the JDBC drivers enable you to attach statements
(queries) to this registration. However the JDBC drivers do not get notifications
from the server because the notifications are handled by the PL/SQL stored
procedure.

You can use the registerDatabaseChangeNotification method of the
oracle.jdbc.OracleConnection interface to create a JDBC-style of registration.
You can set certain registration options through the options parameter of this
method. Table 26–1 lists some of the registration options that can be set. To set these
options, use the java.util.Properties object. These options are defined in the
oracle.jdbc.OracleConnection interface. The registration options have a direct
impact on the notification events that the JDBC drivers will create. Example 26–1
illustrates how to use the Database Change Notification feature.

The registerDatabaseChangeNotification method creates a new database
change registration in the database server with the given options. It returns a
DatabaseChangeRegistration object, which can then be used to associate a
statement with this registration. It also opens a listener socket that will be used by the
database to send notifications.

Note: There is no way to remove one particular object (table) from an
existing registration. A workaround would be to either create a new
registration without this object or ignore the events that are related to
this object.

Note: If a listener socket (created by a different registration) exists,
then this socket will be used by the new database change registration
as well.

Associating a Query with a Registration

Database Change Notification 26-3

If there exists a registration, then you can also use the
getDatabaseChangeRegistration method to map the existing registration with a
new DatabaseChangeRegistration object. This method is particularly useful if
you have created a registration using PL/SQL and want to associate a statement with
it.

Associating a Query with a Registration
After you have created a registration or mapped to an existing registration, you can
associate a query with it. Like creating a registration, associating a query with a
registration is a one-time process and is done outside of the currently used
registration. The query will be associated even if the local transaction is rolled back.

You can associate a query with registration using the
setDatabaseChangeRegistration method defined in the OracleStatement
class. This method takes a DatabaseChangeRegistration object as parameter. The
following code snippet illustrates how to associate a query with a registration:

...
// conn is a OracleConnection object.
// prop is a Properties object containing the registration options.
DatabaseChangeRegistration dcr = conn.registerDatabaseChangeNotifictaion(prop);
...

Table 26–1 Database Change Notification Registration Options

Option Description

DCN_IGNORE_DELETEOP If set to true, DELETE operations will not generate any database change
event.

DCN_IGNORE_INSERTOP If set to true, INSERT operations will not generate any database change
event.

DCN_IGNORE_UPDATEOP If set to true, UPDATE operations will not generate any database change
event.

DCN_NOTIFY_CHANGELAG Specifies the number of transactions by which the client is willing to lag
behind.

Note: If this option is set to any value other than 0, then ROWID level
granularity of information will not be available in the events, even if the
DCN_NOTIFY_ROWIDS option is set to true.

DCN_NOTIFY_ROWIDS Database change events will include row-level details, such as operation
type and ROWID.

DCN_QUERY_CHANGE_NOTIFICATION Activates query change notification instead of object change notification.

Note: This option is available only when running against an 11.0 database.

NTF_LOCAL_HOST Specifies the IP address of the computer that will receive the notifications
from the server.

NTF_LOCAL_TCP_PORT Specifies the TCP port that the driver should use for the listener socket.

NTF_QOS_PURGE_ON_NTFN Specifies if the registration should be expunged on the first notification
event.

NTF_QOS_RELIABLE Specifies whether or not to make the notifications persistent, which comes
at a performance cost.

NTF_TIMEOUT Specifies the time in seconds after which the registration will be
automatically expunged by the database.

See: Refer to the Javadoc for more information about the APIs.

Notifying Database Change Events

26-4 Oracle Database JDBC Developer's Guide

Statement stmt = conn.createStatement();
// associating the query with the registration
((OracleStatement)stmt).setDatabaseChangeRegistration(dcr);
// any query that will be executed with the 'stmt' object will be associated with
// the registration 'dcr' until 'stmt' is closed or
// '((OracleStatement)stmt).setDatabaseChangeRegistration(null);' is executed.
...

Notifying Database Change Events
To receive database change notifications, attach a listener to the registration. When a
database change event occurs, the database server notifies the JDBC driver. The driver
then constructs a new Java event, identifies the registration to be notified, and notifies
the listeners attached to the registration. The event contains the object ID of the
database object that has changed and the type of operation that caused the change.
Depending on the registration options, the event may also contain row-level detail
information. The listener code can then use the event to make decisions about the data
cache.

You can attach a listener to a registration using the addListener method. The
following code snippet illustrates how to attach a listener to a registration:

...
// conn is a OracleConnection object.
// prop is a Properties object containing the registration options.
DatabaseChangeRegistration dcr = conn.registerDatabaseChangeNotifictaion(prop);
...
// Attach the listener to the registration.
// Note: DCNListener is a custom listener and not a predefined or standard
// lsiener
DCNListener list = new DCNListener();
dcr.addListener(list);
...

Deleting a Registration
You need to explicitly unregister a registration to delete it from the server and release
the resources in the driver. You can unregister a registration using a connection
different from one that was used for creating it. To unregister a registration, you can
use the unregisterDatabaseChangeNotification method defined in
oracle.jdbc.OracleConnection.

You must pass the DatabaseChangeRegistration object as a parameter to this
method. This method deletes the registration from the server and the driver and closes
the listener socket.

If the registration was created outside of JDBC, say using PL/SQL, then you must pass
the registration ID instead of the DatabaseChangeRegistration object. The

Note: The listener code must not slow down the JDBC notification
mechanism. If the code is time-consuming, for example, if it refreshes
the data cache by querying the database, then it needs to be executed
within its own thread.

Deleting a Registration

Database Change Notification 26-5

method will delete the registration from the server, however, it does not free any
resources in the driver.

Example
Example 26–1 illustrates how to use the Database Change Notification feature. In this
example, the SCOTT user is connecting to the database. Therefore in the database you
need to grant the following privilege to the user:

grant change notification to scott;

Example 26–1 Database Change Notification

import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.OracleStatement;
import oracle.jdbc.dcn.DatabaseChangeEvent;
import oracle.jdbc.dcn.DatabaseChangeListener;
import oracle.jdbc.dcn.DatabaseChangeRegistration;

public class DBChangeNotification
{
 static final String USERNAME= "scott";
 static final String PASSWORD= "tiger";
 static String URL;

 public static void main(String[] argv)
 {
 if(argv.length < 1)
 {
 System.out.println("Error: You need to provide the URL in the first
argument.");
 System.out.println(" For example: > java -classpath .:ojdbc5.jar
DBChangeNotification \"jdbc:oracle:thin:
@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=yourhost.yourdomain.com)(PORT=1521))(CO
NNECT_DATA=
(SERVICE_NAME=yourservicename)))\"");

 System.exit(1);
 }
 URL = argv[0];
 DBChangeNotification demo = new DBChangeNotification();
 try
 {
 demo.run();
 }
 catch(SQLException mainSQLException)
 {
 mainSQLException.printStackTrace();
 }
 }

 void run() throws SQLException
 {
 OracleConnection conn = connect();

Deleting a Registration

26-6 Oracle Database JDBC Developer's Guide

 // first step: create a registration on the server:
 Properties prop = new Properties();

 // if connected through the VPN, you need to provide the TCP address of the
client.
 // For example:
 // prop.setProperty(OracleConnection.NTF_LOCAL_HOST,"14.14.13.12");

 // Ask the server to send the ROWIDs as part of the DCN events (small
performance
 // cost):
 prop.setProperty(OracleConnection.DCN_NOTIFY_ROWIDS,"true");
//
//Set the DCN_QUERY_CHANGE_NOTIFICATION option for query registration with finer
granularity.
 prop.setProperty(OracleConnection.DCN_QUERY_CHANGE_NOTIFICATION,"true");

 // The following operation does a roundtrip to the database to create a new
 // registration for DCN. It sends the client address (ip address and port)
that
 // the server will use to connect to the client and send the notification
 // when necessary. Note that for now the registration is empty (we haven't
registered
 // any table). This also opens a new thread in the drivers. This thread will
be
 // dedicated to DCN (accept connection to the server and dispatch the events
to
 // the listeners).
 DatabaseChangeRegistration dcr =
conn.registerDatabaseChangeNotification(prop);

 try
 {
 // add the listenerr:
 DCNDemoListener list = new DCNDemoListener(this);
 dcr.addListener(list);

 // second step: add objects in the registration:
 Statement stmt = conn.createStatement();
 // associate the statement with the registration:
 ((OracleStatement)stmt).setDatabaseChangeRegistration(dcr);
 ResultSet rs = stmt.executeQuery("select * from dept where deptno='45'");
 while (rs.next())
 {}
 String[] tableNames = dcr.getTables();
 for(int i=0;i<tableNames.length;i++)
 System.out.println(tableNames[i]+" is part of the registration.");
 rs.close();
 stmt.close();
 }
 catch(SQLException ex)
 {
 // if an exception occurs, we need to close the registration in order
 // to interrupt the thread otherwise it will be hanging around.
 if(conn != null)
 conn.unregisterDatabaseChangeNotification(dcr);
 throw ex;
 }
 finally
 {

Deleting a Registration

Database Change Notification 26-7

 try
 {
 // Note that we close the connection!
 conn.close();
 }
 catch(Exception innerex){ innerex.printStackTrace(); }
 }

 synchronized(this)
 {
 // The following code modifies the dept table and commits:
 try
 {
 OracleConnection conn2 = connect();
 conn2.setAutoCommit(false);
 Statement stmt2 = conn2.createStatement();
 stmt2.executeUpdate("insert into dept (deptno,dname) values ('45','cool
dept')",
Statement.RETURN_GENERATED_KEYS);
 ResultSet autoGeneratedKey = stmt2.getGeneratedKeys();
 if(autoGeneratedKey.next())
 System.out.println("inserted one row with
ROWID="+autoGeneratedKey.getString(1));
 stmt2.executeUpdate("insert into dept (deptno,dname) values ('50','fun
dept')",
Statement.RETURN_GENERATED_KEYS);
 autoGeneratedKey = stmt2.getGeneratedKeys();
 if(autoGeneratedKey.next())
 System.out.println("inserted one row with
ROWID="+autoGeneratedKey.getString(1));
 stmt2.close();
 conn2.commit();
 conn2.close();
 }
 catch(SQLException ex) { ex.printStackTrace(); }

 // wait until we get the event
 try{ this.wait();} catch(InterruptedException ie) {}
 }

 // At the end: close the registration (comment out these 3 lines in order
 // to leave the registration open).
 OracleConnection conn3 = connect();
 conn3.unregisterDatabaseChangeNotification(dcr);
 conn3.close();
 }

 /**
 * Creates a connection the database.
 */
 OracleConnection connect() throws SQLException
 {
 OracleDriver dr = new OracleDriver();
 Properties prop = new Properties();
 prop.setProperty("user",DBChangeNotification.USERNAME);
 prop.setProperty("password",DBChangeNotification.PASSWORD);
 return (OracleConnection)dr.connect(DBChangeNotification.URL,prop);
 }
}
/**

Deleting a Registration

26-8 Oracle Database JDBC Developer's Guide

 * DCN listener: it prints out the event details in stdout.
 */
class DCNDemoListener implements DatabaseChangeListener
{
 DBChangeNotification demo;
 DCNDemoListener(DBChangeNotification dem)
 {
 demo = dem;
 }
 public void onDatabaseChangeNotification(DatabaseChangeEvent e)
 {
 Thread t = Thread.currentThread();
 System.out.println("DCNDemoListener: got an event ("+this+" running on thread
"+t+")");
 System.out.println(e.toString());
 synchronized(demo){ demo.notify();}
 }
}
This code will also work with Oracle Database 10g Release 2 (10.2). This code uses
table registration. That is, when you register a SELECT query, what you register is the
name of the tables involved and not the query itself. In other words, you might select
one single row of a table and if another row is updated, you will be notified although
the result of your query has not changed.

In this example, if you leave the registration open instead of closing it, then the
database change notification thread continues to run. Now if you run a DML query
that changes the SCOTT.DEPT table and commit it, say from SQL*Plus, then the Java
program prints the notification.

Part VI
High Availability

This section provides information about the high-availability features of Oracle
Database 11g. It discusses the Fast Connection Failover and Transparent Application
Failover (TAF) features

Part VI contains the following chapters:

■ Chapter 27, "Fast Connection Failover"

■ Chapter 28, "Transparent Application Failover"

Fast Connection Failover 27-1

27
Fast Connection Failover

Fast Connection Failover offers a driver-independent way for your Java Database
Connectivity (JDBC) application to take advantage of the connection failover facilities
offered by Oracle Database 11g. This chapter discusses the following concepts:

■ Overview of Fast Connection Failover

■ Using Fast Connection Failover

■ Understanding Fast Connection Failover

■ Comparison of Fast Connection Failover and TAF

Overview of Fast Connection Failover
The Fast Connection Failover mechanism depends on the implicit connection cache
feature. For more information about implicit connection cache, refer to Chapter 21,
"Implicit Connection Caching".

The advantages of Fast Connection Failover include the following:

■ Driver independence

Fast Connection Failover supports both the JDBC Thin and JDBC Oracle Call
Interface (OCI) drivers.

Note:

■ Starting from Oracle Database 11g Release 2 (11.2), this feature
has been deprecated, and replaced with Universal Connection
Pool (UCP) for JDBC. Oracle recommends that you take
advantage of the new architecture, which is more powerful and
offers better performance. Refer to the following links for more
information

http://www.oracle.com/technetwork/database/focu
s-areas/application-development/index-099369.ht
ml

http://download.oracle.com/docs/cd/B28359_
01/java.111/e10788.pdf

■ If you are using UCP, then you should not enable implicit
connection caching to use Fast Connection Failover feature.
Refer to the following link for more information

http://www.oracle.com/technetwork/database/ente
rprise-edition/ucp-transition-guide-129515.pdf

Using Fast Connection Failover

27-2 Oracle Database JDBC Developer's Guide

■ Integration with implicit connection cache

The two features work together synergistically to improve application
performance and high availability.

■ Integration with Oracle Real Application Clusters (Oracle RAC)

This provides superior Real Application Clusters/high availability event
notification mechanisms.

■ Easy integration with application code

You only need to enable Fast Connection Failover and no further configuration is
required.

Fast Connection Failover Features
When enabled, Fast Connection Failover provides the following:

■ Rapid detection and cleanup of invalid cached connections, that is, DOWN event
processing

■ Load balancing of available connections, that is, UP event processing

■ Run-time work request distribution to all active Oracle RAC instances

Using Fast Connection Failover
Applications manage Fast Connection Failover through DataSource instances.

This section covers the following topics:

■ Fast Connection Failover Prerequisites

■ Configuring ONS for Fast Connection Failover

■ Enabling Fast Connection Failover

■ Querying Fast Connection Failover Status

Fast Connection Failover Prerequisites
Fast Connection Failover is available under the following circumstances:

■ The implicit connection cache is enabled.

Fast Connection Failover works in conjunction with the JDBC connection caching
mechanism. This helps applications manage connections to ensure high
availability.

■ The application uses service names to connect to the database.

The application cannot use service identifiers.

■ The underlying database has Oracle Database 11g Real Application Clusters
(Oracle RAC) capability or Oracle Data Guard configured with either single
instance Databases or Oracle RAC.

If failover events are not propagated, then connection failover cannot occur.

■ Oracle Notification Service (ONS) is configured and available on the node where
JDBC is running.

JDBC depends on ONS to propagate database events and notify JDBC of them.

■ The Java Virtual Machine (JVM) in which your JDBC instance is running must
have oracle.ons.oraclehome set to point to your ORACLE_HOME.

Using Fast Connection Failover

Fast Connection Failover 27-3

Configuring ONS for Fast Connection Failover
In order for Fast Connection Failover to work, you must configure ONS correctly. ONS
is shipped as part of Oracle Database 11g. For more information, refer to
"Configuration of ONS" on page B-3.

Remote ONS Subscription
The advantages of remote ONS subscription are the following:

■ Support for an All Java middle-tier stack

■ No ONS daemon needed on the client computer and, therefore, no need to
manage this process

■ Simple configuration using the DataSource property

When using remote ONS subscription for Fast Connection Failover, the application
invokes the following method on an OracleDataSource instance:

setONSConfiguration(String remoteONSConfig)

The remoteONSConfig parameter is a list of name and value pairs of the form
name=value that are separated by a new line character (\n). name can be one of
nodes, walletfile, or walletpassword. This parameter should specify at least
the nodes ONS configuration attribute, which is a list of host:port pairs, each pair
separated by comma (,). The hosts and ports denote the remote ONS daemons
available on the Oracle RAC nodes.

SSL could be used in communicating with the ONS daemons when the walletfile
attribute is specified as an Oracle wallet file. In such cases, if the walletpassword
attribute is not specified, single sign-on (SSO) would be assumed.

Following are a few examples, assuming ods is an OracleDataSource instance:

ods.setONSConfiguration("nodes=racnode1.example.com:4200,racnode2.example.com:4200
");

ods.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=/mydir/Wall
et\nwalletpassword=mypasswd");

ods.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=/mydir/conf
/Wallet");

Enabling Fast Connection Failover
An application enables Fast Connection Failover by calling
setFastConnectionFailoverEnabled(true) on a DataSource instance, before
retrieving any connections from that instance.

You cannot enable Fast Connection Failover when reinitializing a connection cache.
You must enable it before using the OracleDataSource instance.

Example 27–1 illustrates how to enable Fast Connection Failover.

See Also: "Configuration of ONS" on page B-3

Note: After a cache is Fast Connection Failover-enabled, you cannot
disable Fast Connection Failover during the lifetime of that cache.

Understanding Fast Connection Failover

27-4 Oracle Database JDBC Developer's Guide

To enable Fast Connection Failover, you must perform the following:

■ Configure and start ONS. If ONS is not correctly set up, then implicit connection
cache creation fails and an ONSException is thrown at the first getConnection
request.

■ Set the FastConnectionFailoverEnabled property before making the first
getConnection request to an OracleDataSource. When Fast Connection
Failover is enabled, the failover applies to all connections in the connection cache.
If your application explicitly creates a connection cache using the Connection
Cache Manager, then you must first set FastConnectionFailoverEnabled
before retrieving any connections.

■ Use a service name rather than a service identifier when setting the
OracleDataSource url property.

Example 27–1 Enabling Fast Connection Failover

// declare datasource
ods.setUrl(
"jdbc:oracle:oci:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias)
 (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))");
ods.setUser("scott");
ods.setConnectionCachingEnabled(true);
ods.setFastConnectionFailoverEnabled(true):
ctx.bind("myDS",ods);
ds=(OracleDataSource) ctx.lookup("MyDS");
try {
 ds.getConnection(); // transparently creates and accesses cache
 catch (SQLException SE {
 }
}
...

Querying Fast Connection Failover Status
An application determines if Fast Connection Failover is enabled by calling
OracleDataSource.getFastConnectionFailoverEnabled, which returns
true if failover is enabled, false otherwise.

Understanding Fast Connection Failover
After Fast Connection Failover is enabled, the mechanism is automatic; no application
intervention is needed. This section discusses how a connection failover is presented
to an application and what steps the application takes to recover.

This section covers the following topics:

■ What the Application Sees

■ How It Works

What the Application Sees
By the time an Oracle RAC service failure is propagated to the JDBC application, the
database already rolls back the local transaction. The cache manager then cleans up all
invalid connections. When an application holding an invalid connection tries to do

Comparison of Fast Connection Failover and TAF

Fast Connection Failover 27-5

work through that connection, it is possible to receive SQLException, ORA-17008,
Closed Connection.

When an application receives a Closed Connection error message, it should do the
following:

1. Retry the connection request. This is essential, because the old connection is no
longer open.

2. Replay the transaction. All work done before the connection was closed has been
lost.

How It Works
Under Fast Connection Failover, each connection in the cache maintains a mapping to
a service, instance, database, and host name.

When a database generates an Oracle RAC event, that event is forwarded to the JVM
in which JDBC is running. A daemon thread inside the JVM receives the Oracle RAC
event and passes it on to the Connection Cache Manager. The Connection Cache
Manager then throws SQL exceptions to the applications affected by the Oracle RAC
event.

A typical failover scenario may work like the following:

1. A database instance fails, leaving several stale connections in the cache.

2. The Oracle RAC mechanism in the database generates an Oracle RAC event which
is sent to the JVM containing JDBC.

3. The daemon thread inside the JVM finds all the connections affected by the Oracle
RAC event, notifies them of the closed connection through SQL exceptions, and
rolls back any open transactions.

4. Each individual connection receives a SQL exception and must retry.

Comparison of Fast Connection Failover and TAF
Fast Connection Failover differs from Transparent Application Failover (TAF) in the
following ways:

■ Application-level connection retries

Fast Connection Failover supports application-level connection retries. This gives
the application control of responding to connection failovers. The application can
choose whether to retry the connection or to rethrow the exception. TAF supports
connection retries only at the OCI/Net layer.

■ Integration with the implicit connection cache

Fast Connection Failover is well-integrated with the implicit connection cache,
which allows the Connection Cache Manager to manage the cache for high
availability. For example, failed connections are automatically invalidated in the
cache. TAF works at the network level on a per-connection basis, which means
that the connection cache cannot be notified of failures.

■ Event-based

Note: The application should not try to roll back the transaction. The
transaction was already rolled back in the database by the time the
application received the exception.

Comparison of Fast Connection Failover and TAF

27-6 Oracle Database JDBC Developer's Guide

Fast Connection Failover is based on the Oracle RAC event mechanism. This
means that Fast Connection Failover is efficient and detects failures quickly for
both active and inactive connections.

■ Load-balancing support

Fast Connection Failover supports UP event load balancing of connections and
run-time work request distribution across active Oracle RAC instances.

Note: Oracle recommends not to use TAF and Fast Connection
Failover in the same application.

Transparent Application Failover 28-1

28
Transparent Application Failover

This chapter contains the following sections:

■ Overview of Transparent Application Failover

■ Failover Type Events

■ TAF Callbacks

■ Java TAF Callback Interface

Overview of Transparent Application Failover
Transparent Application Failover (TAF) is a feature of the Java Database Connectivity
(JDBC) Oracle Call Interface (OCI) driver. It enables the application to automatically
reconnect to a database, if the database instance to which the connection is made fails.
In this case, the active transactions roll back.

When an instance to which a connection is established fails or is shut down, the
connection on the client-side becomes stale and would throw exceptions to the caller
trying to use it. TAF enables the application to transparently reconnect to a
preconfigured secondary instance, creating a fresh connection, but identical to the
connection that was established on the first original instance. That is, the connection
properties are the same as that of the earlier connection. This is true regardless of how
the connection was lost.

Failover Type Events
The following are possible failover events in the OracleOCIFailover interface:

■ FO_SESSION

Is equivalent to FAILOVER_MODE=SESSION in the tnsnames.ora file CONNECT_
DATA flags. This means that only the user session is authenticated again on the
server side, while open cursors in the OCI application need to be reprocessed.

■ FO_SELECT

Is equivalent to FAILOVER_MODE=SELECT in tnsnames.ora file CONNECT_
DATA flags. This means that not only the user session is re-authenticated on the
server side, but open cursors in the OCI can continue fetching. This implies that
the client-side logic maintains fetch-state of each open cursor.

■ FO_NONE

Note: TAF is always active and does not have to be set.

TAF Callbacks

28-2 Oracle Database JDBC Developer's Guide

Is equivalent to FAILOVER_MODE=NONE in the tnsnames.ora file CONNECT_
DATA flags. This is the default, in which no failover functionality is used. This can
also be explicitly specified to prevent failover from happening. Additionally, FO_
TYPE_UNKNOWN implies that a bad failover type was returned from the OCI
driver.

■ FO_BEGIN

Indicates that failover has detected a lost connection and failover is starting.

■ FO_END

Indicates successful completion of failover.

■ FO_ABORT

Indicates that failover was unsuccessful and there is no option of retrying.

■ FO_REAUTH

Indicates that a user handle has been re-authenticated.

■ FO_ERROR

Indicates that failover was temporarily unsuccessful, but it gives the application
the opportunity to handle the error and retry failover. The usual method of error
handling is to issue the sleep method and retry by returning the value FO_
RETRY.

■ FO_RETRY

Indicates that the application should retry failover.

■ FO_EVENT_UNKNOWN

Indicates a bad failover event.

TAF Callbacks
TAF callbacks are used in the event of the failure of one database connection, and
failover to another database connection. TAF callbacks are callbacks that are registered
in case of failover. The callback is called during the failover to notify the JDBC
application of events generated. The application also has some control of failover.

Java TAF Callback Interface
The OracleOCIFailover interface includes the callbackFn method, supporting
the following types and events:

public interface OracleOCIFailover{

// Possible Failover Types
public static final int FO_SESSION = 1;
public static final int FO_SELECT = 2;
public static final int FO_NONE = 3;
public static final int;

// Possible Failover events registered with callback
public static final int FO_BEGIN = 1;
public static final int FO_END = 2;

Note: The callback setting is optional.

Java TAF Callback Interface

Transparent Application Failover 28-3

public static final int FO_ABORT = 3;
public static final int FO_REAUTH = 4;
public static final int FO_ERROR = 5;
public static final int FO_RETRY = 6;
public static final int FO_EVENT_UNKNOWN = 7;

public int callbackFn (Connection conn,
 Object ctxt, // ANy thing the user wants to save
 int type, // One of the possible Failover Types
 int event); // One of the possible Failover Events

Handling the FO_ERROR Event
In case of an error while failing over to a new connection, the JDBC application is able
to retry failover. Typically, the application sleeps for a while and then it retries, either
indefinitely or for a limited amount of time, by having the callback return FO_RETRY.

Handling the FO_ABORT Event
Callback registered should return the FO_ABORT event if the FO_ERROR event is
passed to it.

Java TAF Callback Interface

28-4 Oracle Database JDBC Developer's Guide

Part VII
Transaction Management

This part provides information about transaction management in Oracle Java Database
Connectivity (JDBC). It includes a chapter that discusses the Oracle JDBC
implementation of distributed transactions.

Part VII contains the following chapter:

■ Chapter 29, "Distributed Transactions"

Distributed Transactions 29-1

29
Distributed Transactions

This chapter discusses the Oracle Java Database Connectivity (JDBC) implementation
of distributed transactions. These are multiphased transactions, often using multiple
databases, which must be committed in a coordinated way. There is also related
discussion of XA, which is a general standard, and not specific to Java, for distributed
transactions.

The following topics are discussed:

■ Overview of Distributed Transactions

■ XA Components

■ Error Handling and Optimizations

■ Implementing a Distributed Transaction

■ Native-XA in Oracle JDBC Drivers

For further introductory and general information about distributed transactions, refer
to the Sun Microsystems specifications for the JDBC 2.0 Optional Package and the Java
Transaction API (JTA).

Overview of Distributed Transactions
A distributed transaction, sometimes referred to as a global transaction, is a set of
two or more related transactions that must be managed in a coordinated way. The
transactions that constitute a distributed transaction might be in the same database,
but more typically are in different databases and often in different locations. Each
individual transaction of a distributed transaction is referred to as a transaction
branch.

For example, a distributed transaction might consist of money being transferred from
an account in one bank to an account in another bank. You would not want either
transaction committed without assurance that both will complete successfully.

In the JDBC, distributed transaction functionality is built on top of connection pooling
functionality. This distributed transaction functionality is also built upon the open XA
standard for distributed transactions. XA is part of the X/Open standard and is not
specific to Java.

JDBC is used to connect to database resources. However, to include all changes to
multiple databases within a transaction, you must use the JDBC connections within a
JTA global transaction. The process of including database SQL updates within a
transaction is referred to as enlisting a database resource.

The section covers the following topics:

Overview of Distributed Transactions

29-2 Oracle Database JDBC Developer's Guide

■ Distributed Transaction Components and Scenarios

■ Distributed Transaction Concepts

■ Switching Between Global and Local Transactions

■ Oracle XA Packages

Distributed Transaction Components and Scenarios
In reading the remainder of the distributed transactions section, it will be helpful to
keep the following points in mind:

■ A distributed transaction system typically relies on an external transaction
manager, such as a software component that implements standard JTA
functionality, to coordinate the individual transactions.

Many vendors offer XA-compliant JTA modules, including Oracle, which includes
JTA in Oracle9i Application Server and Oracle Application Server 10g.

■ XA functionality is usually isolated from a client application, being implemented
instead in a middle-tier environment, such as an application server.

In many scenarios, the application server and transaction manager will be together
on the middle tier, possibly together with some of the application code as well.

■ Discussion throughout this section is intended mostly for middle-tier developers.

■ The term resource manager is often used in discussing distributed transactions. A
resource manager is simply an entity that manages data or some other kind of
resource. Wherever the term is used in this chapter, it refers to a database.

Distributed Transaction Concepts
When you use XA functionality, the transaction manager uses XA resource instances
to prepare and coordinate each transaction branch and then to commit or roll back all
transaction branches appropriately.

XA functionality includes the following key components:

■ XA data sources

These are extensions of connection pool data sources and other data sources, and
similar in concept and functionality.

There will be one XA data source instance for each resource manager that will be
used in the distributed transaction. You will typically create XA data source
instances in your middle-tier software.

XA data sources produce XA connections.

■ XA connections

These are extensions of pooled connections and similar in concept and
functionality. An XA connection encapsulates a physical database connection.

Note: Using JTA functionality requires jta.jar to be in the
CLASSPATH environment variable. This file is located at ORACLE_
HOME/jlib. Oracle includes this file with the JDBC product. You
can also obtain it from the Sun Microsystems Web site, but it is
advisable to use the version from Oracle, because that has been
tested with the Oracle drivers.

Overview of Distributed Transactions

Distributed Transactions 29-3

Individual connection instances are temporary handles to these physical
connections.

An XA connection instance corresponds to a single Oracle session, although the
session can be used in sequence by multiple logical connection instances, as with
pooled connection instances.

You will typically get an XA connection instance from an XA data source instance
in your middle-tier software. You can get multiple XA connection instances from a
single XA data source instance if the distributed transaction will involve multiple
sessions in the same database.

XA connections produce OracleXAResource instances and JDBC connection
instances.

■ XA resources

These are used by a transaction manager in coordinating the transaction branches
of a distributed transaction.

You will get one OracleXAResource instance from each XA connection instance,
typically in your middle-tier software. There is a one-to-one correlation between
OracleXAResource instances and XA connection instances. Equivalently, there
is a one-to-one correlation between OracleXAResource instances and Oracle
sessions.

In a typical scenario, the middle-tier component will hand off
OracleXAResource instances to the transaction manager, for use in coordinating
distributed transactions.

Because each OracleXAResource instance corresponds to a single Oracle
session, there can be only a single active transaction branch associated with an
OracleXAResource instance at any given time. However, there can be
additional suspended transaction branches.

Each OracleXAResource instance has the functionality to start, end, prepare,
commit, or roll back the operations of the transaction branch running in the
session with which the OracleXAResource instance is associated.

The prepare step is the first step of a two-phase commit operation. The transaction
manager will issue a PREPARE to each OracleXAResource instance. Once the
transaction manager sees that the operations of each transaction branch have
prepared successfully, it will issue a COMMIT to each OracleXAResource
instance to commit all the changes.

■ Transaction IDs

These are used to identify transaction branches. Each ID includes a transaction
branch ID component and a distributed transaction ID component. This is how a
branch is associated with a distributed transaction. All OracleXAResource
instances associated with a given distributed transaction would have a transaction
ID that includes the same distributed transaction ID component.

■ OracleXAResource.ORATRANSLOOSE

Start a loosely coupled transaction with transaction ID xid.

Switching Between Global and Local Transactions
Applications can share connections between local and global transactions.
Applications can also switch connections between local transactions and global
transactions.

Overview of Distributed Transactions

29-4 Oracle Database JDBC Developer's Guide

A connection is always in one of the following modes:

■ NO_TXN

No transaction is actively using this connection.

■ LOCAL_TXN

A local transaction with auto-commit turned off or disabled is actively using this
connection.

■ GLOBAL_TXN

A global transaction is actively using this connection.

Each connection switches automatically between these modes depending on the
operations carried out on the connection. A connection is always in NO_TXN mode
when it is instantiated.

Table 29–1 describes the connection mode transition rules.

If none of these rules is applicable, then the mode does not change.

Mode Restrictions on Operations
The current connection mode restricts which operations are valid within a transaction.

Note: The modes are maintained internally by the JDBC drivers in
association with Oracle Database.

Table 29–1 Connection Mode Transitions

Current Mode
Switches to
 NO_TXN When

Switches to
LOCAL_TXN When

Switches to GLOBAL_
TXN When

NO_TXN NA Auto-commit mode
is false and an Oracle
data manipulation
language (DML)
statement is run.

start is called on an
XAResource obtained
from the
XAconnection that
provided this
connection.

LOCAL_TXN Any of the following
happens:

■ An Oracle data
definition
language (DDL)
statement is run.

■ commit is called.

■ rollback is
called, but without
parameters.

NA NEVER

GLOBAL_TXN Within a global
transaction open on
this connection, end is
called on an
XAResource obtained
from the
XAconnection that
provided this
connection.

NEVER NA

XA Components

Distributed Transactions 29-5

■ In the LOCAL_TXN mode, applications must not call start, prepare, commit,
rollback, forget, or end on an XAResource. Doing so causes an
XAException to be thrown.

■ In the GLOBAL_TXN mode, applications must not call commit, rollback,
rollback(Savepoint), setAutoCommit(true), or setSavepoint on a
java.sql.Connection, and must not call OracleSetSavepoint or
oracleRollback on an oracle.jdbc.OracleConnection. Doing so causes a
SQLException to be thrown.

Oracle XA Packages
Oracle supplies the following three packages that have classes to implement
distributed transaction functionality according to the XA standard:

■ oracle.jdbc.xa

■ oracle.jdbc.xa.client

■ oracle.jdbc.xa.server

Classes for XA data sources, XA connections, and XA resources are in both the
client package and the server package. An abstract class for each is in the top-level
package. The OracleXid and OracleXAException classes are in the top-level
oracle.jdbc.xa package, because their functionality does not depend on where the
code is running.

In middle-tier scenarios, you will import OracleXid, OracleXAException, and the
oracle.jdbc.xa.client package.

If you intend your XA code to run in the target Oracle Database, however, you will
import the oracle.jdbc.xa.server package instead of the client package.

If code that will run inside a target database must also access remote databases, then
do not import either package. Instead, you must fully qualify the names of any classes
that you use from the client package to access a remote database or from the
server package to access the local database. Class names are duplicated between
these packages.

XA Components
This section discusses the XA components, that is, the standard XA interfaces specified
in the JDBC standard, and the Oracle classes that implement them. The following
topics are covered:

■ XADatasource Interface and Oracle Implementation

■ XAConnection Interface and Oracle Implementation

■ XAResource Interface and Oracle Implementation

■ OracleXAResource Method Functionality and Input Parameters

■ Xid Interface and Oracle Implementation

Note: This mode-restriction error checking is in addition to the
standard error checking on the transaction and savepoint APIs.

XA Components

29-6 Oracle Database JDBC Developer's Guide

XADatasource Interface and Oracle Implementation
The javax.sql.XADataSource interface outlines standard functionality of XA data
sources, which are factories for XA connections. The overloaded getXAConnection
method returns an XA connection instance and optionally takes a user name and
password as input:

public interface XADataSource
{
 XAConnection getXAConnection() throws SQLException;
 XAConnection getXAConnection(String user, String password)
 throws SQLException;
 ...
}

Oracle JDBC implements the XADataSource interface with the
OracleXADataSource class, located both in the oracle.jdbc.xa.client
package and the oracle.jdbc.xa.server package.

The OracleXADataSource classes also extend the
OracleConnectionPoolDataSource class, which extends the
OracleDataSource class, and therefore, include all the connection properties.

The getXAConnection methods of the OracleXADataSource class returns the
Oracle implementation of XA connection instances, which are OracleXAConnection
instances.

XAConnection Interface and Oracle Implementation
An XA connection instance, as with a pooled connection instance, encapsulates a
physical connection to a database. This would be the database specified in the
connection properties of the XA data source instance that produced the XA connection
instance.

Each XA connection instance also has the facility to produce the OracleXAResource
instance that will correspond to it for use in coordinating the distributed transaction.

An XA connection instance is an instance of a class that implements the standard
javax.sql.XAConnection interface:

public interface XAConnection extends PooledConnection
{
 javax.jta.xa.XAResource getXAResource() throws SQLException;
}

As you see, the XAConnection interface extends the
javax.sql.PooledConnection interface, so it also includes the getConnection,
close, addConnectionEventListener, and
removeConnectionEventListener methods.

Note: You can register XA data sources in Java Naming Directory
and Interface (JNDI) using the same naming conventions as
discussed previously for nonpooling data sources.

See Also: For information about Fast Connection Failover, refer to
Oracle Universal Connection Pool for JDBC Developer's Guide.

XA Components

Distributed Transactions 29-7

Oracle JDBC implements the XAConnection interface with the
OracleXAConnection class, located both in the oracle.jdbc.xa.client
package and the oracle.jdbc.xa.server package.

The OracleXAConnection classes also extend the OraclePooledConnection
class.

The OracleXAConnection class getXAResource method returns the Oracle
implementation of an OracleXAResource instance, which is an
OracleXAResource instance. The getConnection method returns an
OracleConnection instance.

A JDBC connection instance returned by an XA connection instance acts as a
temporary handle to the physical connection, as opposed to encapsulating the physical
connection. The physical connection is encapsulated by the XA connection instance.
The connection obtained from an XAConnection object behaves exactly like a regular
connection, until it participates in a global transaction. At that time, auto-commit
status is set to false. After the global transaction ends, auto-commit status is
returned to the value it had before the global transaction. The default auto-commit
status on a connection obtained from XAConnection is false in all releases prior to
Oracle Database 10g. Starting from Oracle Database 10g, the default status is true.

Each time an XA connection instance getConnection method is called, it returns a
new connection instance that exhibits the default behavior, and closes any previous
connection instance that still exists and had been returned by the same XA connection
instance. However, it is advisable to explicitly close any previous connection instance
before opening a new one.

Calling the close method of an XA connection instance closes the physical connection
to the database. This is typically performed in the middle tier.

XAResource Interface and Oracle Implementation
The transaction manager uses OracleXAResource instances to coordinate all the
transaction branches that constitute a distributed transaction.

Each OracleXAResource instance provides the following key functionality, typically
invoked by the transaction manager:

■ It associates and disassociates distributed transactions with the transaction branch
operating in the XA connection instance that produced this OracleXAResource
instance. Essentially, it associates distributed transactions with the physical
connection or session encapsulated by the XA connection instance. This is done
through use of transaction IDs.

■ It performs the two-phase commit functionality of a distributed transaction to
ensure that changes are not committed in one transaction branch before there is
assurance that the changes will succeed in all transaction branches.

Note:

■ Because there must always be a one-to-one correlation between
XA connection instances and OracleXAResource instances,
an OracleXAResource instance is implicitly closed when the
associated XA connection instance is closed.

■ If a transaction is opened by a given OracleXAResource
instance, then it must also be closed by the same
OracleXAResource instance.

XA Components

29-8 Oracle Database JDBC Developer's Guide

An OracleXAResource instance is an instance of a class that implements the
standard javax.transaction.xa.XAResource interface. Oracle JDBC
implements the XAResource interface with the OracleXAResource class, located
both in the oracle.jdbc.xa.client package and the oracle.jdbc.xa.server
package.

Oracle JDBC driver creates and returns an OracleXAResource instance whenever
the getXAResource method of the OracleXAConnection class is called, and it is
Oracle JDBC driver that associates an OracleXAResource instance with a connection
instance and the transaction branch being run through that connection.

This method is how an OracleXAResource instance is associated with a particular
connection and with the transaction branch being run in that connection.

OracleXAResource Method Functionality and Input Parameters
The OracleXAResource class has several methods to coordinate a transaction branch
with the distributed transaction with which it is associated. This functionality usually
involves two-phase commit operations.

A transaction manager, receiving OracleXAResource instances from a middle-tier
component, such as an application server, typically invokes this functionality.

Each of these methods takes a transaction ID as input, in the form of an Xid instance,
which includes a transaction branch ID component and a distributed transaction ID
component. Every transaction branch has a unique transaction ID, but transaction
branches belonging to the same global transaction have the same global transaction
component as part of their transaction IDs.

start
Starts work on behalf of a transaction branch, associating the transaction branch with a
distributed transaction.

void start(Xid xid, int flags)

The flags parameter must be one or more of the following values:

■ XAResource.TMNOFLAGS

Flag the start of a new transaction branch for subsequent operations in the session
associated with this XA resource instance. This branch will have the transaction ID
xid, which is an OracleXid instance created by the transaction manager. This
will map the transaction branch to the appropriate distributed transaction.

■ XAResource.TMJOIN

Join subsequent operations in the session associated with this XA resource
instance to the existing transaction branch specified by xid.

■ XAResource.TMRESUME

Resume the transaction branch specified by xid.

■ OracleXAResource.ORATMSERIALIZABLE

Start a serializable transaction with transaction ID xid.

Note: A transaction branch can be resumed only if it had been
suspended earlier.

XA Components

Distributed Transactions 29-9

■ OracleXAResource.ORATMREADONLY

Start a read-only transaction with transaction ID xid.

■ OracleXAResource.ORATMREADWRITE

Start a read/write transaction with transaction ID xid.

■ OracleXAResource.ORATRANSLOOSE

Start a loosely coupled transaction with transaction ID xid.

TMNOFLAGS, TMJOIN, TMRESUME, ORATMSERIALIZABLE, ORATMREADONLY, and
ORATMREADWRITE are defined as static members of the XAResource interface and
OracleXAResource class. ORATMSERIALIZABLE, ORATMREADONLY, and
ORATMREADWRITE are the isolation-mode flags. The default isolation behavior is READ
COMMITTED.

Note that to create an appropriate transaction ID in starting a transaction branch, the
transaction manager must know to which distributed transaction the transaction
branch belongs. The mechanics of this are handled between the middle tier and
transaction manager.

end
Ends work on behalf of the transaction branch specified by xid, disassociating the
transaction branch from its distributed transaction.

void end(Xid xid, int flags)

Note:

■ Instead of using the start method with TMRESUME, the
transaction manager can cast to OracleXAResource and use
the resume(Xid xid) method, an Oracle extension.

■ If you use TMRESUME, then you must also use TMNOMIGRATE,
as in start(xid, XAResource.TMRESUME |
OracleXAResource.TMNOMIGRATE). This prevents the
application from receiving the error ORA 1002: fetch out
of sequence.

■ If you use the isolation-mode flags incorrectly, then an
exception with code XAER_INVAL is raised. Furthermore, you
cannot use isolation-mode flags when resuming a global
transaction, because you cannot set the isolation level of an
existing transaction. If you try to use the isolation-mode flags
when resuming a transaction, then an external Oracle exception
with code ORA-24790 is raised.

■ In order to avoid Error ORA 1002: fetch out of
sequence, include the TMNOMIGRATE flag as part of the
start method. For example:

start(xid, XAResource.TMSUSPEND |
OracleXAResource.TMNOMIGRATE);

■ All the flags defined in OracleXAResource are Oracle
extensions. When writing a transaction manager that uses these
flags, you should be mindful of this.

XA Components

29-10 Oracle Database JDBC Developer's Guide

The flags parameter can have one of the following values:

■ XAResource.TMSUCCESS

This is to indicate that this transaction branch is known to have succeeded.

■ XAResource.TMFAIL

This is to indicate that this transaction branch is known to have failed.

■ XAResource.TMSUSPEND

This is to suspend the transaction branch specified by xid. By suspending
transaction branches, you can have multiple transaction branches in a single
session. Only one can be active at any given time, however. Also, this tends to be
more expensive in terms of resources than having two sessions.

TMSUCCESS, TMFAIL, and TMSUSPEND are defined as static members of the
XAResource interface and OracleXAResource class.

prepare
Prepares the changes performed in the transaction branch specified by xid. This is the
first phase of a two-phase commit operation, to ensure that the database is accessible
and that the changes can be committed successfully.

int prepare(Xid xid)

This method returns an integer value as follows:

■ XAResource.XA_RDONLY

This is returned if the transaction branch runs only read-only operations such as
SELECT statements.

Note:

■ Instead of using the end method with TMSUSPEND, the
transaction manager can cast to OracleXAResource and use
the suspend(Xid xid) method, an Oracle extension.

■ This XA functionality to suspend a transaction provides a way
to switch between various transactions within a single JDBC
connection. You can use the XA classes to accomplish this, even
if you are not in a distributed transaction environment and
would otherwise have no need for the XA classes.

■ If you use TMSUSPEND, then you must also use TMNOMIGRATE,
as in end(xid, XAResource.TMSUSPEND |
OracleXAResource.TMNOMIGRATE). This prevents the
application from receiving the error ORA 1002: fetch out
of sequence.

■ In order to avoid Error ORA 1002: fetch out of
sequence, include the TMNOMIGRATE flag as part of the end
method. For example:

end(xid, XAResource.TMSUSPEND |
OracleXAResource.TMNOMIGRATE);

■ All the flags defined in OracleXAResource are Oracle
extensions. Any transaction manager that uses these flags
should take heed of this.

XA Components

Distributed Transactions 29-11

■ XAResource.XA_OK

This is returned if the transaction branch runs updates that are all prepared
without error.

■ NA (no value returned)

No value is returned if the transaction branch runs updates and any of them
encounters errors during preparation. In this case, an XA exception is thrown.

XA_RDONLY and XA_OK are defined as static members of the XAResource interface
and OracleXAResource class.

commit
Commits prepared changes in the transaction branch specified by xid. This is the
second phase of a two-phase commit and is performed only after all transaction
branches have been successfully prepared.

void commit(Xid xid, boolean onePhase)

Set the onePhase parameter as follows:

■ true

This is to use one-phase instead of two-phase protocol in committing the
transaction branch. This is appropriate if there is only one transaction branch in
the distributed transaction; the prepare step would be skipped.

■ false

This is to use two-phase protocol in committing the transaction branch.

rollback
Rolls back prepared changes in the transaction branch specified by xid.

void rollback(Xid xid)

forget
Tells the resource manager to forget about a heuristically completed transaction
branch.

public void forget(Xid xid)

recover
The transaction manager calls this method during recovery to obtain the list of
transaction branches that are currently in prepared or heuristically completed states.

public Xid[] recover(int flag)

Note:

■ Always call the end method on a branch before calling the
prepare method.

■ If there is only one transaction branch in a distributed
transaction, then there is no need to call the prepare method.
You can call the OracleXAResource commit method without
preparing first.

XA Components

29-12 Oracle Database JDBC Developer's Guide

The resource manager returns zero or more Xids for the transaction branches that are
currently in a prepared or heuristically completed state. If an error occurs during the
operation, then the resource manager throws the appropriate XAException.

isSameRM
To determine if two OracleXAResource instances correspond to the same resource
manager, call the isSameRM method from one OracleXAResource instance,
specifying the other OracleXAResource instance as input. In the following example,
presume xares1 and xares2 are OracleXAResource instances:

boolean sameRM = xares1.isSameRM(xares2);

Xid Interface and Oracle Implementation
The transaction manager creates transaction ID instances and uses them in
coordinating the branches of a distributed transaction. Each transaction branch is
assigned a unique transaction ID, which includes the following information:

■ Format identifier

A format identifier specifies a Java transaction manager. For example, there could
be a format identifier ORCL. This field cannot be null. The size of a format identifier
is 4 bytes.

■ Global transaction identifier

It is also known as a distributed transaction ID component. The size of a global
transaction identifier is 64 bytes.

■ Branch qualifier

It is also known as transaction branch ID component. The size of a branch qualifier
is 64 bytes.

The 64-byte global transaction identifier value will be identical in the transaction IDs
of all transaction branches belonging to the same distributed transaction. However, the
overall transaction ID is unique for every transaction branch.

An XA transaction ID instance is an instance of a class that implements the standard
javax.transaction.xa.Xid interface, which is a Java mapping of the X/Open
transaction identifier XID structure.

Note: Values for flag other than TMSTARTRSCAN, TMENDRSCAN,
or TMNOFLAGS, cause an exception to be thrown, otherwise flag is
ignored.

Note: The recover method requires SELECT privilege on DBA_
PENDING_TRANSACTIONS and EXECUTE privilege on SYS.DBMS_
XA in Oracle database server. For database versions prior to Oracle
Database 11g Release 1 (11.1), where an Oracle patch including a fix
for bug 5945463 is not available, or it is infeasible to apply the patch
for the particular application scenario, the recover method requires
SYSBDBA privilege. Regular use of SYSDBA privilege is a security risk.
So, Oracle strongly recommends that you upgrade your Database or
apply the fix for bug 5945463, if you need to use the recover method.

Error Handling and Optimizations

Distributed Transactions 29-13

Oracle implements this interface with the OracleXid class in the oracle.jdbc.xa
package. OracleXid instances are employed only in a transaction manager,
transparent to application programs or an application server.

A transaction manager may use the following in creating an OracleXid instance:

public OracleXid(int fId, byte gId[], byte bId[]) throws XAException

fId is an integer value for the format identifier, gId[] is a byte array for the global
transaction identifier, and bId[] is a byte array for the branch qualifier.

The Xid interface specifies the following getter methods:

■ public int getFormatId()

■ public byte[] getGlobalTransactionId()

■ public type[] getBranchQualifier()

Error Handling and Optimizations
This section focuses on the functionality of XA exceptions and error handling and the
Oracle optimizations in its XA implementation. It covers the following topics:

■ XAException Classes and Methods

■ Mapping Between Oracle Errors and XA Errors

■ XA Error Handling

■ Oracle XA Optimizations

The exception and error-handling discussion includes the standard XA exception class
and the Oracle-specific XA exception class, as well as particular XA error codes and
error-handling techniques.

XAException Classes and Methods
XA methods throw XA exceptions, as opposed to general exceptions or
SQLExceptions. An XA exception is an instance of the standard class
javax.transaction.xa.XAException or a subclass.

An Oracle XAException is an instance that consists of an Oracle error portion and an
XA error portion. Oracle provides the oracle.jdbc.xa.OracleXAException
subclasses of the standard javax.transaction.xa.XAException class. An
OracleXAException instance is constructed using one of the following constructors:

public OracleXAException()

public OracleXAException(int error)

The error value is an error code that combines an Oracle SQL error value and an XA
error value. The JDBC driver determines exactly how to combine the Oracle and XA
error values.

The OracleXAException class has the following methods:

Note: Oracle does not require the use of OracleXid for
OracleXAResource calls. Instead, use any class that implements
the javax.transaction.xa.Xid interface.

Error Handling and Optimizations

29-14 Oracle Database JDBC Developer's Guide

■ public int getOracleError()

This method returns the Oracle SQL error code pertaining to the exception, a
standard ORA error number or 0 if there is no Oracle SQL error.

■ public int getXAError()

This method returns the XA error code pertaining to the exception. XA error
values are defined in the javax.transaction.xa.XAException class.

Mapping Between Oracle Errors and XA Errors
Oracle errors correspond to XA errors in OracleXAException instances as
documented in Table 29–2.

XA Error Handling
The following example uses the OracleXAException class to process an XA
exception:

try {
 ...
 ...Perform XA operations...
 ...
} catch(OracleXAException oxae) {
 int oraerr = oxae.getOracleError();
 System.out.println("Error " + oraerr);
}
 catch(XAException xae)
{...Process generic XA exception...}

In case the XA operations did not throw an Oracle-specific XA exception, the code
drops through to process a generic XA exception.

Oracle XA Optimizations
Oracle JDBC has functionality to improve performance if two or more branches of a
distributed transaction use the same database instance, meaning that the
OracleXAResource instances associated with these branches are associated with the
same resource manager.

In such a circumstance, the prepare method of only one of these
OracleXAResource instances will return XA_OK or will fail. The rest will return XA_

Table 29–2 Oracle-XA Error Mapping

Oracle Error Code XA Error Code

ORA 3113 XAException.XAER_RMFAIL

ORA 3114 XAException.XAER_RMFAIL

ORA 24756 XAException.XAER_NOTA

ORA 24764 XAException.XA_HEURCOM

ORA 24765 XAException.XA_HEURRB

ORA 24766 XAException.XA_HEURMIX

ORA 24767 XAException.XA_RDONLY

ORA 25351 XAException.XA_RETRY

all other ORA errors XAException.XAER_RMERR

Implementing a Distributed Transaction

Distributed Transactions 29-15

RDONLY, even if updates are made. This allows the transaction manager to implicitly
join all the transaction branches and commit or roll back, in case of failure, the joined
transaction through the OracleXAResource instance that returned XA_OK or failed.

The transaction manager can use the OracleXAResource class isSameRM method to
determine if two OracleXAResource instances are using the same resource manager.
This way it can interpret the meaning of XA_RDONLY return values.

Implementing a Distributed Transaction
This section provides an example of how to implement a distributed transaction using
Oracle XA functionality. This section covers the following topics:

■ Summary of Imports for Oracle XA

■ Oracle XA Code Sample

Summary of Imports for Oracle XA
You must import the following for Oracle XA functionality:

import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

The oracle.jdbc.pool package has classes for connection pooling functionality,
some of which have XA-related classes as subclasses.

Alternatively, if the code will run inside Oracle Database and access that database for
SQL operations, you must import oracle.jdbc.xa.server instead of
oracle.jdbc.xa.client.

import oracle.jdbc.xa.server.*;

If your application must access another Oracle Database as part of an XA transaction
using the server-side Thin driver, then your code can use the fully qualified names of
the oracle.xa.client classes.

The client and server packages each have versions of the OracleXADataSource,
OracleXAConnection, and OracleXAResource classes. Abstract versions of these
three classes are in the top-level oracle.jdbc.xa package.

Oracle XA Code Sample
This example uses a two-phase distributed transaction with two transaction branches,
each to a separate database.

Note that for simplicity, this example combines code that would typically be in a
middle tier with code that would typically be in a transaction manager, such as the
OracleXAResource method invocations and the creation of transaction IDs.

For brevity, the specifics of creating transaction IDs and performing SQL operations
are not shown here. The complete example is shipped with the product.

This example performs the following sequence:

1. Start transaction branch #1.

2. Start transaction branch #2.

Implementing a Distributed Transaction

29-16 Oracle Database JDBC Developer's Guide

3. Execute DML operations on branch #1.

4. Execute DML operations on branch #2.

5. End transaction branch #1.

6. End transaction branch #2.

7. Prepare branch #1.

8. Prepare branch #2.

9. Commit branch #1.

10. Commit branch #2.

// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

class XA4
{
 public static void main (String args [])
 throws SQLException
 {

 try
 {
 String URL1 = "jdbc:oracle:oci:@";
 // You can put a database name after the @ sign in the connection URL.
 String URL2 ="jdbc:oracle:thin:@(description=(address=(host=dlsun991)
 (protocol=tcp)(port=5521))(connect_data=(sid=rdbms2)))";
 // Create first DataSource and get connection
 OracleDataSource ods1 = new OracleDataSource();
 ods1.setURL(URL1);
 ods1.setUser("scott");
 ods1.setPassword("tiger");
 Connection conna = ods1.getConnection();

 // Create second DataSource and get connection
 OracleDataSource ods2 = new OracleDataSource();
 ods2.setURL(URL2);
 ods2.setUser("scott");
 ods2.setPassword("tiger");
 Connection connb = ods2.getConnection();

 // Prepare a statement to create the table
 Statement stmta = conna.createStatement ();

 // Prepare a statement to create the table
 Statement stmtb = connb.createStatement ();

 try
 {
 // Drop the test table
 stmta.execute ("drop table my_table");
 }

Implementing a Distributed Transaction

Distributed Transactions 29-17

 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmta.execute ("create table my_table (col1 int)");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 try
 {
 // Drop the test table
 stmtb.execute ("drop table my_tab");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmtb.execute ("create table my_tab (col1 char(30))");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 // Create XADataSource instances and set properties.
 OracleXADataSource oxds1 = new OracleXADataSource();
 oxds1.setURL("jdbc:oracle:oci:@");
 oxds1.setUser("scott");
 oxds1.setPassword("tiger");

 OracleXADataSource oxds2 = new OracleXADataSource();

 oxds2.setURL("jdbc:oracle:thin:@(description=(address=(host=dlsun991)
 (protocol=tcp)(port=5521))(connect_data=(sid=rdbms2)))");
 oxds2.setUser("scott");
 oxds2.setPassword("tiger");

 // Get XA connections to the underlying data sources
 XAConnection pc1 = oxds1.getXAConnection();
 XAConnection pc2 = oxds2.getXAConnection();

 // Get the physical connections
 Connection conn1 = pc1.getConnection();
 Connection conn2 = pc2.getConnection();

 // Get the XA resources
 XAResource oxar1 = pc1.getXAResource();
 XAResource oxar2 = pc2.getXAResource();

Implementing a Distributed Transaction

29-18 Oracle Database JDBC Developer's Guide

 // Create the Xids With the Same Global Ids
 Xid xid1 = createXid(1);
 Xid xid2 = createXid(2);

 // Start the Resources
 oxar1.start (xid1, XAResource.TMNOFLAGS);
 oxar2.start (xid2, XAResource.TMNOFLAGS);

 // Execute SQL operations with conn1 and conn2
 doSomeWork1 (conn1);
 doSomeWork2 (conn2);

 // END both the branches -- IMPORTANT
 oxar1.end(xid1, XAResource.TMSUCCESS);
 oxar2.end(xid2, XAResource.TMSUCCESS);

 // Prepare the RMs
 int prp1 = oxar1.prepare (xid1);
 int prp2 = oxar2.prepare (xid2);

 System.out.println("Return value of prepare 1 is " + prp1);
 System.out.println("Return value of prepare 2 is " + prp2);

 boolean do_commit = true;

 if (!((prp1 == XAResource.XA_OK) || (prp1 == XAResource.XA_RDONLY)))
 do_commit = false;

 if (!((prp2 == XAResource.XA_OK) || (prp2 == XAResource.XA_RDONLY)))
 do_commit = false;

 System.out.println("do_commit is " + do_commit);
 System.out.println("Is oxar1 same as oxar2 ? " + oxar1.isSameRM(oxar2));

 if (prp1 == XAResource.XA_OK)
 if (do_commit)
 oxar1.commit (xid1, false);
 else
 oxar1.rollback (xid1);

 if (prp2 == XAResource.XA_OK)
 if (do_commit)
 oxar2.commit (xid2, false);
 else
 oxar2.rollback (xid2);

 // Close connections
 conn1.close();
 conn1 = null;
 conn2.close();
 conn2 = null;

 pc1.close();
 pc1 = null;
 pc2.close();
 pc2 = null;

 ResultSet rset = stmta.executeQuery ("select col1 from my_table");
 while (rset.next())
 System.out.println("Col1 is " + rset.getInt(1));

Native-XA in Oracle JDBC Drivers

Distributed Transactions 29-19

 rset.close();
 rset = null;

 rset = stmtb.executeQuery ("select col1 from my_tab");
 while (rset.next())
 System.out.println("Col1 is " + rset.getString(1));

 rset.close();
 rset = null;

 stmta.close();
 stmta = null;
 stmtb.close();
 stmtb = null;

 conna.close();
 conna = null;
 connb.close();
 connb = null;

 } catch (SQLException sqe)
 {
 sqe.printStackTrace();
 } catch (XAException xae)
 {
 if (xae instanceof OracleXAException) {
 System.out.println("XA Error is " +
 ((OracleXAException)xae).getXAError());
 System.out.println("SQL Error is " +
 ((OracleXAException)xae).getOracleError());
 }
 }
 }

 static Xid createXid(int bids)
 throws XAException
 {...Create transaction IDs...}

 private static void doSomeWork1 (Connection conn)
 throws SQLException
 {...Execute SQL operations...}

 private static void doSomeWork2 (Connection conn)
 throws SQLException
 {...Execute SQL operations...}
}

Native-XA in Oracle JDBC Drivers
In general, XA commands can be sent to the server in the following ways:

■ Through non-native APIs

■ Through native APIs

There is a huge performance difference between the two methods of sending XA
commands to the server. The use of native APIs provide high performance gains as
compared to the use of non-native APIs.

Native-XA in Oracle JDBC Drivers

29-20 Oracle Database JDBC Developer's Guide

Prior to Oracle Database 10g, the Thin driver used non-native APIs to send XA
commands to the server because Thin native APIs were not available. The non-native
APIs use PL/SQL procedures, so they have the following disadvantages:

■ They require different messages on the wire.

■ They cause more round-trips to the database.

■ They cause more cursors to remain open.

■ They damage statement caching by occupying space in the Statement Cache.

Moreover, the implementation of non-native APIs is in the server. So, in order to solve
any problem in sending XA commands, it requires a server patch. This creates a major
issue because sometimes the patch requires restarting the server.

Starting from Oracle Database 10g, the Thin native APIs are available and are used to
send XA commands, by default. Native APIs are more than 10 times faster than the
non-native ones.

This section covers the following topics:

■ OCI Native XA

■ Thin Native XA

OCI Native XA
Native XA is enabled through the use of the tnsEntry and nativeXA properties of
the OracleXADataSource class.

Configuration and Installation
On a Sun Solaris or Linux system, you need the shared libraries, libheteroxa11.so
and libheteroxa11_g.so, to enable the Native XA feature. In order for the Native
XA feature to work properly, these libraries must be installed and available in the Sun
Solaris search path.

On a Microsoft Windows system, you need the heteroxa11.dll and heteroxa11_
g.dll files to enable the Native XA feature. These files must be installed and available
in the Windows DLL path for the Native XA feature to work properly.

Exception Handling
When using the Native XA feature in distributed transactions, it is recommended that
the application simply check for XAException or SQLException, rather than
OracleXAException or OracleSQLException.

See Also: Table 8–2, " Oracle Extended Data Source Properties" on
page 8-3 for explanation of these properties.

Note: Currently, OCI Native XA does not work in a multithreaded
environment. The OCI driver uses the C/XA library of Oracle to
support distributed transactions, which requires that an
XAConnection be obtained for each thread before resuming a global
transaction.

Note: Libraries with the _g suffix are debug libraries.

Native-XA in Oracle JDBC Drivers

Distributed Transactions 29-21

Native XA Code Example
The following portion of code shows how to enable the Native XA feature:

...
// Create a XADataSource instance
OracleXADataSource oxds = new OracleXADataSource();
oxds.setURL(url);

// Set the nativeXA property to use Native XA feature
oxds.setNativeXA(true);

// Set the tnsEntry property to an older DB as required
oxds.setTNSEntryName("ora805");
...

Thin Native XA
Like the JDBC OCI driver, the JDBC Thin driver also provides support for Native XA.
However, the JDBC Thin driver provides support for Native XA by default. This is
unlike the case of the JDBC OCI driver in which the support for Native XA is not
enabled by default.

You can disable Native XA by calling setNativeXA(false) on the XA data source
as follows:

...
// Create a XADataSource instance
OracleXADataSource oxds = new OracleXADataSource();
...
// Disabling Native XA
oxds.setNativeXA(false);
...

For example, you may need to disable Native XA as a workaround for a bug in the
Native XA code.

See Also: "Native XA Messages" on page D-12 for a listing of Native
XA messages.

Note: The mapping from SQL error codes to standard XA error
codes does not apply to the Native XA feature.

Native-XA in Oracle JDBC Drivers

29-22 Oracle Database JDBC Developer's Guide

Part VIII
Manageability

This part discusses the database management and diagnosability support in Oracle
Java Database Connectivity (JDBC) drivers.

Part VIII contains the following chapters:

■ Chapter 30, "Database Administration"

■ Chapter 31, "Diagnosability in JDBC"

■ Chapter 32, "JDBC DMS Metrics"

Database Administration 30-1

30
Database Administration

Starting from Oracle Database 11g Release 1 (11.1), two JDBC methods, startup and
shutdown, has been added in the oracle.jdbc.OracleConnection interface,
which enable you to start up and shut down an Oracle Database instance. This is
similar to the way you would start up or shut down a database instance from
SQL*Plus.

To use these methods, you must have a dedicated connection to the server. You cannot
be connected to a shared server through a dispatcher.

To use the startup and shutdown methods, you must be connected as SYSDBA or
SYSOPER. To connect as SYSDBA or SYSOPER with Oracle JDBC drivers, you need to
set the INTERNAL_LOGON connection property accordingly.

To log on as SYSDBA with the JDBC Thin driver you must configure the server to use
the password file. For example, to configure system/manager to connect as SYSDBA
with the JDBC Thin driver, perform the following:

1. From the command line, type:

orapwd file=$ORACLE_HOME/dbs/orapw entries=5
Enter password: password

2. Connect to database as SYSDBA and run the following commands from SQL*Plus:

GRANT SYSDBA TO system;
PASSWORD system
 Changing password for system
 New password: password
 Retype new password: password

3. Edit init.ora and add the following line:

REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

4. Restart the database instance.

As opposed to the JDBC Thin driver, the JDBC OCI driver can connect as SYSDBA or
SYSOPER locally without specifying a password file on the server.

To start a database instance using the startup method, the application must first
connect to the database as a SYSDBA or SYSOPER in the PRELIM_AUTH mode, which is
the only connection mode that is permitted when the database is down. You can do
this by setting the connection property PRELIM_AUTH to true. In the PRELIM_AUTH
mode, you can only start up a database instance that is down. You cannot run any SQL
statements in this mode. The following code snippet shows how to start up a database
instance that is down:

 OracleDataSource ds = new OracleDataSource();

30-2 Oracle Database JDBC Developer's Guide

 Properties prop = new Properties();
 prop.setProperty("user","sys");
 prop.setProperty("password","manager");
 prop.setProperty("internal_logon","sysdba");
 prop.setProperty("prelim_auth","true");
 ds.setConnectionProperties(prop);

ds.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=XYZ.com)(PO
RT=1521))"
+ "(CONNECT_DATA=(SERVICE_NAME=rdbms.devplmt.XYZ.com)))");
 OracleConnection conn = (OracleConnection)ds.getConnection();
 conn.startup(OracleConnection.DatabaseStartupMode.NO_RESTRICTION);
 conn.close();

The startup method takes a parameter that specifies the database startup option.
Table 30–1 lists the supported database startup options. These options are defined in
the oracle.jdbc.OracleConnection.DatabaseStartupMode class.

The startup method only starts up a database instance. It neither mounts it nor
opens it. For mounting and opening the database instance, you have to reconnect as
SYSDBA or SYSOPER, without the PRELIM_AUTH mode. The following code snippet
shows how to mount and open a database instance:

 OracleDataSource ds1 = new OracleDataSource();
 Properties prop1 = new Properties();
 prop1.setProperty("user","sys");
 prop1.setProperty("password","manager");
 prop1.setProperty("internal_logon","sysdba");
 ds1.setConnectionProperties(prop1);
 ds1.setURL(DB_URL);
 OracleConnection conn1 = (OracleConnection)ds1.getConnection();
 Statement stmt = conn1.createStatement();
 stmt.executeUpdate("ALTER DATABASE MOUNT");
 stmt.executeUpdate("ALTER DATABASE OPEN");

The shutdown method enables you to shut down an Oracle Database instance. To use
this method, you must be connected to the database as a SYSDBA or SYSOPER. The
following code snippet shows how to shut down a database instance:

 OracleDataSource ds2 = new OracleDataSource();
...
 OracleConnection conn2 = (OracleConnection)ds2.getConnection();
 conn2.shutdown(OracleConnection.DatabaseShutdownMode.IMMEDIATE);

Note: The startup method will start up the database using the
server parameter file. Oracle JDBC drivers do not support database
startup using the client parameter file.

Table 30–1 Supported Database Startup Options

Option Description

FORCE Shuts down the current instance, if any, of database in the abort mode before starting a
new instance.

NO_RESTRICTION Starts up the database with no restrictions.

RESTRICT Starts up the database and allows database access only to users with both the CREATE
SESSION and RESTRICTED SESSION privileges, typically, the DBA.

Database Administration 30-3

 Statement stmt1 = conn2.createStatement();
 stmt1.executeUpdate("ALTER DATABASE CLOSE NORMAL");
 stmt1.executeUpdate("ALTER DATABASE DISMOUNT");
 stmt1.close();
 conn2.shutdown(OracleConnection.DatabaseShutdownMode.FINAL);
 conn2.close();

Like the startup method, the shutdown method also takes a parameter. In this case,
the parameter specifies the database shutdown option. Table 30–2 lists the supported
database shutdown options. These options are defined in the
oracle.jdbc.OracleConnection.DatabaseShutdownMode class.

For shutdown options other than ABORT and FINAL, you must call the shutdown
method again with the FINAL option to actually shut down the database.

A standard way to shut down the database is as follows:

1. Initiate shutdown by prohibiting further connections or transactions in the
database. The shut down option can be either CONNECT, TRANSACTIONAL,
TRANSACTIONAL_LOCAL, or IMMEDIATE.

2. Dismount and close the database by calling the appropriate ALTER DATABASE
command.

3. Finish shutdown using the FINAL option.

In special circumstances to shut down the database as fast as possible, the ABORT
option can be used. This is the equivalent to SHUTDOWN ABORT in SQL*Plus.

Complete Example
Example 30–1 illustrates the use of the startup and shutdown methods.

Example 30–1 Database Startup and Shutdown

import java.sql.Statement;
import java.util.Properties;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.pool.OracleDataSource;
/**
 * To logon as sysdba, you need to create a password file for user "sys":

Table 30–2 Supported Database Shutdown Options

Option Description

ABORT Does not wait for current calls to complete or users to disconnect from the database.

CONNECT Refuses any new connection and waits for existing connection to end.

FINAL Shuts down the database.

IMMEDIATE Does not wait for current calls to complete or users to disconnect from the database.

TRANSACTIONAL Refuses new transactions and waits for active transactions to end.

TRANSACTIONAL_LOCAL Refuses new local transactions and waits for active local transactions to end.

Note: The shutdown(DatabaseShutdownMode.FINAL) method
must be preceded by another call to the shutdown method with one
of the following options: CONNECT, TRANSACTIONAL,
TRANSACTIONAL_LOCAL, or IMMEDIATE. Otherwise, the call hangs.

30-4 Oracle Database JDBC Developer's Guide

 * orapwd file=/path/orapw password=password entries=300
 * and add the following setting in init.ora:
 * REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
 * then restart the database.
 */
public class DBStartup
{
 static final String DB_URL =
"jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=XYZ.com)(PORT=1521))"
+ "(CONNECT_DATA=(SERVICE_NAME=rdbms.devplmt.XYZ.com)))";

 public static void main(String[] argv) throws Exception
 {
// Starting up the database:
 OracleDataSource ds = new OracleDataSource();
 Properties prop = new Properties();
 prop.setProperty("user","sys");
 prop.setProperty("password","manager");
 prop.setProperty("internal_logon","sysdba");
 prop.setProperty("prelim_auth","true");
 ds.setConnectionProperties(prop);
 ds.setURL(DB_URL);
 OracleConnection conn = (OracleConnection)ds.getConnection();
 conn.startup(OracleConnection.DatabaseStartupMode.NO_RESTRICTION);
 conn.close();

// Mounting and opening the database
 OracleDataSource ds1 = new OracleDataSource();
 Properties prop1 = new Properties();
 prop1.setProperty("user","sys");
 prop1.setProperty("password","manager");
 prop1.setProperty("internal_logon","sysdba");
 ds1.setConnectionProperties(prop1);
 ds1.setURL(DB_URL);
 OracleConnection conn1 = (OracleConnection)ds1.getConnection();
 Statement stmt = conn1.createStatement();
 stmt.executeUpdate("ALTER DATABASE MOUNT");
 stmt.executeUpdate("ALTER DATABASE OPEN");
 stmt.close();
 conn1.close();

// Shutting down the database
 OracleDataSource ds2 = new OracleDataSource();
 Properties prop = new Properties();
 prop.setProperty("user","sys");
 prop.setProperty("password","manager");
 prop.setProperty("internal_logon","sysdba");
 ds2.setConnectionProperties(prop);
 ds2.setURL(DB_URL);
 OracleConnection conn2 = (OracleConnection)ds2.getConnection();
 conn2.shutdown(OracleConnection.DatabaseShutdownMode.IMMEDIATE);
 Statement stmt1 = conn2.createStatement();
 stmt1.executeUpdate("ALTER DATABASE CLOSE NORMAL");
 stmt1.executeUpdate("ALTER DATABASE DISMOUNT");
 stmt1.close();
 conn2.shutdown(OracleConnection.DatabaseShutdownMode.FINAL);
 conn2.close();
 }
}

Diagnosability in JDBC 31-1

31
Diagnosability in JDBC

In Oracle Database 11g, the JDBC drivers have been enhanced by including new
diagnosabilty features and improving existing diagnosabilty features. These features
enable users to diagnose problems in the applications that use Oracle JDBC drivers
and the problems in the drivers themselves. They also reduce the effort required to
develop and maintain Java applications that access an Oracle Database instance using
Oracle JDBC drivers.

Oracle JDBC drivers provide the following diagnosabilty features that enable users to
identify and fix problems in their JDBC applications:

■ Logging

■ Diagnosability Management

Logging
This feature logs information about events that occur when JDBC driver code runs.
Events can include user-visible events, such as SQL exceptions, running of SQL
statements, and detailed JDBC internal events, such as entry to and exit from internal
JDBC methods. Users can enable this feature to log specific events or all the events.

Prior to Oracle Database 11g, JDBC drivers supported J2SE 2.0 and 3.0. These versions
of J2SE did not include java.util.logging. Therefore, the logging feature
provided by JDBC driver releases prior to Oracle Database 11g, differs from the
java.util.logging framework.

In Oracle Database 11g, the JDBC drivers no longer support J2SE 2.0 and 3.0.
Therefore, the logging feature of JDBC drivers makes full use of the standard
java.util.logging package. The enhanced logging system makes effective use of
log levels to enable users to restrict log output to things of interest. It logs specific
classes of information more consistently, making it easier for the user to understand
the log file.

This feature does not introduce new APIs or configuration files. Only new parameters
are added to the existing standard java.util.logging configuration file. These

Note: The diagnosability features of the JDBC drivers are based on
the standard java.util.logging framework and the
javax.management MBean framework. Information about these
standard frameworks is not covered in this document. For more
information about these standard frameworks refer to

http://www.oracle.com/technetwork/java/index.html

Logging

31-2 Oracle Database JDBC Developer's Guide

parameters are identical in use to the existing parameters and are intrinsic to using
java.util.logging.

Enabling and Using JDBC Logging
Before you can start debugging your Java application, you must enable and configure
JDBC logging. This section covers the steps you must perform to enable and use JDBC
logging. It describes the following:

■ Configuring the CLASSPATH

■ Enabling Logging

■ Configuring Logging

■ Using Loggers

■ An Example

Configuring the CLASSPATH
Oracle ships several JAR files for each version of the JDBC drivers. The optimized JAR
files do not contain any logging code and, therefore, do not generate any log output
when used. To get log output, you must use the debug JAR files, which are indicated
with a "_g" in the file name, like ojdbc5_g.jar or ojdbc6_g.jar. The debug JAR
file must be included in the CLASSPATH.

Enabling Logging
You can enable logging in the following ways:

■ Setting a Java system property

You can enable logging by setting the oracle.jdbc.Trace system property.

java -Doracle.jdbc.Trace=true ...

Setting the system property enables global logging, which means that logging is
enabled for the entire application. You can use global logging if you want to
debug the entire application, or if you cannot or do not want to change the source
code of the application.

■ Programmatically

You can programmatically enable or disable logging in the following way:

First, get the ObjectName of the Diagnosability MBean. The ObjectName is

com.oracle.jdbc:type=diagnosability,name=<loader>

Here, loader is a unique name based on the class loader instance that loaded the
Oracle JDBC drivers.

Note: Oracle does not guarantee the exact content of the generated
logs. To a large extent the log content is dependent on the details of
the implementation. The details of the implementation change with
every release, and therefore, the exact content of the logs are likely to
change from release to release.

Note: Ensure that the debug JAR file, say ojdbc5_g.jar or
ojdbc6_g.jar, is the only Oracle JDBC JAR file in the CLASSPATH.

Logging

Diagnosability in JDBC 31-3

Now, write the following lines of code:

ClassLoader l = oracle.jdbc.OracleDriver.getClassLoader();
String loader = l.getName() + "@" + l.hashCode();
// compute the ObjectName
javax.management.ObjectName name = new
javax.management.ObjectName("com.oracle.jdbc:type=diagnosability,
name="+loader);

// get the MBean server
javax.management.MBeanServer mbs =
java.lang.management.ManagementFactory.getPlatformMBeanServer();

// find out if logging is enabled or not
System.out.println("LoggingEnabled = " + mbs.getAttribute(name,
"LoggingEnabled"));

// enable logging
mbs.setAttribute(name, new javax.management.Attribute("LoggingEnabled", true));

// disable logging
mbs.setAttribute(name, new javax.management.Attribute("LoggingEnabled",
false));

Programmatic enabling and disabling of logging helps you to control what parts of
your application need to generate log output.

Configuring Logging
To generate a useful and detailed log, you must configure java.util.logging. This
can be done either through a configuration file or programmatically.

A sample configuration file, OracleLog.properties, is provided as part of the
JDBC installation in the demo directory. It contains basic information about how to
configure java.util.logging and provides some initial settings that you can start

Note: The drivers can be loaded multiple times in a single VM. So,
there can be multiple MBeans, each with a unique name.

Note:

■ If the same class loader loads the JDBC drivers multiple times,
then each subsequent MBean increments the value of the
l.hashCode() method, so as to create a unique name. It may be
problematic to identify which MBean is associated with which
JDBC driver instance.

■ If there is only one instance of the JDBC drivers loaded, then set
the name to "*".

Note: Enabling logging using either of the methods would only
generate a minimal log of serious errors. Usually this is not of much
use. To generate a more useful and detailed log, you must configure
java.util.logging.

Logging

31-4 Oracle Database JDBC Developer's Guide

with. You may use this sample file as is, edit the file and use it, rename the file and
edit it, or create an entirely new file of any name.

To use a configuration file, you must identify it to the Java run-time. This can be done
by setting a system property. For example:

java -Djava.util.logging.config.file=/jdbc/demo/OracleLog.properties.

It is read by the java.util.logging system. This file can reside anywhere.

You can use both java.util.logging.config.file and oracle.jdbc.Trace
at the same time.

java -Djava.util.logging.config.file=/jdbc/demo/OracleLog.properties
-Doracle.jdbc.Trace=true

You can use the default OracleLog.properties file. It may or may not get you the
desired output. You can also create and use your own configuration file by following
these steps:

1. Create a file named myConfig.properties. You can use any name you choose.

2. Insert the following lines of text in the file:

.level=SEVERE
oracle.jdbc.level=INFO
oracle.jdbc.handlers=java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level=INFO
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

3. Save the file.

4. Set the system property to use this configuration file.

java -Djava.util.logging.config.file=<filepath>/myConfig.properties ...

filepath is the path of the folder where you have saved the
myConfig.properties file.

You can also configure java.util.logging to dump the log output into a file. To
do so, modify the configuration file as follows:

.level=SEVERE
oracle.jdbc.level=INFO
oracle.jdbc.handlers=java.util.logging.FileHandler
java.util.logging.FileHandler.level=INFO
java.util.logging.FileHandler.pattern=jdbc.log
java.util.logging.FileHandler.count=1
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter

This will generate exactly the same log output and save it in a file named jdbc.log in
the current directory.

You can control the amount of detail by changing the level settings. The defined levels
from the least detailed to the most detailed are the following:

■ OFF

Turns off logging.

■ SEVERE

Logs SQLExceptions and internal errors.

■ WARNING

Logging

Diagnosability in JDBC 31-5

Logs SQLWarnings and bad but not fatal internal conditions.

■ INFO

Logs infrequent but significant events and errors. It produces a relatively low
volume of log messages.

■ CONFIG

Logs SQL strings that are executed.

■ FINE

Logs the entry and exit to every public method providing a detailed trace of JDBC
operations. It produces a fairly high volume of log messages.

■ FINER

Logs calls to internal methods.

■ FINEST

Logs calls to high volume internal methods.

■ ALL

Logs all the details. This is the most detailed level of logging.

In the example provided earlier, to reduce the amount of detail, change the
java.util.logging.FileHandler.level setting from ALL to INFO:

java.util.logging.FileHandler.level=INFO

Although you can, it is not necessary to change the level of the oracle.jdbc logger.
Setting the FileHandler level will control what log messages are dumped into the
log file.

Using Loggers
Setting the level reduces all the logging output from JDBC. However, sometimes you
need a lot of output from one part of the code and very little from other parts. To do
that you must understand more about loggers.

Loggers exist in a tree structure defined by their names. The root logger is named "",
the empty string. If you look at the first line of the configuration file you see
.level=SEVERE. This is setting the level of the root logger. The next line is
oracle.jdbc.level=INFO. This sets the level of the logger named oracle.jdbc.
The oracle.jdbc logger is a member of the logger tree. Its parent is named oracle.
The parent of the oracle logger is the root logger (the empty string).

Logging messages are sent to a particular logger, for example, oracle.jdbc. If the
message passes the level check at that level, then the message is passed to the handler
at that level, if any, and to the parent logger. So a log message sent to oracle.log is
compared against that logger's level, INFO if you are following along. If the level is the
same or less (less detailed) then it is sent to the FileHandler and to the parent logger,
'oracle'. Again it is checked against the level. If as in this case, the level is not set then it
uses the parent level, SEVERE. If the message level is the same or less it is passed to the
handler, which there is not one, and sent to the parent. In this case the parent in the
root logger.

Note: Levels more detailed than FINE generate huge log volumes.

Logging

31-6 Oracle Database JDBC Developer's Guide

All this tree structure did not help you reduce the amount of output. What will help is
that the JDBC drivers use several subloggers. If you restrict the log messages to one of
the subloggers you will get substantially less output. The loggers used by Oracle JDBC
drivers include the following:

■ oracle.jdbc

■ oracle.jdbc.driver

■ oracle.jdbc.pool

■ oracle.jdbc.rowset

■ oracle.jdbc.xa

■ oracle.sql

An Example
Suppose you want to trace what is happening in the oracle.sql component and
also want to capture some basic information about the rest of the driver. This is a more
complex use of logging. The following are the entries in the config file:

 #
 # set levels
 #
.level=SEVERE
oracle.level=INFO
oracle.jdbc.driver.level=INFO
oracle.jdbc.pool.level=OFF
oracle.jdbc.util.level=OFF
oracle.sql.level=INFO
 #
 # configure handlers
 #
oracle.handlers=java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level=INFO
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

Let us consider what each line in the configuration file is doing.

.level=SEVERE

Sets the logging level of the root logger to SEVERE. We do not want to see any logging
from other, non-Oracle components unless something fails badly. Therefore, we set the
default level for all loggers to SEVERE. Each logger inherits its level from its parent
unless set explicitly. By setting the level of the root logger to SEVERE we ensure that
all other loggers inherit that level except for the ones we set otherwise.

oracle.level=INFO

We want log output from both the oracle.sql and oracle.jdbc.driver loggers.
Their common ancestor is oracle. Therefore, we set the level of the oracle logger to
INFO. We will control the detail more explicitly at lower levels.

oracle.jdbc.driver.level=INFO

Note: The loggers used by the drivers may vary from release to
release.

Logging

Diagnosability in JDBC 31-7

We only want to see the SQL execution from oracle.jdbc.driver. Therefore, we
set the level to INFO. This is a fairly low volume level, but will help us to keep track of
what our test is doing.

oracle.jdbc.pool.level=OFF

We are using a DataSource in our test and do not want to see all of that logging.
Therefore, we turn it OFF.

oracle.jdbc.util.level=OFF

We do not want to see the logging from the oracle.jdbc.util package. If we were
using XA or row sets we would turn them off as well.

oracle.sql.level=INFO

We want to see what is happening in oracle.sql. Therefore, we set the level to
INFO. This provides a lot of information about the public method calls without
overwhelming detail.

oracle.handlers=java.util.logging.ConsoleHandler

We are going to dump everything to stderr. When we run the test we will redirect
stderr to a file.

java.util.logging.ConsoleHandler.level=INFO

We want to dump everything to the console which is System.err. In this case, we
are doing the filtering with the loggers rather than the handler.

java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

We will use a simple, more or less human readable format.

When you run your test with this configuration file, you will get moderately detailed
information from the oracle.sql package, a little bit of information from the core
driver code, and nothing from any other code.

You can also use XMLFormatter for sending logs to Oracle Support.

You can implement and use a custom java.util.logging.Filter to obtain finer
control of the data captured in the logs. This is a standard java.util.logging
feature and is documented in the JSE JavaDoc. A custom Filter enables you to:

■ Capture only one thread in multithreaded applications

■ Capture intermittent errors in long running applications

Performance, Scalability, and Security Issues
Although the logging feature enables you to trace or debug your application and
generate detail log output, it has certain performance, scalability, and security issues.

Performance and Scalability Issues
Logging has substantial impact on performance. However, JDBC logging is generally
not enabled in production systems. When logging is disabled, it will have no impact
on performance.

It also has a negative impact on scalability. Logging involves protected access to a
number of shared resources resulting in severely reduced scalability. This is intrinsic
to the java.util.logging framework. However, in a typical production system,
JDBC logging is not enabled and, therefore, will not have an impact on scalability.

Diagnosability Management

31-8 Oracle Database JDBC Developer's Guide

Security Concerns
When full logging is enabled, it is almost guaranteed that all sensitive information will
be exposed in the log files. This is intrinsic to the logging feature. However, only
certain JDBC JAR files include the JDBC logging feature. The following JAR files
include full logging and should not be used in a sensitive environment:

■ ojdbc5_g.jar

■ ojdbc5dms_g.jar

■ ojdbc6_g.jar

■ ojdbc6dms_g.jar

The following JAR files include a limited logging capability:

■ ojdbc5dms.jar

■ ojdbc6dms.jar

Diagnosability Management
The JDBC diagnosability management feature introduces an MBean,
oracle.jdbc.driver.OracleDiagnosabilityMBean. This MBean provides
means to enable and disable JDBC logging.

In future releases, the MBean will be enhanced to provide additional statistics about
JDBC internals.

Security Concerns
This feature can enable JDBC logging. Enabling JDBC logging does not require any
special permission. However, once logging is enabled, generating any log output
requires the standard Java permission LoggingPermission. Without this
permission, any JDBC operation that would generate log output will throw a security
exception. This is a standard Java mechanism.

Note: Database user names and passwords do not appear in log files
created by these JAR files. However, sensitive user data that is part of
a SQL statement, a defined value, or a bind value can appear in a log
created using one of these JAR files.

See Also: For information about the
OracleDiagnosabilityMBean API, refer to the Oracle Javadoc at

http://download.oracle.com/otn/utilities_
drivers/jdbc/111060/doc/javadoc/index.html

JDBC DMS Metrics 32-1

32
JDBC DMS Metrics

DMS metrics are used to measure the performance of application components.

This chapter discusses the following topics:

■ Overview of JDBC DMS Metrics

■ Determining the Type of Metric to Be Generated

■ Generating the SQLText Metric

■ Accessing DMS Metrics Using JMX

Note: There is another kind of metrics called end-to-end metrics.
End-to-end metrics are used for tagging application activity from the
entry into the application code through JDBC to the database and
back.

JDBC supports the following end-to-end metrics:

■ Action

■ ClientId

■ ExecutionContextId

■ Module

■ State

If you want to work with the preceding metrics, then you can use the
setEndToEndMetrics and getEndToEndMetrics methods of the
oracle.jdbc.OracleConnection interface.

In Oracle Database 10g, Oracle Java Database Connectivity (JDBC)
supports end-to-end metrics. In Oracle Database 11g Release 2 (11.2),
an application can set the end-to-end metrics directly only when it
does not use a DMS-enabled JAR files. But, if the application uses a
DMS-enabled JAR file, the end-to-end metrics can be set only through
DMS.

For more information about end-to-end metrics, refer to Oracle
Database JDBC Java API Reference.

Caution: Oracle strongly recommends using DMS metrics, if the
application uses a DMS-enabled JAR file.

Overview of JDBC DMS Metrics

32-2 Oracle Database JDBC Developer's Guide

Overview of JDBC DMS Metrics
DMS metrics enable application and system developers to measure and export
customized performance metrics for specific software components. All DMS metrics
are available in the following DMS-enabled JAR files:

■ ojdbc5dms.jar

■ ojdbc5dms_g.jar

■ ojdbc6dms.jar

■ ojdbc6dms_g.jar

Any other JDBC JAR files do not generate any DMS metrics. The metrics generated in
the Oracle JDBC 11g release are different from 10.2, 10.1, 9.2, and earlier versions of
Oracle JDBC as it makes no attempt to retain compatibility with earlier versions. There
are also no compatibility modes. A system that is dependent on the exact details of the
DMS metrics generated by earlier versions of JDBC may have unexpected behavior
when processing the metrics generated by Oracle JDBC 11g. This is by design and
cannot be changed.

Statement metrics can be reported consolidated for all statements in a connection or
individually for each statement. All DMS metrics, except those related to individual
statements, are enabled at all times.

Determining the Type of Metric to Be Generated
To determine whether to use consolidated or individual metrics, JDBC checks the
DMSConsole sensor weight. If the sensor weight is less than or equal to
DMSConsole.NORMAL, then JDBC generates consolidated statement metrics. If the
sensor weight is greater than DMSConsole.NORMAL, then JDBC generates individual
statement metrics.

JDBC checks the DMSConsole sensor weight when creating a Prepared or Callable
statement and depending on the sensor weight at the time the statement is created, the
metrics are generated. Changing the value of the sensor weight, after the statement has
been created, does not cause a statement to switch between consolidated and
individual metrics.

There is only one list of statement metrics that is generated for both consolidated and
individual statement metrics. The only difference between these two lists is the
aggregation of the statements. When individual statement metrics are generated, one
set of metrics is generated for each distinct statement object created by the JDBC
driver. On the other hand, when consolidated statement metrics are generated, all
statements created by a given connection use the same set of statement metrics.

For example, consider an 'execute' phase event. If individual statement metrics are
used, then each statement created will have a distinct 'execute' phase event. So, from
two such statements, it will be possible to distinguish the execution statistics for the

Note: You can enable or disable the SQLText statement metric. It is
disabled by default. If enabled, it is enabled for all statements.

Note: In the presence of Statement caching, it may appear that
changing sensor weight has no impact as statements are retrieved
from the cache rather than created anew.

Accessing DMS Metrics Using JMX

JDBC DMS Metrics 32-3

two separate statements. If one has an execution time of 1 second and the other an
execution time of 3 seconds, then there will be two distinct 'execute' phase events, one
with a total time and average of 1 second and the other with a total time and average
of 3 seconds. But, if consolidated statement metrics are used, all statements will use
the single 'execute' phase event common to the connection. So, from two such
statements created by the same connection, it will not be possible to distinguish the
execution statistics for the two statements. If one has an execution time of 1 second
and the other an execution time of 3 seconds, then the common 'execute' phase event
will report a total execution time of 4 seconds and an average of 2 seconds.

Generating the SQLText Metric
Depending on the version of DMS, there are two mechanisms for determining the
generating of the SQLText statement metrics:

■ If the 11g version of the DMS JAR file is present in the classpath environment
variable, then JDBC checks the DMS update SQL text flag. If this flag is true, then
the SQLText metric is updated.

■ If the 11g version of the DMS JAR file is not present in the classpath
environment variable, then JDBC uses the value of the DMSStatementMetrics
connection property. If this statement property is true, then SQLText metric is
updated. The default value of this connection property is false.

Whether or not the SQLText metric will be generated is independent of the use of the
type of statement metrics used, that is, individual statement metrics or consolidated
statement metrics.

Accessing DMS Metrics Using JMX
JMX (Java Management Extensions) is a Java technology that supplies tools for
managing and monitoring applications, system objects, devices, service-oriented
networks, and the JVM (Java Virtual Machine). You can easily access DMS metrics at
run time using a management application that supports JMX. For more information
about using JMX to access DMS data, go to the following URL
http://www.oracle.com/technology/products/ias/toplink/doc/1013/m
ain/_html/optimiz004.htm#BEEFGGBE

Accessing DMS Metrics Using JMX

32-4 Oracle Database JDBC Developer's Guide

Part IX
Appendixes

This part consists of appendixes that discuss Java Database Connectivity (JDBC)
reference information, tips for coding JDBC applications, JDBC error messages, and
troubleshooting JDBC applications.

Part IX contains the following appendixes:

■ Appendix A, "JDBC Reference Information"

■ Appendix B, "Oracle RAC Fast Application Notification"

■ Appendix C, "Coding Tips"

■ Appendix D, "JDBC Error Messages"

■ Appendix E, "Troubleshooting"

JDBC Reference Information A-1

A
JDBC Reference Information

This appendix contains detailed Java Database Connectivity (JDBC) reference
information, including the following topics:

■ Valid SQL-JDBC Data Type Mappings

■ Supported SQL and PL/SQL Data Types

■ Embedded JDBC Escape Syntax

■ Oracle JDBC Notes and Limitations

Valid SQL-JDBC Data Type Mappings
Table 11–1 describes the default mappings between Java classes and SQL data types
supported by Oracle JDBC drivers. Compare the contents of the JDBC Type Codes,
Standard Java Types, and SQL Data Types columns in Table 11–1 with the contents of
Table A–1.

Table A–1 lists all the possible Java types to which a given SQL data type can be
validly mapped. Oracle JDBC drivers will support these nondefault mappings. For
example, to materialize SQL CHAR data in an oracle.sql.CHAR object, use the
getCHAR method. To materialize it as a java.math.BigDecimal object, use the
getBigDecimal method.

Note: For classes where oracle.sql.ORAData appears in italic,
these can be generated by JPublisher.

Table A–1 Valid SQL Data Type-Java Class Mappings

SQL data type Java types

CHAR, VARCHAR2, LONG java.lang.String

oracle.sql.CHAR

Valid SQL-JDBC Data Type Mappings

A-2 Oracle Database JDBC Developer's Guide

NUMBER boolean

char

byte

short

int

long

float

double

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

oracle.sql.NUMBER

BINARY_INTEGER boolean

char

byte

short

int

long

BINARY_FLOAT oracle.sql.BINARY_FLOAT

BINARY_DOUBLE oracle.sql.BINARY_DOUBLE

DATE oracle.sql.DATE

RAW oracle.sql.RAW

BLOB oracle.sql.BLOB

CLOB oracle.sql.CLOB

BFILE oracle.sql.BFILE

ROWID oracle.sql.ROWID

TIMESTAMP oracle.sql.TIMESTAMP

TIMESTAMP WITH TIME
ZONE

oracle.sql.TIMESTAMPTZ

TIMESTAMP WITH LOCAL
TIME ZONE

oracle.sql.TIMESTAMPLTZ

ref cursor java.sql.ResultSet

sqlj.runtime.ResultSetIterator

user defined named types,
ADTs

oracle.sql.STRUCT

opaque named types oracle.sql.OPAQUE

Table A–1 (Cont.) Valid SQL Data Type-Java Class Mappings

SQL data type Java types

Supported SQL and PL/SQL Data Types

JDBC Reference Information A-3

Supported SQL and PL/SQL Data Types
The tables in this section list SQL and PL/SQL data types, and whether Oracle JDBC
drivers support them. Table A–2 describes Oracle JDBC driver support for SQL data
types.

nested tables and VARRAY
named types

oracle.sql.ARRAY

references to named types oracle.sql.REF

Note:

■ The type UROWID is not supported.

■ The oracle.sql.Datum class is abstract. The value passed to
a parameter of type oracle.sql.Datum must be of the Java
type corresponding to the underlying SQL type. Likewise, the
value returned by a method with return type
oracle.sql.Datum must be of the Java type corresponding
to the underlying SQL type.

Table A–2 Support for SQL Data Types

SQL Data Type Supported by JDBC Drivers?

BFILE yes

BLOB yes

CHAR yes

CLOB yes

DATE yes

NCHAR no1

1 The NCHAR type is supported indirectly. There is no corresponding
java.sql.Types type, but if your application calls the formOfUse(NCHAR)
method, then this type can be accessed.

NCHAR VARYING no

NUMBER yes

NVARCHAR2 yes2

2 In JSE 6, the NVARCHAR2 type is supported directly. In J2SE 5.0, the
NVARCHAR2 type is supported indirectly. There is no corresponding
java.sql.Types type, but if your application calls the formOfUse(NCHAR)
method, then this type can be accessed.

RAW yes

REF yes

ROWID yes

UROWID no

VARCHAR2 yes

Table A–1 (Cont.) Valid SQL Data Type-Java Class Mappings

SQL data type Java types

Supported SQL and PL/SQL Data Types

A-4 Oracle Database JDBC Developer's Guide

Table A–3 describes Oracle JDBC support for the ANSI-supported SQL data types.

Table A–4 describes Oracle JDBC driver support for SQL User-Defined types.

Table A–5 describes Oracle JDBC driver support for PL/SQL data types. Note that
PL/SQL data types include these categories:

■ Scalar types

■ Scalar character types, which includes BOOLEAN and DATE data types

■ Composite types

■ Reference types

■ Large object (LOB) types

Table A–3 Support for ANSI-92 SQL Data Types

ANSI-Supported SQL Data Type Supported by JDBC Drivers?

CHARACTER yes

DEC yes

DECIMAL yes

DOUBLE PRECISION yes

FLOAT yes

INT yes

INTEGER yes

NATIONAL CHARACTER no

NATIONAL CHARACTER
VARYING

no

NATIONAL CHAR yes

NATIONAL CHAR VARYING no

NCHAR yes

NCHAR VARYING no

NUMERIC yes

REAL yes

SMALLINT yes

VARCHAR yes

Table A–4 Support for SQL User-Defined Types

SQL User-Defined type Supported by JDBC Drivers?

OPAQUE yes

Reference types yes

Object types (JAVA_OBJECT) yes

Nested table types and VARRAY
types

yes

Supported SQL and PL/SQL Data Types

JDBC Reference Information A-5

Table A–5 Support for PL/SQL Data Types

PL/SQL Data Type Supported by JDBC Drivers?

Scalar Types:

BINARY INTEGER yes

DEC yes

DECIMAL yes

DOUBLE PRECISION yes

FLOAT yes

INT yes

INTEGER yes

NATURAL yes

NATURALn no

NUMBER yes

NUMERIC yes

PLS_INTEGER yes

POSITIVE yes

POSITIVEn no

REAL yes

SIGNTYPE yes

SMALLINT yes

Scalar Character Types:

CHAR yes

CHARACTER yes

LONG yes

LONG RAW yes

NCHAR no (see Note)

NVARCHAR2 no (see Note)

RAW yes

ROWID yes

STRING yes

UROWID no

VARCHAR yes

VARCHAR2 yes

BOOLEAN yes

DATE yes

Composite Types:

RECORD no

TABLE no

VARRAY yes

Embedded JDBC Escape Syntax

A-6 Oracle Database JDBC Developer's Guide

Embedded JDBC Escape Syntax
Oracle JDBC drivers support some embedded JDBC escape syntax, which is the syntax
that you specify between curly braces. The current support is basic.

This section describes the support offered by the drivers for the following constructs:

■ Time and Date Literals

■ Scalar Functions

■ LIKE Escape Characters

■ Outer Joins

■ Function Call Syntax

Where driver support is limited, these sections also describe possible workarounds.

Disabling Escape Processing
The processing for JDBC escape syntax is enabled by default, which results in the
JDBC driver performing escape substitution before sending the SQL code to the

Reference Types:

REF CURSOR types yes

object reference types yes

LOB Types:

BFILE yes

BLOB yes

CLOB yes

NCLOB yes

Note:

■ The types NATURAL, NATURALn, POSITIVE, POSITIVEn, and
SIGNTYPE are subtypes of BINARY INTEGER.

■ The types DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INT,
INTEGER, NUMERIC, REAL, and SMALLINT are subtypes of
NUMBER.

■ The types NCHAR and NVARCHAR2 are supported indirectly.
There is no corresponding java.sql.Types type, but if your
application calls formOfUse(NCHAR), then these types can be
accessed. Refer to "NCHAR, NVARCHAR2, NCLOB and the
defaultNChar Property in JDK 1.5" on page 19-3 for details.

Note: JDBC escape syntax was previously known as SQL92 Syntax
or SQL92 escape syntax.

Table A–5 (Cont.) Support for PL/SQL Data Types

PL/SQL Data Type Supported by JDBC Drivers?

Embedded JDBC Escape Syntax

JDBC Reference Information A-7

database. If you want the driver to use regular Oracle SQL syntax, which is more
efficient than JDBC escape syntax processing, then use this statement:

stmt.setEscapeProcessing(false);

Time and Date Literals
Databases differ in the syntax they use for date, time, and timestamp literals. JDBC
supports dates and times written only in a specific format. This section describes the
formats you must use for date, time, and timestamp literals in SQL statements.

Date Literals
The JDBC drivers support date literals in SQL statements written in the format:

{d 'yyyy-mm-dd'}

Where yyyy-mm-dd represents the year, month, and day. For example:

{d '1995-10-22'}

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "22 OCT 1995".

The following code snippet contains an example of using a date literal in a SQL
statement.

// Connect to the database
// You can put a database name after the @ sign in the connection URL.
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci:@");
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

// Create a Statement
Statement stmt = conn.createStatement ();

// Select the ename column from the emp table where the hiredate is Jan-23-1982
ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {d '1982-01-23'}");

// Iterate through the result and print the employee names
while (rset.next ())
 System.out.println (rset.getString (1));

Time Literals
The JDBC drivers support time literals in SQL statements written in the format:

{t 'hh:mm:ss'}

where, hh:mm:ss represents the hours, minutes, and seconds. For example:

{t '05:10:45'}

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "05:10:45".

If the time is specified as:

Embedded JDBC Escape Syntax

A-8 Oracle Database JDBC Developer's Guide

{t '14:20:50'}

Then the equivalent Oracle representation would be "14:20:50", assuming the server is
using a 24-hour clock.

This code snippet contains an example of using a time literal in a SQL statement.

ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {t '12:00:00'}");

Timestamp Literals
The JDBC drivers support timestamp literals in SQL statements written in the format:

{ts 'yyyy-mm-dd hh:mm:ss.f...'}

where yyyy-mm-dd hh:mm:ss.f... represents the year, month, day, hours,
minutes, and seconds. The fractional seconds portion (.f...) is optional and can be
omitted. For example: {ts '1997-11-01 13:22:45'} represents, in Oracle format,
NOV 01 1997 13:22:45.

This code snippet contains an example of using a timestamp literal in a SQL statement.

ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {ts '1982-01-23 12:00:00'}");

Mapping SQL DATE Data type to Java
Oracle Database 8i and earlier versions did not support TIMESTAMP data, but Oracle
DATE data used to have a time component as an extension to the SQL standard. So,
Oracle Database 8i and earlier versions of JDBC drivers mapped oracle.sql.DATE
to java.sql.Timestamp to preserve the time component. Starting with Oracle
Database 9.0.1, TIMESTAMP support was included and 9i JDBC drivers started
mapping oracle.sql.DATE to java.sql.Date. This mapping was incorrect as it
truncated the time component of Oracle DATE data. To overcome this problem, Oracle
Database 11.1 introduced a new flag mapDateToTimestamp. The default value of this
flag is true, which means that by default the drivers will correctly map
oracle.sql.DATE to java.sql.Timestamp, retaining the time information. If you
still want the incorrect but 10g compatible oracle.sql.DATE to java.sql.Date
mapping, then you can get it by setting the value of mapDateToTimestamp flag to
false.

Embedded JDBC Escape Syntax

JDBC Reference Information A-9

Scalar Functions
Oracle JDBC drivers do not support all scalar functions. To find out which functions
the drivers support, use the following methods supported by the Oracle-specific
oracle.jdbc.OracleDatabaseMetaData class and the standard Java
java.sql.DatabaseMetadata interface:

■ getNumericFunctions()

Returns a comma-delimited list of math functions supported by the driver. For
example, ABS, COS, SQRT.

■ getStringFunctions()

Returns a comma-delimited list of string functions supported by the driver. For
example, ASCII, LOCATE.

■ getSystemFunctions()

Returns a comma-delimited list of system functions supported by the driver. For
example, DATABASE, USER.

■ getTimeDateFunctions()

Returns a comma-delimited list of time and date functions supported by the
driver. For example, CURDATE, DAYOFYEAR, HOUR.

LIKE Escape Characters
The characters % and _ have special meaning in SQL LIKE clauses. You use % to match
zero or more characters and _ to match exactly one character. If you want to interpret

Note:

■ In Oracle Database 11g, if you have an index on a DATE column
to be used by a SQL query, then to obtain faster and accurate
results, you must use the setObject method in the following
way:

Date d = parseIsoDate(val);
Timestamp t = new Timestamp(d.getTime());
stmt.setObject(pos, new oracle.sql.DATE(t, (Calendar)UTC_
CAL.clone()));

This is because if you use the setDate method, then the time
component of the Oracle DATE data will be lost and if you use the
setTimestamp method, then the index on the DATE column will
not be used.

■ To overcome the problem of oracle.sql.DATE to
java.sql.Date mapping, Oracle Database 9.2 had introduced a
flag, V8Compatible. The default value of this flag was false,
which allowed the mapping of Oracle DATE data to
java.sql.Date data. But, users could retain the time
component of the Oracle DATE data by setting the value of this
flag to true. This flag is desupported in 11g because it controlled
Oracle Database 8i compatibility, which is no longer supported.

Note: Oracle JDBC drivers support fn, the function keyword.

Embedded JDBC Escape Syntax

A-10 Oracle Database JDBC Developer's Guide

these characters literally in strings, then you precede them with a special escape
character. For example, if you want to use ampersand (&) as the escape character, then
you identify it in the SQL statement as:

Statement stmt = conn.createStatement ();

// Select the empno column from the emp table where the ename starts with '_'
ResultSet rset = stmt.executeQuery
 ("SELECT empno FROM emp WHERE ename LIKE '&_%' {ESCAPE '&'}");

// Iterate through the result and print the employee numbers
while (rset.next ())
 System.out.println (rset.getString (1));

Outer Joins
Oracle JDBC drivers do not support the outer join syntax. The workaround is to use
Oracle outer join syntax:

Instead of:

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery
 ("SELECT ename, dname
 FROM {OJ dept LEFT OUTER JOIN emp ON dept.deptno = emp.deptno}
 ORDER BY ename");

Use Oracle SQL syntax:

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery
 ("SELECT ename, dname
 FROM emp b, dept a WHERE a.deptno = b.deptno(+)
 ORDER BY ename");

Function Call Syntax
Oracle JDBC drivers support the following procedure and function call syntax:

Procedure calls:

{ call procedure_name (argument1, argument2,...) }

Function calls:

{ ? = call procedure_name (argument1, argument2,...) }

JDBC Escape Syntax to Oracle SQL Syntax Example
You can write a simple program to translate JDBC escape syntax to Oracle SQL syntax.
The following program prints the comparable Oracle SQL syntax for statements using

Note: If you want to use the backslash character (\) as an escape
character, then you must enter it twice, that is, \\. For example:

ResultSet rset = stmt.executeQuery("SELECT empno FROM emp
 WHERE ename LIKE '_%' {escape '\\'}");

Oracle JDBC Notes and Limitations

JDBC Reference Information A-11

JDBC escape syntax for function calls, date literals, time literals, and timestamp
literals. In the program, the oracle.jdbc.OracleSql class parse() method
performs the conversions.

public class Foo
{
 static oracle.jdbc.OracleDriver driver = new oracle.jdbc.OracleDriver();
 public static void main (String args[]) throws Exception
 {
 show ("{call foo(?, ?)}");
 show ("{? = call bar (?, ?)}");
 show ("{d '1998-10-22'}");
 show ("{t '16:22:34'}");
 show ("{ts '1998-10-22 16:22:34'}");
 }

 public static void show (String s) throws Exception
 {
 System.out.println (s + " => " +
 driver.processSqlEscapes(s));
 }
}

The following code is the output that prints the comparable SQL syntax.

{call foo(?, ?)} => BEGIN foo(:1, :2); END;
{? = call bar (?, ?)} => BEGIN :1 := bar (:2, :3); END;
{d '1998-10-22'} => TO_DATE ('1998-10-22', 'YYYY-MM-DD')
{t '16:22:34'} => TO_DATE ('16:22:34', 'HH24:MI:SS')
{ts '1998-10-22 16:22:34'} => TO_TIMESTAMP ('1998-10-22 16:22:34', 'YYYY-MM-DD
HH24:MI:SS.FF')

Oracle JDBC Notes and Limitations
The following limitations exist in the Oracle JDBC implementation, but all of them are
either insignificant or have easy workarounds. This section covers the following
topics:

■ CursorName

■ JDBC Outer Join Escapes

■ PL/SQL TABLE, BOOLEAN, and RECORD Types

■ IEEE 754 Floating Point Compliance

■ Catalog Arguments to DatabaseMetaData Calls

■ SQLWarning Class

■ Executing DDL Statements

■ Binding Named Parameters

CursorName
Oracle JDBC drivers do not support the get getCursorName and setCursorName
methods, because there is no convenient way to map them to Oracle constructs. Oracle
recommends using ROWID instead.

Oracle JDBC Notes and Limitations

A-12 Oracle Database JDBC Developer's Guide

JDBC Outer Join Escapes
Oracle JDBC drivers do not support JDBC outer join escapes. Use Oracle SQL syntax
with + instead.

PL/SQL TABLE, BOOLEAN, and RECORD Types
It is not feasible for Oracle JDBC drivers to support calling arguments or return values
of the PL/SQL RECORD, BOOLEAN, or table with non-scalar element types. However,
Oracle JDBC drivers support PL/SQL index-by table of scalar element types.

As a workaround to PL/SQL RECORD, BOOLEAN, or non-scalar table types, create
container procedures that handle the data as types supported by JDBC. For example,
to wrap a stored procedure that uses PL/SQL boolean, create a stored procedure that
takes a character or number from JDBC and passes it to the original procedure as
BOOLEAN or, for an output parameter, accepts a BOOLEAN argument from the original
procedure and passes it as a CHAR or NUMBER to JDBC. Similarly, to wrap a stored
procedure that uses PL/SQL records, create a stored procedure that handles a record
in its individual components, such as CHAR and NUMBER, or in a structured object type.
To wrap a stored procedure that uses PL/SQL tables, break the data into components
or perhaps use Oracle collection types.

IEEE 754 Floating Point Compliance
The arithmetic for the Oracle NUMBER type does not comply with the IEEE 754
standard for floating-point arithmetic. Therefore, there can be small disagreements
between the results of computations performed by Oracle and the same computations
performed by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and guarantees
38 decimal digits of precision. It represents zero, minus infinity, and plus infinity
exactly. For each positive number it represents, it represents a negative number of the
same absolute value.

It represents every positive number between 10-30 and (1 – 10-38) * 10126 to full 38-digit
precision.

Catalog Arguments to DatabaseMetaData Calls
Certain DatabaseMetaData methods define a catalog parameter. This parameter
is one of the selection criteria for the method. Oracle does not have multiple catalogs,
but it does have packages.

See Also: "Oracle ROWID Type" on page 4-13 for more information
about how to use and manipulate ROWIDs.

See Also: "Embedded JDBC Escape Syntax" on page A-6

See Also: "Accessing PL/SQL Index-by Tables" on page 4-5

See Also: "Boolean Parameters in PL/SQL Stored Procedures" on
page E-2 for an example of a workaround for BOOLEAN.

See Also: "Reporting DatabaseMetaData TABLE_REMARKS" on
page 23-20 for information about how Oracle JDBC drivers treat the
catalog argument.

Oracle JDBC Notes and Limitations

JDBC Reference Information A-13

SQLWarning Class
The java.sql.SQLWarning class provides information about a database access
warning. Warnings typically contain a description of the warning and a code that
identifies the warning. Warnings are silently chained to the object whose method
caused it to be reported. Oracle JDBC drivers generally do not support SQLWarning.
As an exception to this, scrollable result set operations do generate SQL warnings, but
the SQLWarning instance is created on the client, not in the database.

Executing DDL Statements
You must execute Data Definition Language (DDL) statements with Statement
objects. If you use PreparedStatements objects or CallableStatements objects,
then the DDL statement takes effect only on the first execution. This can cause
unexpected behavior if the SQL statements are in a statement cache.

Binding Named Parameters
Binding by name is not supported when using the setXXX methods. Under certain
circumstances, previous versions of Oracle JDBC drivers have allowed binding
statement variables by name when using the setXXX methods. In the following
statement, the named variable EmpId would be bound to the integer 314159.

PreparedStatement p = conn.prepareStatement
 ("SELECT name FROM emp WHERE id = :EmpId");
 p.setInt(1, 314159);

This capability to bind by name using the setXXX methods is not part of the JDBC
specification, and Oracle does not support it. The JDBC drivers can throw a
SQLException or produce unexpected results. Starting from Oracle Database 10g
JDBC drivers, bind by name is supported using the setXXXAtName methods.

The bound values are not copied by the drivers until you call the execute method.
So, changing the bound value before calling the execute method could change the
bound value. For example, consider the following code snippet:

PreparedStatement p;
.......
Date d = new Date(1181676033917L);
p.setDate(1, d);
d.setTime(0);
p.executeUpdate();

This code snippet inserts Date(0) in the database instead of
Date(1181676033917L) because the bound values are not copied by JDBC driver
implementation for performance reasons.

See Also: "Processing SQL Exceptions" on page 2-16

See Also: "Interface oracle.jdbc.OracleCallableStatement" on
page 4-22 and "Interface oracle.jdbc.OraclePreparedStatement" on
page 4-21

Oracle JDBC Notes and Limitations

A-14 Oracle Database JDBC Developer's Guide

B

Oracle RAC Fast Application Notification B-1

BOracle RAC Fast Application Notification

Oracle Database 11g Release 2 (11.2) introduces a new set of APIs for Oracle RAC Fast
Application Notification (FAN) events. These APIs provide an alternative for taking
advantage of the high-availability (HA) features of Oracle Database, if you do not use
Universal Connection Pool or Oracle JDBC connection caching. These APIs are not a
part of Oracle JDBC APIs.

This appendix covers the following topics:

■ Overview of Oracle RAC Fast Application Notification

■ Installing and Configuring Oracle RAC Fast Application Notification

■ Using Oracle RAC Fast Application Notification

■ Implementing a Connection Cache

This feature depends on the Oracle Notification System (ONS) message transport
mechanism. This feature requires configuring your system, servers, and clients to use
ONS.

For using Oracle RAC Fast Application Notification, the simplefan.jar file must be
present in the classpath, and either the ons.jar file must be present in the classpath
or an Oracle Notification Services (ONS) client must be installed and running in the
client system.

Overview of Oracle RAC Fast Application Notification
The Oracle RAC Fast Application Notification (FAN) feature provides a simplified API
for accessing FAN events through a callback mechanism. This mechanism enables
application code to receive a callback when a FAN event occurs. These APIs are
referred to as Oracle RAC FAN APIs in this appendix.

The Oracle RAC FAN APIs provide FAN event notification for developing more
responsive applications that can take full advantage of Oracle Database HA features. If
you do not want to use Universal Connection Pool, but want to work with FAN events
implementing your own connection cache, then you should use Oracle RAC Fast
Application Notification.

Overview of Oracle RAC Fast Application Notification

B-2 Oracle Database JDBC Developer's Guide

The Oracle RAC FAN APIs enable application code to receive and respond to FAN
event notifications sent by Oracle RAC. This is achieved by enabling the code to
respond to FAN events in the following way:

■ Listening for Oracle RAC service down, service up, and node down events

■ Listening for load balancing advisory events and responding to them

This feature exposes a subset of FAN events, which are the notifications sent by a
cluster running Oracle RAC, to inform the subscribers about the configuration changes
within the cluster. The supported FAN events are the following:

■ Service up

The service up events notify that the managed resources are up and available. The
cluster sends service up events when a cluster managed Database service becomes
active, that is, available to accept work on an instance within the cluster.

■ Service down

The service down events notify that the managed resources are down and
currently not available for access. There are two kinds of service down events:

– Events indicating that a particular instance of a service is down and the
instance is no longer able to accept work.

– Events indicating that all instances of a service are down and the service is no
longer able to accept work.

When the last instance of a service goes down, then the subscriber receives both
events. The events may or may not arrive together.

■ Node down

The node down events notify that the Oracle RAC node identified by the host
identifier is down and not reachable. The cluster sends node down events when a
node is no longer able to accept work.

■ Load balancing advisory

Note:

■ If you do not want to implement your own connection cache, then
you should use Universal Connection Pooling to get all the
advantages of Oracle RAC Fast Application Notification, along
with many additional benefits. For more information on Universal
Connection Pooling, refer to Oracle Universal Connection Pool for
JDBC Developer's Guide.

■ Starting from Oracle Database 11g Release 2 (11.2), implicit
connection cache has been deprecated, and replaced with
Universal Connection Pool (UCP) for JDBC. Oracle recommends
that you take advantage of the new architecture, which is more
powerful and offers better performance. Refer to the following
link for more information

http://www.oracle.com/technology/tech/java/sqlj_
jdbc/index.html

Installing and Configuring Oracle RAC Fast Application Notification

Oracle RAC Fast Application Notification B-3

The load balancing advisory events provide metrics for load balancing algorithms.
Load balancing advisories are sent regularly to inform subscribers of the
recommended distribution of work among the available nodes.

Installing and Configuring Oracle RAC Fast Application Notification
You can install the Oracle RAC FAN APIs by performing the following steps:

1. Download the simplefan.jar file from the following link

http://www.oracle.com/technology/tech/java/sqlj_jdbc/index.html

2. Add the simplefan.jar file to the classpath.

3. Perform the following in your Java code:

a. Get an instance of the FanManager class by using the getInstance method.

b. Configure the event daemon using the configure method of the
FanManager class. The configure method sets the following properties:

onsNodes: A comma separated list of host:port pairs of ONS daemons that
the ONS runtime in this Java VM should communicate with. The host in a
host:port pair is the host name of a system running the ONS daemon. The
port is the local port configuration parameter for that daemon.

onsWalletFile: The path name of the ONS wallet file. The wallet file is the
path to a local wallet file used by SSL to store SSL certificates. Same as wallet
file configuration parameter to ONS daemon.

onsWalletPassword: The password for accessing the ONS wallet file.

For a detailed description of the Oracle RAC FAN APIs, refer to Oracle Database RAC
FAN Events Java API Reference.

Configuration of ONS
The Java API for Oracle RAC FAN Events depends on the Oracle Notification System
(ONS) service. This section describes how to configure ONS. It covers the following
topics:

■ Overview of ONS Configuration File

■ Configuring Client-Side ONS

Overview of ONS Configuration File
ONS configuration is controlled by the ONS configuration file, ORACLE_
HOME/opmn/conf/ons.config. This file tells the ONS daemon how it should
behave. Configuration information within ons.config is defined in simple name
and value pairs.

Note: If you want to implement your own connection cache, only
then you should use Oracle RAC Fast Application Notification.
Otherwise, you should use Universal Connection Pooling to get all the
advantages of Oracle RAC Fast Application Notification, along with
many additional benefits. For more information on Universal
Connection Pooling, refer to Oracle Universal Connection Pool for JDBC
Developer's Guide.

Installing and Configuring Oracle RAC Fast Application Notification

B-4 Oracle Database JDBC Developer's Guide

Some parameters in the ons.config file are required and some are optional.
Table B–1 lists the required ONS configuration parameters and Table B–2 lists the
optional ONS configuration parameters.

Table B–1 Required ONS Configuration Parameters

Parameter Explanation

localport The port that ONS binds to on the local host interface to talk to
local clients.

For example, localport=4100

remoteport The port that ONS binds to on all interfaces for talking to other
ONS daemons.

For example, remoteport=4200

nodes A list of other ONS daemons to talk to. Node values are given as
a comma-delimited list of either host names or IP addresses plus
ports. The port value that is given is the remote port that each
ONS instance is listening on. In order to maintain an identical
file on all nodes, the host:port of the current ONS node can
also be listed in the nodes list. It will be ignored when reading
the list.

For example,
nodes=myhost.example.com:4200,123.123.123.123:4
200

The nodes listed in the nodes line correspond to the individual
nodes in the Oracle RAC instance. Listing the nodes ensures that
the middle-tier node can communicate with the Oracle RAC
nodes. At least one middle-tier node and one node in the Oracle
RAC instance must be configured to see one another. As long as
one node on each side is aware of the other, all nodes are visible.
You need not list every single cluster and middle-tier node in
the ONS configuration file of each Oracle RAC node. In
particular, if one ONS configuration file cluster node is aware of
the middle tier, then all nodes in the cluster are aware of it.

Table B–2 Optional ONS Configuration Parameters

Parameter Description

loglevel The level of messages that should be logged by ONS. This value
is an integer that ranges from 1, which indicates least messages
logged, to 9, which indicates most messages logged. The default
value is 3.

For example, loglevel=3

logfile A log file that ONS should use for logging messages. The default
value for log file is $ORACLE_HOME/opmn/logs/ons.log.

For example,
logfile=/private/oraclehome/opmn/logs/myons.log

walletfile The wallet file used by the Oracle Secure Sockets Layer (SSL) to
store SSL certificates. If a wallet file is specified to ONS, then it
uses SSL when communicating with other ONS instances and
require SSL certificate authentication from all ONS instances
that try to connect to it. This means that if you want to turn on
SSL for one ONS instance, then you must turn it on for all
instances that are connected. This value should point to the
directory where your ewallet.p12 file is located.

For example,
walletfile=/private/oraclehome/opmn/conf/ssl.wl
t/default

Installing and Configuring Oracle RAC Fast Application Notification

Oracle RAC Fast Application Notification B-5

The ons.config file allows blank lines and comments on lines that begin with the
number sign (#).

Configuring Client-Side ONS
You can access the client-side ONS through ORACLE_HOME/opmn. On the client-side,
there are two ways to set up ONS:

■ Remote ONS configuration

■ ONS daemon on the client-side

Example B–1 illustrates how a sample configuration file may look.

Example B–1 Example of a Sample ons.config File

This is an example ons.config file
#
The first three values are required
localport=4100
remoteport=4200
nodes=racnode1.example.com:4200,racnode2.example.com:4200

After configuring ONS, you start the ONS daemon with the onsctl command. It is
the user's responsibility to make sure that an ONS daemon is running at all times.

Using the onsctl Command
After configuring, use ORACLE_HOME/opmn/bin/onsctl to start, stop, reconfigure,
and monitor the ONS daemon. Table B–3 is a summary of the commands that onsctl
supports.

useocr The value, reserved for use on the server-side, to indicate ONS
whether it should store all Oracle RAC nodes and port numbers
in Oracle Cluster Registry (OCR) instead of the ONS
configuration file or not. A value of useocr=on is used to store
all Oracle RAC nodes and port numbers in Oracle Cluster
Registry (OCR).

Do not use this option on the client-side.

See Also: "Remote ONS Subscription" on page 27-3

Table B–3 onsctl Commands

Command Effect Output

start Starts the ONS daemon onsctl: ons started

stop Stops the ONS daemon onsctl: shutting down ons daemon...

ping Verifies whether or not the
ONS daemon is running

ons is running ...

reconfig Triggers a reload of the ONS
configuration without shutting
down the ONS daemon

help Prints a help summary
message for onsctl

Table B–2 (Cont.) Optional ONS Configuration Parameters

Parameter Description

Using Oracle RAC Fast Application Notification

B-6 Oracle Database JDBC Developer's Guide

Using Oracle RAC Fast Application Notification
Example B–2 provides an example to use Oracle RAC Fast Application Notification in
your code. This example code prints the event data to the standard output device.

This example code demonstrates sample usages of Oracle RAC FAN APIs by
overloading the handleFanEvent method to accept different FAN event notifications
as arguments. The example code also displays event data such as

■ Name of the system sending the FAN event notification

■ Timestamp of the FAN event notification

■ Load status of the FAN event notification

Example B–2 Example of Sample Code Using Oracle RAC FAN API

...

...
Properties props = new Properties();
props.putProperty(“serviceName”, “gl”);
FanSubscription sub = FanManager.getInstance().subscribe(props);
sub.addListener(new FanEventListener()) {
 public void handleFanEvent(ServiceDownEvent event) {
 try {
 System.out.println(event.getTimestamp());
 System.out.println(event.getServiceName());
 System.out.println(event.getDatabaseUniqueName());
 System.out.println(event.getReason());
 ServiceMemberEvent me = se.getServiceMemberEvent();
 if (me != null) {
 System.out.println(me.getInstanceName());
 System.out.println(me.getNodeName());
 System.out.println(me.getServiceMemberStatus());
 }
 ServiceCompositeEvent ce = se.getServiceCompositeEvent();
 if (ce != null) {
 System.out.println(ce.getServiceCompositeStatus());
 }
 }
 catch (Throwable t) {
 // handle all exceptions and errors
 t.printStackTrace(System.err);
 }
 }
 public void handleFanEvent(NodeDownEvent event) {
 try {
 System.out.println(event.getTimestamp());
 System.out.println(ne.getNodeName());
 System.out.println(ne.getIncarnation());
 }

detailed Prints a detailed help message
for onsctl

See Also: Oracle Real Application Clusters Administration and
Deployment Guide

Table B–3 (Cont.) onsctl Commands

Command Effect Output

Implementing a Connection Cache

Oracle RAC Fast Application Notification B-7

 catch (Throwable t) {
 // handle all exceptions and errors
 t.printStackTrace(System.err);
 }
 }
 public void handleFanEvent(LoadAdvisoryEvent event) {
 try {
 System.out.println(event.getTimestamp());
 System.out.println(le.getServiceName());
 System.out.println(le.getDatabaseUniqueName());
 System.out.println(le.getInstanceName());
 System.out.println(le.getPercent());
 System.out.println(le.getServiceQuality());
 System.out.println(le.getLoadStatus());
 }
 catch (Throwable t) {
 // handle all exceptions and errors
 t.printStackTrace(System.err);
 }
 }
});

Implementing a Connection Cache
You must implement your own connection cache for using Oracle RAC FAN APIs.
Consider the following points before you implement a connection cache using the
Oracle RAC FAN APIs:

■ Oracle RAC FAN APIs provide a minimal subset of FAN events.

■ Oracle RAC FAN APIs support only ONS events. If you want your application to
support corresponding supercluster events, then you may require additions to the
subscription properties.

■ Oracle RAC FAN APIs do not enable application code to send FAN events.

Implementing a Connection Cache

B-8 Oracle Database JDBC Developer's Guide

Coding Tips C-1

C
Coding Tips

This appendix describes methods to optimize a Java Database Connectivity (JDBC)
application or applet. It includes the following topics:

■ JDBC and Multithreading

■ Performance Optimization

■ Transaction Isolation Levels and Access Modes

JDBC and Multithreading
Oracle JDBC drivers provide full support for, and are highly optimized for,
applications that use Java multithreading. Controlled serial access to a connection,
such as that provided by connection caching, is both necessary and encouraged.
However, Oracle strongly discourages sharing a database connection among multiple
threads. Avoid allowing multiple threads to access a connection simultaneously. If
multiple threads must share a connection, use a disciplined begin-using/end-using
protocol.

Performance Optimization
You can significantly enhance the performance of your JDBC programs by using any
of these features:

■ Disabling Auto-Commit Mode

■ Standard Fetch Size and Oracle Row Prefetching

■ Standard and Oracle Update Batching

■ Statement Caching

Disabling Auto-Commit Mode
Auto-commit mode indicates to the database whether to issue an automatic COMMIT
operation after every SQL operation. Being in auto-commit mode can be expensive in
terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the setAutoCommit method of the connection object,
either java.sql.Conection or oracle.jdbc.OracleConnection.

In auto-commit mode, the COMMIT operation occurs either when the statement
completes or the next execute occurs, whichever comes first. In the case of statements
returning a ResultSet object, the statement completes when the last row of the

Performance Optimization

C-2 Oracle Database JDBC Developer's Guide

Result Set has been retrieved or when the Result Set has been closed. In more complex
cases, a single statement can return multiple results as well as output parameter
values. Here, the COMMIT occurs when all results and output parameter values have
been retrieved.

If you disable auto-commit mode with a setAutoCommit(false) call, then you
must manually commit or roll back groups of operations using the commit or
rollback method of the connection object.

Example
The following example illustrates loading the driver and connecting to the database.
Because new connections are in auto-commit mode by default, this example shows
how to disable auto-commit. In the example, conn represents the Connection object,
and stmt represents the Statement object.

// Connect to the database
// You can put a database host name after the @ sign in the connection URL.
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:oci:@");
 ods.setUser("scott");
 ods.setPassword("tiger");
 Connection conn = ods.getConnection();

// It's faster when auto commit is off
conn.setAutoCommit (false);

// Create a Statement
Statement stmt = conn.createStatement ();
...

Standard Fetch Size and Oracle Row Prefetching
Oracle JDBC connection and statement objects allow you to specify the number of
rows to prefetch into the client with each trip to the database while a result set is being
populated during a query. You can set a value in a connection object that affects each
statement produced through that connection, and you can override that value in any
particular statement object. The default value in a connection object is 10. Prefetching
data into the client reduces the number of round-trips to the server.

Similarly, and with more flexibility, JDBC 2.0 enables you to specify the number of
rows to fetch with each trip, both for statement objects (affecting subsequent queries)
and for result set objects (affecting row refetches). By default, a result set uses the
value for the statement object that produced it. If you do not set the JDBC 2.0 fetch
size, then the Oracle connection row-prefetch value is used by default.

Standard and Oracle Update Batching
Oracle JDBC drivers allow you to accumulate INSERT, DELETE, and UPDATE
operations of prepared statements at the client and send them to the server in batches.
This feature reduces round-trips to the server. You can either use Oracle update
batching, which typically processes a batch implicitly once a preset batch value is
reached, or standard update batching, where the batch is processed explicitly.

See Also: "Fetch Size" on page 17-4

Transaction Isolation Levels and Access Modes

Coding Tips C-3

Statement Caching
Statement caching improves performance by caching executable statements that are
used repeatedly, such as in a loop or in a method that is called repeatedly.
Applications use the statement cache to cache statements associated with a particular
physical connection. When you enable Statement caching, a Statement object is cached
when you call the close method. Because each physical connection has its own cache,
multiple caches can exist if you enable Statement caching for multiple physical
connections.

When you enable Statement caching on a connection cache, the logical connections
benefit from the Statement caching that is enabled on the underlying physical
connection. If you try to enable Statement caching on a logical connection held by a
connection cache, then this will throw an exception.

Mapping Between Built-in SQL and Java Types
The SQL built-in types are those types with system-defined names, such as NUMBER,
and CHAR, as opposed to the Oracle objects, varray, and nested table types, which have
user-defined names. In JDBC programs that access data of built-in SQL types, all type
conversions are unambiguous, because the program context determines the Java type
to which a SQL datum will be converted.

The most efficient way to access numeric data is to use primitive Java types like int,
float, long, and double. However, the range of values of these types do not exactly
match the range of values of the SQL NUMBER data type. As a result, there may be
some loss of information. If absolute precision is required across the entire value
range, then use the BigDecimal type.

All character data is converted to the UCS2 character set of Java. The most efficient
way to access character data is as java.lang.String. In worst case, this can cause a
loss of information when two or more characters in the database character set map to a
single UCS2 character. In Oracle Database 11g, all characters in the character set map
to the characters in the UCS2 character set. However, some characters do map to
surrogate pairs.

Transaction Isolation Levels and Access Modes
Read-only connections are supported by Oracle JDBC drivers, but not by the Oracle
server.

Note: Oracle recommends to keep the batch sizes in the range of 100
or less. Larger batches provide little or no performance improvement
and may actually reduce performance due to the client resources
required to handle the large batch.

See Also: "Update Batching" on page 23-1

Note: The Oracle JDBC drivers are optimized for use with the Oracle
Statement cache. Oracle strongly recommends that you use the Oracle
Statement cache (implicit or explicit).

See Also: Chapter 20, "Statement and Result Set Caching"

Transaction Isolation Levels and Access Modes

C-4 Oracle Database JDBC Developer's Guide

For transactions, the Oracle server supports only the TRANSACTION_READ_
COMMITTED and TRANSACTION_SERIALIZABLE transaction isolation levels. The
default is TRANSACTION_READ_COMMITTED. Use the following methods of the
oracle.jdbc.OracleConnection interface to get and set the level:

■ getTransactionIsolation: Gets this connection's current transaction isolation
level.

■ setTransactionIsolation: Changes the transaction isolation level, using one
of the TRANSACTION_* values.

JDBC Error Messages D-1

D
JDBC Error Messages

This appendix briefly discusses the general structure of Java Database Connectivity
(JDBC) error messages, then lists general JDBC error messages and TTC error
messages that Oracle JDBC drivers can return. The appendix is organized as follows:

■ General Structure of JDBC Error Messages

■ General JDBC Messages

■ Native XA Messages

■ TTC Messages

Each of the message lists is first sorted by ORA number, and then alphabetically.

General Structure of JDBC Error Messages
The general JDBC error message structure allows run-time information to be
appended to the end of a message, following a colon, as follows:

<error_message>:<extra_info>

For example, a "closed statement" error might be displayed as follows:

Closed Statement:next

This indicates that the exception was thrown during a call to the next method (of a
result set object).

In some cases, the user can find the same information in a stack trace.

General JDBC Messages
This section lists general JDBC error messages, first sorted by the ORA number, and
then in alphabetic order in the following subsections:

■ JDBC Messages Sorted by ORA Number

■ JDBC Messages Sorted in Alphabetic Order

See Also: "Processing SQL Exceptions" on page 2-16

Note: The ORA-17033 and ORA-17034 error messages use the term
SQL92. The JDBC escape syntax was previously known as SQL92
Syntax or SQL92 escape syntax.

General JDBC Messages

D-2 Oracle Database JDBC Developer's Guide

JDBC Messages Sorted by ORA Number
The following table lists the JDBC error messages sorted by the ORA number:

Table D–1 JDBC Messages Sorted by ORA Number

ORA Number Message

ORA-17001 Internal Error

ORA-17002 Io exception

ORA-17003 Invalid column index

ORA-17004 Invalid column type

ORA-17005 Unsupported column type

ORA-17006 Invalid column name

ORA-17007 Invalid dynamic column

ORA-17008 Closed Connection

ORA-17009 Closed Statement

ORA-17010 Closed Resultset

ORA-17011 Exhausted Resultset

ORA-17012 Parameter Type Conflict

ORA-17014 ResultSet.next was not called

ORA-17015 Statement was cancelled

ORA-17016 Statement timed out

ORA-17017 Cursor already initialized

ORA-17018 Invalid cursor

ORA-17019 Can only describe a query

ORA-17020 Invalid row prefetch

ORA-17021 Missing defines

ORA-17022 Missing defines at index

ORA-17023 Unsupported feature

ORA-17024 No data read

ORA-17025 Error in defines.isNull ()

ORA-17026 Numeric Overflow

ORA-17027 Stream has already been closed

ORA-17028 Can not do new defines until the current ResultSet is closed

ORA-17029 setReadOnly: Read-only connections not supported

ORA-17030 READ_COMMITTED and SERIALIZABLE are the only valid
transaction levels

ORA-17031 setAutoClose: Only support auto close mode on

ORA-17032 cannot set row prefetch to zero

ORA-17033 Malformed SQL92 string at position

ORA-17034 Non supported SQL92 token at position

ORA-17035 Character Set Not Supported !!

General JDBC Messages

JDBC Error Messages D-3

ORA-17036 exception in OracleNumber

ORA-17037 Fail to convert between UTF8 and UCS2

ORA-17038 Byte array not long enough

ORA-17039 Char array not long enough

ORA-17040 Sub Protocol must be specified in connection URL

ORA-17041 Missing IN or OUT parameter at index:

ORA-17042 Invalid Batch Value

ORA-17043 Invalid stream maximum size

ORA-17044 Internal error: Data array not allocated

ORA-17045 Internal error: Attempt to access bind values beyond the batch
value

ORA-17046 Internal error: Invalid index for data access

ORA-17047 Error in Type Descriptor parse

ORA-17048 Undefined type

ORA-17049 Inconsistent java and sql object types

ORA-17050 no such element in vector

ORA-17051 This API cannot be be used for non-UDT types

ORA-17052 This ref is not valid

ORA-17053 The size is not valid

ORA-17054 The LOB locator is not valid

ORA-17055 Invalid character encountered in

ORA-17056 Non supported character set (add orai18n.jar in your classpath)

ORA-17057 Closed LOB

ORA-17058 Internal error: Invalid NLS Conversion ratio

ORA-17059 Fail to convert to internal representation

ORA-17060 Fail to construct descriptor

ORA-17061 Missing descriptor

ORA-17062 Ref cursor is invalid

ORA-17063 Not in a transaction

ORA-17064 Invalid Sytnax or Database name is null

ORA-17065 Conversion class is null

ORA-17066 Access layer specific implementation needed

ORA-17067 Invalid Oracle URL specified

ORA-17068 Invalid argument(s) in call

ORA-17069 Use explicit XA call

ORA-17070 Data size bigger than max size for this type

ORA-17071 Exceeded maximum VARRAY limit

Table D–1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

General JDBC Messages

D-4 Oracle Database JDBC Developer's Guide

ORA-17072 Inserted value too large for column

ORA-17074 invalid name pattern

ORA-17075 Invalid operation for forward only resultset

ORA-17076 Invalid operation for read only resultset

ORA-17077 Fail to set REF value

ORA-17078 Cannot do the operation as connections are already opened

ORA-17079 User credentials doesn't match the existing ones

ORA-17080 invalid batch command

ORA-17081 error occurred during batching

ORA-17082 No current row

ORA-17083 Not on the insert row

ORA-17084 Called on the insert row

ORA-17085 Value conflicts occurs

ORA-17086 Undefined column value on the insert row

ORA-17087 Ignored performance hint: setFetchDirection()

ORA-17088 Unsupported syntax for requested resultset type and
concurrency level

ORA-17089 internal error

ORA-17090 operation not allowed

ORA-17091 Unable to create resultset at the requested type and/or
concurrency level

ORA-17092 JDBC statements cannot be created or executed at end of call
processing

ORA-17093 OCI operation returned OCI_SUCCESS_WITH_INFO

ORA-17094 Object type version mismatched

ORA-17095 Statement cache size has not been set

ORA-17096 Statement Caching cannot be enabled for this logical connection.

ORA-17097 Invalid PL/SQL Index Table element type

ORA-17098 Invalid empty lob operation

ORA-17099 Invalid PL/SQL Index Table array length

ORA-17100 Invalid database Java Object

ORA-17101 Invalid properties in OCI Connection Pool Object

ORA-17102 Bfile is read only

ORA-17103 invalid connection type to return via getConnection. Use
getJavaSqlConnection instead

ORA-17104 SQL statement to execute cannot be empty or null

ORA-17105 connection session time zone was not set

ORA-17106 invalid JDBC-OCI driver connection pool configuration
specified

Table D–1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

General JDBC Messages

JDBC Error Messages D-5

ORA-17107 invalid proxy type specified

ORA-17108 No max length specified in defineColumnType

ORA-17109 standard Java character encoding not found

ORA-17110 execution completed with warning

ORA-17111 Invalid connection cache TTL timeout specified

ORA-17112 Invalid thread interval specified

ORA-17113 Thread interval value is more than the cache timeout value

ORA-17114 could not use local transaction commit in a global transaction

ORA-17115 could not use local transaction rollback in a global transaction

ORA-17116 could not turn on auto-commit in an active global transaction

ORA-17117 could not set savepoint in an active global transaction

ORA-17118 could not obtain ID for a named Savepoint

ORA-17119 could not obtain name for an un-named Savepoint

ORA-17120 could not set a Savepoint with auto-commit on

ORA-17121 could not rollback to a Savepoint with auto-commit on

ORA-17122 could not rollback to a local txn Savepoint in a global transaction

ORA-17123 Invalid statement cache size specified

ORA-17124 Invalid connection cache Inactivity timeout specified

ORA-17125 Improper statement type returned by explicit cache

ORA-17126 Fixed Wait timeout elapsed

ORA-17127 Invalid Fixed Wait timeout specified

ORA-17128 SQL string is not Query

ORA-17129 SQL string is not a DML Statement

ORA-17132 Invalid conversion requested

ORA-17133 UNUSED

ORA-17134 Length of named parameter in SQL exceeded 32 characters

ORA-17135 Parameter name used in setXXXStream appears more than once
in SQL

ORA-17136 Malformed DATALINK URL, try getString() instead

ORA-17137 Connection Caching Not Enabled or Not a Valid Cache Enabled
DataSource

ORA-17138 Invalid Connection Cache Name. Must be a valid String and
Unique

ORA-17139 Invalid Connection Cache Properties

ORA-17140 Connection Cache with this Cache Name already exists

ORA-17141 Connection Cache with this Cache Name does not exist

ORA-17142 Connection Cache with this Cache Name is Disabled

ORA-17143 Invalid or Stale Connection found in the Connection Cache

Table D–1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

General JDBC Messages

D-6 Oracle Database JDBC Developer's Guide

ORA-17144 statement handle not executed

ORA-17145 Invalid ONS Event received

ORA-17146 Invalid ONS Event Version received

ORA-17147 Attempt to set a parameter name that does not occur in the SQL

ORA-17148 Method only implemented in thin

ORA-17149 This is already a proxy session

ORA-17150 Wrong arguments for proxy session

ORA-17151 Clob is too large to be stored in a Java String

ORA-17152 This method is only implemented in logical connections

ORA-17153 This method is only implemented in physical connections

ORA-17154 Cannot map Oracle character to Unicode

ORA-17155 Cannot map Unicode to Oracle character

ORA-17156 Invalid array size for End-to-End metrics values

ORA-17157 setString can only process strings of less than 32766 chararacters

ORA-17158 duration is invalid for this function

ORA-17159 metric value for end-to-end tracing is too long

ORA-17160 execution context id sequence number out of range

ORA-17161 Invalid transaction mode used

ORA-17162 Unsupported holdability value

ORA-17163 Can not use getXAConnection() when connection caching is
enabled

ORA-17164 Can not call getXAResource() from physical connection with
caching on

ORA-17165 DBMS_JDBC package not preset in server for this connection

ORA-17166 Cannot perform fetch on a PLSQL statement

ORA-17167 PKI classes not found. To use 'connect /' functionality,
oraclepki.jar must be in the classpath

ORA-17168 encountered a problem with the Secret Store. Check the wallet
location for the presence of an open wallet (cwallet.sso) and
ensure that this wallet contains the correct credentials using the
mkstore utility

ORA-17169 Cannot bind stream to a ScrollableResultSet or
UpdatableResultSet

ORA-17170 The Namespace cannot be empty

ORA-17171 The attribute length cannot exceed 30 chars

ORA-17172 That value of the attribute cannot exceed 400 chars

ORA-17173 Not all return parameters registered

ORA-17174 The only supported namespace is CLIENTCONTEXT

ORA-17175 Error during remote ONS configuration

ORA-17259 SQLXML cannot find the XML support jar file in the classpath

Table D–1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

General JDBC Messages

JDBC Error Messages D-7

JDBC Messages Sorted in Alphabetic Order
The following table lists the JDBC error messages sorted in alphabetic order:

ORA-17260 Attempt to read an empty SQLXML

ORA-17261 Attempt to read a SQLXML that is not readable

ORA-17262 Attempt to write a SQLXML that is not writeable

ORA-17263 SQLXML cannot create a Result of that type

ORA_17264 SQLXML cannoct create a Source of that type

Table D–2 JDBC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17066 Access layer specific implementation needed

ORA-17261 Attempt to read a SQLXML that is not readable

ORA-17260 Attempt to read an empty SQLXML

ORA-17147 Attempt to set a parameter name that does not occur in the SQL

ORA-17262 Attempt to write a SQLXML that is not writeable

ORA-17102 Bfile is read only

ORA-17038 Byte array not long enough

ORA-17084 Called on the insert row

ORA-17164 Can not call getXAResource() from physical connection with
caching on

ORA-17028 Can not do new defines until the current ResultSet is closed

ORA-17163 Can not use getXAConnection() when connection caching is
enabled

ORA-17019 Can only describe a query

ORA-17169 Cannot bind stream to a ScrollableResultSet or
UpdatableResultSet

ORA-17078 Cannot do the operation as connections are already opened

ORA-17154 Cannot map Oracle character to Unicode

ORA-17155 Cannot map Unicode to Oracle character

ORA-17166 Cannot perform fetch on a PLSQL statement

ORA-17032 Cannot set row prefetch to zero

ORA-17039 Char array not long enough

ORA-17035 Character Set Not Supported !!

ORA-17151 Clob is too large to be stored in a Java String

ORA-17008 Closed Connection

ORA-17057 Closed LOB

ORA-17010 Closed Resultset

ORA-17009 Closed Statement

Table D–1 (Cont.) JDBC Messages Sorted by ORA Number

ORA Number Message

General JDBC Messages

D-8 Oracle Database JDBC Developer's Guide

ORA-17140 Connection Cache with this Cache Name already exists

ORA-17141 Connection Cache with this Cache Name does not exist

ORA-17142 Connection Cache with this Cache Name is Disabled

ORA-17137 Connection Caching Not Enabled or Not a Valid Cache Enabled
DataSource

ORA-17105 Connection session time zone was not set

ORA-17065 Conversion class is null

ORA-17118 Could not obtain ID for a named Savepoint

ORA-17119 Could not obtain name for an un-named Savepoint

ORA-17122 Could not rollback to a local txn Savepoint in a global
transaction

ORA-17121 Could not rollback to a Savepoint with auto-commit on

ORA-17120 Could not set a Savepoint with auto-commit on

ORA-17117 Could not set savepoint in an active global transaction

ORA-17116 Could not turn on auto-commit in an active global transaction

ORA-17114 Could not use local transaction commit in a global transaction

ORA-17115 Could not use local transaction rollback in a global transaction

ORA-17017 Cursor already initialized

ORA-17070 Data size bigger than max size for this type

ORA-17165 DBMS_JDBC package not preset in server for this connection

ORA-17158 Duration is invalid for this function

ORA-17168 Encountered a problem with the Secret Store. Check the wallet
location for the presence of an open wallet (cwallet.sso) and
ensure that this wallet contains the correct credentials using the
mkstore utility

ORA-17175 Error during remote ONS configuration

ORA-17025 Error in defines.isNull ()

ORA-17047 Error in Type Descriptor parse

ORA-17081 error occurred during batching

ORA-17071 Exceeded maximum VARRAY limit

ORA-17036 Exception in OracleNumber

ORA-17110 Execution completed with warning

ORA-17160 Execution context id sequence number out of range

ORA-17011 Exhausted Resultset

ORA-17060 Fail to construct descriptor

ORA-17037 Fail to convert between UTF8 and UCS2

ORA-17059 Fail to convert to internal representation

ORA-17077 Fail to set REF value

ORA-17126 Fixed Wait timeout elapsed

Table D–2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

General JDBC Messages

JDBC Error Messages D-9

ORA-17087 Ignored performance hint: setFetchDirection()

ORA-17125 Improper statement type returned by explicit cache

ORA-17049 Inconsistent java and sql object types

ORA-17072 Inserted value too large for column

ORA-17001 Internal Error

ORA-17089 internal error

ORA-17045 Internal error: Attempt to access bind values beyond the batch
value

ORA-17044 Internal error: Data array not allocated

ORA-17046 Internal error: Invalid index for data access

ORA-17058 Internal error: Invalid NLS Conversion ratio

ORA-17068 Invalid argument(s) in call

ORA-17156 Invalid array size for End-to-End metrics values

ORA-17080 invalid batch command

ORA-17042 Invalid Batch Value

ORA-17055 Invalid character encountered in

ORA-17003 Invalid column index

ORA-17006 Invalid column name

ORA-17004 Invalid column type

ORA-17124 Invalid connection cache Inactivity timeout specified

ORA-17138 Invalid Connection Cache Name. Must be a valid String and
Unique

ORA-17139 Invalid Connection Cache Properties

ORA-17111 Invalid connection cache TTL timeout specified

ORA-17103 invalid connection type to return via getConnection. Use
getJavaSqlConnection instead

ORA-17132 Invalid conversion requested

ORA-17018 Invalid cursor

ORA-17100 Invalid database Java Object

ORA-17007 Invalid dynamic column

ORA-17098 Invalid empty lob operation

ORA-17127 Invalid Fixed Wait timeout specified

ORA-17106 invalid JDBC-OCI driver connection pool configuration
specified

ORA-17074 invalid name pattern

ORA-17145 Invalid ONS Event received

ORA-17146 Invalid ONS Event Version received

ORA-17075 Invalid operation for forward only resultset

ORA-17076 Invalid operation for read only resultset

Table D–2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

General JDBC Messages

D-10 Oracle Database JDBC Developer's Guide

ORA-17143 Invalid or Stale Connection found in the Connection Cache

ORA-17067 Invalid Oracle URL specified

ORA-17099 Invalid PL/SQL Index Table array length

ORA-17097 Invalid PL/SQL Index Table element type

ORA-17101 Invalid properties in OCI Connection Pool Object

ORA-17107 invalid proxy type specified

ORA-17020 Invalid row prefetch

ORA-17123 Invalid statement cache size specified

ORA-17043 Invalid stream maximum size

ORA-17064 Invalid Sytnax or Database name is null

ORA-17112 Invalid thread interval specified

ORA-17161 Invalid transaction mode used

ORA-17002 Io exception

ORA-17092 JDBC statements cannot be created or executed at end of call
processing

ORA-17134 Length of named parameter in SQL exceeded 32 characters

ORA-17136 Malformed DATALINK URL, try getString() instead

ORA-17033 Malformed SQL92 string at position

ORA-17148 Method only implemented in thin

ORA-17159 metric value for end-to-end tracing is too long

ORA-17021 Missing defines

ORA-17022 Missing defines at index

ORA-17061 Missing descriptor

ORA-17041 Missing IN or OUT parameter at index:

ORA-17082 No current row

ORA-17024 No data read

ORA-17108 No max length specified in defineColumnType

ORA-17050 no such element in vector

ORA-17056 Non supported character set (add orai18n.jar in your classpath)

ORA-17034 Non supported SQL92 token at position

ORA-17173 Not all return parameters registered

ORA-17063 Not in a transaction

ORA-17083 Not on the insert row

ORA-17026 Numeric Overflow

ORA-17094 Object type version mismatched

ORA-17093 OCI operation returned OCI_SUCCESS_WITH_INFO

ORA-17090 operation not allowed

Table D–2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

General JDBC Messages

JDBC Error Messages D-11

ORA-17135 Parameter name used in setXXXStream appears more than once
in SQL

ORA-17012 Parameter Type Conflict

ORA-17167 PKI classes not found. To use 'connect /' functionality,
oraclepki.jar must be in the classpath

ORA-17030 READ_COMMITTED and SERIALIZABLE are the only valid
transaction levels

ORA-17062 Ref cursor is invalid

ORA-17014 ResultSet.next was not called

ORA-17031 setAutoClose: Only support auto close mode on

ORA-17029 setReadOnly: Read-only connections not supported

ORA-17157 setString can only process strings of less than 32766 chararacters

ORA-17104 SQL statement to execute cannot be empty or null

ORA-17129 SQL string is not a DML Statement

ORA-17128 SQL string is not Query

ORA-17263 SQLXML cannot create a Result of that type

ORA_17264 SQLXML cannoct create a Source of that type

ORA-17259 SQLXML cannot find the XML support jar file in the classpath

ORA-17109 standard Java character encoding not found

ORA-17095 Statement cache size has not been set

ORA-17096 Statement Caching cannot be enabled for this logical connection.

ORA-17144 statement handle not executed

ORA-17016 Statement timed out

ORA-17015 Statement was cancelled

ORA-17027 Stream has already been closed

ORA-17040 Sub Protocol must be specified in connection URL

ORA-17172 That value of the attribute cannot exceed 400 chars

ORA-17171 The attribute length cannot exceed 30 chars

ORA-17054 The LOB locator is not valid

ORA-17170 The Namespace cannot be empty

ORA-17174 The only supported namespace is CLIENTCONTEXT

ORA-17053 The size is not valid

ORA-17051 This API cannot be be used for non-UDT types

ORA-17149 This is already a proxy session

ORA-17152 This method is only implemented in logical connections

ORA-17153 This method is only implemented in physical connections

ORA-17052 This ref is not valid

ORA-17113 Thread interval value is more than the cache timeout value

Table D–2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

Native XA Messages

D-12 Oracle Database JDBC Developer's Guide

Native XA Messages
The following sections cover the JDBC error messages that are specific to the Native
XA feature:

■ Native XA Messages Sorted by ORA Number

■ Native XA Messages Sorted in Alphabetic Order

Native XA Messages Sorted by ORA Number
The following table lists the Native XA messages sorted by the ORA number:

ORA-17091 Unable to create resultset at the requested type and/or
concurrency level

ORA-17086 Undefined column value on the insert row

ORA-17048 Undefined type

ORA-17005 Unsupported column type

ORA-17023 Unsupported feature

ORA-17162 Unsupported holdability value

ORA-17088 Unsupported syntax for requested resultset type and
concurrency level

ORA-17133 UNUSED

ORA-17069 Use explicit XA call

ORA-17079 User credentials doesn't match the existing ones

ORA-17085 Value conflicts occurs

ORA-17150 Wrong arguments for proxy session

Table D–3 Native XA Messages Sorted by ORA Number

ORA Number Message

ORA-17200 Unable to properly convert XA open string from Java to C

ORA-17201 Unable to properly convert XA close string from Java to C

ORA-17202 Unable to properly convert RM name from Java to C

ORA-17203 Could not casting pointer type to jlong

ORA-17204 Input array too short to hold OCI handles

ORA-17205 Failed to obtain OCISvcCtx handle from C-XA using xaoSvcCtx

ORA-17206 Failed to obtain OCIEnv handle from C-XA using xaoEnv

ORA-17207 The tnsEntry property was not set in DataSource

ORA-17213 C-XA returned XAER_RMERR during xa_open

ORA-17215 C-XA returned XAER_INVAL during xa_open

ORA-17216 C-XA returned XAER_PROTO during xa_open

ORA-17233 C-XA returned XAER_RMERR during xa_close

ORA-17235 C-XA returned XAER_INVAL during xa_close

Table D–2 (Cont.) JDBC Messages Sorted in Alphabetic Order

ORA Number Message

TTC Messages

JDBC Error Messages D-13

Native XA Messages Sorted in Alphabetic Order
The following table lists the Native XA messages sorted in the alphabetic order:

TTC Messages
This section lists TTC error messages, first sorted by the ORA number and then in
alphabetic order in the following subsections:

■ TTC Messages Sorted by ORA Number

■ TTC Messages Sorted in Alphabetic Order

TTC Messages Sorted by ORA Number
The following table lists the TTC messages sorted by the ORA number:

ORA-17236 C-XA returned XAER_PROTO during xa_close

Table D–4 Native XA Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17203 Could not casting pointer type to jlong

ORA-17235 C-XA returned XAER_INVAL during xa_close

ORA-17215 C-XA returned XAER_INVAL during xa_open

ORA-17236 C-XA returned XAER_PROTO during xa_close

ORA-17216 C-XA returned XAER_PROTO during xa_open

ORA-17233 C-XA returned XAER_RMERR during xa_close

ORA-17213 C-XA returned XAER_RMERR during xa_open

ORA-17206 Failed to obtain OCIEnv handle from C-XA using xaoEnv

ORA-17205 Failed to obtain OCISvcCtx handle from C-XA using xaoSvcCtx

ORA-17204 Input array too short to hold OCI handles

ORA-17207 The tnsEntry property was not set in DataSource

ORA-17202 Unable to properly convert RM name from Java to C

ORA-17201 Unable to properly convert XA close string from Java to C

ORA-17200 Unable to properly convert XA open string from Java to C

Table D–5 TTC Messages Sorted by ORA Number

ORA Number Message

ORA-17401 Protocol violation

ORA-17402 Only one RPA message is expected

ORA-17403 Only one RXH message is expected

ORA-17404 Received more RXDs than expected

ORA-17405 UAC length is not zero

ORA-17406 Exceeding maximum buffer length

Table D–3 (Cont.) Native XA Messages Sorted by ORA Number

ORA Number Message

TTC Messages

D-14 Oracle Database JDBC Developer's Guide

ORA-17407 invalid Type Representation(setRep)

ORA-17408 invalid Type Representation(getRep)

ORA-17409 invalid buffer length

ORA-17410 No more data to read from socket

ORA-17411 Data Type representations mismatch

ORA-17412 Bigger type length than Maximum

ORA-17413 Exceding key size

ORA-17414 Insufficient Buffer size to store Columns Names

ORA-17415 This type hasn't been handled

ORA-17416 FATAL

ORA-17417 NLS Problem, failed to decode column names

ORA-17418 Internal structure's field length error

ORA-17419 Invalid number of columns returned

ORA-17420 Oracle Version not defined

ORA-17421 Types or Connection not defined

ORA-17422 Invalid class in factory

ORA-17423 Using a PLSQL block without an IOV defined

ORA-17424 Attempting different marshaling operation

ORA-17425 Returning a stream in PLSQL block

ORA-17426 Both IN and OUT binds are NULL

ORA-17427 Using Uninitialized OAC

ORA-17428 Logon must be called after connect

ORA-17429 Must be at least connected to server

ORA-17430 Must be logged on to server

ORA-17431 SQL Statement to parse is null

ORA-17432 invalid options in all7

ORA-17433 invalid arguments in call

ORA-17434 not in streaming mode

ORA-17435 invalid number of in_out_binds in IOV

ORA-17436 invalid number of outbinds

ORA-17437 Error in PLSQL block IN/OUT argument(s)

ORA-17438 Internal - Unexpected value

ORA-17439 Invalid SQL type

ORA-17440 DBItem/DBType is null

ORA-17441 Oracle Version not supported. Minimum supported version is
7.2.3.

ORA-17442 Refcursor value is invalid

Table D–5 (Cont.) TTC Messages Sorted by ORA Number

ORA Number Message

TTC Messages

JDBC Error Messages D-15

TTC Messages Sorted in Alphabetic Order
The following table lists the TTC messages in the alphabetic order:

ORA-17443 Null user or password not supported in THIN driver

ORA-17444 TTC Protocol version received from server not supported

ORA-17445 LOB already opened in the same transaction

ORA-17446 LOB already closed in the same transaction

ORA-17447 OALL8 is in an inconsistent state

Table D–6 TTC Messages Sorted in Alphabetic Order

ORA Number Message

ORA-17424 Attempting different marshaling operation

ORA-17412 Bigger type length than Maximum

ORA-17426 Both IN and OUT binds are NULL

ORA-17411 Data Type representations mismatch

ORA-17440 DBItem/DBType is null

ORA-17437 Error in PLSQL block IN/OUT argument(s)

ORA-17413 Exceding key size

ORA-17406 Exceeding maximum buffer length

ORA-17416 FATAL

ORA-17414 Insufficient Buffer size to store Columns Names

ORA-17438 Internal - Unexpected value

ORA-17418 Internal structure's field length error

ORA-17433 invalid arguments in call

ORA-17409 invalid buffer length

ORA-17422 Invalid class in factory

ORA-17419 Invalid number of columns returned

ORA-17435 invalid number of in_out_binds in IOV

ORA-17436 invalid number of outbinds

ORA-17432 invalid options in all7

ORA-17439 Invalid SQL type

ORA-17408 invalid Type Representation(getRep)

ORA-17407 invalid Type Representation(setRep)

ORA-17446 LOB already closed in the same transaction

ORA-17445 LOB already opened in the same transaction

ORA-17428 Logon must be called after connect

ORA-17429 Must be at least connected to server

ORA-17430 Must be logged on to server

Table D–5 (Cont.) TTC Messages Sorted by ORA Number

ORA Number Message

TTC Messages

D-16 Oracle Database JDBC Developer's Guide

ORA-17417 NLS Problem, failed to decode column names

ORA-17410 No more data to read from socket

ORA-17434 not in streaming mode

ORA-17443 Null user or password not supported in THIN driver

ORA-17447 OALL8 is in an inconsistent state

ORA-17402 Only one RPA message is expected

ORA-17403 Only one RXH message is expected

ORA-17420 Oracle Version not defined

ORA-17441 Oracle Version not supported. Minimum supported version is
7.2.3.

ORA-17401 Protocol violation

ORA-17404 Received more RXDs than expected

ORA-17442 Refcursor value is invalid

ORA-17425 Returning a stream in PLSQL block

ORA-17431 SQL Statement to parse is null

ORA-17415 This type hasn't been handled

ORA-17444 TTC Protocol version received from server not supported

ORA-17421 Types or Connection not defined

ORA-17405 UAC length is not zero

ORA-17423 Using a PLSQL block without an IOV defined

ORA-17427 Using Uninitialized OAC

Table D–6 (Cont.) TTC Messages Sorted in Alphabetic Order

ORA Number Message

Troubleshooting E-1

E
Troubleshooting

This appendix describes how to troubleshoot a Java Database Connectivity (JDBC)
application or applet, and contains the following topics:

■ Common Problems

■ Basic Debugging Procedures

Common Problems
This section describes some common problems that you might encounter while using
Oracle JDBC drivers. These problems include:

■ Memory Consumption for CHAR Columns Defined as OUT or IN/OUT Variables

■ Memory Leaks and Running Out of Cursors

■ Boolean Parameters in PL/SQL Stored Procedures

■ Opening More Than 16 OCI Connections for a Process

■ Using statement.cancel

■ Using JDBC with Firewalls

■ Frequent Abrupt Disconnection from Server

Memory Consumption for CHAR Columns Defined as OUT or IN/OUT Variables
In PL/SQL, when a CHAR or a VARCHAR2 column is defined as a OUT or IN/OUT
variable, the driver allocates a CHAR array of 32512 chars. This can cause a memory
consumption problem. JDBC Thin driver does not allocate memory when using
VARCHAR2 output type. But JDBC OCI driver allocates memory for both CHAR and
VARCHAR2 types. So, CPU load in OCI driver is higher than Thin driver.

At previous releases, the solution to the problem was to invoke the
Statement.setMaxFieldSize method. A better solution is to use
OracleCallableStatement.registerOutParameter. Oracle encourages you
always to call registerOutParameter (int paramIndex, int sqlType,
int scale, int maxLength) on each CHAR or VARCHAR2 column. This method is
defined in oracle.jdbc.driver.OracleCallableStatement. Use the fourth
argument, maxLength, to limit the memory consumption. This parameter tells the
driver how many characters are necessary to store this column. The column is
truncated if the character array cannot hold the column data. The third argument,
scale, is ignored by the driver.

Common Problems

E-2 Oracle Database JDBC Developer's Guide

Memory Leaks and Running Out of Cursors
If you receive messages that you are running out of cursors or that you are running
out of memory, make sure that all your Statement and ResultSet objects are
explicitly closed. Oracle JDBC drivers do not have finalizer methods. They perform
cleanup routines by using the close method of the ResultSet and Statement
classes. If you do not explicitly close your result set and statement objects, significant
memory leaks can occur. You could also run out of cursors in the database. Closing a
statement releases the corresponding cursor in the database.

Similarly, you must explicitly close Connection objects to avoid leaking and running
out of cursors on the server-side. When you close the connection, the JDBC driver
closes any open statement objects associated with it, thus releasing the cursor on the
server-side.

Boolean Parameters in PL/SQL Stored Procedures
The JDBC drivers do not support the passing of BOOLEAN parameters to PL/SQL
stored procedures. If a PL/SQL procedure contains BOOLEAN values, you can work
around the restriction by wrapping the PL/SQL procedure with a second PL/SQL
procedure that accepts the argument as an INT and passes it to the first stored
procedure. When the second procedure is called, the server performs the conversion
from INT to BOOLEAN.

The following is an example of a stored procedure, BOOLPROC, that attempts to pass a
BOOLEAN parameter, and a second procedure, BOOLWRAP, that performs the
substitution of an INT value for the BOOLEAN.

CREATE OR REPLACE PROCEDURE boolproc(x boolean)
AS
BEGIN
[...]
END;

CREATE OR REPLACE PROCEDURE boolwrap(x int)
AS
BEGIN
IF (x=1) THEN
 boolproc(TRUE);
ELSE
 boolproc(FALSE);
END IF;
END;

// Create the database connection from a DataSource
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci:@<...hoststring...>");
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();
CallableStatement cs = conn.prepareCall ("begin boolwrap(?); end;");
cs.setInt(1, 1);
cs.execute ();

Opening More Than 16 OCI Connections for a Process
You might find that you are not able to open more than approximately 16 JDBC-OCI
connections for a process at any given time. The most likely reasons for this would be
either that the number of processes on the server exceeded the limit specified in the

Common Problems

Troubleshooting E-3

initialization file, or that the per-process file descriptors limit was exceeded. It is
important to note that one JDBC-OCI connection can use more than one file descriptor
(it might use anywhere between 3 and 4 file descriptors).

If the server allows more than 16 processes, then the problem could be with the
per-process file descriptor limit. The possible solution would be to increase this limit.

Using statement.cancel
The JDBC standard method Statement.cancel attempts to cleanly stop the
execution of a SQL statement by sending a message to the database. In response, the
database stops execution and replies with an error message. The Java thread that
invoked Statement.execute waits on the server, and continues execution only
when it receives the error reply message invoked by the other thread's call to
Statement.cancel.

As a result, Statement.cancel relies on the correct functioning of the network and
the database. If either the network connection is broken or the database server is hung,
the client does not receive the error reply to the cancel message. Frequently, when the
server process dies, JDBC receives an IOException that frees the thread that invoked
Statement.execute. In some circumstances, the server is hung, but JDBC does not
receive an IOException. Statement.cancel does not free the thread that initiated
the Statement.execute.

When JDBC does not receive an IOException, Oracle Net may eventually time out
and close the connection. This causes an IOException and frees the thread. This
process can take many minutes. For information about how to control this time-out,
see the description of the readTimeout property for
OracleDatasource.setConnectionProperties. You can also tune this time-out
with certain Oracle Net settings. See the Oracle Database Net Services Administrator's
Guide for more information.

The JDBC standard method Statement.setQueryTimeout relies on
Statement.cancel. If execution continues longer than the specified time-out
interval, then the monitor thread calls Statement.cancel. This is subject to all the
same limitations described previously. As a result, there are cases when the time-out
does not free the thread that invoked Statement.execute.

The length of time between execution and cancellation is not precise. This interval is
no less than the specified time-out interval but can be several seconds longer. If the
application has active threads running at high priority, then the interval can be
arbitrarily longer. The monitor thread runs at high priority, but other high priority
threads may keep it from running indefinitely. Note that the monitor thread is started
only if there are statements executed with non zero time-out. There is only one
monitor thread that monitors all Oracle JDBC statement execution.

Statement.cancel and Statement.setQueryTimeout are not supported in the
server-side internal driver. The server-side internal driver runs in the single-threaded
server process; the Oracle JVM implements Java threads within this single-threaded
process. If the server-side internal driver is executing a SQL statement, then no Java
thread can call Statement.cancel. This also applies to the Oracle JDBC monitor
thread.

Using JDBC with Firewalls
Firewall timeout for idle-connections may sever a connection. This can cause JDBC
applications to hang while waiting for a connection. You can perform one or more of
the following actions to avoid connections from being severed due to firewall timeout:

Basic Debugging Procedures

E-4 Oracle Database JDBC Developer's Guide

■ If you are using connection caching or connection pooling, then always set the
inactivity timeout value on the connection cache to be shorter than the firewall idle
timeout value.

■ Pass oracle.net.READ_TIMEOUT as connection property to enable read timeout
on socket. The timeout value is in milliseconds.

■ For both JDBC OCI and JDBC Thin drivers, use net descriptor to connect to the
database and specify the ENABLE=BROKEN parameter in the DESCRIPTION clause
in the connect descriptor. Also, set a lower value for TCP_KEEPALIVE_
INTERVAL.

■ Enable Oracle Net DCD by setting SQLNET.EXPIRE_TIME=1 in the sqlnet.ora
file on the server-side.

Frequent Abrupt Disconnection from Server
If the network is not reliable, then it is difficult for a client to detect the frequent
disconnections when the server is abruptly disconnected. By default, a client running
on Linux takes 7200 seconds (2 hours) to sense the abrupt disconnections. This value is
equal to the value of the tcp_keepalive_time property. If you want your
application to detect the disconnections faster, then you must set the value of the tcp_
keepalive_time, tcp_keepalive_interval, and tcp_keepalive_probes
properties to a lower value at the operating system level.

Also, you must specify the ENABLE=BROKEN parameter in the DESCRIPTION clause in
the connection descriptor. For example:

jdbc:oracle:thin:@(DESCRIPTION=(ENABLE=BROKEN)(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(H
OST=myhost))(CONNECT_DATA=(SID=orcl)))

Basic Debugging Procedures
This section describes strategies for debugging a JDBC program:

■ Oracle Net Tracing to Trap Network Events

■ Third Party Debugging Tools

For information about processing SQL exceptions, including printing stack traces to
aid in debugging, see "Processing SQL Exceptions" on page 2-16.

Oracle Net Tracing to Trap Network Events
You can enable client and server Oracle-Net trace to trap the packets sent over Oracle
Net. You can use client-side tracing only for the JDBC OCI driver; it is not supported
for the JDBC Thin driver. You can find more information about tracing and reading
trace files in the Oracle Net Services Administrator's Guide.

The trace facility produces a detailed sequence of statements that describe network
events as they execute. "Tracing" an operation lets you obtain more information about
the internal operations of the event. This information is printed to a readable file that

Note: Setting a low value for the tcp_keepalive_interval
property leads to frequent probe packets on the network, which can
make the system slower. So, the value of this property should be set
appropriately based on the system requirements.

Basic Debugging Procedures

Troubleshooting E-5

identifies the events that led to the error. Several Oracle Net parameters in the
SQLNET.ORA file control the gathering of trace information. After setting the
parameters in SQLNET.ORA, you must make a new connection for tracing to be
performed.

The higher the trace level, the more detail is captured in the trace file. Because the
trace file can be hard to understand, start with a trace level of 4 when enabling tracing.
The first part of the trace file contains connection handshake information, so look
beyond this for the SQL statements and error messages related to your JDBC program.

Client-Side Tracing
 Set the following parameters in the SQLNET.ORA file on the client system.

TRACE_LEVEL_CLIENT

Purpose:

Turns tracing on/off to a certain specified level.

Default Value:

0 or OFF

Available Values:

■ 0 or OFF - No trace output

■ 4 or USER - User trace information

■ 10 or ADMIN - Administration trace information

■ 16 or SUPPORT - WorldWide Customer Support trace information

Example:

TRACE_LEVEL_CLIENT=10

TRACE_DIRECTORY_CLIENT

Purpose:

Specifies the destination directory of the trace file.

Default Value:

ORACLE_HOME/network/trace

Example:

UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces

Windows: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES

TRACE_FILE_CLIENT

Purpose:

Specifies the name of the client trace file.

Default Value:

Note: The trace facility uses a large amount of disk space and
might have significant impact upon system performance.
Therefore, enable tracing only when necessary.

Basic Debugging Procedures

E-6 Oracle Database JDBC Developer's Guide

SQLNET.TRC

Example:

TRACE_FILE_CLIENT=cli_Connection1.trc

TRACE_UNIQUE_CLIENT

Purpose:

Gives each client-side trace a unique name to prevent each trace file from being
overwritten with the next occurrence of a client trace. The PID is attached to the end of
the file name.

Default Value:

OFF

Example:

TRACE_UNIQUE_CLIENT = ON

Server-Side Tracing
Set the following parameters in the SQLNET.ORA file on the server system. Each
connection will generate a separate file with a unique file name.

TRACE_LEVEL_SERVER

Purpose:

Turns tracing on/off to a certain specified level.

Default Value:

0 or OFF

Available Values:

■ 0 or OFF - No trace output

■ 4 or USER - User trace information

■ 10 or ADMIN - Administration trace information

■ 16 or SUPPORT - WorldWide Customer Support trace information

Example:

TRACE_LEVEL_SERVER=10

TRACE_DIRECTORY_SERVER

Purpose:

Specifies the destination directory of the trace file.

Default Value:

ORACLE_HOME/network/trace

Example:

Note: Ensure that the name you choose for the TRACE_FILE_
CLIENT file is different from the name you choose for the TRACE_
FILE_SERVER file.

Basic Debugging Procedures

Troubleshooting E-7

TRACE_DIRECTORY_SERVER=/oracle/traces

TRACE_FILE_SERVER

Purpose:

Specifies the name of the server trace file.

Default Value:

SERVER.TRC

Example:

TRACE_FILE_SERVER= svr_Connection1.trc

Third Party Debugging Tools
You can use tools such as JDBCSpy and JDBCTest from Intersolv to troubleshoot at the
JDBC API level. These tools are similar to ODBCSpy and ODBCTest.

Note: Ensure that the name you choose for the TRACE_FILE_
SERVER file is different from the name you choose for the TRACE_
FILE_CLIENT file.

Basic Debugging Procedures

E-8 Oracle Database JDBC Developer's Guide

Index-1

Index

A
acceptChanges() method, 18-8
Accessing PL/SQL Index-by Tables, 4-5
addBatch() method, 23-9
ANYDATA, 4-16
ANYTYPE, 4-16
APPLET HTML tag, 5-8
applets

connecting to a database, 5-2
deploying in an HTML page, 5-8
packaging, 5-8
signed applets

browser security, 5-5
object-signing certificate, 5-6

using signed applets, 5-5
using with firewalls, 5-6

ARCHIVE, parameter for APPLET tag, 5-9
ARRAY

class, 4-7
descriptors, 4-7
objects, creating, 4-7, 16-5

arrays
defined, 16-1
getting, 16-9
named, 16-1
passing to callable statement, 16-12
retrieving from a result set, 16-6
retrieving partial arrays, 16-9
using type maps, 16-12
working with, 16-1

authentication (security), 9-3
auto-commit, 2-13
auto-commit mode

disabling, C-1
result set behavior, C-1

B
batch jobs, authenticating users in, 9-22
batch updates--see update batching
batch value

checking value, 23-5
connection batch value, setting, 23-4
connection vs. statement value, 23-3
default value, 23-3

overriding value, 23-5
statement batch value, setting, 23-4

BatchUpdateException, 23-12
beforeFirst() method, 18-5
BFILE

class, 4-7
defined, 12-7

BFILE locator, selecting, 4-8
BigDecimal mapping (for attributes), 13-28
BLOB

class, 4-7
locators

selecting, 4-8
Boolean parameters, restrictions, E-2
branch qualifier (distributed transactions), 29-12

C
CachedRowSet, 18-6
caching, client-side

Oracle use for scrollable result sets, 17-1
callable statement

using getOracleObject() method, 11-7
cancelling

SQL statements, E-3
casting return values, 11-10
catalog arguments (DatabaseMetaData), A-12
CHAR columns

using setFixedCHAR() to match in
WHERE, 11-13

character sets, 4-13
checksums

code example, 9-9
setting parameters in Java, 9-9
support by OCI drivers, 9-7
support by Thin driver, 9-8

CLASSPATH environment variable, specifying, 2-3
clearBatch() method, 23-10
clearDefines() method, 23-18
CLOB

class, 4-7
locators, selecting, 4-8

close method, 20-11
close(), 20-3
close() method, E-2

for caching statements, 20-6, 20-7

Index-2

closeWithKey(), 20-3
closeWithKey() method, 20-9
CMAN.ORA file, creating, 5-4
CODE, parameter for APPLET tag, 5-8
CODEBASE, parameter for APPLET tag, 5-9
collections

defined, 16-1
collections (nested tables and arrays), 16-5
column types

defining, 23-18
redefining, 23-15

commit a distributed transaction branch, 29-11
commit changes to database, 2-13
CONNECT / feature, 9-21
connection

closing, 2-14
opening, 2-8

connection attributes, 21-7
connection cache properties, 21-9
Connection Manager

installing, 5-4
starting, 5-5
using, 5-4
using multiple managers, 5-5
writing the connection string, 5-5

connection properties, 8-7
put() method, 8-9

connection string
Connection Manager, 5-5

connections
read-only, C-3

constants for SQL types, 4-22
CREATE TYPE statement, 13-16
create() method

for ORADataFactory interface, 13-11
createSQLXML

method to create an XML instance, 3-7
createStatement(), 20-3
createStatement() method, 20-9
createTemporary() method, 14-8
CursorName

limitations, A-11
cursors, E-2
custom collection classes

and JPublisher, 16-14
defined, 16-1, 16-13

custom Java classes, 4-3
defined, 13-1

custom object classes
creating, 13-5
defined, 13-1

custom reference classes
and JPublisher, 15-4
defined, 15-1, 15-4

D
data conversions, 11-4

LONG, 12-3
LONG RAW, 12-2

data sources
creating and connecting (with JNDI), 8-5
creating and connecting (without JNDI), 8-5
Oracle implementation, 8-2
properties, 8-2
standard interface, 8-2

data streaming
avoiding, 12-5

data type mappings, 11-1
data types

Java, 11-1
Java native, 11-1
JDBC, 11-1
Oracle SQL, 11-1

database
connecting

from an applet, 5-2
via multiple Connection Managers, 5-5
with server-side internal driver, 7-1

connection testing, 2-5
database specifiers, 8-10
database URL

including userid and password, 2-9
database URL, specifying, 2-8
database URLs

and database specifiers, 8-10
DatabaseMetaData calls, A-12
DatabaseMetaData class, A-9
datasources, 8-1

and JNDI, 8-5 to 8-6
DATE class, 4-8
DBMS_SERVICE.SERVICE_TIME, 22-2
DBMS_SERVICE.THROUGHPUT, 22-2
debugging JDBC programs, E-4
DEFAULT_CHARSET character set value, 4-12
defaultConnection() method, 7-1
defineColumnType() method, 12-5, 23-18
distributed transaction ID component, 29-12
distributed transactions

branch qualifier, 29-12
check for same resource manager, 29-12
commit a transaction branch, 29-11
components and scenarios, 29-2
concepts, 29-2
distributed transaction ID component, 29-12
end a transaction branch, 29-9
example of implementation, 29-15
forget, 29-11
global transaction identifier, 29-12
ID format identifier, 29-12
obtain the list of transaction brances during

recovery, 29-11
Oracle XA connection implementation, 29-6
Oracle XA data source implementation, 29-6
Oracle XA ID implementation, 29-12
Oracle XA optimizations, 29-14
Oracle XA resource implementation, 29-7
overview, 29-1
prepare a transaction branch, 29-10
roll back a transaction branch, 29-11

Index-3

start a transaction branch, 29-8
transaction branch ID component, 29-12
XA connection interface, 29-6
XA data source interface, 29-6
XA error handling, 29-14
XA exception classes, 29-13
XA ID interface, 29-12
XA resource functionality, 29-8
XA resource interface, 29-7

DML Returning, 4-4, 4-25
example, 4-26
limitations, 4-27
Oracle-specific APIs, 4-26
running statements, 4-26

Double.NaN
restrictions on use, 4-8

driverType, 8-3

E
encryption

code example, 9-9
overview, 9-6
setting parameters in Java, 9-9
support by OCI drivers, 9-7
support by Thin driver, 9-8

end a distributed transaction branch, 29-9
Enterprise Java Beans (EJB), 18-8
environment variables

specifying, 2-3
errors

general JDBC message structure, D-1
general JDBC messages, listed, D-1
processing exceptions, 2-16
TTC messages, listed, D-13

exceptions
retrieving error code, 2-17
retrieving message, 2-17
retrieving SQL state, 2-17

execute() method, 18-10
executeBatch() method, 23-10
executeUpdate() method, 23-6
explicit Statement caching

definition of, 20-3
null data, 20-10

extensions to JDBC, Oracle, 4-1, 11-1, 13-1, 15-1, 16-1,
23-1

external changes (result set)
defined, 17-6
visibility vs. detection, 17-6

external file
defined, 12-7

F
failover

fast connection, 27-1 to 27-6
Fast Connection Failover, 27-1 to 27-6
fast connection failover

prerequisites, 27-2

fetch direction in result sets, 17-5
fetch size, result sets, 17-4
FilteredRowSet, 18-12
finalizer methods, E-2
firewalls

configuring for applets, 5-6
connection string, 5-7
described, 5-6
required rule list items, 5-6
using with applets, 5-6

Firewalls, using with JDBC, E-3
floating-point compliance, A-12
Float.NaN

restrictions on use, 4-8
format identifier, transaction ID, 29-12
freeTemporary() method, 14-8
function call syntax, JDBC escape syntax, A-10

G
getARRAY() method, 16-6
getArray() method, 16-5, 16-6

using type maps, 16-8
getAttributes() method

used by Structs, 13-8
getAutoBuffering() method

of the oracle.sql.ARRAY class, 16-4
of the oracle.sql.STRUCT class, 13-4

getBaseType() method, 16-9
getBinaryStream() method, 12-3
getBytes() method, 4-5, 12-4
getCallWithKey(), 20-3
getCallWithKey() method, 20-10
getColumns() method, 23-20
getConcurrency() method (result set), 17-3
getConnection() method, 7-1, 24-6
getCursor() method, 4-15
getCursorName() method

limitations, A-11
getDefaultExecuteBatch() method, 23-5
getErrorCode() method (SQLException), 2-17
getExecuteBatch() method, 23-4, 23-5
getFetchSize() method, 17-4
getJavaSqlConnection() method, 4-24
getMessage() method (SQLException), 2-17
getNumericFunctions() method, A-9
getObject() method

casting return values, 11-10
for object references, 15-2
for ORAData objects, 13-12
return types, 11-6, 11-8
to get Oracle objects, 13-3
used with ORAData interface, 13-13

getObjectReturnsXMLType
property to change the return type of the

getObjectMethod, 3-8
getOracleArray() method, 16-6, 16-9
getOracleAttributes() method, 13-3
getOracleObject() method

casting return values, 11-10

Index-4

return types, 11-7, 11-8
using in callable statement, 11-7
using in result set, 11-7

getOraclePlsqlIndexTable() method, 4-29, 4-31, 4-32
argument

int paramIndex, 4-32
code example, 4-32

getORAData() method, 13-12, 13-13
getPassword() method, 8-3
getPlsqlIndexTable() method, 4-29, 4-31, 4-33

arguments
Class primitiveType, 4-33
int paramIndex, 4-33

code example, 4-32, 4-33
getProcedureColumns() method, 23-20
getProcedures() method, 23-20
getSQLState() method (SQLException), 2-17
getSQLTypeName() method, 13-3, 16-9
getStatementCacheSize() method

code example, 20-5
getStatementWithKey(), 20-3
getStatementWithKey() method, 20-10
getString() method, 4-12

to get ROWIDs, 4-13
getStringFunctions() method, A-9
getStringWithReplacement() method, 4-12
getSystemFunctions() method, A-9
getTimeDateFunctions() method, A-9
getTransactionIsolation() method, C-4
getType() method (result set), 17-3
getTypeMap() method, 13-7
getUpdateCounts() method

(BatchUpdateException), 23-12
getValue() method

for object references, 15-3
getXXX() methods

casting return values, 11-10
for specific data types, 11-9

global transaction identifier (distributed
transactions), 29-12

global transactions, 29-1
globalization, 19-1 to ??

using, 19-1

H
HEIGHT, parameter for APPLET tag, 5-8
HTML tags, to deploy applets, 5-8

I
IEEE 754 floating-point compliance, A-12
implicit connection cache, 21-1

example, 21-6
implicit Statement caching

definition of, 20-2
Least Recently Used (LRU) algorithm, 20-2

IN OUT parameter mode, 4-30
IN parameter mode, 4-29
installation

directories and files, 2-2
verifying on the client, 2-2

Instant Client feature, 6-4
integrity

code example, 9-9
overview, 9-6
setting parameters in Java, 9-9
support by OCI drivers, 9-7
support by Thin driver, 9-8

internal changes (result set)
defined, 17-6

isSameRM() (distributed transactions), 29-12
isTemporary() method, 14-8

J
Java

compiling and running, 2-5
data types, 11-1
native data types, 11-1
stored procedures, 2-16
stream data, 12-1

Java Naming and Directory Interface (JNDI), 8-1
Java Sockets, 1-3
Java Virtual Machine (JVM), 7-1
java.math, Java math packages, 2-8
java.sql, JDBC packages, 2-8
java.sql.Connection interface

close method, 20-11
java.sql.SQLException() method, 2-16
java.sql.Statement interface

close method, 20-11
java.sql.Struct class

getSQLTypeName() method, 13-3
java.sql.Types class, 23-18
java.util.Map class, 16-9
java.util.Properties, 24-5
JDBC

and IDEs, 1-5
basic program, 2-7
data types, 11-1
defined, 1-1
importing packages, 2-8
limitations of Oracle extensions, A-11
sample files, 2-5
testing, 2-5
version support, 3-1 to 3-6

JDBC 2.0 support
data type support, 3-2
extended feature support, 3-2
introduction, 3-1
JDK 1.2.x vs. JDK 1.1.x, 3-1, 3-2
standard feature support, 3-2

JDBC drivers
applets, 5-2
choosing a driver for your needs, 1-4
common features, 1-2
common problems, E-1
determining driver version, 2-5
introduction, 1-1

Index-5

JDBC escape syntax, A-6
restrictions, E-2

JDBC escape syntax, A-6
function call syntax, A-10
LIKE escape characters, A-9
outer joins, A-10
scalar functions, A-9
time and date literals, A-7
translating to SQL example, A-10

JDBC mapping (for attributes), 13-28
JdbcCheckup program, 2-5
JDBCRowSet, 18-9
JDBCSpy, E-7
JDBCTest, E-7
JDeveloper, 1-5
JDK

versions supported, 1-5
JNDI

and datasources, 8-5 to 8-6
looking up data source, 8-6
overview of Oracle support, 8-1
registering data source, 8-6

JoinRowSet, 18-13
JPublisher, 13-14, 13-27
JPublisher utility, 13-5

creating custom collection classes, 16-13
creating custom Java classes, 13-27
creating custom reference classes, 15-4
SQL type categories and mapping options, 13-27
type mapping modes and settings, 13-28
type mappings, 13-27

JVM, 7-1

K
KPRB driver

overview, 1-3
relation to the SQL engine, 7-1
session context, 7-3
testing, 7-4
transaction context, 7-3
URL for, 7-3

L
LD_LIBRARY_PATH environment variable,

specifying, 2-4
LDAP

and SSL, 8-12
Least Recently Used (LRU) algorithm, 20-2, 24-5
libheteroxa11_g.so shared library, 29-20
libheteroxa11.so shared library, 29-20
LIKE escape characters, JDBC escape syntax, A-9
limitations on setBytes() and setString(), use of

streams to avoid, 12-9
load balancing advisory, 22-2
LOB

defined, 12-6
LONG

data conversions, 12-3

LONG RAW
data conversions, 12-2

LRU algorithm, 20-2

M
make() method, 4-12
memory leaks, E-2
mutable arrays, 16-14

N
named arrays, 16-1

defined, 16-5
nativeXA, 8-4, 29-20
network events, trapping, E-4
next() method, 18-5
NLS. See globalization
NLS_LANG variable

desupported, 19-1
NULL

testing for, 11-5
NULL data

converting, 11-5
null data

explicit Statement caching, 20-10
NullPointerException

thrown when converting Double.NaN and
Float.NaN, 4-8

NUMBER class, 4-8

O
object references

accessing object values, 15-3, 15-4
described, 15-1
passing to prepared statements, 15-3
retrieving, 15-2
retrieving from callable statement, 15-3
updating object values, 15-3, 15-4

object-JDBC mapping (for attributes), 13-28
OCI driver

described, 1-3
ODBCSpy, E-7
ODBCTest, E-7
ONS

configuring, 27-3 to ??
ons.config file, B-3, B-5
optimization, performance, C-1
Oracle Advanced Security

support by JDBC, 9-1
support by OCI drivers, 9-2
support by Thin driver, 9-3

Oracle Connection Manager, 5-3
Oracle data types

using, 11-1
Oracle extensions, 4-1

data type support, 4-2
limitations, A-11

catalog arguments to DatabaseMetaData
calls, A-12

Index-6

CursorName, A-11
IEEE 754 floating-point compliance, A-12
JDBC outer join escapes, A-12
PL/SQL TABLE, BOOLEAN, RECORD

types, A-12
read-only connection, C-3
SQLWarning class, A-13

object support, 4-3
result sets, 11-5
statements, 11-5
to JDBC, 4-1, 11-1, 13-1, 15-1, 16-1, 23-1

Oracle JPublisher, 4-3
generated classes, 13-22

Oracle mapping (for attributes), 13-28
Oracle Notification Service. See ONS
Oracle objects

and JDBC, 13-1
converting with ORAData interface, 13-11
getting with getObject() method, 13-3
Java classes which support, 13-2
mapping to custom object classes, 13-5
reading data by using SQLData interface, 13-9
working with, 13-1
writing data by using SQLData interface, 13-10

Oracle SQL data types, 11-1
OracleCallableStatement interface, 4-22

getOraclePlsqlIndexTable() method, 4-29
getPlsqlIndexTable() method, 4-29
getXXX() methods, 11-9
registerIndexTableOutParameter() method, 4-29,

4-30
registerOutParameter() method, 11-12
setPlsqlIndexTable() method, 4-29

OracleCallableStatement object, 20-2
OracleConnection class, 4-20
OracleConnection interface, 24-2
OracleConnection object, 20-2
OracleDatabaseMetaData class, A-9
OracleDataSource class, 8-2, 24-2
oracle.jdbc. package, 4-19
oracle.jdbc., Oracle JDBC extensions, 2-8
oracle.jdbc.OracleCallableStatement interface, 4-22
oracle.jdbc.OracleConnection interface, 4-20

getTransactionIsolation() method, C-4
setTransactionIsolation() method, C-4

oracle.jdbc.OraclePreparedStatement interface, 4-21
oracle.jdbc.OracleResultSet, 11-6
oracle.jdbc.OracleResultSet interface, 4-22
oracle.jdbc.OracleResultSetMetaData interface, 4-22,

11-14
using, 11-14

oracle.jdbc.OracleSql class, A-11
oracle.jdbc.OracleStatement, 11-6
oracle.jdbc.OracleStatement interface, 4-21
oracle.jdbc.OracleTypes class, 4-22, 23-18
oracle.jdbc.pool package, 24-3
oracle.jdbc.xa package and subpackages, 29-5
OracleOCIConnection class, 24-2
OracleOCIConnectionPool class, 24-1, 24-2
OraclePreparedStatement interface, 4-21

getOraclePlsqlIndexTable() method, 4-29
getPlsqlIndexTable() method, 4-29
registerIndexTableOutParameter() method, 4-29
setPlsqlIndexTable() method, 4-29

OraclePreparedStatement object, 20-2
OracleResultSet interface, 4-22

getXXX() methods, 11-9
OracleResultSetMetaData interface, 4-22
OracleServerDriver class

defaultConnection() method, 7-2
oracle.sql package

data conversions, 11-4
described, 4-5

oracle.sql.ARRAY class, 16-1
and nested tables, 4-7
and VARRAYs, 4-7
getAutoBuffering() method, 16-4
methods for Java primitive types, 16-4
setAutoBuffering() method, 16-4
setAutoIndexing() method, 16-4, 16-5

oracle.sql.BFILE class, 4-7
oracle.sql.BLOB class, 4-7
oracle.sql.CHAR class

getString() method, 4-12
getStringWithReplacement() method, 4-12
toString() method, 4-12

oracle.sql.CharacterSet class, 4-11
oracle.sql.CLOB class, 4-7
oracle.sql.data types

support, 4-5
oracle.sql.DATE class, 4-8
oracle.sql.Datum array, 4-32
oracle.sql.Datum class, described, 4-5
oracle.sql.NUMBER class, 4-8
oracle.sql.ORAData interface, 13-11
oracle.sql.ORADataFactory interface, 13-11
OracleSql.parse() method, A-11
oracle.sql.RAW class, 4-8
oracle.sql.REF class, 4-6
oracle.sql.ROWID class, 4-13
oracle.sql.STRUCT class, 4-6

getAutoBuffering() method, 13-4
setAutoBuffering() method, 13-4

OracleStatement interface, 4-21
OracleTypes class, 4-22
OracleTypes class for typecodes, 4-22
OracleTypes.CURSOR variable, 4-15
OracleXAConnection class, 29-6
OracleXADataSource class, 29-6
OracleXAResource class, 29-7, 29-8
OracleXid class, 29-12
ORAData interface, 4-3

additional uses, 13-15
advantages, 13-6
Oracle object types, 13-1
reading data, 13-13
writing data, 13-14

orai18n.jar file, 19-2
OUT parameter mode, 4-30, 4-31
outer joins, JDBC escape syntax, A-10

Index-7

P
parameter modes

IN, 4-29
IN OUT, 4-30
OUT, 4-30, 4-31

password, specifying, 2-8
PATH environment variable, specifying, 2-4
PDA, 18-8
performance enhancements, standard vs. Oracle, 3-2
performance extensions

defining column types, 23-18
TABLE_REMARKS reporting, 23-20

performance optimization, C-1
Personal Digital Assistant (PDA), 18-8
PL/SQL

restrictions, E-2
stored procedures, 2-15

PL/SQL index-by tables, 4-28
mapping, 4-31
scalar data types, 4-28

PL/SQL types
corresponding JDBC types, 4-28
limitations, A-12

PoolConfig() method, 24-5
populate() method, 18-7
prefetching rows, 23-15

suggested default, 23-16
prepare a distributed transaction branch, 29-10
prepareCall(), 20-3
prepareCall() method, 20-6, 20-7, 20-9
PreparedStatement object

creating, 2-11
prepareStatement(), 20-3
prepareStatement() method, 20-6, 20-7, 20-9

code example, 20-7
put() method

for Properties object, 8-9
for type maps, 13-7

Q
query, executing, 2-9

R
RAW class, 4-8
recover (distributed transactions), 29-11
REF class, 4-6
REF CURSORs, 4-14

materialized as result set objects, 4-14
refetching rows into a result set, 17-5
refreshRow() method (result set), 17-5
registerIndexTableOutParameter() method, 4-29,

4-30
arguments

int elemMaxLen, 4-31
int elemSqlType, 4-31
int maxLen, 4-31
int paramIndex, 4-31

code example, 4-31

registerOutParameter() method, 11-12
remarksReporting flag, 23-15
Remote Method Invocation (RMI), 18-8
resource managers, 29-2
result set

auto-commit mode, C-1
metadata, 4-22
Oracle extensions, 11-5
using getOracleObject() method, 11-7

result set enhancements
downgrade rules, 17-3
fetch size, 17-4
limitations, 17-2
Oracle scrollability requirements, 17-1
Oracle updatability requirements, 17-2
refetching rows, 17-5
summary of visibility of changes, 17-6
visibility vs. detection of external changes, 17-6

result set fetch size, 17-4
Result Set Holdability, 3-6
result set object

closing, 2-10
result set, processing, 2-10
ResultSet class, 2-9
ResultSet() method, 16-5
Retrieval of Auto-Generated Keys, 3-4
return types

for getXXX() methods, 11-10
getObject() method, 11-8
getOracleObject() method, 11-8

return values
casting, 11-10

RMI, 18-8
roll back a distributed transaction branch, 29-11
roll back changes to database, 2-13
row prefetching

and data streams, 12-10
ROWID class

CursorName methods, A-11
defined, 4-13

ROWID, use for result set updates, 17-2
RowSet

events and event listeners, 18-3
overview, 18-1
properties, 18-2
traversing, 18-4

run-time connection load balancing, 22-1
enabling, 22-2
how it works, 22-1
load balancing advisory, 22-2
overview, 22-1

S
savepoints

transaction, 3-3 to ??
scalar functions, JDBC escape syntax, A-9
Schema Naming, 4-4
scripts, authenticating users in, 9-22
scrollable result sets

Index-8

fetch direction, 17-5
implementation of scroll-sensitivity, 17-7
refetching rows, 17-5
visibility vs. detection of external changes, 17-6

scroll-sensitive result sets
limitations, 17-2

security
authentication, 9-3
encryption, 9-6
integrity, 9-6
Oracle Advanced Security support, 9-1

SELECT statement
to retrieve object references, 15-2

sendBatch() method, 23-5, 23-7
server-side internal driver

connection to database, 7-1
server-side Thin driver, overview, 1-3
session context

for KPRB driver, 7-3
setAutoBuffering() method

of the oracle.sql.ARRAY class, 16-4
of the oracle.sql.STRUCT class, 13-4

setAutoCommit() method, C-1
setAutoIndexing() method, 16-4, 16-5
setBytes() limitations, using streams to avoid, 12-9
setCursorName() method, A-11
setDefaultExecuteBatch() method, 23-4
setDisableStatementCaching() method, 20-6
setEscapeProcessing() method, A-6
setExecuteBatch() method, 23-4
setFetchSize() method, 17-4
setFixedCHAR() method, 11-13
setMaxFieldSize() method, 23-19
setNull(), 11-5
setNull() method, 11-11
setObejct() method, 11-11
setObject() method

for CustomDatum objects, 13-12
for object references, 15-3
for STRUCT objects, 13-4
to write object data, 13-14

setOracleObject() method, 11-11
setORAData() method, 13-12, 13-14
setPlsqlIndexTable() method, 4-29

arguments
int curLen, 4-29
int elemMaxLen, 4-29
int elemSqlType, 4-29
int maxLen, 4-29
int paramIndex, 4-29, 4-32
Object arrayData, 4-29

code example, 4-30
setPoolConfig() method, 24-4
setREF() method, 15-3
setRemarksReporting() method, 23-20
setString() limitations, using streams to avoid, 12-9
setString() method

to bind ROWIDs, 4-13
setTransactionIsolation() method, C-4
setXXX() methods, for specific data types, 11-11

signed applets, 5-3
Solaris

shared libraries, 29-20
specifiers

database, 8-10
SQL

data converting to Java data types, 11-4
types, constants for, 4-22

SQL engine
relation to the KPRB driver, 7-1

SQL syntax (Oracle), A-7
SQLData interface, 4-3

advantages, 13-6
Oracle object types, 13-1
reading data from Oracle objects, 13-9
writing data from Oracle objects, 13-10

SQLNET.ORA
parameters for tracing, E-5

SQLWarning class, limitations, A-13
SSL

and LDAP, 8-12
start a distributed transaction branch, 29-8
Statement caching

explicit
definition of, 20-3
null data, 20-10

implicit
definition of, 20-2
Least Recently Used (LRU) algorithm, 20-2

Statement object
closing, 2-10
creating, 2-9

statement.cancel(), E-3
statements

Oracle extensions, 11-5
stopping

statement execution, E-3
stored procedures

Java, 2-16
PL/SQL, 2-15

stream data, 12-1
CHAR columns, 12-6
closing, 12-8
example, 12-3
external files, 12-6
LOBs, 12-6
LONG columns, 12-2
LONG RAW columns, 12-2
multiple columns, 12-7
precautions, 12-8
RAW columns, 12-6
row prefetching, 12-10
use to avoid setBytes() and setString()

limitations, 12-9
VARCHAR columns, 12-6

stream data column
bypassing, 12-8

STRUCT class, 4-6
STRUCT object

embedded object, 13-3

Index-9

retrieving, 13-3
retrieving attributes as oracle.sql types, 13-3

SYS.ANYDATA, 4-16
SYS.ANYTYPE, 4-16

T
TABLE_REMARKS columns, 23-15
TABLE_REMARKS reporting

restrictions on, 23-20
TAF, definition of, 28-1
TCP/IP protocol, 8-11
testing

for NULL values, 11-5
Thin driver

applets, 5-2
LDAP over SSL, 8-12
overview, 1-3
server-side, overview, 1-3

time and date literals, JDBC escape syntax, A-7
tnsEntry, 8-4, 29-20
toDatum() method

applied to CustomDatum objects, 13-6, 13-11
called by setORAData() method, 13-14

toJdbc() method, 4-6
toString() method, 4-12
trace facility, E-4
trace parameters

client-side, E-5
server-side, E-6

transaction branch, 29-1
transaction branch ID component, 29-12
transaction context

for KPRB driver, 7-3
transaction IDs (distributed transactions), 29-3
transaction managers, 29-2
transaction savepoints, 3-3 to ??
transactions

switching between local and global, 29-3 to 29-5
Transparent Application Failover (TAF), definition

of, 28-1
TTC error messages, listed, D-13
type map, 4-3, 11-7

adding entries, 13-7
and STRUCTs, 13-8
creating a new map, 13-8
used with arrays, 16-8
using with arrays, 16-12

type map (SQL to Java), 13-5
type mapping

BigDecimal mapping, 13-28
JDBC mapping, 13-28
object JDBC mapping, 13-28
Oracle mapping, 13-28

type mappings
JPublisher options, 13-27

type maps
relationship to database connection, 7-3

typecodes, Oracle extensions, 4-22

U
unicode data, 4-10
updatable result sets

limitations, 17-2
refetching rows, 17-5
update conflicts, 17-3

update batching
overview, Oracle vs. standard model, 23-2
overview, statements supported, 23-2

update batching (Oracle model)
batch value, checking, 23-5
batch value, overriding, 23-5
committing changes, 23-6
connection batch value, setting, 23-4
connection vs. statement batch value, 23-3
default batch value, 23-3
disable auto-commit, 23-3
example, 23-7
limitations and characteristics, 23-3
overview, 23-3
statement batch value, setting, 23-4
stream types not allowed, 23-3
update counts, 23-6

update batching (standard model)
adding to batch, 23-9
clearing the batch, 23-10
committing changes, 23-10
error handling, 23-12
example, 23-12
executing the batch, 23-10
intermixing batched and non-batched, 23-13
overview, 23-8
update counts, 23-11
update counts upon error, 23-13

update conflicts in result sets, 17-3
update counts

Oracle update batching, 23-6
standard update batching, 23-11
upon error (standard batching), 23-13

url, 8-4
URLs

for KPRB driver, 7-3
userid, specifying, 2-8

W
WebRowSet, 18-10
WIDTH, parameter for APPLET tag, 5-8
window, scroll-sensitive result sets, 17-7

X
XA

connection implementation, 29-6
connections (definition), 29-2
data source implementation, 29-6
data sources (definition), 29-2
definition, 29-1
error handling, 29-14
example of implementation, 29-15

Index-10

exception classes, 29-13
Oracle optimizations, 29-14
Oracle transaction ID implementation, 29-12
resource implementation, 29-7
resources (definition), 29-3
transaction ID interface, 29-12

XAException, 29-12
Xids, 29-12

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New
	New Features for Release 2 (11.2)

	Part I Overview
	1 Introducing JDBC
	Overview of Oracle JDBC Drivers
	Common Features of Oracle JDBC Drivers
	Choosing the Appropriate Driver
	Feature Differences Between JDBC OCI and Thin Drivers

	Environments and Support
	Supported JDK and JDBC Versions
	JNI and Java Environments
	JDBC and IDEs

	Feature List

	2 Getting Started
	Version Compatibility for Oracle JDBC Drivers
	Verification of a JDBC Client Installation
	Check the Installed Directories and Files
	Check the Environment Variables
	Ensure that the Java Code Can Be Compiled and Run
	Determine the Version of the JDBC Driver
	Test JDBC and the Database Connection

	Basic Steps in JDBC
	Importing Packages
	Opening a Connection to a Database
	Creating a Statement Object
	Running a Query and Retrieving a Result Set Object
	Processing the Result Set Object
	Closing the Result Set and Statement Objects
	Making Changes to the Database
	Committing Changes
	Changing Commit Behavior

	Closing the Connection

	Sample: Connecting, Querying, and Processing the Results
	Stored Procedure Calls in JDBC Programs
	PL/SQL Stored Procedures
	Java Stored Procedures

	Processing SQL Exceptions

	Part II Oracle JDBC
	3 JDBC Standards Support
	Support for JDBC 2.0 Standard
	Data Type Support
	Standard Feature Support
	Extended Feature Support
	Standard versus Oracle Performance Enhancement APIs

	Support for JDBC 3.0 Standard
	Transaction Savepoints
	Creating a Savepoint
	Rolling Back to a Savepoint
	Releasing a Savepoint
	Checking Savepoint Support
	Savepoint Notes

	Retrieval of Auto-Generated Keys
	java.sql.Statement
	Sample Code
	Limitations

	JDBC 3.0 LOB Interface Methods
	Result Set Holdability

	Support for JDBC 4.0 Standard
	Wrapper Pattern Support
	SQLXML Type
	Enhanced Exception Hierarchy and SQLException
	The RowId Data Type
	LOB Creation
	National Language Character Set Support

	4 Oracle Extensions
	Overview of Oracle Extensions
	Features of the Oracle Extensions
	Database Management Using JDBC
	Support for Oracle Data Types
	Support for Oracle Objects
	Support for Schema Naming
	DML Returning
	Accessing PL/SQL Index-by Tables

	Oracle JDBC Packages
	Package oracle.sql
	Package oracle.jdbc

	Oracle Character Data Types Support
	SQL CHAR Data Types
	SQL NCHAR Data Types
	Class oracle.sql.CHAR

	Additional Oracle Type Extensions
	Oracle ROWID Type
	Oracle REF CURSOR Type Category
	Oracle BINARY_FLOAT and BINARY_DOUBLE Types
	Oracle SYS.ANYTYPE and SYS.ANYDATA Types
	The oracle.jdbc Package
	Interface oracle.jdbc.OracleConnection
	Interface oracle.jdbc.OracleStatement
	Interface oracle.jdbc.OraclePreparedStatement
	Interface oracle.jdbc.OracleCallableStatement
	Interface oracle.jdbc.OracleResultSet
	Interface oracle.jdbc.OracleResultSetMetaData
	Class oracle.jdbc.OracleTypes
	Method getJavaSqlConnection

	DML Returning
	Oracle-Specific APIs
	Running DML Returning Statements
	Example of DML Returning
	Limitations of DML Returning

	Accessing PL/SQL Index-by Tables
	Overview
	Binding IN Parameters
	Receiving OUT Parameters
	Type Mappings

	5 Features Specific to JDBC Thin
	Overview of JDBC Thin Client
	Additional Features Supported
	Support for Applets
	Default Support for Native XA

	JDBC in Applets
	Connecting to the Database Through the Applet
	Connecting to a Database on a Different Host Than the Web Server
	Using the Oracle Connection Manager
	Using Signed Applets

	Using Applets with Firewalls
	Configuring a Firewall for Applets that use the JDBC Thin Driver
	Writing a URL to Connect Through a Firewall

	Packaging Applets
	Specifying an Applet in an HTML Page
	CODE, HEIGHT, and WIDTH
	CODEBASE
	ARCHIVE

	6 Features Specific to JDBC OCI Driver
	OCI Connection Pooling
	Client Result Cache
	Benefits of Client Result Cache
	Usage Guidelines in JDBC
	RESULT_CACHE_MODE Parameter
	Table Annotations
	SQL Hints

	Transparent Application Failover
	OCI Native XA
	OCI Instant Client
	Overview of Instant Client
	Benefits of Instant Client
	JDBC OCI Instant Client Installation Process
	Usage of Instant Client
	Patching Instant Client Shared Libraries
	Regeneration of Data Shared Library and ZIP files
	Database Connection Names for OCI Instant Client
	Environment Variables for OCI Instant Client

	Instant Client Light (English)
	Globalization Settings
	Operation
	Installation

	7 Server-Side Internal Driver
	Overview of the Server-Side Internal Driver
	Connecting to the Database
	Session and Transaction Context
	Testing JDBC on the Server
	Loading an Application into the Server
	Using the Loadjava Utility
	Using the JVM Command-Line

	Part III Connection and Security
	8 Data Sources and URLs
	Data Sources
	Overview of Oracle Data Source Support for JNDI
	Features and Properties of Data Sources
	Creating a Data Source Instance and Connecting
	Creating a Data Source Instance, Registering with JNDI, and Connecting
	Supported Connection Properties
	Using Roles for SYS Login
	Configuring Database Remote Login
	Bequeath Connection and SYS Logon
	Properties for Oracle Performance Extensions

	Database URLs and Database Specifiers

	9 JDBC Client-Side Security Features
	Support for Oracle Advanced Security
	Support for Login Authentication
	Support for Strong Authentication
	Support for OS Authentication
	Configuration Steps for Linux
	Configuration Steps for Windows
	JDBC Code Using OS Authentication

	Support for Data Encryption and Integrity
	JDBC OCI Driver Support for Encryption and Integrity
	JDBC Thin Driver Support for Encryption and Integrity
	Setting Encryption and Integrity Parameters in Java

	Support for SSL
	Managing Certificates and Wallets
	Keys and certificates containers

	Support for Kerberos
	Configuring Windows to Use Kerberos
	Configuring Oracle Database to Use Kerberos
	Code Example

	Support for RADIUS
	Configuring Oracle Database to Use RADIUS
	Code Example

	Secure External Password Store

	10 Proxy Authentication
	About Proxy Authentication
	Types of Proxy Connections
	Creating Proxy Connections
	Closing a Proxy Session
	Caching Proxy Connections
	Limitations of Proxy Connections

	Part IV Data Access and Manipulation
	11 Accessing and Manipulating Oracle Data
	Data Type Mappings
	Table of Mappings
	Notes Regarding Mappings

	Data Conversion Considerations
	Standard Types Versus Oracle Types
	Converting SQL NULL Data
	Testing for NULLs

	Result Set and Statement Extensions
	Comparison of Oracle get and set Methods to Standard JDBC
	Standard getObject Method
	Oracle getOracleObject Method
	Summary of getObject and getOracleObject Return Types
	Other getXXX Methods
	Return Types of getXXX Methods
	Special Notes about getXXX Methods

	Data Types For Returned Objects from getObject and getXXX
	The setObject and setOracleObject Methods
	Other setXXX Methods
	Input Data Binding
	Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

	Using Result Set Metadata Extensions
	Using SQL CALL and CALL INTO Statements

	12 Java Streams in JDBC
	Overview of Java Streams
	Streaming LONG or LONG RAW Columns
	LONG RAW Data Conversions
	LONG Data Conversions
	Streaming Example for LONG RAW Data
	Avoiding Streaming for LONG or LONG RAW

	Streaming CHAR, VARCHAR, or RAW Columns
	Streaming LOBs and External Files
	Data Streaming and Multiple Columns
	Closing a Stream
	Notes and Precautions on Streams
	Streaming Data Precautions
	Using Streams to Avoid Limits on setBytes and setString
	Streaming and Row Prefetching

	13 Working with Oracle Object Types
	Mapping Oracle Objects
	Using the Default STRUCT Class for Oracle Objects
	STRUCT Class Functionality
	Retrieving STRUCT Objects and Attributes
	Creating STRUCT Objects
	Binding STRUCT Objects into Statements
	STRUCT Automatic Attribute Buffering

	Creating and Using Custom Object Classes for Oracle Objects
	Relative Advantages of ORAData versus SQLData
	Understanding Type Maps for SQLData Implementations
	Creating Type Map and Defining Mappings for a SQLData Implementation
	Adding Entries to an Existing Type Map
	Creating a New Type Map
	Materializing Object Types not Specified in the Type Map

	Reading and Writing Data with a SQLData Implementation
	Understanding the ORAData Interface
	Reading and Writing Data with a ORAData Implementation
	Additional Uses for ORAData

	Object-Type Inheritance
	Creating Subtypes
	Implementing Customized Classes for Subtypes
	Use of ORAData for Type Inheritance Hierarchy
	Use of SQLData for Type Inheritance Hierarchy
	JPublisher Utility

	Retrieving Subtype Objects
	Creating Subtype Objects
	Sending Subtype Objects
	Accessing Subtype Data Fields
	Inheritance Metadata Methods

	Using JPublisher to Create Custom Object Classes
	JPublisher Functionality
	JPublisher Type Mappings

	Describing an Object Type
	Functionality for Getting Object Metadata
	Steps for Retrieving Object Metadata

	14 Working with LOBs and BFILEs
	The LOB Data Types
	Oracle SecureFiles
	Data Interface for LOBs
	Streamlined Mechanism
	Input
	Output
	CallableSatement and IN OUT Parameter
	Size Limitations

	LOB Locator Interface
	Working With Temporary LOBs
	Opening Persistent LOBs with the Open and Close Methods
	Working with BFILEs

	15 Using Oracle Object References
	Oracle Extensions for Object References
	Retrieving and Passing an Object Reference
	Retrieving an Object Reference from a Result Set
	Retrieving an Object Reference from a Callable Statement
	Passing an Object Reference to a Prepared Statement

	Accessing and Updating Object Values Through an Object Reference
	Custom Reference Classes with JPublisher

	16 Working with Oracle Collections
	Oracle Extensions for Collections
	Choices in Materializing Collections
	Creating Collections
	Creating Multilevel Collection Types

	Overview of Collection Functionality
	ARRAY Performance Extension Methods
	Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types
	ARRAY Automatic Element Buffering
	ARRAY Automatic Indexing

	Creating and Using Arrays
	Creating ARRAY Objects
	Retrieving an Array and Its Elements
	Retrieving the Array
	Data Retrieval Methods
	Comparing the Data Retrieval Methods
	Retrieving Elements of a Structured Object Array According to a Type Map
	Retrieving a Subset of Array Elements
	Retrieving Array Elements into an oracle.sql.Datum Array
	Accessing Multilevel Collection Elements

	Passing Arrays to Statement Objects

	Using a Type Map to Map Array Elements
	Custom Collection Classes with JPublisher

	17 Result Set
	Oracle JDBC Implementation Overview for Result Set Support
	Resultset Limitations and Downgrade Rules
	Avoiding Update Conflicts
	Fetch Size
	Setting the Fetch Size
	Presetting the Fetch Direction

	Refetching Rows
	Viewing Database Changes Made Internally and Externally
	Visibility versus Detection of External Changes
	Summary of Visibility of Internal and External Changes
	Oracle Implementation of Scroll-Sensitive Result Sets

	18 JDBC RowSets
	Overview of JDBC RowSets
	RowSet Properties
	Events and Event Listeners
	Command Parameters and Command Execution
	Traversing RowSets

	CachedRowSet
	JdbcRowSet
	WebRowSet
	FilteredRowSet
	JoinRowSet

	19 Globalization Support
	Providing Globalization Support
	NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property in JDK 1.5
	New Methods for National Character Set Type Data in JDK 1.6

	Part V Performance and Scalability
	20 Statement and Result Set Caching
	About Statement Caching
	Basics of Statement Caching
	Implicit Statement Caching
	Explicit Statement Caching

	Using Statement Caching
	Enabling and Disabling Statement Caching
	Closing a Cached Statement
	Using Implicit Statement Caching
	Using Explicit Statement Caching

	Reusing Statements Objects
	Using a Pooled Statement
	Closing a Pooled Statement

	Result Set Caching
	Server-side Cache
	Client Result Cache

	21 Implicit Connection Caching
	The Implicit Connection Cache
	Using the Connection Cache
	Turning Caching On
	Opening a Connection
	Setting Connection Cache Name
	Setting Connection Cache Properties
	Closing a Connection
	Implicit Connection Cache Example

	Connection Attributes
	Getting Connections
	Setting Connection Attributes
	Checking Attributes of a Returned Connection
	Connection Attribute Example

	Connection Cache Properties
	Limit Properties
	TIMEOUT Properties
	Other Properties
	Connection Property Example

	Connection Cache Manager API
	Advanced Topics
	Attribute Weights and Connection Matching
	Connection Cache Callbacks
	Use Cases for TimeToLiveTimeout and AbandonedConnectionTimeout

	22 Run-Time Connection Load Balancing
	Overview of Run-Time Connection Load Balancing
	Enabling Run-Time Connection Load Balancing

	23 Performance Extensions
	Update Batching
	Overview of Update Batching Models
	Oracle Update Batching
	Oracle Update Batching Characteristics and Limitations
	Setting the Connection Batch Value
	Setting the Statement Batch Value
	Checking the Batch Value
	Overriding the Batch Value
	Committing the Changes in Oracle Batching
	Update Counts in Oracle Batching
	Error Reporting in Oracle Update Batching

	Standard Update Batching
	Limitations in the Oracle Implementation of Standard Batching
	Adding Operations to the Batch
	Processing the Batch
	Committing the Changes in the Oracle Implementation of Standard Batching
	Clearing the Batch
	Update Counts in the Oracle Implementation of Standard Batching
	Error Handling in the Oracle Implementation of Standard Batching
	Intermixing Batched Statements and Nonbatched Statements

	Premature Batch Flush

	Additional Oracle Performance Extensions
	Prefetching LOB Data
	Oracle Row-Prefetching Limitations
	Defining Column Types
	Reporting DatabaseMetaData TABLE_REMARKS

	24 OCI Connection Pooling
	OCI Driver Connection Pooling: Background
	OCI Driver Connection Pooling and Shared Servers Compared
	Defining an OCI Connection Pool
	Connecting to an OCI Connection Pool
	Sample Code for OCI Connection Pooling
	Statement Handling and Caching
	JNDI and the OCI Connection Pool

	25 Oracle Advanced Queuing
	Functionality and Framework of Oracle Advanced Queuing
	Making Changes to the Database
	AQ Asynchronous Event Notification
	Creating Messages
	Example: Creating a Message and Setting a Payload
	Enqueuing Messages
	Dequeuing Messages
	Examples: Enqueuing and Dequeuing

	26 Database Change Notification
	Creating a Registration
	Associating a Query with a Registration
	Notifying Database Change Events
	Deleting a Registration

	Part VI High Availability
	27 Fast Connection Failover
	Overview of Fast Connection Failover
	Using Fast Connection Failover
	Fast Connection Failover Prerequisites
	Configuring ONS for Fast Connection Failover
	Remote ONS Subscription

	Enabling Fast Connection Failover
	Querying Fast Connection Failover Status

	Understanding Fast Connection Failover
	What the Application Sees
	How It Works

	Comparison of Fast Connection Failover and TAF

	28 Transparent Application Failover
	Overview of Transparent Application Failover
	Failover Type Events
	TAF Callbacks
	Java TAF Callback Interface

	Part VII Transaction Management
	29 Distributed Transactions
	Overview of Distributed Transactions
	Distributed Transaction Components and Scenarios
	Distributed Transaction Concepts
	Switching Between Global and Local Transactions
	Oracle XA Packages

	XA Components
	XADatasource Interface and Oracle Implementation
	XAConnection Interface and Oracle Implementation
	XAResource Interface and Oracle Implementation
	OracleXAResource Method Functionality and Input Parameters
	Xid Interface and Oracle Implementation

	Error Handling and Optimizations
	XAException Classes and Methods
	Mapping Between Oracle Errors and XA Errors
	XA Error Handling
	Oracle XA Optimizations

	Implementing a Distributed Transaction
	Summary of Imports for Oracle XA
	Oracle XA Code Sample

	Native-XA in Oracle JDBC Drivers
	OCI Native XA
	Thin Native XA

	Part VIII Manageability
	30 Database Administration
	31 Diagnosability in JDBC
	Logging
	Enabling and Using JDBC Logging
	Configuring the CLASSPATH
	Enabling Logging
	Configuring Logging
	Using Loggers
	An Example

	Performance, Scalability, and Security Issues

	Diagnosability Management

	32 JDBC DMS Metrics
	Overview of JDBC DMS Metrics
	Determining the Type of Metric to Be Generated
	Generating the SQLText Metric
	Accessing DMS Metrics Using JMX

	Part IX Appendixes
	A JDBC Reference Information
	Valid SQL-JDBC Data Type Mappings
	Supported SQL and PL/SQL Data Types
	Embedded JDBC Escape Syntax
	Time and Date Literals
	Date Literals
	Time Literals
	Timestamp Literals

	Scalar Functions
	LIKE Escape Characters
	Outer Joins
	Function Call Syntax
	JDBC Escape Syntax to Oracle SQL Syntax Example

	Oracle JDBC Notes and Limitations
	CursorName
	JDBC Outer Join Escapes
	PL/SQL TABLE, BOOLEAN, and RECORD Types
	IEEE 754 Floating Point Compliance
	Catalog Arguments to DatabaseMetaData Calls
	SQLWarning Class
	Executing DDL Statements
	Binding Named Parameters

	B Oracle RAC Fast Application Notification
	Overview of Oracle RAC Fast Application Notification
	Installing and Configuring Oracle RAC Fast Application Notification
	Configuration of ONS
	Overview of ONS Configuration File
	Configuring Client-Side ONS

	Using Oracle RAC Fast Application Notification
	Implementing a Connection Cache

	C Coding Tips
	JDBC and Multithreading
	Performance Optimization
	Disabling Auto-Commit Mode
	Standard Fetch Size and Oracle Row Prefetching
	Standard and Oracle Update Batching
	Statement Caching
	Mapping Between Built-in SQL and Java Types

	Transaction Isolation Levels and Access Modes

	D JDBC Error Messages
	General Structure of JDBC Error Messages
	General JDBC Messages
	JDBC Messages Sorted by ORA Number
	JDBC Messages Sorted in Alphabetic Order

	Native XA Messages
	Native XA Messages Sorted by ORA Number
	Native XA Messages Sorted in Alphabetic Order

	TTC Messages
	TTC Messages Sorted by ORA Number
	TTC Messages Sorted in Alphabetic Order

	E Troubleshooting
	Common Problems
	Memory Consumption for CHAR Columns Defined as OUT or IN/OUT Variables
	Memory Leaks and Running Out of Cursors
	Boolean Parameters in PL/SQL Stored Procedures
	Opening More Than 16 OCI Connections for a Process
	Using statement.cancel
	Using JDBC with Firewalls
	Frequent Abrupt Disconnection from Server

	Basic Debugging Procedures
	Oracle Net Tracing to Trap Network Events
	Client-Side Tracing
	TRACE_LEVEL_CLIENT
	TRACE_DIRECTORY_CLIENT
	TRACE_FILE_CLIENT
	TRACE_UNIQUE_CLIENT

	Server-Side Tracing
	TRACE_LEVEL_SERVER
	TRACE_DIRECTORY_SERVER
	TRACE_FILE_SERVER

	Third Party Debugging Tools

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

