ORACLE

Oracle® Database
SQLJ Developer’s Guide

11gRelease 2 (11.2)
E10590-02

July 2013

Oracle Database SQL] Developer's Guide, 11g Release 2 (11.2)

E10590-02

Copyright © 1999, 2013, Oracle and/or its affiliates. All rights reserved.
Primary Author: Tulika Das

Contributing Author: Venkatasubramaniam Iyer, Brian Wright, Janice Nygard

Contributor: ~Amit Bande, Krishna Mohan, Amoghavarsha Ramappa, Dhilipkumar Gopal, Quan Wang,
Angela Barone, Ekkehard Rohwedder, Brian Becker, Alan Thiesen, Lei Tang, Julie Basu, Pierre Dufour, Jerry
Schwarz, Risto Lakinen, Cheuk Chau, Vishu Krishnamurthy, Rafiul Ahad, Jack Melnick, Tim Smith, Thomas
Pfaeffle, Tom Portfolio, Ellen Barnes, Susan Kraft, Sheryl Maring

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUOIACE ... et s et s e e XiX
AN S Lo T VLT ORRTRRRRRRT XiX
Documentation AcCesSSIDILityccccciiiiiiiiiiiiiiiiii e XiX
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans XX
(@03 4N T£=3 115 o) 0 I RTR TR RTRRN XXi

1 Getting Started

Assumptions and Requirements.............ccccoovviniiniiiii 1-1
Assumptions About Your ENvironment............cococovvvniininininninniniinneccccens 1-1
Requirements for Using the Oracle SQL] Implementation............ccccccceucucuemececccenieiccnennns 1-2
SQLJ ENVITONMIMENT ...ttt ettt ettt ettt sbe et st e et e e s bt et e bt e besaesaeenbeeaean 1-2
Environment Considerationscccoeeeeiririecinninieieiieieceiieeee ettt 1-3
SQLJ Backward Compatibilityccccccceieriririiiririirrrr e 1-3

Checking the Installation and Configuration..............ccccccooeiiiiiiiin 1-3
Check for Availability of SQL] and Demo Applications..........cccevvieeurieieiicininiiceiecceene 1-3
Check for Installed Directories and Files............cccoviiiiiiiiiiiiiiiin, 1-3
Set the Path and Classpath..............c.ooii 1-4
Verify Installation of the sqljutl Packageccoovoiiiiiiiiiiiiiiiicccccccces 1-5

Testing the Setup ... 1-5
Set Up the Run-Time ConNectioncoocriiiiiiioiicec e 1-6
Create a Table to Verify the Databasec.cccocooiieiiiiiiiiii e, 1-7
Verify the JDBC DIivVer.......coiiiiii s 1-7
Verify the SQL]J Translator and Run Timeccoooiiiiiiiccc e 1-7
Verify the SQL]J Translator Connection to the Databaseccccooovviiiiiiiii 1-8

2 Introduction to SQLJ

OVEIVIEW OFf SQLJ ..ottt sttt ettt e b e sttt be e e 2-1
Overview of SQLJ COMPONENLSc.coeiriiiiriiiniiinicinictrctntetnie ettt s sae e aene 2-2
SOQLJ TTANSIALOT «.utieieieiieie ettt et ettt sttt ettt e st e bt ebe st e et e besae b ententeneeneebesseeneas 2-2
SQLJ RUN TIIMIE 1ttt ettt ettt et e s b e te s be e st e be e besbeenteseentensesneenseeneas 2-2
Overview of Oracle Extensions to the SQL]J Standard...........c..cccoeeninninncnninnnnninneneeeeene 2-3
SQLJ Type EXteNSIONS.cucuiiiieiitiiiteicieietciee e 2-3
SQLJ Functionality EXtENSIONS.......c.ccccuiuiiiiiiiiiiiiiiiiciiciiic e 2-4
Basic Translation Steps and Run-Time Processing.............cccoooveuviiniiniiiiniiniccicecee 2-5
SQLJ Translation StEPScceueiirieiiicieiei ettt 2-5

Summary of Translator Input and OUtput..........cccceiiiiiiiiii, 2-7

Translator INPUL ... e 2-7
Translator OULPULcociviiiiiiii s 2-7

Output File LOCAtIONSccviviviiiiiiiiiiiiiicicce s 2-8

SQLJ RUN-Time ProCesSINgG.......cceoeuiieieiiiiiiieieicieiete e 2-8
SQLJ SAMPLE COE......ooueiiiiiiiiceee ettt 2-8
SQL]J Version of the Sample Code ... 2-9
JDBC Version of the Sample Code..........coomiiiiiiiiii 2-10
Alternative Deployment Scenarios..............cccccoovviiiiiiiiiini 2-11
Running SQLJ in APpPIets.......cciiiiiiic s 2-12
General Development and Deployment Considerations...........ccccoocorueieiiceieiiincieinaes 2-12
General End User Considerationscccccucueueiruriciiirniriniiieerireeerieeseeeeses s 2-13

Java Environment and the Java PIug-In ..o, 2-13
Overview of SQLJ iN the SEIVETcccoiiiriiriiiiieiesieee ettt sttt b e sae s 2-13
Alternative Development SCENATIOScccooveuiieiiiiiiricirciccceee s 2-15
SQLJ Globalization SUPPOTT ... s 2-15
SQLJ in Oracle JDeveloper 10g and Other IDEsccccccovviiiinnnniiiiiins 2-15
WiIndows ConSIAErations..........c.cciiicuiuiiuiicieieiieieeeie et eseeeees 2-15

3 Key Programming Considerations

Selection Of the JDBC DIMVETccooieiieieieeeee ettt ettt e sse st e sesaessessseseessensaensanseenes 3-1
Overview of Oracle JDBC DIIVETSccceiiiriiirinerienieetetetete ettt sttt ettt sbe e saeas 3-1
Driver Selection for TransIationceeviiiiiiiiiecieciereceee ettt r e re e sreeenas 3-3
Driver Selection and Registration for RUn Timecccocovviiiinnnnnnnrnrseeeee e 3-4

Connection CoNSIAEIAtiONSccocieiiiriieieiieie ettt ettt et e ssesseessessaessesssesseessasseessenseenes 3-4
Single Connection or Multiple Connections Using DefaultContext............ccccocevvivninininnnnns 3-5
ClOSING CONMNECHONS ...ttt 3-8
Multiple Connections Using Declared Connection Context Classes...........ccccoeveveeriviiiiiinennns 3-9
More About the Oracle ClaSsccoievvieiieiiiieeiieeere ettt ettt ae e e ae e s e re e s e s reesaesreennas 3-9
More About the DefaultContext Classcccccevirireriirierieieieieesiee ettt saeseeseeseeseesessessesseseas 3-11
Connection for TransSIationcecueeiecieriirie ettt b sre b e s reessesseesaesaeseeas 3-13
Connection for CUSTOMUZALIONcc.eevieviieriiie ettt ettt et e e et e ve e b e ereebeeseeseereennas 3-13

NULL-HaNdIING........cccoooiiiiiiiiiii s 3-14
Wrapper Classes for NULL-Handlingcccccooviiiiiiiiccccces 3-14
Examples of NULL-Handling ... 3-15

Exception-Handling Basics...........ccccocoiiiiiiiiiiiiiii s 3-15
SQL]J and JDBC Exception-Handling Requirements.............cccccovveiiiiiiiiinnnniiicnn, 3-16
Processing EXCEPHIONSc.cviiiiiiiiiiiiiiciiiccc s 3-17
Using SQLEXCEPLION SUDCLASSESc.cuvuiuiuimiiiiiiiiiiiiicciciecceeiceee e nenens 3-18

Basic Transaction COntrOlcccoeiiiiiiieiiiiieie ettt ettt sre s e re e s e s e s e saesseesaenseens 3-18
OVErvIEW Of TTANSACHONS ..ccvecvicveeiecteeieettete ettt ettt et e e te et e steeaeeteeteeseebeesseseesseseensesseeseas 3-19
Automatic Commits Versus Manual COMMILS........ccccoverierierierierieicieinesreereieseeeeeseeeeeeeeeas 3-19
Specifying Auto-Commit as You Define a Connectionccccoocuevreirieicieicinicnicec 3-19
Modifying Auto-Commit in an Existing Connection ... 3-20
Using Manual COMMIT and ROLLBACKc.ccooiiiiiiiiieeeeeeeeeeieeeeneene e 3-20
Effect of Commits and Rollbacks on Iterators and Result Sets.........cccocvevvevveieieenenrinreieienns 3-21
USING SAVEPOINES.....ocviviiiiiciiiieiciecc e 3-21

vi

Summary: First Steps in SQLJ Code...........cccoiiiiiiiiiii e 3-23

Oracle-Specific Code Generation (No Profiles)cccoooiiiiiiiics 3-28
Code Considerations and Limitations with Oracle-Specific Code Generation...................... 3-28
SQLJ Usage Changes with Oracle-Specific Code Generation............cccceuevereieiiiricicininnnen, 3-30
Server-Side Considerations with Oracle-Specific Code Generation...........ccccoovevrieieininnnnen. 3-31
Advantages and Disadvantages of Oracle-Specific Code Generationccccccccueuvueueuennne. 3-31

ISO Standard Code Generation...............coiiuiiiiiiuiiiiiiiiiic e 3-32
Environment Requirements for ISO Standard Code Generation.............ccoceueiviiciiiniinnnnn. 3-32
SQLJ Translator and SQLJ RUN TIMEccveveieieieieieieieieeeie ettt e seeseesas e ssessassessessesses 3-33
SQLJ PrOFILES ..ttt ettt ettt sttt ettt e e bt e bt et ebe b besbesaeaan 3-33

OVerview Of ProOfiles.........ociiiiiiiiiiiiiiiecc e 3-33
Binary POrtabilityccocociiiiiiiiiicccccccce s 3-34
SQLJ Translation StEPS ... 3-34
Summary of Translator Input and OQutput............ccoo e, 3-35
Translator INPUL ..o 3-35
Translator OUEPULcoiiiii s 3-36
Output File LOCAHONS ..ottt 3-37
SQLJ RUN-Time ProCessing.........cccccvuviiiiiiiiiiniiiiiiiciiiiiccccsc s 3-37
Deployment SCENATIOSoccviiiiirieieiicie ettt 3-38

Oracle-Specific Code Generation Versus ISO Standard Code Generation..................ccccceuee. 3-39

Requirements and Restrictions for Namingccccooiiiiiiiiice, 3-39
Java Namespace: Local Variable and Class Naming Restrictions...........ccccooueiiiiiiiiiniciennns 3-40
SQLJ NaAMESPACEvcvviiereietetettetetee bbb 3-41
SQL NAMESPACE ...ttt 3-41
File Name Requirements and Restrictionscccceiiiiiiiinniiiiiccceees 3-41

Considerations for SQLJ in the Middle Tier........c..cccocoviiininininninnineeneereecenee e 3-42

Basic Language Features

Overview of SQLJ Declarationsc.ccccoeiriiriiinieinieincenie ettt ettt st s 4-1
Rules for SQLJ DEClarationscccecverierierierieieieteeeisesessessessessessessesseseesessassessessessessessessessssessens 4-2
[terator DEClarationscocouerieirireeeeee ettt ettt ettt be sttt e bbb e 4-2
Connection Context DEClarationsccecivieirerierierieietetetetese st ste et estesessessessessessesessesseseesens 4-3
Declaration IMPLEMENTS CIaAUSE.......c.ccueutrieririeirieiirieiieieiteieiteieteie ettt sesesesessenes 4-3
Declaration WITH CLatSecceuieuirieririiierierietetetee ettt sttt ettt be bt sttt se et be e 4-4

Standard WITH Clause USAgeccveueueiiurieiiiiiieieeiecci e 4-4
Oracle-Specific WITH Clause USage..........ccccvuvuvurirrerireriririieerierrceeeesese e 4-6
Example: Returnabilityccooiiiiiiii s 4-7

Overview of SQLJ Executable Statementscccoeviiiniiiniiiniiinicineencere et 4-8
Rules for SQLJ Executable StatemMentsccecveieieieiiieiniesiesiesieieeeeeeeeessessessesessessessesseseesens 4-8
SQOLJ CIAUSES ..ttt ettt ettt ettt ettt a bt e bbb e be st et et et et eat e bt ebesb e et esbesae b ensesteneebeebesbesaens 4-9
Specifying Connection Context Instances and Execution Context Instances......................... 4-10
Executable Statement EXamples.........ccccociiiiiiiiiiiiiiiicccceceeee s 4-11
PL/SQL Blocks in Executable Statementsc.cccueeiiieiieeeiiieeieeee ettt e 4-11

Java Host, Context, and Result EXPIreSSiONS............ccccocciviiiiiinininieiccininieeiieerceeeneseeeeneneeenes 4-12
Overview Of HOst EXPIESSIONS.......c.c.cucuiuiiiiiiiiiiiiicieieieiciceiece e 4-13
Basic Host EXPression SYyntaX........c..ccceueiiiiicieiiiiicieec 4-13
Examples of HOst EXPIeSSIONSc.ccuiuiuiiiiiiiiiiiiiiiiiiicicicicici s 4-15

vii

Overview of Result Expressions and Context EXpressionsccccceceveeiiiniciciiinieninnnn, 4-17

Evaluation of Java Expressions at RUn Time ..o 4-17
Examples of Evaluation of Java Expressions at Run Time (ISO Code Generation).............. 4-18
Restrictions on HOst EXPIeSSiONS.........ccoveviveiiiiiiiiciiiiicictcct s 4-24
Single-Row Query Results: SELECT INTO Statements.............cccccccoeiiiiiiiniiiiiiiiieenes 4-24
SELECT INTO SYNAX....ciiiiiiiiiiiiiiiiiiis s 4-24
Examples of SELECT INTO Statements...........cccceuiuimiiiniiiiiiiiiiiieeeceeeeeeeveee s 4-25
Examples with Host Expressions in SELECT-Listcccooiiiiiiiiiiccce, 4-25
SELECT INTO Error Conditions.........ccoeiviiiiiiiiiiiiiiicececci e 4-26
Multirow Query Results: SQLJ Iterators ..o 4-26
Tterator CONCEPES ...vcvivieitiiiictctctcttttt s 4-27
Overview of Strongly Typed Iterators...........cccccccuiiiiciiiiiiccccceceececeeceeeenes 4-27
Overview of Weakly Typed Iterators............ooceueiiiiieiiiicicicccc 4-29
General Steps in Using an Iterator..........cccouoiiuiiiiiiccicc 4-29
Named, Positional, and Result Set TteTatOrS.........coueovviiivieieecieeeeceeeeeeeeeeeeee et 4-30
Using Named Iterators ..ottt 4-31
Using Positional [terators..........ccooiuiuoiiiiiiieicc e 4-34
Using Iterators and Result Sets as Host Variables ... 4-37
Using Iterators and Result Sets as Iterator Columnsoooeieiiiiiiiiinccce, 4-39
Assignment Statements (SET)cccccccooviiiiiiiiiis 4-41
Stored Procedure and Function Calls ... 4-42
Calling Stored ProCeduresoccueiiieiiiiiiiciee s 4-43
Calling Stored FUNCHONSc.ouiiieiieiic e 4-44
Using Iterators and Result Sets as Stored Function Returnsc.ccccoeveeciinincccicccnee 4-45

5 Type Support

viii

Supported Types for Host EXPressions ... 5-1
Summary of SUPPOrted TYPESccceviviiiieiiiiiiiiiicc 5-1
Supported Types and Requirements for JDBC 2.0cooouemiiiiiiiiiiiiiceec e 5-6
Using PL/SQL BOOLEAN, RECORD Types, and TABLE Typesccccccovivviininiiiriieennen, 5-7

SUPPOrt fOr STIEAMS ... s 5-8
General Use Of SQLJ StEAIMSceeiririirieieieieieietettettsestestete e tete e eseesessessessessessessessesseseesessens 5-9
Key Aspects of Stream SUPPOTt CLASSESc.cciuiiuiiimiiiiiiciiiicciceeeree e enene e nenenenes 5-9
Using SQLJ Streams to Send Datacccuouiirieiiiicicicc e 5-10
Retrieving Data into Streams: Precautions.........ocococeeueieiiieicicieicicieeeeeee 5-12
Using SQLJ Streams to Retrieve Data ..o 5-13
Stream Class Methods ... 5-15
Examples of Retrieving and Processing Stream Data..........c.coovoeveieiiininiiiiceicccee, 5-17
SQLJ Stream Objects as Output Parameters and Function Return Values..........c.ccccccceuueee. 5-18

Support for JDBC 2.0 LOB Types and Oracle Type Extensionscccooociiiniiinnnnnne 5-20
Package oracle.SqLcccciiiiiiiiiiic s 5-20
Support for BLOB, CLOB, and BFILEccccccoiiiiiiiiiiiccceeceeeeeeeeeeeeeeeeeeeeee s 5-21
Support for Oracle ROWIDcoooiiiiiiiiiiies s 5-26
Support for Oracle REF CURSOR TYPEScccoiuiuiiimiiimiiiiiiiiiiciicicieeeieeieeieeesieeeenenenes 5-29
Support for Other Oracle Database 11 Data TYPescccccevuvurueiirveriiiiirrrcccreeeeeeeees 5-31
Extended Support for BigDecimal..........ccccccviiiiiiiiininiiiiiiis 5-31

Objects, Collections, and OPAQUE Types

Oracle Objects and Collectionsc.ccooiiiiiiiiiiiiiiiii s 6-1
Overview of Objects and COLLECtIONSc.ccucuciririiiiiiiicircccree e 6-1
Oracle Object Fundamentalsccccoeviiiiiniiiiiniiiiiccc s 6-3
Oracle Collection Fundamentals............ccccoociiiiiiiiiiiiiiins 6-3
Object and Collection Data TYPESccccueuiuciiuimiiciiiiiciciciieeieeeeeeeeeeeeeeee e 6-4

CUSEOIM JAVA CLASSESceevineiiniieieieieicteientei sttt ettt sttt ettt sttt be e be e be s sae e naesesaene 6-4
Custom Java Class Interface Specifications.............ooooceueioiiiiiiiiiii e, 6-5
Custom Java Class Support for Object Methodscccovvvvrriiiinnnnnrrnecr e 6-7
Custom Java Class ReQUITeMENtScceuiuiiiiiiiiiiiiiiiiicicc s 6-8
Compiling Custom Java Classesccceuiiurieieinicicieiccecie e 6-12
Reading and Writing Custom Datac.ccccceuiiiiiiiiiiecceeeceeeeeeeeeeeeeneeenees 6-13
Additional Uses for ORAData Implementationscccccovvvviiiiiiiiiniiice 6-13

User-Defined TYPeSccccoviiiiiiiiiiiiiiiiiiicc s 6-17

JPublisher and the Creation of Custom Java Classes..........c.ccooerieriircieniieienieieneeeeseeee e 6-20
What JPUDLISher PrOAUCEScc.ooueiiieieieeeeeeeree ettt s 6-21
Generating Custom Java Classesccceueiirieieiiicieiccic e 6-23
JPublisher INPUT Files and Properties Files.........c.cccooiiiiiiiniiniinicrreccrceeceecee 6-30
Creating Custom Java Classes and Specifying Member Names............ccccoooeeininirieiniinncnen. 6-32
JPublisher Implementation of Wrapper Methods...........cccoiiiii 6-33
JPublisher Custom Java Class EXamplesccccoveiviriiiinnnnnrrere e 6-34
Extending Classes Generated by JPUDLISher ..o, 6-37

Strongly Typed Objects and References in SQLJ Executable Statements.......................ccc..e. 6-39
Selecting Objects and Object References into Iterator Columnscccccoceucciccicciciccnnee. 6-40
Updating an ObjJect ... 6-40
Inserting an Object Created from Individual Object Attributes...........ccccceevviviiiiiniininnnnne. 6-42
Updating an Object Reference...........cccciiiiiiiiiiiiiciceccceieeeece s 6-43

Strongly Typed Collections in SQL]J Executable Statementscccocoeeiiiiiiiiiiiinnn, 6-44
Accessing Nested Tables: TABLE syntax and CURSOR syntaX.........cccccoorceieieiiccieinincnuenan. 6-44
Inserting a Row that Includes a Nested Tableccccccciiiiiiiiiiniicccceeeeeees 6-45
Selecting a Nested Table into a Host EXPIeSSioncccceerieiiiicicieiiicciccce e 6-45
Manipulating a Nested Table Using TABLE SyntaX..........ccccooeveueeinicnininiceeceeececnnene, 6-47
Selecting Data from a Nested Table Using a Nested Iterator............cccccccccevueeiivirnvnnnenenes 6-47
Selecting a VARRAY into a Host EXPIression...........ccoiiieiiiiicieiecccicc e, 6-49
Inserting a Row that Includes a VARRAY ..o 6-50

Serialized Java Objects...........ccccooiiiiiiiiiiii 6-50
Serializing Java Classes to RAW and BLOB Columns...........ccccouoiiiiiiiiiiccc, 6-51
SerializableDatum: an ORAData Implementation.............ccccevuviviriniiinnnniininne 6-52
SerializableDatum in SQL] APPlications........cccceueuiueuriruririeiriririricereeeeeeeeeeeeeeeeeeeeee s 6-55
SerializableDatum (Complete Class)........cccocoiiiiiiiiiiniiiiiiiiii s 6-55

Weakly Typed Objects, References, and Collectionsccccevvvvvninninnnnnnnnniinnne 6-57
Support for Weakly Typed Objects, References, and Collections............ccceeuvveerverrrirncncnnes 6-57
Restrictions on Weakly Typed Objects, References, and Collections............c.cccocevrveveveunnennnne. 6-57

Oracle OPAQUE TYPES.......ooiimimiiiiiiiiiiiiiiiccic st 6-58

7 Advanced Language Features

Connection COMtEXES...........coooiiiiiiiiicc 7-1
Connection Context CONCEPLS ... e 7-2
Connection Context LOGIStICS........ciuiiiieiiicieiec 7-3
More About Declaring and Using a Connection Context Class...........cccccceuvriiiiiiiniiiinininnnns 7-4
Example of Multiple Connection CONTEXEScccccuiuemiueieiiiiiieieieieeieieieeeeeieeie e senenennes 7-6
Implementation and Functionality of Connection Context Classes.............cooeveveriiieieininnnen. 7-7
Using the IMPLEMENTS Clause in Connection Context Declarations............ccccccceeviiiinines 7-8
Semantics-Checking of Your Connection Context Usagecccocovererererirrenrnnreneneeccrerecnen. 7-9
Standard Data SOUIce SUPPOIt.......ccviiiiiiiiiiiiiiiiieicic e 7-9
SQLJ-Specific Data SOUICES........ccocurueiiiicieieiicecie et 7-11
SQLJ-Specific Connection JavaBeans for JavaServer Pagescccccocoevvvvvinvnnvnnnnene 7-14
SQLJ Support for Global Transactions.............ccceeeiiieieiiiiiiiiiie s 7-17

Execution COomtexts ... 7-24
Relation of Execution Contexts to Connection Contexts.........cccovvirriiiineeiniiicccnennn, 7-24
Creating and Specifying Execution Context InStances............cccceeevieiiiniinicciiiccic, 7-25
Execution Context Synchronization ... 7-26
Execution Context Methods ..o, 7-26

Status Methods ..o 7-27
Control Methodsccoviiiiiiiiiiiiiiii s 7-27
Cancellation Methodcccooviiiiiiiii 7-28
Update Batching Methods ..o 7-28
Savepoint MethOdsS ... 7-29
Close MethOd........ooiiiiiiiiiicii e 7-30
Example: Using ExecutionContext Methodscccouiiiiiiiii 7-30
Relation of Execution Contexts to Multithreading.............ccoooeiiiiii, 7-31

Multithreading in SQLJccooiiiiiiii s 7-31

Iterator Class Implementation and Advanced Functionalitycccoooiiiinin, 7-33
Implementation and Functionality of Iterator Classescccooooiiiiiiiiiiiciicicceec, 7-34
Using the IMPLEMENTS Clause in Iterator Declarationsc.ccccceeoiieieciiicoccccnccnenee 7-35
Support for Extending Iterator Classes...........cocouviiiiiiiiiniiiines 7-35
RESULE SEt TEEIATOLS ...ttt et 7-36
ScrOllable TEeTators.cvoveviviriieiiciirc e 7-36

Advanced Transaction CONtrol ..o 7-41
SET TRANSACTION SYIAX....c.cuiurririiieiriiiieieisitieieesiiesie et essse s ssesseseseessssaesnns 7-42
ACCESS MO SELHNGScvviiiiiicicicccec e 7-42
Isolation Level Settings..........coviiuiiiiiiiiii 7-43
Using JDBC Connection Class Methods...........cccociiiiiiiiiiiiiiciccccceeeees 7-43

SQLJ and JDBC Interoperability............cccccooiiiiiiiiiiiii 7-44
SQLJ Connection Context and JDBC Connection Interoperability..........ccccceevvniiiiiinnnnnnn 7-44
SQL]J Iterator and JDBC Result Set Interoperability..........cccoovioreiiiiciiiicee, 7-48

Support for Dynamic SQL..........ccooiiiiiiiiiii s 7-50
Meta Bind EXPIESSIONSccovviiiiiiiiiiiiiiiiiieiieeee s 7-51
SQLJ Dynamic SQL EXaMPILES........ccccciuimimiiiiiiiiiiiiiiiiiieiciciccciccee e 7-52

Execution Plan FixXing ... 7-54

10

Translator Command Line and Options

Translator Command Line and Properties Files...........ccccocoiiniiin, 8-1
SQL]J Options, Flags, and PrefiXes ... 8-2
Command-Line Syntax and Operationsccoceueuiiiieiiiiicicicice e 8-9
Properties Files for Option Settings...........cooiiuiiiiiiiciiiiccc e 8-12
SQLJ_OPTIONS Environment Variable for Option Settings...........cccccceeueuerureiincvvccnenes 8-15
Order of Precedence of Option Settingscooiueiiiiiiiiiiii 8-15

Basic Translator OPHONS ... 8-16
Basic Options for the Command Line Only ... 8-17
Options for Output Files and Directories..........c.cccoeeiviiiiiiiiiiiiiniiiins 8-21
ConNection OPHIONSc.cuiiiiiiiieiititiicicicc s 8-25
Options for Reporting and Line-Mappingccccoceeeciiiieeieeeeeeeeeneeienenesenenenenenenes 8-33
Options fOr DIMS ..o 8-38
Options for Code Generation, Optimizations, and CHAR Comparisonscccceueerucen. 8-40

Advanced Translator OPIONScccoccvriiiriiiriiieiieeeeceere et 8-48
Prefixes that Pass Option Settings to Other Executables..........c...cccoooooiiiiiiiiiiiiii, 8-48
Flags for Special ProCeSSING.........ceeiiurieiiiiiiicieieect et 8-51
Semantics-Checking and Offline-Parsing Options..........ccccecevvvererrvereirernnrerreeeeeeeenes 8-56

Translator Support and Options for Alternative Environments...............ccccoeiiiiniinnne 8-62
Java and Compiler OPtionsc.cooiriiieiiiciec e 8-62
Customization OPHONS ... 8-68

Translator and Run-Time Functionality

Internal Translator OPerationsccccccoeiviiiniiiiniiiniinneee e e 9-1
Java and SQLJ Code-Parsing and Syntax-Checkingcccooeeiiiiiriiiiiiie 9-1
SQL Semantics-Checking and Offline Parsingcccooovreioiiiciiiiiccecee, 9-2
Code GENETAtiON.....c.cviviiiiiiiiicic s 9-3
Java Compilation........cceiiiiiiiiii e 9-6
Profile Customization (ISO Code Generation)c.cccceeereeereenteeneenieeneeneeneeesieeseeeseeneee 9-7

Functionality of Translator Errors, Messages, and Exit Codesccccocoeiininiiiniiinnns 9-8
Translator Error, Warning, and Information Messagesccccoourueieiiniiiiiniiceicccce 9-8
Translator Stattus MeSSaZES.........ccoeuiuiiiiiiiiiiiiiiiiiii s 9-10
Translator Exit Codes ... 9-11

SOLJ RUN TIME ..ottt sttt ettt sa et r ettt et en et e ae e b e s enesaesesaenesaenens 9-11
SQLJ Run Time Packages........cccccoceuiiiiiiiiiiiiiiiiiiciiiiici s 9-12
Categories of RUN-TIme EITOTScccccciiiiiiiiiiiiiiiiicicecceeceeee e 9-13

Globalization Support in the Translator and Run Time.............ccccooconiiiinniiiniicne, 9-13
Character Encoding and Language SUPPOTt.........cccccoeueieiiiiiiiiceieiceecc e, 9-14
SQLJ and Java Settings for Character Encoding and Language Supportccccceeueueuunee. 9-16
SQL]J Extended Globalization SUPPOItccceueiiiiieiiiiiiiiiii 9-18
Manipulation Outside of SQL]J for Globalization SUPPOItccccceveviiiiiiiiriiceee, 9-22

Performance and Debugging

Performance ENhancement FEatUrIes.cooc.oviiuiiiiiiiiiieie ettt ere e s eteeesaeesenneas 10-1
ROW PrefetChingc.c.cuiiiiiiiiiiiiiiiicecccee ettt 10-2
Statement Cachingcoviiiiiiiiiiiii s 10-3

xi

Update BatChingccceiiiiiiiiiiiiiiiiicicc s 10-9

Column DefiNitioNns........ccouiviiiiiiiiiiiiiiiiiii e 10-16
Parameter Size Definitions.........ccooviiiiiiiiiiiiiiic e 10-17
SQLJ Debugging Featurescccoooiiiiiiiiiiiiccs st 10-19
SQLJ -linemap Flag for Debuggingccoceueiiiiiiiiiiiiiieecceec e 10-19
Server-Side debug OPtion.......cccccuciiiiiiiiiiiiiiiiceereeer e 10-20
Overview of the AuditorInstaller Specialized Customizer.............ccccceevviininninnininnnn 10-20
Overview of Developing and Debugging in Oracle10g JDeveloper...........cccccooorerninnnnnn. 10-20
SQL]J Support for Oracle Performance Monitoring.............cccccvvviiinniiiinniinnccns 10-20
Overview of SQL] DMS SUPPOTIT ..o 10-21
Summary of SQL] Command-Line Options for DMSccccooiiiii 10-22
SQLJ Run-Time Commands and Properties File Settings for DMS..........c.cccccccoeivininnnene. 10-23
SQL] DMS Sensors and MELTICSc.ceueruirieriiriinieieieteiteieeic sttt sttt ettt st st st saeseeeeneene 10-24
SQLJ DMS EXAIMPLESouvuiviiiiiiiiiiiiiicii s 10-26

11 SQLJ in the Server

Overview of Server-Side SQLJ ..ottt 11-1
Creating SQL]J Code for Use in the Server ... 11-2
Database Connections Within the Server ... 11-3
Coding Issues Within the Server...........cooo e, 11-3
Default Output Device in the SErver ... 11-4
Name Resolution in the SErver ... 11-5
SQL Names Versus Java INAMIEScccceiereriiririeieeieeetee ettt ettt s 11-5
Translating SQLJ Source on a Client and Loading Components...............cccoeviiiininiinnninnnee. 11-5
Loading Classes and Resources into the Server ..., 11-6
Naming of Loaded Class and Resource Schema Objectscccooviiiiiiiiiiiiiiiicc 11-7
Publishing the Application After Loading Class and Resource Files..........ccccccccceuvuvirnnnnnnne. 11-9
Summary: Running a Client Application in the Server ..., 11-9
Loading SQLJ Source and Translating in the Server..............ccccoooviiiin, 11-10
Loading SQLJ Source Code into the Server............cccoccervrininnnrirreccereeeeee s 11-11
Option Support in the Server Embedded Translator.............ccccooeeiiiiiiiiiiiniiin, 11-12
Naming of Loaded Source and Generated Class and Resource Schema Objects................ 11-15
Error Output from the Server Embedded Translatorcccccccevvvvnnnvnnnnnnnrecnes 11-16
Publishing the Application After Loading Source Files..........ccccccoiiiniinnnnnnininnn, 11-16
Dropping Java Schema ODbjJects...........ccococviiiiniiiiiiiii e 11-17
Additional Server-Side Considerations..............cccocooiviiiiiiiiiiiiiccne 11-17
Java Multithreading in the SeIVeT..........cccoviiieiiiii s 11-17
Recursive SQL]J Calls iN the SEIVETcccviiiririeieeieetetee ettt s nens 11-18
Verifying that Code is Running in the Server............cconiinicccccccccenes 11-19

A Customization and Specialized Customizers

MoOre ADOUL PrOfilesccooiiiiiiiiiiiiii ettt ettt sb et nee A-1
Creation of a Profile During Code Generationcccooirieiiiicicicicicciecc e A-2
Sample Profile ENEIY ..o A-2

SQLJ Executable STateImMeNt.........cccvevveieieieieieieietistestestesietesese e eses e ssessessessessessessessessesenses A-2
Corresponding SQLJ Profile ENtry ... A-3
More About Profile CustomMizZationcccovuiviiieiieieieieeeeeee ettt nes A-3

Xii

Overview of the Customizer Harness and CUStOMUIZEIS.........ooovevvveeeeieiieieeeeeeeeeee e A-4

Steps in the Customization Process...........oooooiiiiiciiiicicic s A-4
Creation and Registration of a Profile Customization..........c.ccccceeceuceiicieeineiecereeeeeene A-5
Customization Error and Status Messages..........cccccueuiirieieiiiicieiicce e A-6
Functionality of a Customized Profile at Run Time...........cccooooiiiiiiiiiiiiiiicce A-6
Customization Options and Choosing a Customizer.................ccccococeiviniiiininiinni A-6
Overview of Customizer Harness Optionsccccoeveeviiiiiiiiniiiiiiiiiccccs A-7
Syntax for Customizer Harness Options...........ooccuoiiiiieiiiiiciiiccce A-7
Options Supported by the Customizer Harnesscccccccecuceiieiniiicnnninirncceeene A-8
General Customizer Harness OPptions ... A-8
Profile Backup Option (backup)ccoeueiiiriiiiic A-9
Customization Connection Context Option (context) ..., A-9
Customizer Option (CUSTOMIZET)ccvviuiuiiiiiiiiiiiicc s A-10
Customization JAR File Digests Option (digests)cococoeueieiiiiiiiniiiieciccec A-10
Customization Help Option (help).......cccccciiiiiiiiciccrrccerceceeeeeeees A-11
Customization Verbose Option (VErbose) ..o A-12
Customizer Harness Options for CONNectionscooeeueieiiicieiiiccieccc e A-12
Customization User Option (UST) ...t A-12
Customization Password Option (password) ... A-13
Customization URL Option (Url)........ccccciiiiiiiiiiiiiiiicenes A-14
Customization JDBC Driver Option (dIiver) ... A-14
Customizer Harness Options that Invoke Specialized Customizers...........cccceevvvivninininnne A-15
Specialized Customizer: Profile Debug Option (debug).........ccccoourvoiiiiiiiii A-15
Specialized Customizer: Profile Print Option (Print)cccccecevvvvvrvnvnrrnieeneenes A-16
Specialized Customizer: Profile Semantics-Checking Option (verify)cccooevenene A-17
Overview of Customizer-Specific Options..........cocueueiiiiieiiiiiciicc A-18
Oracle Customizer OPHIONSccccueuiuiuiuiiiiiiiiicieieeeee et sees A-18
Options Supported by Oracle CUStOmMizZer...........cccvveiiiiiiiieiiiiiciicees A-18
Oracle Customizer Version Compatibility Option (compat)cocoeemeiiirniiiineins A-19
Oracle Customizer Force Option (fOrce).........cooimiiiiiiiiiiieeceeeeeceneeeenenenes A-20
Oracle Customizer Column Definition Option (Optcols).......ccccovviviivviiiiiiiiiiiinns A-20
Oracle Customizer Parameter Definition Option (optparams).........ccccceeeevveriiiirenennnes A-22
Oracle Customizer Parameter Default Size Option (optparamdefaults)......................... A-23
Oracle Customizer CHAR Comparisons with Blank Padding (fixedchar)..................... A-24
Oracle Customizer Show-SQL Option (ShowSQL)......cccccceeuiiiiiiiiiiiiiiiiiccccecee A-25
Oracle Customizer Statement Cache Size Option (stmtcache).........cccceeuvvvervvirrncecnnes A-26
Oracle Customizer Summary Option (SUMMATY).......cccoceurueieiiiiinieiiiieeee s A-27
Options for Other CUSLOMUZETS........c.couimiiiiiiiiiiii s A-28
SQL]J Translator Options for Profile Customizationc.cccceeucueueurieieieicenneecceeeeeeees A-29
JAR FIles £OF PYOfIlEScoocooriiiriiiiiiiiiiiiieeeetcene ettt ettt A-29
JAR File REQUITEMENLSc.cocuimiiiiiiiiiiiiiic e A-29
JAR Fle LOGISHICSvviiiiciciiiciciicccccicc et A-30
SQLCheckerCustomizer for Profile Semantics-Checkingcccoooviiiiiiiiiiiiiiinn, A-30
Invoking SQLCheckerCustomizer with the Customizer Harness verify Option.................. A-31
SQLCheckerCustomizer OPtions.........cccccucucueuiiciiiiiiiriieiceeeeeeeere s A-32
SQLCheckerCustomizer Semantics-Checker Option (checker)ccccoccviiniiiiinininnnee. A-32
SQLCheckerCustomizer Warnings Option (Warn)........ccccceeeeeeieiiceieininccereceeeeenenes A-33

xiii

AuditorInstaller Customizer for Debugging.............ccccccovviiiiiiiiiiiiii A-33

Index

Xiv

Overview of Auditors and Code Layers..........cccccovviiiiiiiinniiiiiniis A-34
Invoking AuditorInstaller with the Customizer Harness debug Optioncccccceuvveueuenee. A-34
AuditorInstaller Run-Time OUtpuUt ..o A-35
AuditorInstaller OPHiONS...........coiiiiiiiiiiiiiic s A-36
AuditorInstaller Depth Option (depth) ... A-37
AuditorInstaller Log File Option (10g)......ccccovrueiiiiirieieiiiicieiiccci i A-37
AuditorInstaller Prefix Option (Prefix).........ccooiiiiiiiiiiiiiiiicccs A-38
AuditorInstaller Return Arguments Option (showReturns)..........ccccccccceeccciiccennen A-38
AuditorInstaller Thread Names Option (showThreads)cccccouviiiiniiiiiinnniinnns A-39
AuditorInstaller Uninstall Option (uninstall)..........cccccoviiininniniiiii, A-39
Full Command-Line EXamplesccccccocviuiiiiiiiiiiiicccecceeeeeeene e A-40

XV

List of Figures
2-1 Flow of Control

7-1 (@6) o LU B =0 T=T= Vet u Lo) o WSO ORRR SRR

XVi

List of Tables

4-1 SQLJ StatemMent CLAUSEScoeruiriirieieieteteteeeteee ettt bbbttt ettt ebe b 4-9
4-2 SQLJ Assignment CLatSescoceuiiiiirieieiicie e 4-10
5-1 Type Mappings for Supported Host Expression Types.......c.ccccccceveiiiiiiiiniciiiiinicnennen, 5-2
5-2 Correlation between Oracle Extensions and JDBC 2.0 Typescccccovuireiiiiirieininnnen, 5-6
5-3 Plausible values for the for_update option and the corresponding SQL statement..... 5-29
6-1 JPublisher SQL Type Categories, Supported Settings, and Defaults.................c.c..c....... 6-28
7-1 Table showing the options and values for generating outlinescccccoooiiiiiennnin. 7-57
8-1 SQLJ Translator OPtionScccuiuiviiiiiiiiiiiiiccic s 8-2
8-2 SQLJ Support for javac OPtions..........ccwieiiiiiiiiiiiiiniiieeee s 8-8
8-3 Tests and Flags for SQL] Warnings...........c.ccooieeieiiiiiiiniiciciecceenie i 8-34
8-4 Oracle Online Semantics-Checkers Chosen by OracleChecker.............cccccoiriiinnnnnnen. 8-57
8-5 Oracle Offline Semantics-Checkers Chosen by OracleCheckerc.cccoooorriiiinnnnn. 8-57
8-6 Feature Comparison: Offline Parsing Versus Online Semantics-Checking 8-57
9-1 Steps for Generated Calls, ISO Standard Versus Oracle-Specific..........ccccoevvviiiniinininnnnn 9-5
9-2 SQLJ Translator Error Message Categories..........ccoceueiiricieieiicicieiiccee e 9-10
9-3 JDBC and SQLJ Types and Corresponding Globalization Types.........ccccccooorriiininnnnn. 9-19

-XVii

-xviii Oracle Database SQLJ Developer's Guide

Audience

Preface

This preface introduces you to the Oracle Database SQL] Developer’s Guide, discussing
the intended audience and conventions of this document. A list of related Oracle
documents is also provided.

This preface covers the following topics:
= Audience

= Documentation Accessibility

= Related Documents

s Conventions

This manual is intended for anyone with an interest in SQL]J programming but
assumes at least some prior knowledge of the following;:

= Java
= SQL
= PL/SQL

s Oracle Database

Although general knowledge of SQL is sufficient, any knowledge of JDBC and
Oracle-specific SQL features would be helpful as well.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Xix

Related Documents

Also available from the Oracle Java Platform group are the following Oracle resources:

XX

Oracle Database Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle Database 11g and
provides general information about server-side configuration and functionality.
Information that pertains to Oracle Database Java environment in general, rather
than to a particular product such as JDBC or SQLJ, is in this book.

It also discusses Java stored procedures, which are programs that run directly in
Oracle Database. With stored procedures, Java developers can implement business
logic at the server level, thereby improving application performance, scalability,
and security.

Oracle Database JDBC Developer’s Guide and Reference

This book covers programming syntax and features of the Oracle implementation
of the JDBC standard. This includes an overview of the Oracle JDBC drivers,
details of the Oracle implementation of JDBC 1.22, 2.0, 3.0, and 4.0 features, and
discussion of Oracle JDBC type extensions and performance extensions.

Oracle Database [Publisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate
user-defined SQL types or PL/SQL packages into Java classes. If you are
developing SQLJ or JDBC applications that use object types, VARRAY types,
nested table types, object reference types, or PL/SQL packages, then JPublisher
can generate custom Java classes to map to them.

The following documents are from the Oracle Server Technologies group:

Oracle XML DB Developer’s Guide

Oracle XML Developer’s Kit Programmer’s Guide

Oracle Database XML Java API Reference

Oracle Database Advanced Application Developer’s Guide
Oracle Database SecureFiles and Large Objects Developer’s Guide
Oracle Database Object-Relational Developer’s Guide
Oracle Database PL/SQL Packages and Types Reference
Oracle Database PL/SQL Language Reference

Oracle Database SQL Language Reference

Oracle Database Net Services Administrator's Guide
Oracle Database Advanced Security Administrator’s Guide
Oracle Database Globalization Support Guide

Oracle Database Reference

Oracle Database Sample Schemas

Note: Oracle error message documentation is available in HTML
only. If you have access to the Oracle Documentation CD only, you
can browse the error messages by range. Once you find the specific
range, use the "find in page" feature of your browser to locate the
specific message. When connected to the Internet, you can search
for a specific error message using the error message search feature
of the Oracle online documentation.

For documentation of SQLJ standard features and syntax, refer to the following
specification:

Information Technology - Database Languages - SQL - Part 10: Object Language Bindings
(SQL/OLB)

Throughout this manual, the term "ISO SQLJ standard" is used to refer to this
standard.

You can obtain the ISO SQL]J standard from ANSI through the following Web site:
http://www.ansi.org/

Click eStandards Store and search for the term "INCITS/ISO/IEC 9075-10".

You can also obtain the ISO SQL]J standard from ISO through their web store
http://www.iso.org/iso/store.htm

Visit the preceding link and search for the term "ISO/IEC 9075-10".

The following location has SQLJ sample applications:

http://www.oracle.com/technetwork/database/focus-areas/applicati
on-development/index-099369.html

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

s Conventions in Text

= Conventions in Code Examples

Note: Also note that command-line examples are for a UNIX
environment with a system prompt of "%". This is only by
convention and can be adjusted as appropriate for your operating
system.

Conventions in Text

There are various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis, or terms that are defined in the

Ensure that the recovery catalog and target

text. database do not reside on the same disk.

XXi

Convention

Meaning

Example

UPPERCASE
monospace

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
data types, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents place holders or variables.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sglplus to open SQL*Plus.
The password is specified in the orapwd file.

Back up the data files and control files in the
/diskl/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

You can specify the parallel_ clause.

Run old _release.SQL where o1d_release
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from standard

text as shown in this example:

SELECT username FROM dba_users WHERE username =

"MIGRATE';

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

<>

XXii

In this document, angle brackets are used
instead of regular brackets to enclose one
or more optional items. Do not enter the
angle brackets. (Regular brackets are not
used due to SQL]J syntax considerations.)

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= Omission of parts of the code that are
not directly related to the example

= That you can repeat a portion of the
code

DECIMAL (digits < , precision >)

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE AS subquery;

SELECT coll,
employees;

col2, ... , coln FROM

Convention

Meaning

Example

Other notation

Italics

UPPERCASE

lowercase

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates place holders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. These terms are
in uppercase to distinguish them from
terms you define. Unless terms appear in
brackets, enter them in the order and with
the spelling shown. However, because
these terms are not case-sensitive, you can
enter them in lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

acctbal NUMBER(11,2);

acct CONSTANT NUMBER (4) :=

CONNECT SYSTEM
Enter password: password

DB_NAME = database_name

SELECT last_name,
employees;

SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

SELECT last_name,
employees;

sglplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

3;

employee_id FROM

employee_id FROM

xXiii

XXiv

1

Getting Started

This chapter guides you through the basics of testing your Oracle SQL]J installation
and configuration and running a simple application.

This chapter discusses the following topics:

Assumptions and Requirements
Checking the Installation and Configuration

Testing the Setup

Assumptions and Requirements

This section discusses basic assumptions about your environment and requirements of
your system so that you can run SQLJ, covering the following topics:

Assumptions About Your Environment

Requirements for Using the Oracle SQLJ Implementation
SQLJ Environment

Environment Considerations

SQL]J Backward Compatibility

Assumptions About Your Environment

The following assumptions are made about the system on which you will be running
the Oracle SQLJ implementation:

You have a standard Java environment that is operational on your system. This
would typically be using a Sun Microsystems Java Development Kit (JDK), but
other implementations of Java will work. Ensure that you can run Java (typically
java) and the Java compiler (typically javac).

To translate and run SQLJ applications on a Sun JDK, you must use JDK 1.5.x or
JDK 1.6.x. You must use the JDBC driver of the same version as that of SQLJ, can
be thin or OCIS8 driver

See Also: "SQLJ Environment” on page 1-2

Getting Started 1-1

Assumptions and Requirements

Note: A Java run-time environment (JRE), such as the one
installed with Oracle Database 11g, is not by itself sufficient for
translating SQL]J programs. However, a JRE is sufficient for running
SQLJ programs that have already been translated and compiled.

= You can already run JDBC applications in your environment.

See also: Oracle Database [DBC Developer’s Guide and Reference for
more information about JDBC drivers

Requirements for Using the Oracle SQLJ Implementation

The following are required to use the Oracle SQL]J implementation:
= A database system that is accessible using your JDBC driver
s Class files for the SQLJ translator

Translator-related classes are available in the following file:

ORACLE_HOME/sqglj/lib/translator.jar

Note: For more information about translator.jar, refer to "Set
the Path and Classpath" on page 1-4.

» Class files for the SQL]J run time.

ORACLE_HOME/sqglj/lib/runtimel2.jar

Note: runtimel2ee.jar hasbeen deprecated since Oracle
Database 11g Release 1 (11.1). Use runtimel2. jar instead.

SQLJ Environment

To ensure that you have a fully working environment, you must consider several
aspects of your environment: SQL] and its code generation mode, JDBC, and the JDK.

Note: Code generation is determined by the SQL] -codegen
option. Refer to "Code Generation (-codegen)" on page 8-41 for
more information.

The following is a typical environment setup for Oracle-specific code generation:
s SQLJ code generation: -codegen=oracle (default)

s SQLJ translation library: translator.jar

= SQLJ run-time library: runtimel2. jar

= JDBC drivers: Oracle 11g release 2 (11.2)

s JDK version: 1.5.x or 1.6.x

Note: If you are running against different JDBC versions, then
translate against the earlier version.

1-2 Oracle Database SQLJ Developer's Guide

Checking the Installation and Configuration

Environment Considerations

You can run the application against a JDK version that is at least as high as the version
you translated the code under.

Note: For more information about translator.jar, refer to "Set
the Path and Classpath" on page 1-4.

SQLJ Backward Compatibility

You must keep in mind the following points regarding backward compatibility of the
Oracle SQL]J implementation:

» Code generated with an earlier release of the SQL]J translator can continue to run
and compile against current run-time libraries. However, this is subject to the
cross-compatibility limitations discussed in "Environment Considerations" on
page 1-3.

s Oracle-specific translator output, that is, code generated with the default
-codegen=oracle setting, must be created and executed using the
runtimel2. jar library. In addition:

— Such code will be executable under future Oracle JDBC and SQL]J
implementations.

— Such code, however, will not be executable under earlier releases of Oracle
JDBC drivers and Oracle SQLJ run time. In these circumstances, you will have
to retranslate the code.

Checking the Installation and Configuration

After you have verified that the preceding assumptions and requirements are satisfied,
you must check your SQLJ installation. You must:

» Check for Availability of SQL] and Demo Applications
» Check for Installed Directories and Files

= Set the Path and Classpath

= Verify Installation of the sqljutl Package

Check for Availability of SQLJ and Demo Applications

Following are the release-specific notes regarding availability of SQL] and its demo
applications:

= SQLJ and its demo applications are available from the Oracle Technology Network
(OTN) at the following location:

http://www.oracle.com/technetwork/database/focus-areas/applic
ation-development/index-099369.html

s For Oracle Database 11g, SQL]J and its demo applications are included with the
installation.

Check for Installed Directories and Files

Verify that the following directories have been installed and are populated:

Getting Started 1-3

Checking the Installation and Configuration

Directories for JDBC

Refer to the Oracle Database JDBC Developer's Guide and Reference for information about
JDBC files that should be installed on your system.

Directories for SQLJ

Installing the Oracle Database 11g Java environment includes, among other things,
installing a sqlj directory under your ORACLE_HOME directory. The sglj directory
contains the following subdirectories:

= demo (demo applications, including some referenced in this chapter)
s 1lib(.jar files containing class files for SQLJ)
Check whether all these directories have been created and populated, especially 1ib.

The ORACLE_HOME/bin directory contains utilities for all Java product areas,
including the SQL]J and JPublisher executable files.

Set the Path and Classpath

Ensure that the PATH and CLASSPATH environment variables have the necessary
settings for the Oracle SQL] implementation. Set the PATH and CLASSPATH
environment variables as follows for the Oracle SQLJ implementation:

= Setting PATH

To run the sqlj script, which invokes the SQL]J translator, without having to fully
specify its path, verify that the PATH environment variable has been updated to
include the following:

ORACLE_HOME/bin
Use backslash (\) for Microsoft Windows. Replace ORACLE_HOME with your
actual Oracle home directory.

s Setting CLASSPATH

Update the CLASSPATH environment variable to include the current directory as
well as the following:

ORACLE_HOME/sqlj/lib/translator.jar

Use backslash (\) for Microsoft Windows. Replace ORACLE_HOME with your
actual Oracle home directory.

Include the following run-time library in the CLASSPATH:

ORACLE_HOME/sqglj/lib/runtimel2.jar

In addition, you must include one of the following JDBC JARs in the CLASSPATH:

ORACLE_HOME/jdbc/1lib/ojdbc5*.jar
ORACLE_HOME/jdbc/1lib/ojdbc6*.jar

1-4 Oracle Database SQLJ Developer's Guide

Testing the Setup

Note: To translate or run SQL]J programs in JDK 1.5.x environment,
you should have ojdbc5 . jar in the classpath and to translate or run
SQLJ programs in JDK 1.6.x environment, you should have

ojdbcé6 . jar in the classpath. Ensure that the correct JDBC JAR is
picked up at runtime for connecting to Oracle Database.

See Also: "Requirements for Using the Oracle SQL]
Implementation” on page 1-2

Note: You will not be able to run the SQL]J translator if you do not
add a run-time library. You must specify a run-time library as well
as the translator library in the CLASSPATH.

To see if SQL]J is installed correctly, and to see the version
information for SQLJ, JDBC, and Java, run the following command:

% sqglj -version-long

Verify Installation of the sqljutl Package

The sgljutl package is required for online checking of stored procedures and
functions in Oracle Database instance. Beginning with Oracle8i Database release 8.1.5,
it is installed automatically under the SYS schema during installation of the
server-side Java virtual machine (JVM) for a Java-enabled database. If your database is
not Java-enabled, then you will have to manually install this package.

If you want to verify the installation of sgljut1l, then issue the following SQL
command from SQL*Plus:

describe sys.sgljutl

This should result in a brief description of the package.

If you get a message indicating that the package cannot be found, or if you want to
install an updated version of the package, then you can install it by using SQL*Plus to
run the sgqljutl. sql script (or sgljutl8. sql for Oracle8i Database), which is
located at:

ORACLE_HOME/sqlj/lib/sqgljutl.sqgl

Testing the Setup

You can test your database, JDBC, and SQL] setup using demo applications defined in
the following source files:

m TestInstallCreateTable.java
m TestInstallJDBC.java
m TestInstallSQLJ.sqlj
s TestInstallSQLJChecker.sglj

There is also a Java properties file, connect . properties, that helps you set up your
database connection. You must edit this file to set appropriate user, password, and
URL values.

Getting Started 1-5

Testing the Setup

The demo applications discussed here are provided with your SQLJ installation in the
demo directory:

ORACLE_HOME/sqlj/demo

You may have to edit some of the source files and translate and compile them, as
appropriate. The demo applications provided with the Oracle SQLJ implementation
refer to tables on Oracle Database account with user name scott and password
tiger. Most Oracle Database installations have this account. You can substitute other
values for scott and tiger if desired.

Note: Running the demo applications requires that the demo
directory be the current directory, and that the current directory
(".") should be specified in the CLASSPATH.

This section covers the following topics:

= Set Up the Run-Time Connection

» Create a Table to Verify the Database

» Verify the JDBC Driver

s Verify the SQL]J Translator and Run Time

s Verify the SQL]J Translator Connection to the Database

See Also: "Check for Availability of SQLJ and Demo Applications”
on page 1-3

Set Up the Run-Time Connection

This section describes how to update the connect .properties file to configure
your Oracle connection for run time. The file is in the demo directory and looks
something like the following:

Note: In the Oracle Database 11g JDBC implementation, database
URL connection strings using SIDs are deprecated. Following is an
example, where orcl is the SID:

jdbc:oracle:thin:@localhost:1521:0rcl

This would now generate a warning, but not a fatal error. Instead,
you are encouraged to use database service names, such as
myservice in the following example:

jdbc:oracle:thin:@localhost:1521/myservice

Refer to the Oracle Database [DBC Developer’s Guide and Reference for
information about database service names.

Users should uncomment one of the following URLs or add their own.
(If using Thin, edit as appropriate.)
#sqglj.url=jdbc:oracle:thin:@localhost:1521/myservice
#sqglj.url=jdbc:oracle:oci:@

#

User name and password here

sqglj.user=scott

sqlj.password=tiger

1-6 Oracle Database SQLJ Developer's Guide

Testing the Setup

Connecting with an Oracle JDBC Driver

Use oci in the connection string for Oracle JDBC OCI driver in any new code. For
backward compatibility, however, oci8 is still accepted. Therefore, you do not have to
change existing code.

If you are using the JDBC Thin driver, then uncomment the thin URL line in
connect.properties and edit it as appropriate for your Oracle connection. Use the
same URL that was specified when your JDBC driver was set up.

Create a Table to Verify the Database

The following tests assume a table called SALES. Compile and run
TestInstallCreateTable as follows:

% javac TestInstallCreateTable.java

J
% java TestInstallCreateTable

This will create the table for you if the database and the JDBC driver are working and
the connection is set up properly in the connect . properties file.

Note: If you already have a table called SALES in your schema
and do not want it altered, edit

TestInstallCreateTable. java to change the table name.
Otherwise, your original table will be dropped and replaced.

If you do not want to use TestInstallCreateTable, then you can create the
SALES table using the following SQL statement:

CREATE TABLE SALES (
ITEM_NUMBER NUMBER,
ITEM_NAME CHAR(30)
SALES_DATE DATE,

COST NUMBER,
SALES_REP_NUMBER NUMBER,
SALES_REP_NAME CHAR(20));

Verify the JDBC Driver

If you want to further test Oracle JDBC driver, then use the Test InstallJDBC demo.
Verify that your connection is set up properly in connect .properties. Then,
compile and run TestInstallJDBC, as follows:

o)
o

avac TestInstallJDBC.java
ava TestInstallJDBC

oe

]
]

The program should print:

Hello, JDBC!

Verify the SQLJ Translator and Run Time

Now translate and run the TestInstallSQLJ demo, a SQL]J application that has
functionality similar to that of TestInstallJDBC. Use the following command to
translate the source:

% sqglj TestInstallSQLJ.sqglj

Getting Started 1-7

Testing the Setup

Note that this command also compiles the application.

On a UNIX environment, the sqlj script is in ORACLE_HOME/bin, which should
already be in the PATH. On Windows, use the sqlj . exe executable in the bin
directory. The SQL] translator. jar file has the class files for the SQL]J translator
and run time. It is located in ORACLE_HOME/sqlj/1ib and should already be in the
CLASSPATH.

See Also: "Set the Path and Classpath" on page 1-4

Now run the application as follows:

% java TestInstallSQLJ

The program should print:

Hello, SQLJ!

Verify the SQLJ Translator Connection to the Database

If the SQLJ translator is able to connect to a database, then it can provide online
semantics-checking of your SQL operations during translation. The SQLJ translator is
written in Java and uses JDBC to get information it needs from a database connection
that you specify. You provide the connection parameters for online
semantics-checking using the sglj script command line or using a SQLJ properties
file, which is sqlj .properties by default.

While still in the demo directory, edit the sqlj .properties file and update,
comment, or uncomment the sqlj.password, sqlj.url,and sqlj.driver lines,
as appropriate, to reflect your database connection information. For assistance, refer to
the comments in the sqlj .properties file.

Following is an example of what the appropriate driver, URL, and password settings
might be if you are using Oracle JDBC OCI driver.

sqlj.url=jdbc:oracle:oci:@
sqglj.driver=oracle.jdbc.OracleDriver
sqglj.password=tiger

Online semantics-checking is enabled as soon as you specify a user name for the
translation-time connection. You can specify the user name either by uncommenting
the sqlj.user line in the sqlj.properties file or by using the -user
command-line option. The user, password, url, and driver options all can be set
either on the command line or in the properties file.

See Also: "Connection Options" on page 8-25

You can test online semantics-checking by translating the
TestInstallSQLJChecker.sqlj file located in the demo directory, as follows (or
using another user name, if appropriate):

% sqglj -user=scott TestInstallSQLJChecker.sqglj
This should produce the following error message if you are using one of Oracle JDBC
drivers:

TestInstallSQLJChecker.sqglj:41: Warning: Unable to check SQL query. Error returned
by database is: ORA-00904:
invalid column name

1-8 Oracle Database SQLJ Developer's Guide

Testing the Setup

Edit TestInstallSQLJChecker.sqglj to fix the error on line 41. The column name
should be ITEM_NAME instead of ITEM_NAMAE. Once you make this change, you can
translate and run the application without error using the following commands:

% sqglj -user=scott TestInstallSQLJChecker.sqglj
% java TestInstallSQLJChecker

If everything works, then the following line is displayed:

Hello, SQLJ Checker!

Getting Started 1-9

Testing the Setup

1-10 Oracle Database SQLJ Developer's Guide

2

Introduction to SQLJ

This chapter provides a general overview of SQL]J features and scenarios. The
following topics are discussed:

s Overview of SQL]J

s Overview of SQLJ] Components

s Overview of Oracle Extensions to the SQLJ Standard
= Basic Translation Steps and Run-Time Processing

s SQLJ Sample Code

= Alternative Deployment Scenarios

= Alternative Development Scenarios

Overview of SQLJ

This section introduces the basic concepts of SQL]J and discusses the complementary
relationship between Java and PL/SQL in Oracle Database applications.

SQLJ enables applications programmers to embed SQL statements in Java code in a
way that is compatible with the Java design philosophy. A SQL]J program is a Java
program containing embedded SQL statements that comply with the International
Organization for Standardization (ISO) standard SQLJ Language Reference syntax.
The Oracle SQL]J implementation supports the ISO SQL]J standard. The standard
covers only static SQL operations, which are predefined SQL operations that do not
change in real time while a user runs the application. The Oracle SQL]J implementation
also offers extensions to support dynamic SQL operations, which are not predefined
and the operations can change in real time. It is also possible to use dynamic SQL
operations through Java Database Connectivity (JDBC) code or PL/SQL code within a
SQLJ application. Typical applications contain more static SQL operations than
dynamic SQL operations.

SQLJ consists of a translator and a run-time component and is smoothly integrated
into your development environment. You can run the translator to translate, compile,
and customize the code in a single step using the sqlj front-end utility. The
translation process replaces embedded SQL statements with calls to the SQL]J run time,
which processes the SQL statements. In ISO SQLJ standard this is typically, but not
necessarily, performed through calls to a JDBC driver. To access Oracle Database, you
would typically use an Oracle JDBC driver. When you run the SQL]J application, the
run time is started to handle the SQL operations.

The SQLJ translator is conceptually similar to other Oracle precompilers and enables
you to check SQL syntax, verify SQL operations against what is available in the

Introduction to SQLJ 2-1

Overview of SQLJ Components

schema, and check the compatibility of Java types with corresponding database types.
In this way, you can catch errors during development rather than a user catching the
errors at run time. The translator checks the following:

= Syntax of the embedded SQL statements

= SQL constructs, against a specified database schema to ensure consistency within a
particular set of SQL entities (optional)

For example, it verifies table names and column names.

= Data types, to ensure that the data exchanged between Java and SQL have
compatible types and proper type conversions

The SQL] methodology of embedding SQL statements directly in Java code is very
convenient and concise in a way that it reduces development and maintenance costs in
Java programs that require database connectivity.

Java programs can call PL/SQL stored procedures and anonymous blocks through
JDBC or SQLJ. In particular, SQL]J provides syntax for calling stored procedures and
functions from within a SQL]J statement and also supports embedded PL/SQL
anonymous blocks within a SQLJ statement.

Note: Using PL/SQL anonymous blocks within SQL]J statements
is one way to support dynamic SQL operations in a SQLJ
application. However, the Oracle SQL] implementation includes
extensions to support dynamic SQL directly.

Overview of SQLJ Components

This section introduces the main two major SQLJ components in Oracle SQL]J
implementation. It covers the following topics:

s SQLJ Translator
= SQLJ Run Time

SQLJ Translator

This component is a precompiler that you run after creating SQL]J source code.

The translator, which is written in pure Java, supports a programming syntax that
enables you to embed SQL statements in SQLJ executable statements. SQL]J executable
statements and SQLJ declarations are preceded by the #sgl token and can be
interspersed with Java statements in a SQL]J source code file. SQLJ source code file
names must have the . sqlj extension. The following is a sample SQL]J statement:

#sgl { INSERT INTO emp (ename, sal) VALUES (’'Joe’, 43000) };

The translator produces a . java file.

You can invoke the translator using the sqlj command-line utility. On the command
line, specify the files that need to be translated and any desired SQL]J option settings.

See Also: Chapter 8, "Translator Command Line and Options"

SQLJ Run Time

This component is also written in pure Java and is invoked automatically each time
you run a SQLJ application.

2-2 Oracle Database SQLJ Developer's Guide

Overview of Oracle Extensions to the SQLJ Standard

Oracle JDBC calls are generated directly into the translated code and the SQL]J run
time plays a much smaller role.

See Also: "SQL]J Run Time" on page 9-11

Note: Since Oracle Database 10g release 1 (10.1), only Oracle JDBC
drivers are supported with SQLJ.

Overview of Oracle Extensions to the SQLJ Standard

The Oracle SQL] implementation supports the ISO SQL]J standard. Using the ISO SQL]J
standard features requires a Java Development Kit (JDK) 1.5.x or later environment
that complies with Java2 Platform, Enterprise Edition (J2EE). The SQL] translator
accepts a broader range of SQL syntax than the ISO SQL]J standard specifies.

Note: Oracle SQLJ implementation is supported only with JDK
1.5.x.

The ISO SQLJ standard addresses not only the SQL-92 Entry level dialect of SQL, but
also enables extension beyond that. The Oracle SQLJ implementation supports the
Oracle SQL dialect, which is a superset of SQL-92 Entry level. If you need to create
SQL]J programs that work with other databases, then avoid using SQL syntax and SQL
types that are not in the Entry level of SQL-92 and, therefore, may not be supported in
other environments.

This section covers the following topics:
= SQLJ Type Extensions
= SQLJ Functionality Extensions
See Also: Chapter 5, "Type Support”, and Chapter 6, "Objects,

Collections, and OPAQUE Types" for information about SQLJ
extensions provided by Oracle Database

SQLJ Type Extensions
The Oracle SQL]J implementation supports the following Java types as extensions to
the SQL]J standard:

= Instances of oracle.sql. * classes as wrappers for SQL data.

See Also: "Support for JDBC 2.0 LOB Types and Oracle Type
Extensions" on page 5-20

» Custom Java classes, typically produced by the JPublisher utility to correspond to
SQL objects, object references, and collections. For example, classes that
implement the oracle.sgl.ORAData interface or the JDBC standard
java.sqgl.SQLdata interface.

Note: The SQLData interface is standard. Classes that implement it
are supported by JDBC drivers and databases of other vendors.

Introduction to SQLJ 2-3

Overview of Oracle Extensions to the SQLJ Standard

See Also: "Custom Java Classes" on page 6-4

Stream instances: BinaryStream and CharacterStream, the latter of which
replaces the deprecated AsciiStreamand UnicodeStream, used as output
parameters.

See Also: "Support for Streams" on page 5-8

Iterator and result set instances as input or output parameters. The SQL]J standard
specifies them only in result expressions or cast statements.

See Also: "Using Iterators and Result Sets as Host Variables" on
page 4-37 and "Using Iterators and Result Sets as Stored Function
Returns" on page 4-45

Unicode character types: NString, NCHAR, NCLOB, and
NcharCharacterStreamn, the latter of which replaces the deprecated
NcharAsciiStream and NcharUnicodeStream.

See Also: "SQL]J Extended Globalization Support" on page 9-18

Using any of these extensions requires Oracle-specific code generation or Oracle
customization during translation, as well as Oracle SQL] run time and an Oracle JDBC
driver when your application runs. Do not use these or other types if you want to use
your code in other environments. To ensure that your application is portable, use the
SQLJ -warn=portable flag.

See Also: See "Translator Command Line and Options" on page 8-1

SQLJ Functionality Extensions

The Oracle SQL]J implementation also supports the following extended functionality:

Oracle-specific code generation

This generates JDBC code directly. Much of the SQL]J run-time functionality is
bypassed during program execution.

See Also: "Oracle-Specific Code Generation (No Profiles)" on
page 3-28

Dynamic SQL in SQL]J statements

See Also: "Support for Dynamic SQL" on page 7-50

Scrollable result set iterators with additional navigation methods, and FETCH
syntax from result set iterators and scrollable result set iterators

See Also: "Scrollable Iterators" on page 7-36

Optimization flags for column and parameter size definitions

See Also: "Column Definitions" on page 10-16, "Parameter Size
Definitions" on page 10-17, and "Options for Code Generation,
Optimizations, and CHAR Comparisons” on page 8-40

2-4 Oracle Database SQLJ Developer's Guide

Basic Translation Steps and Run-Time Processing

= Flags for modified translator behavior, such as for binding host expressions by
identifier or accounting for blank padding in CHAR comparisons for WHERE clauses

See Also: "Binding Host Expressions by Identifier
(-bind-by-identifier)" on page 8-55 and "CHAR Comparisons with
Blank Padding (-fixedchar)" on page 8-46

= SQLJ statement caching on connection contexts

See Also: "Statement Caching" on page 10-3

Basic Translation Steps and Run-Time Processing

SQLJ source code contains a mixture of standard Java source together with SQL]J class
declarations and SQL]J executable statements containing embedded SQL statements.
SQLJ source files have the . sglj file name extension. The file name must be a legal
Java identifier. If the source file declares a public class, then the file name must match
the name of this class. If the source file does not declare a public class, then the file
name should match the name of the first defined class.

This section covers the following topics:
s SQLJ Translation Steps
s Summary of Translator Input and Output

s SQLJ Run-Time Processing

SQLJ Translation Steps

After you have written your . sqlj file, you must run SQLJ to process the files. The
following example shows SQL]J being run in its simplest form with no command-line
options for the Foo. sqlj source file with the public class Foo:

% sqglj Foo.sqlj

This command runs a front-end script or utility depending on the platform. The script
or utility reads the command line, invokes a Java virtual machine (JVM), and passes
arguments to it. The JVM invokes the SQLJ translator and acts as a front end.

Figure 2-1 Flow of Control

Oracle SQLJ

emp.sqlj emp.java emp.class

— SQLJ Translator '—»B—» Java Compiler .

Checker

% sqlj emp.sqlj -user=scott/tiger
% java emp

ﬂklw

The following sequence of events occurs, presuming each step completes without
error:

Introduction to SQLJ 2-5

Basic Translation Steps and Run-Time Processing

1. The JVM invokes the SQL]J translator.

2. The translator parses the SQLJ and Java code in the . sql7j file, checking for
proper SQLJ syntax and looking for type mismatches between the declared SQL
data types and corresponding Java host variables. Host variables are Java local
variables that are used as input or output parameters in SQL operations.

See Also: "Java Host, Context, and Result Expressions" on page 4-12

3. Depending on the SQLJ option settings, the translator invokes the online
semantics-checker, the offline parser, neither, or both. This is to verify syntax of
embedded SQL and PL/SQL statements and to check the use of database elements
in the code against an appropriate database schema, for online checking. Even
when neither is specified, some basic level of checking is performed.

When online checking is specified, SQL]J will connect to a specified database
schema to verify that the database supports all the database tables, stored
procedures, and SQL syntax that the application uses. It also verifies that the host
variable types in the SQL] application are compatible with data types of
corresponding database columns.

4. For Oracle-specific SQL]J code generation (-codegen=oracle, which is default),
SQL operations are converted directly into Oracle JDBC calls.

See Also: "Oracle-Specific Code Generation (No Profiles)" on

page 3-28
Generated Java code is put into a . java output file containing the following;:
= Any class definitions and Java code from the . sqlj source file

» Class definitions created as a result of the SQL]J iterator and connection context
declarations

See Also: "Overview of SQL]J Declarations" on page 4-1
» Calls to Oracle JDBC drivers to implement the actions of the embedded SQL
operations

5. The JVM invokes the Java compiler, which is usually, but not necessarily, the
standard javac provided with the Sun Microsystems JDK.

6. The compiler compiles the Java source file generated in Step 4 and produces Java
.class files as appropriate. This will include a . class file for each class that is
defined, each of the SQL]J declarations.

See Also: '"Internal Translator Operations" on page 9-1

General SQLJ Notes
Consider the following when translating and running SQL]J applications:

= ltis also possible to specify existing . java files on the command line to be
compiled and to be available for type resolution as well.

See Also: "Translator Command Line and Properties Files" on
page 8-1

= Your application requires an Oracle JDBC driver when it runs, even if your code
does not use Oracle-specific features.

2-6 Oracle Database SQLJ Developer's Guide

Basic Translation Steps and Run-Time Processing

Summary of Translator Input and Output

This section summarizes what the SQLJ translator takes as input, what it produces as
output, and where it places its output. This section covers the following topics:

s Translator Input
s Translator Output

s Output File Locations

Note: This discussion mentions iterator class and connection
context class declarations. Iterators are similar to JDBC result sets
and connection contexts are used for database connections.

Translator Input

The SQLJ translator takes one or more . sqlj source files as input, which can be
specified on the command line. The name of the main . sqglj file is based on the
public class it defines, if any, else on the first class it defines.

If the main . sglj file defines the MyClass class, then the source file name must be:

MyClass.sqglj

This must also be the file name if there are no public class definitions, but MyClass is
the first class defined. You must define each public class in separate. sglj files. When
you run SQLJ, you can also specify numerous SQL] options on the command line or in
the properties files.

See Also: "Translator Command Line and Properties Files" on
page 8-1

Translator Output

The translation step produces a Java source file for each . sglj file in the application,
presuming the source code uses SQL]J executable statements.

SQLJ generates Java source files as follows:
»s Java source files are . java files with the same base names as the . sglj files.

For example, the translator produces MyClass . java corresponding to
MyClass.sglj, which defines the MyClass class. The output . java file also
contains class definitions for any iterators or connection context classes declared in
the .sqglj file.

The compilation step compiles the Java source file into multiple class files. One
.class file is generated for each class defined in the . sglj source file. Additional
.class files are produced if you declared any SQLJ iterators or connection contexts.
Also, separate . class files will be produced for any inner classes or anonymous
classes in the code.

See Also: "Overview of SQL]J Declarations" on page 4-1

The . class files are named as follows:

s The class file for each class defined consists of the name of the class with the
.class extension. For example, the translator output file MyClass. java is
compiled into the MyClass. class class file.

Introduction to SQLJ 2-7

SQLJ Sample Code

s The translator names iterator classes and connection context classes according to
how you declare them. For example, if you declare an iterator MyIter, then the
compiler will generate a corresponding MyIter.class class file.

Output File Locations
By default, SQL]J places the generated . java files in the same directory as the . sglj
file. You can specify a different . java file location using the SQL] -dir option.

By default, SQL]J places the generated .class and . ser files in the same directory as
the generated . java files. You can specify a different location for .class and .ser
files using the SQLJ -d option. This option setting is passed to the Java compiler so
that . class files and . ser files will be in the same location.

For both the -d and -dir option, you must specify a directory that already exists.

See Also: "Options for Output Files and Directories” on page 8-21

SQLJ Run-Time Processing

This section discusses run-time processing during program execution.

When you translate with the default -codegen=oracle setting, your program
performs the following at run time:

= Executes Oracle-specific application programming interfaces (APIs) that ensure
batching support and proper creation and closing of Oracle JDBC statements

s Directly calls Oracle JDBC APIs for registering, passing, and retrieving parameters
and result sets

See Also: "Oracle-Specific Code Generation (No Profiles)" on
page 3-28

SQLJ Sample Code

This section presents a side-by-side comparison of two versions of the same sample
code, where one version is written in SQL]J and the other in JDBC. The objective of this
section is to point out the differences in coding requirements between SQL]J and JDBC.
This section covers:

= SQLJ Version of the Sample Code
= JDBC Version of the Sample Code

Note: The particulars of SQL] statements and features used here are
described later in this manual, but this example is still useful here to
give you a general idea in comparing and contrasting SQL]J and JDBC.
You can look at it again when you are more familiar with SQLJ
concepts and features.

In the sample, two methods are defined: getEmployeeAddress (), which selects and
returns an employee’s address from a table based on the employee’s number, and
updateAddress (), which takes the retrieved address, calls a stored procedure, and
returns the updated address to the database.

In both versions of the sample code, the following assumptions are made:

2-8 Oracle Database SQLJ Developer's Guide

SQLJ Sample Code

s A SQL script has been run to create the schema in the database and populate the
tables. Both versions of the sample code refer to objects and tables created by this
script.

s The UPDATE_ADDRESS () PL/SQL stored function exists, and it updates a given
address.

s The Connection object (for JDBC) and default connection context (for SQL]) have
been created previously by the caller.

= Exceptions are handled by the caller.

= The value of the address argument, addr, passed to the updateAddress ()
method can be null.

Note: The JDBC and SQLJ versions of the sample code are only
partial samples and cannot run independently. There is no main ()
method in either.

SQLJ Version of the Sample Code

The SQLJ version of the sample code that defines methods to retrieve an employee’s
address from the database, update the address, and return it to the database is as
follows:

import java.sqgl.*;

/**
This is what you have to do in SQLJ
**/
public class SimpleDemoSQLJ // line 6

{
//TO DO: make a main that calls this

public Address getEmployeeAddress (int empno) // line 10
throws SQLException
{
Address addr; // line 13
#sqgl { SELECT office_addr INTO :addr FROM employees
WHERE empnumber = :empno };
return addr;

}

// line 18
public Address updateAddress (Address addr)
throws SQLException
{
#sql addr = { VALUES(UPDATE_ADDRESS(:addr)) }; // line 22

return addr;
}
}

Line 10

The getEmployeeAddress () method does not require an explicit Connection
object. SQL]J can use a default connection context instance, which should be initialized
somewhere earlier in the application.

Introduction to SQLJ 2-9

SQLJ Sample Code

Lines 13-15

The getEmployeeAddress () method retrieves an employee address according to
the employee number. Use standard SQLJ SELECT INTO syntax to select an
employee's address from the employee table if the employee number matches the one
(empno) passed in to getEmployeeAddress (). This requires a declaration of the
Address object (addr) that will receive the data. The empno and addr variables are
used as input host variables.

Line 16
The getEmployeeAddress () method returns the addr object.

Line 19
The updateAddress () method also uses the default connection context instance.

Lines 19-22

The address is passed to the updateAddress () method, which passes it to the
database. The database updates the address and passes it back. The actual updating of
the address is performed by the UPDATE_ADDRESS () stored function. Use standard
SQLJ function-call syntax to receive the addr address object returned by
UPDATE_ADDRESS ().

Line 23
The updateAddress () method returns the addr object.

Specific Features of the SQLJ Version of the Code
Note the following features of the SQL] version of the sample code:

= An explicit connection is not required. SQL] can use a default connection context
that has been initialized previously in the application.

= No data type casting is required.
= SQLJ does not require knowledge of _SQL_TYPECODE, _SQL_NAME, or factories.
= NULL value data is processed implicitly.

= No explicit code for resource management (for example, closing statements or
results sets) is required.

= SQLJ embeds host variables, in contrast to JDBC, which uses parameter markers.
= String concatenation for long SQL statements is not required.
= You do not have to register output parameters.

= SQLJ syntax is simpler. For example, SELECT INTO statements are supported and
ODBC-style escapes are not used.

= You do not have to implement your own statement cache. By default, SQLJ will
automatically cache #sgl statements. This results in improved performance, for
example, if you repeatedly call getEmployeeAddress () and
updateAddress ().

JDBC Version of the Sample Code

If you are familiar with JDBC, then you can check the following the JDBC version of
the sample code, which defines methods to retrieve an employee’s address from the
database, update the address, and return it to the database.

2-10 Oracle Database SQLJ Developer's Guide

Alternative Deployment Scenarios

Note: The TO DO items in the comment lines indicate where you
might want to add additional code to increase the usefulness of the
code sample.

import java.sqgl.*;
import oracle.jdbc.*;

/*'k

This is what you have to do in JDBC

**/
public class SimpleDemoJDBC // line 7
{

//TO DO: make a main that calls this

public Address getEmployeeAddress (int empno, Connection conn)
throws SQLException // line 13

Address addr;
PreparedStatement pstmt = // line 16
conn.prepareStatement ("SELECT office_addr FROM employees" +
" WHERE empnumber = ?");
pstmt.setInt (1, empno);
OracleResultSet rs = (OracleResultSet)pstmt.executeQuery();
rs.next () ; // line 21
//TO DO: what if false (result set contains no data)?
addr = (Address)rs.getORAData(l, Address.getORADataFactory());
//TO DO: what if additional rows?

rs.close(); // line 25
pstmt.close();
return addr; // line 27

}
public Address updateAddress (Address addr, Connection conn)
throws SQLException // line 30

OracleCallableStatement cstmt = (OracleCallableStatement)

conn.prepareCall ("{ ? = call UPDATE_ADDRESS(?) }"); //1line 34
cstmt.registerOutParameter (1, Address._SQL_TYPECODE, Address._SQL_NAME);
// line 36

if (addr == null) {

cstmt.setNull (2, Address._SQL_TYPECODE, Address._SQL_NAME) ;
} else {

cstmt.setORAData (2, addr);

cstmt.executeUpdate() ; // line 43
addr = (Address)cstmt.getORAData (1, Address.getORADataFactory());
cstmt.close() ; // line 45

return addr;

Alternative Deployment Scenarios

Although this manual mainly discusses writing for client-side SQL]J applications, you
may find it useful to run SQLJ code in the following scenarios:

Introduction to SQLJ 2-11

Alternative Deployment Scenarios

s From an applet

s In the server (optionally running the SQL]J translator in the server as well)
This section covers the following topics:

= Running SQLJ in Applets

s Overview of SQLJ in the Server

Running SQLJ in Applets

Because the SQLJ run time is pure Java, you can use SQL] source code in applets as
well as applications. However, there are a few considerations.

See Also: Oracle Database JDBC Developer's Guide and Reference for
applet issues that apply to Oracle JDBC drivers.

This section covers the following topics:

= General Development and Deployment Considerations

= General End User Considerations

= Java Environment and the Java Plug-In

General Development and Deployment Considerations
The following general considerations apply to the use of SQL]J in applets:

= You must package all the SQLJ run-time packages with your applet. The packages
are:

sglj.runtime
sglj.runtime.ref
sglj.runtime.error

Also package the following if you used Oracle customization:
oracle.sqglj.runtime

oracle.sqglj.runtime.error

These packages are included with your Oracle installation in one of several
run-time libraries in the ORACLE_HOME/11ib directory.

See Also: "Requirements for Using the Oracle SQL]
Implementation” on page 1-2

= You must specify a pure Java JDBC driver, such as Oracle JDBC Thin driver, for
your database connection.

= You must explicitly specify a connection context instance for each SQL]J executable
statement in an applet. This is a requirement because you could conceivably run
two SQLJ applets in a single browser and, thus, in the same JVM.

See Also: "Connection Considerations" on page 3-4
s The default translator setting ~codegen=oracle generates Oracle-specific code.

This will eliminate the use of Java reflection at run time and, thus, increase
portability across different browser environments.

2-12 Oracle Database SQLJ Developer's Guide

Alternative Deployment Scenarios

See Also: "Code Generation (-codegen)" on page 8-41 and
"Oracle-Specific Code Generation (No Profiles)" on page 3-28

General End User Considerations

When end users run your SQL]J applet, classes in their CLASSPATH may conflict with
classes that are downloaded with the applet. Therefore, Oracle recommends that end
users clear their CLASSPATH before running the applet.

Java Environment and the Java Plug-In

The following are some additional considerations regarding the Java environment and
use of Oracle-specific features:

= SQLJ requires the run-time environment of JDK 1.5. Users cannot run SQL]J applets
in browsers using earlier JDK versions, without a plug-in. One option is to use a
Java plug-in offered by Sun Microsystems. For information, refer to the following:

http://java.sun.com/products/plugin/

= Applets using Oracle-specific features require Oracle SQL]J run time to work.
Oracle SQLJ run time consists of the classes in the SQL]J run-time library file under
oracle.sqglj. *.Oracle SQL] runtime. jar library requires the Java Reflection
API, java.lang.reflect. *. Most browsers do not support the Reflection API
or impose security restrictions, but the Sun Microsystems Java plug-in provides
support for the Reflection APL

Note: The term "Oracle-specific features” refers to the use of
Oracle type extensions (discussed in Chapter 5, "Type Support")
and the use of SQLJ features that require Oracle-specific code
generation or, for ISO SQLJ standard code generation, require your
application to be customized to work against Oracle Database
instance. (For example, this is true of the SET statement, discussed
in Chapter 4, "Basic Language Features".)

The preceding issues can be summarized as follows, focusing on users with Internet
Explorer and Netscape browsers:

s The SQLJ and JDBC versions should match. For example, to use the SQLJ 9.0.0 run
time, you must have an Oracle 9.0.0 or earlier JDBC driver.

See Also: "Requirements for Using the Oracle SQL]
Implementation” on page 1-2

= If you use object types, JDBC 2.0 types, REF CURSORSs, or the CAST statement in
your SQLJ statements, then you must adhere to your choice of the following:
— Use the default -codegen=oracle setting when you translate your applet.

— Ensure that the browser in which you run supports JDK 1.5.x and permits
reflection.

- Run your applet through a browser Java plug-in.

Overview of SQLJ in the Server

In addition to its use in client applications, SQL]J code can run within a target Oracle
Database in stored procedures, stored functions, or triggers. Server-side access occurs

Introduction to SQLJ 2-13

Alternative Deployment Scenarios

through an Oracle JDBC driver that runs inside the server itself. Additionally, Oracle
Database 11g (and preceding versions) has an embedded SQLJ translator so that SQLJ
source files for server-side use can optionally be translated directly in the server.

The two main areas to consider are the following:

Creating SQL]J code for use within the server

Coding a SQL]J application for use within the target Oracle Database is similar to
coding for client-side use. The issues that exist are due to general JDBC
characteristics, as opposed to SQLJ-specific characteristics. The main differences
involve connections:

- You have only one connection.
— The connection is to the database in which the code is running.

— The connection is implicit (does not have to be explicitly initialized, unlike on
a client).

— The connection cannot be closed. Any attempt to close it will be ignored.

Additionally, the JDBC server-side driver used for connections within the server
does not support auto-commit mode.

Note: There is also a server-side Thin driver for connecting to one
server from code that runs in another. This case is effectively the
same as using a Thin driver from a client and is coded in the same
way. Refer "Overview of Oracle JDBC Drivers" on page 3-1 for
further information.

Translating and loading SQL]J code for server-side use

You can translate and compile your code either on a client or in the server. If you
do this on a client, then you can load the class and resource files into the server
from your client, either by pushing them from the client using the Oracle
loadjava utility or pulling them in from the server using SQL commands.

Alternatively, you can translate and load in one step using the embedded
server-side SQLJ translator. If you load a SQL] source file instead of class or
resource files, then translation and compilation are done automatically. In general,
loadjava or SQL commands can be used for class and resource files or for source
files. From a user perspective, . sglj files are treated the same as . java files,
with translation taking place implicitly.

See Also: "Loading SQL]J Source Code into the Server" on page 11-11
for information about using the embedded server-side translator

Note: The server-side translator does not support the SQLJ
-codegen option and generates Oracle-specific code. To use ISO
SQLJ standard code in the server, you must translate on a client
and load the individual components into the server. Also note
restrictions on interoperability when running code generated with
different settings. For more information, refer to "Translating SQLJ
Source on a Client and Loading Components" on page 11-5 and
"Oracle-Specific Code Generation (No Profiles)" on page 3-28.

2-14 Oracle Database SQLJ Developer's Guide

Alternative Development Scenarios

Alternative Development Scenarios

The discussion in this book assumes that you are coding manually on a UNIX
environment for English-language deployment. However, you can use SQL]J on other
platforms and with integrated development environments (IDEs). There is also
globalization support for deployment to other languages. This section covers the
following topics:

= SQLJ Globalization Support
= SQLJ in Oracle JDeveloper 10g and Other IDEs

s Windows Considerations

SQLJ Globalization Support

Support for native languages and character encodings by the Oracle SQL]J
implementation is based on Java built-in globalization support capabilities.

The standard user.language and file.encoding properties of the JVM
determine appropriate language and encoding for translator and run-time messages.
The SQL] -encoding option determines encoding for interpreting and generating
source files during translation.

See Also: "Globalization Support in the Translator and Run Time"
on page 9-13

SQLJ in Oracle JDeveloper 10g and Other IDEs

The Oracle SQL]J implementation includes a programmatic API so that it can be
embedded in IDEs, such as Oracle JDeveloper 10g. The IDE takes on a role similar to
that of the front-end sqlj script, invoking the translator, semantics-checker, compiler,
and customizer (as applicable).

JDeveloper is a Jave-based, cross-platform visual development environment for Java
programming. The JDeveloper Suite enables developers to build multitier, scalable
Internet applications using Java across the Oracle Internet Platform. The core product
of the suite, the JDeveloper IDE, excels in creating, debugging, and deploying
component-based applications.

Oracle JDBC OCI and Thin drivers are included with JDeveloper. The compilation
functionality of JDeveloper includes an integrated SQLJ translator so that your SQLJ
application is translated automatically as it is compiled.

Information about JDeveloper is available at the following URL:

http://www.oracle.com/technology/products/jdev/index.html

Windows Considerations

Note the following if you are using a Microsoft Windows environment instead of a
UNIX environment:

s This manual uses UNIX syntax. Use platform-specific file names and directory
separators, such as "\" on Microsoft Windows, that are appropriate for your
platform, because your JVM expects file names and paths in the platform-specific
format. This is true even if you are using a shell, such as ksh, that permits a
different file name syntax.

s For UNIX, the Oracle SQL]J implementation provides a front-end script, sql3j, that
you use to invoke the SQLJ translator. On Microsoft Windows, Oracle instead

Introduction to SQLJ 2-15

Alternative Development Scenarios

provides an executable file, sqlJ . exe. Using a script is not feasible on Microsoft
Windows because . bat files on these platforms do not support embedded equals
signs (=) in arguments, string operations on arguments, or wildcard characters in
file name arguments.

= How to set environment variables is specific to the operating system. There may
also be OS-specific restrictions. In Windows 95, use the Environment tab in the
System control panel. Additionally, because Windows 95 does not support the
"=" character in variable settings, SQL] supports the use of "#" instead of "="in

setting SQLJ_OPTIONS, an environment variable that SQL]J can use for option

settings. Consult your operating system documentation regarding settings and

syntax for environment variables, and be aware of any size limitations.

= As with any operating system and environment you use, be aware of specific
limitations. In particular, the complete, expanded SQL] command line must not
exceed the maximum command-line size, which is 250 characters for Windows 95
and 4000 characters for Windows NT. Consult your operating system
documentation.

Refer to the release notes for Windows for additional information.

2-16 Oracle Database SQLJ Developer's Guide

3

Key Programming Considerations

This chapter discusses key issues to consider before developing and running your
SQLJ application, and also provides a summary and sample applications. The
following topics are discussed:

Selection of the JDBC Driver

Connection Considerations

NULL-Handling

Exception-Handling Basics

Basic Transaction Control

Summary: First Steps in SQLJ Code
Oracle-Specific Code Generation (No Profiles)
ISO Standard Code Generation

Requirements and Restrictions for Naming

Considerations for SQLJ in the Middle Tier

Selection of the JDBC Driver

You must consider which Java Database Connectivity (JDBC) driver will be
appropriate for your situation and whether it may be advantageous to use different
drivers for translation and run time. You must choose or register the appropriate
driver class for each and then specify the driver in your connection URL.

Note: Your application will require an Oracle JDBC driver if you
use Oracle-specific code generation or if you use ISO SQL] standard
code generation with Oracle customizer, even if your code does not
actually use Oracle-specific features.

This section covers the following topics:

Overview of Oracle JDBC Drivers
Driver Selection for Translation

Driver Selection and Registration for Run Time

Overview of Oracle JDBC Drivers
Oracle provides the following JDBC drivers:

Key Programming Considerations 3-1

Selection of the JDBC Driver

» Oracle Call Interface (OCI) driver: For client-side use with an Oracle client
installation.

s Thin driver: A pure Java driver for client-side use, particularly with applets. It
does not require an Oracle client installation.

= Server-side Thin driver: Is functionally the same as the client-side Thin driver, but
is for code that runs inside Oracle Database instance and needs to access a remote
server.

= Server-side internal driver: For code that runs inside the target server, that is,
inside Oracle Database instance that it must access.

Oracle Database 11g provides client-side drivers compatible with Java Development
Kit (JDK) 1.5.

See Also: Oracle Database JDBC Developer's Guide and Reference

Note: Remember that your choices may differ between translation
time and run time. For example, you may want to use Oracle JDBC
OCI driver at translation time for semantics-checking, but Oracle
JDBC Thin driver at run time.

Core JDBC Functionality
The core functionality of all Oracle JDBC drivers is the same. They support the same
feature set, syntax, programming interfaces, and Oracle extensions.

All Oracle JDBC drivers are supported by the oracle. jdbc.OracleDriver class.

JDBC OCI Driver
Oracle JDBC OCI driver accesses the database by calling the OCI directly from Java,
providing the highest compatibility with the different Oracle Database versions. These

drivers support installed Oracle Net adapters, including interprocess communication
(IPC), named pipes, TCP/IP, and IPX/SPX.

The use of native methods to call C entry points makes the OCI driver dependent on
the Oracle platform, requiring an Oracle client installation that includes Oracle Net.
Therefore it is not suitable for applets.

Connection strings for the OCI driver are of the following form, where tns is an
optional TNS alias or full TNS specification:

jdbc:oracle:oci:@<tns>

Note: For backward compatibility, oc18 is still acceptable instead of
oci.

JDBC Thin Driver

Oracle JDBC Thin driver is a platform-independent, pure Java implementation that
uses Java sockets to connect directly to Oracle Database from any Oracle or non-Oracle
client. It can be downloaded into a browser simultaneously with the Java applet being
run.

The JDBC Thin driver supports only TCP/IP protocol and requires a TNS listener to
be listening on TCP/IP sockets from the database server. When the JDBC Thin driver

3-2 Oracle Database SQLJ Developer's Guide

Selection of the JDBC Driver

is used with an applet, the client browser must have the capability to support Java
sockets.

Connection strings for the JDBC Thin driver are typically of the following form:

jdbc:oracle:thin:@host:port/servicename

See Also: Oracle Database [DBC Developer’s Guide and Reference for
information about database service names

In Oracle Database 11g, connection strings using SIDs are deprecated, but are still
supported for backward compatibility:

jdbc:oracle:thin:@host:port:sid

JDBC Server-Side Thin Driver

Oracle JDBC server-side Thin driver offers the same functionality as the client-side
JDBC Thin driver, but runs inside the database and accesses a remote server. This is
useful in accessing one Oracle Database instance from inside another, such as from a
Java stored procedure.

Connection strings for the server-side Thin driver are the same as for the client-side
Thin driver.

Note: In order to leave the originating database when using the
server-side Thin driver, the user account must have
SocketPermission assigned. Refer to the Oracle Database [DBC
Developer’s Guide and Reference for more information. Also, refer to
the Oracle Database Java Developer’s Guide for general information
about SocketPermission and other permissions.

JDBC Server-Side Internal Driver

Oracle JDBC server-side internal driver provides support for any Java code that runs
inside the target Oracle Database instance where the SQL operations are to be
performed. The server-side internal driver enables Oracle Java virtual machine (JVM)
to communicate directly with the SQL engine. This driver is the default JDBC driver
for SQLJ code running as a stored procedure, stored function, or trigger in Oracle
Database 11g.

Connection strings for the server-side internal driver are of the following form:
jdbc:oracle:kprb:

If your SQLJ code uses the default connection context, then SQLJ automatically uses
this driver for code running in Oracle JVM.

Driver Selection for Translation

Use SQLJ option settings, either on the command line or in a properties file, to choose
the driver manager class and specify a driver for translation.

Use the SQLJ -driver option to choose any driver manager class other than
OracleDriver, which is the default.

Specify the particular JDBC driver to choose, such as JDBC Thin or JDBC OCI for
Oracle Database, as part of the connection URL you specify in the SQLJ -url option.

Key Programming Considerations 3-3

Connection Considerations

See Also: "Connection Options" on page 8-25

You will typically, but not necessarily, use the same driver that you use in your source
code for the run-time connection.

Note: Remember that the -driver option does not choose a
particular driver. It registers a driver class with the driver manager.
One driver class might be used for multiple driver protocols, such
as OracleDriver, which is used for all of Oracle JDBC protocols.

Driver Selection and Registration for Run Time

To connect to the database at run time, you must register one or more drivers that will
understand the URLs you specify for any of your connection instances, whether they
are instances of the sqlj.runtime.ref.DefaultContext class or of any
connection context classes that you declare.

If you are using an Oracle JDBC driver and create a default connection using the
Oracle.connect () method, then SQLJ handles this automatically. The
Oracle.connect () method registers the oracle. jdbc.OracleDriver class.

If you are using an Oracle JDBC driver, but do not use Oracle.connect (), then you
must manually register the OracleDriver class, as follows:

DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

If you are not using an Oracle JDBC driver, then you must register some appropriate
driver class, as follows:

DriverManager.registerDriver (new mydriver. jdbc.driver.MyDriver());
In any case, you must also set your connection URL, user name, and password.

See Also: "Single Connection or Multiple Connections Using
DefaultContext" on page 3-5

Note: As an alternative to using the JDBC driver manager in
establishing JDBC connections, you can use data sources. You can
specify a data source in a with clause, as described in "Declaration
WITH Clause" on page 4-4. For general information about data
sources, refer to the Oracle Database [DBC Developer’s Guide and
Reference.

Connection Considerations

When deciding what database connection or connections you will need for your SQL]
application, consider the following:

= Will you need just one database connection or multiple connections?

s If using multiple connections (possibly to multiple schemas), then will each
connection use SQL entities of the same name: tables of the same name, columns
of the same name and data types, stored procedures of the same name and
signature, and so on?

= Will you need different connections for translation and run time or will the same
suffice for both?

3-4 Oracle Database SQLJ Developer's Guide

Connection Considerations

A SQLJ executable statement can specify a particular connection context instance,
either of DefaultContext or of a declared connection context class, for its database
connection. Alternatively, it can omit the connection context specification and use the
default connection, which is an instance of DefaultContext that was previously set
as the default.

Note: If your operations will use different sets of SQL entities,
then you will typically want to declare and use additional
connection context classes.

This section covers the following topics:

= Single Connection or Multiple Connections Using DefaultContext
s Closing Connections

= Multiple Connections Using Declared Connection Context Classes
= More About the Oracle Class

= More About the DefaultContext Class

= Connection for Translation

s Connection for Customization

Single Connection or Multiple Connections Using DefaultContext

This section discusses scenarios where you will use connection instances of only the
DefaultContext class.

This is typical if you are using a single connection, or multiple connections that use
SQL entities with the same names and data types.

Single Connection

For a single connection, use one instance of the DefaultContext class specifying the
database URL, user name, and password, when you construct your DefaultContext
object.

You can use the connect () method of the oracle.sqglj.runtime.Oracle class to
accomplish this. Calling this method automatically initializes the default connection
context instance. This method has several signatures, including ones that allow you to
specify user name, password, and URL, either directly or using a properties file. In the
following example, the properties file connect . properties is used:

Oracle.connect (MyClass.class, "connect.properties");

Note: The connect.properties file is searched for relative to
the specified class. In the example, if MyClass is located in
my-package, then connect .properties must be found in the
same package location, my-package.

If you use connect.properties, then you must edit it appropriately and package it
with your application. In this example, you must also import the
oracle.sglj.runtime.Oracle class.

Alternatively, you can specify user name, password, and URL directly:

Key Programming Considerations 3-5

Connection Considerations

Oracle.connect ("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger");

In this example, the connection will use the JDBC Thin driver to connect the scott
user with the password, tiger, to a database on the computer, localhost, through
port 1521, where myservice is the name of the database service for the connection.

Either of these examples creates a special static instance of the DefaultContext class
and installs it as your default connection. It is not necessary to do anything with this
DefaultContext instance directly.

Once you have completed these steps, you do not need to specify the connection for
any of the SQL]J executable statements in your application, if you want them all to use
the default connection.

Note that in using a JDBC Thin driver, the URL must include the host name, port
number, and service name (or SID, which is deprecated in Oracle Database 11g), as in
the preceding example. Also, the database must have a listener running at the
specified port. In using the JDBC OCI driver, no service name (or SID) is required if
you intend to use the default account of the client, as will be the case in examples in
this document. Alternatively, you can use name-value pairs.

See Also: Oracle Database [DBC Developer’s Guide and Reference for
more information

The following URL will connect to the default account of the client:

jdbc:oracle:oci:@

Note:

s Oracle.connect () will not set your default connection if
one had already been set. In that case, it returns null. This
enables you to use the same code on a client or in the server. If
you do want to override your default connection, then use the
static setDefaultContext () method of DefaultContext.

s TheOracle.connect () method defaults to a false setting
of the auto-commit flag. However, it also has signatures to set it
explicitly. In the Oracle JDBC implementation, the auto-commit
flag defaults to true.

= You can optionally specify getClass () instead of
MyClass.class in the Oracle.connect () call, as long as
you are not calling getClass () from a static method. The
getClass () method is used in some of the SQLJ] demo
applications.

= You can access the static Defaul tContext instance, which
corresponds to your default connection, as follows:

DefaultContext.getDefaultContext () ;

Multiple Connections

For multiple connections, you can create and use additional instances of the
DefaultContext class, while optionally still using the default connection.

3-6 Oracle Database SQLJ Developer's Guide

Connection Considerations

You can use the Oracle.getConnection () method to instantiate
DefaultContext, as in the following examples.

First, consider a case where you want most statements to use the default connection,
but other statements to use a different connection. You must create one additional
instance of DefaultContext:

DefaultContext ctx = Oracle.getConnection (
"jdbc:oracle:thin:@localhost2:1521/myservice2", "bill", "lion");

Note: ctx could also use the scott/tiger schema, if you want to
perform multiple sets of operations on the same schema.

When you want to use the default connection, it is not necessary to specify a
connection context:

#sqgl { SQL operation };

This is actually a shortcut for the following:

#sqgl [DefaultContext.getDefaultContext()] { SQL operation };

When you want to use the additional connection, specify ctx as the connection:

#sql [ctx] { SQL operation };

Next, consider situations where you want to use multiple connections, where each of
them is a named DefaultContext instance. This enables you to switch your
connection back and forth.

The following statements establish multiple connections to the same schema (in case
you want to use multiple Oracle Database sessions or transactions, for example).
Instantiate the DefaultContext class for each connection you will need:

DefaultContext ctxl = Oracle.getConnection
("jdbc:oracle:thin:@localhost1:1521/myservicel", "scott", "tiger");

DefaultContext ctx2 = Oracle.getConnection
("jdbc:oracle:thin:@localhostl:1521/myservicel", "scott", "tiger");

This creates two connection context instances that would use the same schema,
connecting to scott/tiger using service myservicel on the computer
localhost1l, using Oracle JDBC Thin driver.

Now, consider a case where you would want multiple connections to different
schemas. Again, instantiate the DefaultContext class for each connection you will
need:

DefaultContext ctxl = Oracle.getConnection
("jdbc:oracle:thin:@localhostl:1521/myservicel", "scott", "tiger");

DefaultContext ctx2 = Oracle.getConnection
("jdbc:oracle:thin:@localhost2:1521/myservice2", "bill", "lion");

This creates two connection context instances that use Oracle JDBC Thin driver but use
different schemas. The ctx1 object connects to scott/tiger using service
myservicel on the computer localhostl, while the ctx2 object connects to
bill/lion using service myservice2 on the computer localhost2.

There are two ways to switch back and forth between these connections for the SQL]
executable statements in your application:

Key Programming Considerations 3-7

Connection Considerations

s If you switch back and forth frequently, then you can specify the connection for
each statement in your application:

#sqgl [ctxl] { SQL operation };

#sqgl [ctx2] { SQL operation };

Note: Include the square brackets around the connection context
instance name; they are part of the syntax.

= If you use either of the connections several times in a row within your code flow,
then you can periodically use the static setDefaultContext () method of the
DefaultContext class to reset the default connection. This method initializes the
default connection context instance. This way, you can avoid specifying
connections in your SQL]J statements.

DefaultContext.setDefaultContext (ctxl) ;

#sql { SQL operation }; // These three statements all use ctxl
#sqgl { SQL operation };

#sqgl { SQL operation };

DefaultContext.setDefaultContext (ctx2) ;

#sql { SQL operation }; // These three statements all use ctx2
#sql { SQL operation };

#sql { SQL operation };

Note: Because the preceding statements do not specify connection
contexts, at translation time they will all be checked against the
default connection context.

Closing Connections

It is advisable to close your connection context instances when you are done,
preferably in a finally clause of a try block (in case your application terminates
with an exception).

The DefaultContext class, as well as any connection context classes that you
declare, includes a close () method. Calling this method closes the SQL]J connection
context instance and, by default, also closes the underlying JDBC connection instance
and the physical connection.

In addition, the oracle.sqglj.runtime.Oracle class has a static close () method
to close the default connection only. In the following example, presume ctx is an
instance of any connection context class:

finally
{

ctx.close();

}

Alternatively, if the £inally clause is not within a try block in case a SQL exception
is encountered:

3-8 Oracle Database SQLJ Developer's Guide

Connection Considerations

finally

{
try { ctx.close(); } catch(SQLException ex) {...}

}

Or, to close the default connection, the Oracle class also provides a close ()
method:

finally
{

Oracle.close();

}

Always commit or roll back any pending changes before closing the connection.
Whether there would be an implicit COMMIT operation as the connection is closed is
not specified in the JDBC standard and may vary from vendor to vendor. For Oracle,
there is an implicit COMMIT when a connection is closed, and an implicit ROLLBACK
when a connection is garbage-collected without being closed, but it is not advisable to
rely on these mechanisms.

Note: Itis also possible to close a connection context instance
without closing the underlying connection (in case the underlying
connection is shared). Refer to "Closing Shared Connections" on
page 7-47 for more information.

Multiple Connections Using Declared Connection Context Classes

For multiple connections that use different sets of SQL entities, it is advantageous to
use connection context declarations to define additional connection context classes.
Having a separate connection context class for each set of SQL entities that you use
enables SQL]J to do more rigorous semantics-checking of your code.

See Also: "Connection Contexts" on page 7-1

More About the Oracle Class

The Oracle SQL] implementation provides the oracle.sqlj.runtime.Oracle
class to simplify the process of creating and using instances of the DefaultContext
class.

The static connect () method initializes the default connection context instance,
instantiating a DefaultContext object and installing it as your default connection.
You do not need to assign or use the DefaultContext instance returned by
connect (). If you had already established a default connection, then connect ()
returns null.

The static getConnection () method simply instantiates a DefaultContext object
and returns it. You can use the returned instance as desired.

Both methods register Oracle JDBC driver manager automatically if the
oracle.jdbc.OracleDriver class is found in the CLASSPATH. The static close ()
method closes the default connection.

Signatures of the Oracle.connect() and Oracle.getConnection() Methods
Both the method have signatures that take the following parameter sets as input:

Key Programming Considerations 3-9

Connection Considerations

s URL (String), user name (String), password (String)

s URL (String), user name (String), password (String), auto-commit flag
(boolean)

s URL(String), java.util.Properties object containing properties for the
connection

s URL(String), java.util.Properties object, auto-commit flag (boolean)
s URL (String) fully specifying the connection, including user name and password

The following is an example of the format of a URL string specifying user name
(scott) and password (tiger) when using Oracle JDBC drivers, in this case the
JDBC Thin driver:

"jdbc:oracle:thin:scott/tiger@localhost:1521/myservice"

= URL (String), auto-commit flag (boolean)

= A java.lang.Class object for the class relative to which the properties file is
loaded, name of properties file (String)

= A java.lang.Class object, name of properties file (String), auto-commit flag
(boolean)

» A java.lang.Class object, name of properties file (String), user name
(String), password (String)

» A java.lang.Class object, name of properties file (String), user name
(String), password (String), auto-commit flag (boolean)

= JDBC connection object (Connection)
= SQLJ connection context object

These last two signatures inherit an existing database connection. When you inherit a
connection, you will also inherit the auto-commit setting of that connection.

The auto-commit flag specifies whether SQL operations are automatically committed.
For the Oracle.connect () and Oracle.getConnection () methods only, the
default is false. If that is the setting you want, then you can use one of the signatures
that does not take auto-commit as input. However, anytime you use a constructor to
create an instance of a connection context class, including DefaultContext, you
must specify the auto-commit setting. In the Oracle JDBC implementation, the default
for the auto-commit flag is true.

See Also: "Basic Transaction Control"” on page 3-18 and "Single
Connection or Multiple Connections Using DefaultContext" on
page 3-5

Optional Oracle.close() Method Parameters

In using the Oracle.close () method to close the default connection, you have the
option of specifying whether or not to close the underlying physical database
connection. By default it is closed. This is relevant if you are sharing this physical
connection between multiple connection objects, either SQL] connection context
instances or JDBC connection instances.

You can keep the underlying physical connection open as follows:

Oracle.close(ConnectionContext .KEEP_CONNECTION) ;

You can close the underlying physical connection (default behavior) as follows:

3-10 Oracle Database SQLJ Developer's Guide

Connection Considerations

Oracle.close(ConnectionContext.CLOSE_CONNECTION) ;

KEEP_CONNECTION and CLOSE_CONNECTION are static constants of the
ConnectionContext interface.

See Also: "Closing Shared Connections" on page 7-47

More About the DefaultContext Class

The sglj.runtime.ref.DefaultContext class provides a complete default
implementation of a connection context class. As with classes created using a
connection context declaration, the DefaultContext class implements the
sglj.runtime.ConnectionContext interface. The DefaultContext class has
the same class definition that would have been generated by the SQL]J translator from
the declaration:

#sgl public context DefaultContext;

DefaultContext Methods
The following are the key methods of the DefaultContext class:

m getConnection ()

Gets the underlying JDBC connection object. This is useful if you want to have
JDBC code in your application, which is one way to use dynamic SQL operations.
You can also use the setAutoCommit () method of the underlying JDBC
connection object to set the auto-commit flag for the connection.

m setDefaultContext ()

Sets the default connection your application uses. This is a static method and
takes a DefaultContext instance as input. SQLJ executable statements that do
not specify a connection context instance will use the default connection that you
define using this method or the Oracle. connect () method.

m getDefaultContext ()

Returns the DefaultContext instance currently defined as the default
connection for your application. This is a static method.

m close()
Closes the connection context instance.

The getConnection () and close () methods are specified in the
sglj.runtime.ConnectionContext interface.

Note: On a client, getDefaultContext () returns null if
setDefaultContext () was not previously called. However, if a
data source object has been bound under
"jdbc/defaultbDataSource" in JNDI, then the client will use this
data source object as its default connection.

In the server, getDefaultContext () returns the default
connection, which is the connection to the server itself.

DefaultContext Constructors

It is typical to instantiate DefaultContext using the Oracle.connect () or
Oracle.getConnection () method. However, if you want to create an instance

Key Programming Considerations 3-11

Connection Considerations

directly, then there are five constructors for DefaultContext. The different input
parameter sets for these constructors are:

s URL (String), user name (String), password (String), auto-commit
(boolean)

s URL (String), java.util.Properties object, auto-commit (boolean)

s URL (String fully specifying connection and including user name and
password), auto-commit setting (boolean)

The following is an example of the format of a URL specifying user name and
password when using Oracle JDBC drivers, in this case the JDBC Thin driver:

"jdbc:oracle:thin:scott/tiger@localhost:1521/myservice"

= JDBC connection object (Connection)
= SQLJ connection context object

The last two signatures inherit an existing database connection. When you inherit a
connection, you will also inherit the auto-commit setting of that connection.

Following is an example of constructing a DefaultContext instance:
DefaultContext defctx = new DefaultContext

("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger", false);

Notes About Connection Context Constructors:

Note: You must keep the following in mind when using connection
context constructors:

= Itis important to note that connection context class constructors,
unlike the Oracle.connect () method, require an auto-commit
setting.

= To use any of the first three constructors listed, you must first
register your JDBC driver. This happens automatically if you are
using an Oracle JDBC driver and call Oracle. connect (). Refer
to "Driver Selection and Registration for Run Time" on page 3-4.

= Connection context classes that you declare generally have the
same constructor signatures as the DefaultContext class.
However, if you declare a connection context class to be
associated with a data source, a different set of constructors is
provided. Refer to "Standard Data Source Support” on page 7-9
for more information.

= When using the constructor that takes a JDBC connection object,
do not initialize the connection context instance with a null JDBC
connection.

s The auto-commit setting determines whether SQL operations are
automatically committed. Refer to "Basic Transaction Control" on
page 3-18 for more information.

Optional DefaultContext close() Method Parameters

When you close a connection context instance, you have the option of specifying
whether or not to close the underlying physical connection. By default it is closed. This
is relevant if you are sharing the physical connection between multiple connection

3-12 Oracle Database SQLJ Developer's Guide

Connection Considerations

objects, either SQLJ connection context instances or JDBC connection instances. The
following examples presume a DefaultContext instance defctx.

To keep the underlying physical connection open, use the following:

defctx.close (ConnectionContext .KEEP_CONNECTION) ;

To close the underlying physical connection, which is the default behavior, use the
following:

defctx.close(ConnectionContext .CLOSE_CONNECTION) ;

KEEP_CONNECTION and CLOSE_CONNECTION are static constants of the
ConnectionContext interface.

See Also: "Closing Shared Connections" on page 7-47 for more
information about using these parameters and about shared
connections

Connection for Translation

If you want to use online semantics-checking during translation, then you must
specify a database connection for SQL]J to use. These are referred to as exemplar
schemas.

See Also: "Connection Context Concepts" on page 7-2

You can use different connections for translation and run time. In fact, it is often
necessary or preferable to do so. It might be necessary if you are not developing the
application in the same kind of environment that it will run in. But even if the
run-time connection is available during translation, it might be preferable to create an
account with a narrower set of resources so that your online checking will be tighter.
This would be true if your application uses only a small subset of the SQL entities
available in the run-time connection. Your online checking would be tighter and more
meaningful if you create an exemplar schema consisting only of SQL entities that your
application actually uses.

Use the SQLJ translator connection options, either on the command line or in a
properties file, to specify a connection for translation.

See Also: "Connection Options" on page 8-25

Connection for Customization

Generally, Oracle customization does not require a database connection. However, the
Oracle SQL] implementation does support customizer connections. This is useful in
two circumstances:

s If you are using Oracle customizer with the optcols option enabled, then a
connection is required. This option allows iterator column type and size
definitions for performance optimization.

s If you are using SQLCheckerCustomizer, a specialized customizer that
performs semantics-checking on profiles, then a connection is required if you are
using an online checker, which is true by default.

For Oracle-specific code generation, the SQLJ translator has an -optcols option with
the same functionality. The SQLCheckerCustomizer is invoked through Oracle
customizer harness verify option. Use the customizer harness user, password,

Key Programming Considerations 3-13

NULL-Handling

url, and driver options to specify connection parameters for whatever customizer
you are using, as appropriate.
See Also:

= "Oracle Customizer Column Definition Option (optcols)"” on
page A-20.

= "SQLCheckerCustomizer for Profile Semantics-Checking" on
page A-30

» "Customizer Harness Options for Connections” on page A-12

NULL-Handling

Java primitive types, such as int, double, or f£loat, cannot have null values. You
must consider this in choosing your result expression and host expression types.

This section covers the following topics:
= Wrapper Classes for NULL-Handling
= Examples of NULL-Handling

Wrapper Classes for NULL-Handling

SQLJ consistently enforces retrieving SQL NULL as Java null, in contrast to JDBC,
which retrieves NULL as 0 or false for certain data types. Therefore, do not use Java
primitive types in SQL]J for output variables in situations where a SQL NULL may be
received, because Java primitive types cannot take null values.

This pertains to result expressions, output or input-output host expressions, and
iterator column types. If the receiving Java type is primitive and an attempt is made to
retrieve a SQL NULL, then a sglj.runtime.SQLNullException is thrown and no
assignment is made.

To avoid the possibility of NULL being assigned to Java primitives, use the following
wrapper classes instead of primitive types:

s Jjava.lang.Boolean
s Jjava.lang.Byte

m Jjava.lang.Short

s Jjava.lang.Integer
s Java.lang.Long

s Jjava.lang.Double
s Jjava.lang.Float

In case you must convert back to a primitive value, each of these wrapper classes has
an xxxValue () method. For example, intValue () returns an int value from an
Integer object and floatValue () returns a float value from a Float object. For
example, presuming intobj is an Integer object:

int j = intobj.intValue();

3-14 Oracle Database SQLJ Developer's Guide

Exception-Handling Basics

Note:

» SQLNullException is asubclass of the standard
java.sqgl.SQLException class.

= Because Java objects can have null values, there is no need for
indicator variables in SQLJ, such as those used in other host
languages like C, C++, and COBOL.

Examples of NULL-Handling

The following examples show the use of the java .lang wrapper classes to handle
NULL.

Example: Null Input Host Variable
In the following example, a Float object is used to pass a null value to the database:

int empno = 7499;
Float commission = null;

#sqgl { UPDATE emp SET comm = :commission WHERE empno = :empno };

You cannot use the Java primitive type £1loat to accomplish this.

Example: Null lterator Rows

In the following example, a Double column type is used in an iterator to allow for the
possibility of null data.

For each employee in the emp table whose salary is at least $50,000, the employee
name (ENAME) and commission (COMM) are selected into the iterator. Then each row is
tested to determine if the COMM field is, in fact, null. If so, then it is processed
accordingly.

#sql iterator Employeelter (String ename, Double comm) ;

Employeelter ei;
#sqgl el = { SELECT ename, comm FROM emp WHERE sal >= 50000 };

while (ei.next())
{
if (ei.comm() == null)
System.out.println(ei.ename() + " is not on commission.");
}

ei.close();

Note: To execute a WHERE clause comparison against NULL, use
the following SQL syntax:

...WHERE :x IS NULL

Exception-Handling Basics

This section covers the basics of handling exceptions in SQL]J application, including
requirements for error-checking. This section covers the following topics:

Key Programming Considerations 3-15

Exception-Handling Basics

s SQLJ and JDBC Exception-Handling Requirements
» Processing Exceptions

= Using SQLException Subclasses

SQLJ and JDBC Exception-Handling Requirements

Because SQL]J executable statements result in JDBC calls through sqglj . runtime, and
JDBC requires SQL exceptions to be caught or thrown, SQL]J also requires SQL
exceptions to be caught or thrown in any block containing SQL] executable statements.
Your source code will generate errors during compilation if you do not include
appropriate exception-handling.

Handling SQL exceptions requires the SQLException class, which is included in the
standard JDBC java.sqgl. * package.

Example: Exception Handling

This example demonstrates the basic exception-handling required in SQL]J
applications. The code declares a main method with a try/catch block and another
method, which throws SQLException when an exception is encountered. The code is
as follows:

/* Import SQLExceptions class. The SQLException comes from
JDBC. Executable #sgl clauses result in calls to JDBC, so methods
containing executable #sqgl clauses must either catch or throw
SQLException.
*/
import java.sql.* ;
import oracle.sglj.runtime.Oracle;

// iterator for the select
#sqgl iterator MyIter (String ITEM_NAME) ;

public class TestInstallSQLJ
{
//Main method
public static void main (String args[])
{
try {

// Set the default connection to the URL, user, and password
// specified in your connect.properties file
Oracle.connect (TestInstallSQLJ.class, "connect.properties");

TestInstallSQLJ ti = new TestInstallSQLJ();

// This method throws SQLException. Therefore, it ic called within a try block
ti.runExample();

} catch (SQLException e) {
System.err.println("Error running the example: " + e);
}
} //End of method main
//Method that runs the example

void runExample() throws SQLException

{

3-16 Oracle Database SQLJ Developer's Guide

Exception-Handling Basics

//Issue SQL command to clear the SALES table
#sql { DELETE FROM SALES };
#sgl { INSERT INTO SALES(ITEM_NAME) VALUES ('Hello, SQLJ!')};

MyIter iter;
#sqgl iter = { SELECT ITEM_NAME FROM SALES };

while (iter.next()) {
System.out.println(iter.ITEM_NAME()) ;
}
}

Processing Exceptions

This section discusses ways to process and interpret exceptions in your SQL]J
application. During run time, exceptions may be raised from any of the following:

s SQLJ run time
s JDBC driver
= RDBMS

Printing Error Text

The example in the previous section showed how to catch SQL exceptions and output
the error messages. Part of that code is as follows:

try {
} catch (SQLException e) {

System.err.println("Error running the example: " + e);

}

This will print the error text from the SQLException object.

You can also retrieve error information using the getMessage (), getErrorCode (),
and getSQLState () methods the SQLException class.

Printing the error text, as in this example, prints the error message with some
additional text, such as SQLException.

Retrieving SQL States and Error Codes

The java.sgl.SQLException class and subclasses include the getMessage (),
getErrorCode (), and getSQLState () methods. Depending on where the
exception or error originated and how they are implemented there, the following
methods provide additional information:

m String getMessage()

If the error originates in the SQLJ run time or JDBC driver, then this method
returns the error message with no prefix. If the error originates in the RDBMS,
then it returns the error message prefixed by the ORA number.

m 1int getErrorCode()

Key Programming Considerations 3-17

Basic Transaction Control

If the error originates in the SQLJ run time, then this method returns no
meaningful information. If the error originates in the JDBC driver or RDBMS, then
it returns the five-digit ORA number as an integer.

m String getSQLState()

If the error originates in the SQL]J run time, then this method returns a string with
a five-digit code indicating the SQL state. If the error originates in the JDBC driver,
then it returns no meaningful information. If the error originates in the RDBMS,
then it returns the five-digit SQL state. Your application should have appropriate
code to handle null values returned.

The following example prints the error message and also checks the SQL state:
try

} catch (SQLException e) {

System.err.println("Error running the example: " + e);
String sqglState = e.getSQLState();
System.err.println("SQL state = " + sglState);

Using SQLException Subclasses

For more specific error-checking, use any available and appropriate subclasses of the
java.sqgl.SQLException class.

SQLJ provides the sglj . runtime.NullException class, which is a subclass of
java.sqgl.SQLException. You can use this exception in situations where a NULL
might be returned into a Java primitive variable.

For batch-enabled environments, there is also the standard
java.sql.BatchUpdateException subclass. Refer to "Error Conditions During
Batch Execution" on page 10-16 for further information.

When you use a subclass of SQLException, catch the subclass exception before
catching SQLException, as in the following example:

try {

} catch (SQLNullException ne) {

System.err.println("Null value encountered: " + ne); }
catch (SQLException e) {
System.err.println("Error running the example: " + e); }

This is because a subclass exception can also be caught as a SQLException. If you
catch SQLException first, then execution will not proceed to the part where you have
coded special processing for the subclass exception.

Basic Transaction Control

This section discusses how to manage data updates. It covers the following topics:
= Overview of Transactions

s Automatic Commits Versus Manual Commits

3-18 Oracle Database SQLJ Developer's Guide

Basic Transaction Control

s Specifying Auto-Commit as You Define a Connection

= Modifying Auto-Commit in an Existing Connection

s Using Manual COMMIT and ROLLBACK

s Effect of Commits and Rollbacks on Iterators and Result Sets

= Using Savepoints

See Also: "Advanced Transaction Control" on page 7-41

Overview of Transactions

A transaction is a sequence of SQL operations that Oracle treats as a single unit. A
transaction begins with the first executable SQL statement after any of the following:

= Connection to the database
= COMMIT (committing data updates, either automatically or manually)
= ROLLBACK (canceling data updates)

A transaction ends with a COMMIT or ROLLBACK operation.

Note: In Oracle Database 11g, all data definition language (DDL)
statements, such as CREATE and ALTER, include an implicit
COMMIT. This will commit not only the DDL statement, but all the
preceding data manipulation language (DML) statements, such as
INSERT, DELETE, and UPDATE, that have not yet been committed
or rolled back.

Automatic Commits Versus Manual Commits

In using SQLJ or JDBC, you can either have your data updates automatically
committed or commit them manually. In either case, each COMMIT operation starts a
new transaction. You can specify that changes be committed automatically by enabling
the auto-commit flag. This can be done either when you define a SQLJ connection or
by using the setAutoCommit () method of the underlying JDBC connection object of
an existing connection. You can use manual control by disabling the auto-commit flag
and using SQLJ COMMIT and ROLLBACK statements.

Enabling auto-commit may be more convenient, but gives you less control. For
example, you have no option to roll back changes. In addition, some SQL]J or JDBC
features are incompatible with auto-commit mode. For example, you must disable the
auto-commit flag for update batching or SELECT FOR UPDATE syntax to work

properly.

Specifying Auto-Commit as You Define a Connection

When you use the Oracle.connect () or Oracle.getConnection () method to
create a DefaultContext instance and define a connection, the auto-commit flag is
set to false by default. However, there are signatures of these methods that enable
you to set this flag explicitly. The auto-commit flag is always the last parameter.

The following is an example of instantiating DefaultContext and using the default
false setting for auto-commit mode:

Oracle.getConnection
("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger");

Key Programming Considerations 3-19

Basic Transaction Control

Alternatively, you can specify a true setting as follows:

Oracle.getConnection
("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger", true);

See Also: "More About the Oracle Class" on page 3-9

If you use a constructor to create a connection context instance, either of
DefaultContext or of a declared connection context class, then you must specify the
auto-commit setting. Again, it is the last parameter, as in the following example:

DefaultContext ctx = new DefaultContext
("jdbc:oracle:thin:@localhost:1521/myservice", "scott", "tiger", false);

See Also: "More About the DefaultContext Class" on page 3-11

If you have reason to create a JDBC Connection instance directly, then the
auto-commit flag is set to true by default if your program runs on a client, or false
by default if it runs in the server. You cannot specify an auto-commit setting when you
create a JDBC Connection instance directly, but you can use the setAutoCommit ()
method to alter the setting.

Note: Auto-commit functionality is not supported by the JDBC
server-side internal driver.

Modifying Auto-Commit in an Existing Connection

There is typically no reason to change the auto-commit flag setting for an existing
connection, but you can if you desire. You can do this by using the
setAutoCommit () method of the underlying JDBC connection object.

You can retrieve the underlying JDBC connection object by using the
getConnection () method of any SQLJ connection context instance, whether it is an
instance of the DefaultContext class or of a connection context class that you
declared.

You can accomplish these two steps at once, as follows:

ctx.getConnection() .setAutoCommit (false) ;

or:

ctx.getConnection() .setAutoCommit (true) ;

In these examples, ctx is a SQL] connection context instance.

Note: Do not alter the auto-commit setting in the middle of a
transaction.

Using Manual COMMIT and ROLLBACK

If you disable the auto-commit flag, then you must manually commit any data
updates. To commit any changes that have been executed since the last COMMIT
operation, use the SQLJ COMMIT statement, as follows:

#sql { COMMIT };

3-20 Oracle Database SQLJ Developer's Guide

Basic Transaction Control

To roll back any changes that have been executed since the last COMMIT operation, use
the SQLJ ROLLBACK statement, as follows:

#sqgl { ROLLBACK };

Note:

s Do not use the COMMIT and ROLLBACK commands when
auto-commit is enabled. This will result in unspecified
behavior, or even SQL exceptions could be raised.

= You can also roll back to a specified savepoint. Refer to "Using
Savepoints" on page 3-21.

= All DDL statements in Oracle SQL syntax include an implicit
COMMIT operation. There is no special SQL] functionality in this
regard. Such statements follow standard Oracle SQL rules.

s If auto-commit mode is off and you close a connection context
instance from a client application, then any changes since your
last COMMIT will be committed, unless you close the connection
context instance with KEEP_CONNECTION. Refer to "Closing
Shared Connections" on page 7-47 for more information.

Effect of Commits and Rollbacks on Iterators and Result Sets

COMMIT and ROLLBACK operations do not affect open result sets and iterators. The
result sets and iterators will still be open. Usually, all that is relevant to their content is
the state of the database at the time of execution of the SELECT statements that
populated them.

Note: An exception to this is if you declared an iterator class with
sensitivity=SENSITIVE. In this case, changes to the underlying
result set may be seen whenever the iterator is scrolled outside of
its window size. For more information about scrollable iterators,
refer to "Scrollable Iterators" on page 7-36. For more information
about the underlying scrollable result sets, refer to the Oracle
Database [DBC Developer's Guide and Reference.

This also applies to UPDATE, INSERT, and DELETE statements that are executed after
the SELECT statements. Execution of these statements does not affect the contents of
open result sets and iterators.

Consider a situation where you SELECT, then UPDATE, and then COMMIT. A
nonsensitive result set or iterator populated by the SELECT statement will be
unaffected by the UPDATE and COMMIT.

As a further example, consider a situation where you UPDATE, then SELECT, and then
ROLLBACK. A nonsensitive result set or iterator populated by the SELECT will still
contain the updated data, regardless of the subsequent ROLLBACK.

Using Savepoints

The JDBC 3.0 specification added support for savepoints. A savepoint is a defined
point in a transaction that you can roll back to, if desired, instead of rolling back the

Key Programming Considerations 3-21

Basic Transaction Control

entire transaction. The savepoint is the point in the transaction where the SAVEPOINT
statement appears.

In Oracle9i Database Release 2 (9.2), SQL]J first included Oracle-specific syntax to
support savepoints. In Oracle Database 11g, SQL] adds support for ISO SQLJ standard
savepoint syntax.

Support for ISO SQLJ Standard Savepoint Syntax

In ISO SQLJ standard syntax, use a string literal in a SAVEPOINT statement to
designate a name for a savepoint. This can be done as follows:

#sqgl { SAVEPOINT savepointl };
If you want to roll back changes to that savepoint, then you can refer to the specified
name later in a ROLLBACK TO statement, as follows:

#sqgl { ROLLBACK TO savepointl };

Use a RELEASE SAVEPOINT statement if you no longer need the savepoint:
#sgl { RELEASE SAVEPOINT savepointl };

Savepoints are saved in the SQL]J execution context, which has methods that parallel
the functionality of these three statements.

See Also: "Savepoint Methods" on page 7-29

Because any COMMIT operation ends the transaction, this also releases all savepoints of
the transaction.

Oracle SQLJ Savepoint Syntax

In addition to the ISO SQL]J standard syntax, the following Oracle-specific syntax for
savepoints is supported. Note that the Oracle syntax uses string host expressions,
rather than string literals.

You can set a savepoint as follows:

#sqgl { SET SAVEPOINT :savepoint };

The host expression, savepoint in this example, is a variable that specifies the name
of the savepoint as a Java String.

You can roll back to a savepoint as follows:

#sqgl { ROLLBACK TO :savepoint };

To release a savepoint, use the following SQL]J statement:

#sqgl { RELEASE :savepoint };

Note: Oracle-specific syntax will continue to be supported for
backward compatibility. Note the following differences between
Oracle syntax and ISO SQL] standard syntax:

s Oracle syntax takes string variables rather than string literals.
s Oracle syntax uses SET SAVEPOINT instead of SAVEPOINT.

s Oracle syntax uses RELEASE instead of RELEASE SAVEPOINT.

3-22 Oracle Database SQLJ Developer's Guide

Summary: First Steps in SQLJ Code

Summary: First Steps in SQLJ Code

The best way to summarize the SQL] executable statement features and functionality
discussed to this point is by examining short but complete programs. This section
presents two such examples.

The first example, presented one step at a time and then again in its entirety, uses a
SELECT INTO statement to perform a single-row query of two columns from a table
of employees. If you want to run the example, ensure that you change the parameters
in the connect . properties file to settings that will let you connect to an
appropriate database.

The second example, slightly more complicated, will make use of a SQL] iterator for a
multi-row query.

Import Required Classes

Import any JDBC or SQL]J packages you will need. You will need at least some of the
classes in the java . sql package:

import java.sqgl.*;

You may not need all the java. sql package. Key classes are
java.sql.SQLException and any classes that you refer to explicitly. For example,
java.sqgl.Date and java.sgl.ResultSet.

You will need the following package for the Oracle class, which you typically use to
instantiate DefaultContext objects and establish your default connection:

import oracle.sqglj.runtime.*;

If you will be using any SQL]J run-time classes directly in your code, then import the
following packages:

import sglj.runtime.*;
import sglj.runtime.ref.*;

However, even if your code does not use any SQLJ run-time classes directly, it will be
sufficient to have them in the CLASSPATH.

Key run-time classes include ResultSetIterator and ExecutionContext in the
sglj.runtime package and DefaultContext inthe sqlj.runtime.ref
package.

Register JDBC Drivers and Set Default Connection
Declare the SimpleExample class with a constructor that uses the static

Oracle.connect () method to set the default connection. This also registers Oracle
JDBC drivers.

This uses a signature of connect () that takes the URL, user name, and password
from the connect.properties file. An example of this file is in the directory
ORACLE_HOME/sglj/demo and also in "Set Up the Run-Time Connection" on
page 1-6.

public class SimpleExample {
public SimpleExample() throws SQLException {
// Set default connection (as defined in connect.properties).

Oracle.connect (getClass(), "connect.properties");
}

Key Programming Considerations 3-23

Summary: First Steps in SQLJ Code

Set Up Exception Handling

Create amain () that calls the SimpleExample constructor and then sets up a
try/catch block to handle any SQL exceptions thrown by the runExample ()
method, which performs the real work of this application:

public static void main (String [] args) {

try {
SimpleExample ol = new SimpleExample();
ol.runExample() ;

}

catch (SQLException ex) {
System.err.println("Error running the example: " + ex);

}

You can also use a try/catch block inside a finally clause when you close the
connection, presuming the finally clause is not already inside a try/catch block
in case of SQL exceptions:

finally

{
try { Oracle.close(); } catch(SQLException ex) {...}

}

Set Up Host Variables, Execute SQLJ Clause, Process Results
Create a runExample () method that performs the following:

1. Throws any SQL exceptions to themain () method for processing.
2. Declares Java host variables.

3. Executes a SQLJ clause that binds the Java host variables into an embedded
SELECT statement and selects the data into the host variables.

4. Prints the results.
The code for this method is as follows:

void runExample() throws SQLException ({
System.out.println("Running the example--");
// Declare two Java host variables--
Float salary;
String empname;
// Use SELECT INTO statement to execute query and retrieve values.
#sql { SELECT ename, sal INTO :empname, :salary FROM emp

WHERE empno = 7499 };

// Print the results--
System.out.println("Name is " + empname + ", and Salary is " + salary);

} // Closing brace of SimpleExample class

This example declares salary and empname as Java host variables. The SQLJ clause
then selects data from the ename and sal columns of the emp table and places the
data into the host variables. Finally, the values of salary and empname are printed.

3-24 Oracle Database SQLJ Developer's Guide

Summary: First Steps in SQLJ Code

Note that this SELECT statement could select only one row of the emp table, because
the empno column in the WHERE clause is the primary key of the table.

Example of Single-Row Query using SELECT INTO

This section presents the entire SimpleExample class from the previous step-by-step
sections. Because this is a single-row query, no iterator is required.

// Import SQLJ classes:
import sglj.runtime.*;

import sglj.runtime.ref.*;
import oracle.sglj.runtime.*;

// Import standard java.sgl package:
import java.sql.*;

public class SimpleExample {

public SimpleExample() throws SQLException {
// Set default connection (as defined in connect.properties).

Oracle.connect (getClass(), "connect.properties");

}

public static void main (String [] args) throws SQLException {
try {

SimpleExample ol = new SimpleExample();
ol.runExample() ;

}

catch (SQLException ex) {
System.err.println("Error running the example: " + ex);

finally

{
try { Oracle.close(); } catch(SQLException ex) {...}

void runExample() throws SQLException {
System.out.println("Running the example--");
// Declare two Java host variables--
Float salary;
String empname;
// Use SELECT INTO statement to execute query and retrieve values.
#sqgl { SELECT ename, sal INTO :empname, :salary FROM emp

WHERE empno = 7499 };

// Print the results--
System.out.println("Name is " + empname + ", and Salary is " + salary);

Set Up a Named Iterator

This example builds on the previous example by adding a named iterator and using it
for a multiple-row query.

Key Programming Considerations 3-25

Summary: First Steps in SQLJ Code

First, declare the iterator class. Use object types Integer and Float, instead of
primitive types int and float, wherever there is the possibility of NULL values.

#sgl iterator EmpRecs (
int empno, // This column cannot be null, so int is OK.
// (If null is possible, use Integer.)
String ename,
String job,
Integer mgr,
Date hiredate,
Float sal,
Float comm,
int deptno);

Next, instantiate the EmpRecs class and populate it with query results.

EmpRecs employees;

#sqgl employees = { SELECT empno, ename, job, mgr, hiredate,
sal, comm, deptno FROM emp };

Then, use the next () method of the iterator to print the results.

while (employees.next()) {
System.out.println("Name: " employees.ename());
System.out.println("EMPNO: " employees.empno ());
System.out.println("Job: " employees.job());
System.out.println("Manager: " employees.mgr());

employees.hiredate());

+ + 4+ + + + 4+ o+

System.out.println("Salary: " employees.sal());
System.out.println("Commission: " employees.comm());
System.out.println("Department: " employees.deptno());

(
(
(
(
System.out.println("Date hired: "
(
(
(
(

System.out.println();

Finally, close the iterator.

employees.close();

Example of Multiple-Row Query Using Named Iterator

This example uses a named iterator for a multiple-row query that selects several
columns of data from a table of employees.

Apart from use of the named iterator, this example is conceptually similar to the
previous single-row query example.

// Import SQLJ classes:
import sglj.runtime.*;

import sqglj.runtime.ref.*;
import oracle.sglj.runtime.*;

// Import standard java.sqgl package:
import java.sql.*;

// Declare a SQLJ iterator.
// Use object types (Integer, Float) for mgr, sal, And comm rather
// than primitive types to allow for possible null selection.

#sgl iterator EmpRecs (
int empno, // This column cannot be null, so int is OK.
// (If null is possible, Integer is required.)
String ename,

3-26 Oracle Database SQLJ Developer's Guide

Summary: First Steps in SQLJ Code

String job,
Integer mgr,
Date hiredate,
Float sal,
Float comm,
int deptno);

// This is the application class.
public class EmpDemolApp {

public EmpDemolApp() throws SQLException {
// Set default connection (as defined in connect.properties).
Oracle.connect (getClass (), "connect.properties");

public static void main(String[] args) {
try {

EmpDemolApp app = new EmpDemolApp () ;
app.runExample () ;

}
catch(SQLException exception) {
System.err.println("Error running the example: " + exception);
}
}
finally

{
try { Oracle.close(); } catch(SQLException ex) {...}

void runExample() throws SQLException {
System.out.println("\nRunning the example.\n");

// The query creates a new instance of the iterator and stores it in
// the variable 'employees' of type 'EmpRecs'. SQLJ translator has
// automatically declared the iterator so that it has methods for

// accessing the rows and columns of the result set.

EmpRecs employees;

#sqgl employees = { SELECT empno, ename, job, mgr, hiredate,
sal, comm, deptno FROM emp };

// Print the result using the iterator.
// Note how the next row is accessed using method 'nmext()', and how

// the columns can be accessed with methods that are named after the
// actual database column names.

while (employees.next()) {
System.out.println("Name: " employees.ename());
System.out.println("EMPNO: " employees.empno ());
System.out.println("Job: " employees.job());
System.out.println("Manager: " employees.mgr());

employees.hiredate());

+ + 4+ + + + + o+

System.out.println("Salary: ! employees.sal());
System.out.println("Commission: " employees.comm());
System.out.println("Department: " employees.deptno());

(
(
(
(
System.out.println("Date hired: "
(
(
(
(

System.out.println();

Key Programming Considerations 3-27

Oracle-Specific Code Generation (No Profiles)

}

// You must close the iterator when it’s no longer needed.
employees.close() ;
}
}

Oracle-Specific Code Generation (No Profiles)

Throughout this manual there is general and standard discussion of the SQL]J run-time
layer and SQL]J profiles. However, the Oracle SQLJ implementation, by default,
generates Oracle-specific code with direct calls to Oracle JDBC driver instead of
generating ISO SQLJ standard code that calls the SQL]J run time. With Oracle-specific
code generation, there are no profile files, and the role of the SQL] run-time layer is
greatly reduced during program execution. Oracle-specific code supports all
Oracle-specific extended features.

Code generation is determined through the SQL]J translator -codegen option. The
default setting for Oracle-specific code generation is -~codegen=oracle.
Alternatively, you can set -codegen=1iso for code generation according to the ISO
SQLJ standard.

See Also: "Code Generation (-codegen)" on page 8-41.

This section covers the following topics:

= Code Considerations and Limitations with Oracle-Specific Code Generation
= SQLJ Usage Changes with Oracle-Specific Code Generation

= Server-Side Considerations with Oracle-Specific Code Generation

= Advantages and Disadvantages of Oracle-Specific Code Generation

Code Considerations and Limitations with Oracle-Specific Code Generation

When coding a SQL]J application where Oracle-specific code generation will be used,
be aware of the following programming considerations and restrictions:

= To use a nondefault statement cache size, you must include appropriate method
calls in your code, because Oracle customizer stmtcache option is unavailable.
Refer to "SQLJ Usage Changes with Oracle-Specific Code Generation" on
page 3-30.

= Do not mix Oracle-specific generated code with ISO SQL] standard generated code
in the same application. However, if Oracle-specific code and ISO SQLJ standard
code must share the same connection, do one of the following:

- Ensure that the Oracle-specific code and ISO standard code use different SQLJ
execution context instances. Refer to "Execution Contexts" on page 7-24 for
information about SQL]J execution contexts.

- Place a transaction boundary, that is, as a manual COMMIT or ROLLBACK
statement, between the two kinds of code.

This limitation regarding mixing code is especially significant for server-side code,
because all Java code running in a given session uses the same JDBC connection
and SQL]J connection context.

3-28 Oracle Database SQLJ Developer's Guide

Oracle-Specific Code Generation (No Profiles)

See Also: "Server-Side Considerations with Oracle-Specific Code
Generation" on page 3-31

Do not rely on side effects in parameter expressions when values are returned
from the database. Oracle-specific code generation does not create temporary
variables for evaluation of OUT parameters, IN OUT parameters, SELECT INTO
variables, or return arguments on SQL statements.

For example, avoid statements such as the following;:

#sqgl { SELECT * FROM EMP INTO : (x[i++]), :(f_with_sideffect() [i++])
:(a.bli]) };

or:

#sqgl x[i++] = { VALUES f(:INOUT (x[i++]), :0UT (f_with_sideffect())) };

Evaluation of arguments is performed in place in the generated code. This may
result in different behavior than when evaluation is according to ISO SQLJ
standards.

See Also: "Evaluation of Java Expressions at Run Time" on page 4-17
and "Examples of Evaluation of Java Expressions at Run Time (ISO
Code Generation)" on page 4-18

Type maps for Oracle object functionality assumes that the corresponding Java
classes implement the java.sqgl.SQLData interface, given that
JPublisher-generated Java classes do not otherwise require a type map. If you use
type maps for Oracle object functionality, then your iterator declarations and
connection context declarations must specify the same type maps. Specify this
through the with clause.

For example, if you declare a connection context class as follows:

#sgl context TypeMapContext with (typeMap="MyTypeMap");

and you populate an iterator instance from a SQLJ statement that uses an instance
of this connection context class, as follows:
TypeMapContext tmc = new TypeMapContext(...);

MyIterator it;
#sqgl [tmc] it = (SELECT pers, addr FROM tab WHERE ...);

then the iterator declaration is required to have specified the same type map, as
follows:

#sql iterator MyIterator with (typeMap="MyTypeMap")
(Person pers, Address addr);

See Also: "Custom Java Class Requirements" on page 6-8 and
"Declaration WITH Clause" on page 4-4

Key Programming Considerations 3-29

Oracle-Specific Code Generation (No Profiles)

Note: The reason for this restriction is that with Oracle-specific
code generation, all iterator getter methods are fully generated as
Oracle JDBC calls during translation. To generate the proper calls,
the SQLJ translator must know whether an iterator will be used
with a particular type map.

SQLJ Usage Changes with Oracle-Specific Code Generation

Some options that were previously available only as Oracle customizer options are
useful with Oracle-specific code generation as well. Because profile customization is
not applicable with Oracle-specific code generation, these options have been made
available through other means.

To alter the statement cache size or disable statement caching when generating
Oracle-specific code, use method calls in your code instead of using the customizer
stmtcache option. The sgqlj.runtime.ref.DefaultContext class, as well as
any connection context class you declare, now has the following static methods:

m setDefaultStmtCacheSize (int)
s int getDefaultStmtCacheSize ()
It also has the following instance methods:
m setStmtCacheSize(int)

m int getStmtCacheSize()

By default, statement caching is enabled.

See Also: "Statement Caching" on page 10-3

In addition, the following options are available as front-end Oracle SQL]J translator
options as well as Oracle customizer options:

s -optcols: Enable iterator column type and size definitions to optimize
performance.
s -optparams: Enable parameter size definitions to optimize JDBC resource

allocation. This option is used in conjunction with optparamdefaults.

» -optparamdefaults: Set parameter size defaults for particular data types. This
option is used in conjunction with optparams.

s -fixedchar: Enable CHAR comparisons with blank padding for WHERE clauses.
See Also: "Options for Code Generation, Optimizations, and CHAR
Comparisons" on page 8-40

Be aware of the following:

= Use the -optcols option only if you are using online semantics-checking, where
you have used the SQL]J translator ~user, -password, and -url options
appropriately to request a database connection during translation.

» The functionality of the -optcols, -optparams, and -optparamdefaults
options, including default values, is the same as for the corresponding customizer
options.

3-30 Oracle Database SQLJ Developer's Guide

Oracle-Specific Code Generation (No Profiles)

Server-Side Considerations with Oracle-Specific Code Generation

Consider the following if your SQL]J code will run in the server:

The server-side SQLJ translator no longer supports ISO standard generated code.
SQLJ source code that is loaded into the server and compiled there will always be
translated with the default -codegen=oracle setting.

Therefore, to use ISO standard generated code in the server, you must translate
and compile the SQL]J code on a client and then load the individual components
into the server.

See Also: "Translating SQLJ Source on a Client and Loading
Components" on page 11-5

The caution against mixing Oracle-specific generated code with ISO standard
generated code applies to server-side Java code that calls a Java stored procedure
or stored function, even if the stored procedure is invoked through a PL/SQL
wrapper. This constitutes a recursive call-in. By default, the ExecutionContext
object is shared by both the calling module and the called module. Therefore, both
modules should be translated with the same -codegen setting.

If you want to ensure interoperability with code that has been translated with ISO
standard code generation, then it is advisable to explicitly instantiate execution
context instances, as in the following example:

public static method() throws SQLException
{
Execution Context ec = new ExecutionContext();
try {
#sgl [ec] { SQL operation };

} finally { ec.close(); }

Note: To avoid resource leakage when using an explicit
ExecutionContext instance, ensure that you use the close ()
method, as shown in this example.

See Also: "Code Considerations and Limitations with
Oracle-Specific Code Generation" on page 3-28

Advantages and Disadvantages of Oracle-Specific Code Generation

Oracle-specific code generation offers following advantages over ISO standard code
generation:

Applications run more efficiently. The code calls JDBC application programming
interfaces (APIs) directly, placing run-time performance directly at the JDBC level.
The role of the intermediate SQL] run-time layer is greatly reduced during
program execution.

Applications are smaller in size.

Key Programming Considerations 3-31

ISO Standard Code Generation

No profile files (. ser) are produced. This is especially convenient if you are
loading a translated application into the database or porting it to another system,
because there are fewer components.

Translation is faster, because there is no profile customization step.

During execution, Oracle SQL]J run time and Oracle JDBC driver use the same
statement cache resources, so partitioning resources between the two is
unnecessary.

Having the SQL-specific information appear in the Java class files instead of in
separate profile files avoids potential security issues.

You need not have to rewrite your code to take advantage of possible future
Oracle JDBC performance enhancements, such as enhancements being considered
for execution of static SQL code. Future releases of Oracle SQL]J translator will
handle this automatically.

The use of Java reflection at run time is eliminated, and thus, provides full
portability to browser environments.

However. there are a few disadvantages:

Oracle-specific generated code may not be portable to generic JDBC platforms.

Profile-specific functionality is not available. For example, you cannot perform
customizations at a later date to use Oracle customizer harness -debug, -verify,
and -print options.

See Also: "Customizer Harness Options for Connections” on
page A-12 and "AuditorInstaller Customizer for Debugging" on
page A-33

ISO Standard Code Generation

This section covers the following topics:

Environment Requirements for ISO Standard Code Generation
SQL]J Translator and SQLJ Run Time

SQL]J Profiles

SQLJ Translation Steps

Summary of Translator Input and Output

SQLJ Run-Time Processing

Deployment Scenarios

Environment Requirements for ISO Standard Code Generation

The Oracle SQL] implementation, by default, generates Oracle-specific code with
direct calls to Oracle JDBC driver instead of generating ISO standard code that calls
the SQL]J run time. The following is a typical environment setup for ISO standard code
generation:

SQLJ code generation: -codegen=iso
SQL]J translation library: translator.jar

SQLJ run-time library: runtimel2 . jar with JDK 1.5.x and Oracle JDBC driver
11g release 2 (11.2).

3-32 Oracle Database SQLJ Developer's Guide

ISO Standard Code Generation

s JDBC drivers: Oracle 11g release 2 (11.2)

s JDKversion: 1.5.x

SQLJ Translator and SQLJ Run Time

SQLJ Profiles

The following section describes the differences in Oracle SQLJ implementation in case
of ISO standard code generation:

= SQLJ translator: Along with the . java file, the translator also produces one or
more SQLJ profiles for ISO standard code generation. These profiles contain
information about the embedded SQL operations. SQL]J then automatically
invokes a Java compiler to produce . class files from the . java file.

See Also: "SQL]J Translator" on page 2-2

s SQLJ run time: For ISO standard code generation, the SQL]J run time implements
the desired actions of the SQL operations by accessing the database using a JDBC
driver. The generic ISO SQL] standard does not require the SQLJ run time to use a
JDBC driver to access the database.

See Also: "SQL]J Run Time" on page 9-11

In addition to the translator and run time, there is a component known as the
customizer that plays a role. A customizer tailors SQL]J profiles for a particular
database implementation and vendor-specific features and data types. By default, for
ISO standard code, the SQL]J front end invokes an Oracle customizer to tailor your
profiles for Oracle Database instance and Oracle-specific features and data types.

When you use Oracle customizer during translation, your application will require the
SQL]J run time and an Oracle JDBC driver when it runs.

Note: Since Oracle Database 10g release 1 (10.1), only Oracle JDBC
drivers are supported with SQL]J.

With ISO standard code generation, SQL]J profiles are serialized Java resources or
classes generated by the SQL]J translator, which contain details about the embedded
SQL statements. The translator creates these profiles. Then, depending on the
translator option settings, it either serializes the profiles and puts them into binary
resource files or puts them into . class files.

This section covers the following topics:
= Overview of Profiles

= Binary Portability

Overview of Profiles

SQL] profiles are used in ISO standard code for implementing the embedded SQL
operations in SQL]J executable statements. Profiles contain information about the SQL
operations and the types and modes of data being accessed. A profile consists of a
collection of entries, where each entry maps to one SQL operation. Each entry fully
specifies the corresponding SQL operation, describing each of the parameters used in
processing this instruction.

Key Programming Considerations 3-33

ISO Standard Code Generation

SQLJ generates a profile for each connection context class in your application, where
each connection context class corresponds to a particular set of SQL entities you use in
your database operations. There is one default connection context class, and you can
declare additional classes. The ISO SQL]J standard requires that the profiles be of
standard format and content. Therefore, for your application to use vendor-specific
extended features, your profiles must be customized. By default, this occurs
automatically, with your profiles being customized to use Oracle-specific extended
features.

Profile customization enables vendors to add value in the following ways:

= Vendors can support their own specific data types and SQL syntax. For example,
Oracle customizer maps standard JDBC PreparedStatement method calls in
translated SQL]J code to OraclePreparedStatement method calls, which
provide support for Oracle type extensions.

= Vendors can improve performance through specific optimizations.

Note:

= By default, SQL]J profile file names have the . ser extension,
but this does not mean that all . ser files are profiles. Other
serialized objects can use this extension, and a SQL] program
unit can use serialized objects other than its profiles.
Optionally, profiles can be converted to . class files instead of
. ser files.

= A SQLJ profile is not produced if there are no SQL] executable
statements in the source code.

Binary Portability

SQLJ-generated profile files support binary portability. That is, you can port them as is
and use them with other kinds of databases or in other environments, if you have not
used vendor-specific data types or features. This is true for generated . class files as
well.

SQLJ Translation Steps

For ISO standard code generation (-codegen=1iso), the translator processes the SQL]J
source code, converts SQL operations to SQL]J run-time calls, and generates Java
output code and one or more SQL]J profiles. A separate profile is generated for each
connection context class in the source code, where a different connection context class
is typically used for each interrelated set of SQL entities that is used in the operations.

Generated Java code is put into a . java output file containing the following;:
= Any class definitions and Java code from the . sqlj source file

» Class definitions created as a result of the SQL]J iterator and connection context
declarations

See Also: "Overview of SQL]J Declarations" on page 4-1

= A class definition for a specialized class known as the profile-keys class that SQLJ
generates and uses in conjunction with the profiles (for ISO standard SQL]J code
generation only)

3-34 Oracle Database SQLJ Developer's Guide

ISO Standard Code Generation

= Calls to the SQL] run time to implement the actions of the embedded SQL
operations

Generated profiles contain information about all the embedded SQL statements in the
SQLJ source code, such as actions to take, data types being manipulated, and tables
being accessed. When the application is run, the SQLJ run time accesses the profiles to
retrieve the SQL operations and passes them to the JDBC driver.

By default, profiles are put into . ser serialized resource files, but SQL] can optionally
convert the . ser files to . class files as part of the translation.

The compiler compiles the generated Java source file and produces Java . class files
as appropriate. This includes a . class file for each class that is defined, each of the
SQLJ declarations, and the profile-keys class. The JVM then invokes Oracle customizer
or other specified customizer to customize the profiles generated.

See Also: '"Internal Translator Operations" on page 9-1

General SQLJ Notes

Consider the following when translating and running SQL]J applications for ISO
specific code generation:

= Along with compiling existing . java files on the command line and making them
available for type resolution, as for Oracle-specific code generation, you need to:

- Customize the existing profiles
— Customize the Java Archive (JAR) files containing profiles

See Also: "Translator Command Line and Properties Files" on
page 8-1

= SQLJ generates profiles and the profile-keys class only if your source code
includes SQL]J executable statements.

= If you use Oracle customizer during translation, then your application requires
Oracle SQLJ run time and an Oracle JDBC driver when it runs, even if your code
does not use Oracle-specific features. You can avoid this by specifying
-profile=false when you translate, to bypass Oracle-specific customization.

Summary of Translator Input and Output

We have seen what the SQL] translator takes as input, what it produces as output, and
where it places its output in case of Oracle-specific code generation. This section
covers the same topics for ISO standard code generation:

» Translator Input
s Translator Output

= Output File Locations

See Also: "Summary of Translator Input and Output” on page 2-7

Translator Input

Similar to Oracle -specific code generation, the SQL]J translator takes one or more
.sglj source files as input, which can be specified on the command line. The name of
the main . sqglj file is based on the public class it defines, if any, else on the first class
it defines.

Key Programming Considerations 3-35

ISO Standard Code Generation

See Also: "Translator Input" on page 2-7

Translator Output

The translation step produces a Java source file for each . sglj file in the application
and at least one application profile for ISO standard code generation, presuming the
source code uses SQL]J executable statements.

SQLJ generates Java source files and application profiles as follows:

See Also: "Translator Output" on page 2-7

» Similar to Oracle-specific code generation, Java source files are . java files with
the same base names as the . sglj files.

= The application profile files, if applicable, contain information about the SQL
operations of the SQLJ application. There is one profile for each connection class
that is used in the application. The profiles have names with the same base name
as the main . sglj file and the following extensions:

_SJProfilel.ser
_SJProfilel.ser
_SJProfile2.ser

For example, for MyClass . sglj the translator produces:

MyClass_SJProfile0.ser

The . ser file extension indicates that the profiles are serialized. The . ser files are
binary files.

Note: The -ser2class translator option instructs the translator
to generate profiles as . class files instead of . ser files. Other
than the file name extension, the naming is the same.

Similar to the compilation step of Oracle-specific code generation, compiling the Java
source file into multiple class files generates one . class file for each class defined in
the . sglj source file. But in case of ISO code generation, a . class file is also
generated for a class known as the profile-keys class that the translator generates and
uses with the profiles to implement the SQL operations. Additional . class files are
produced if you declare any SQLJ iterators or connection contexts. Also, like
Oracle-specific code generation, separate . class files are produced for any inner
classes or anonymous classes in the code.

See Also: "Overview of SQL]J Declarations" on page 4-1

The . class files are named as follows:

» Like Oracle-specific code generation, the class file for each class defined consists
of the name of the class with the . class extension.

» The profile-keys class that the translator generates is named according to the base
name of the main . sglj file, plus the following:

_SJProfileKeys

So, the class file has the following extension:

3-36 Oracle Database SQLJ Developer's Guide

ISO Standard Code Generation

_SJProfileKeys.class

For example, for MyClass . sglj, the translator together with the compiler
produces:
MyClass_SJProfileKeys.class

Like Oracle-specific code generation, the translator names iterator classes and
connection context classes according to how you declare them.

The customization step alters the profiles but produces no additional output.

See Also: '"Profile Customization (ISO Code Generation)" on
page 9-7

Note: It is not necessary to reference SQL] profiles or the
profile-keys class directly. This is all handled automatically.

Output File Locations

The output file locations are the same for both Oracle-specific code generation and ISO
standard code generation.

See Also: "Output File Locations" on page 2-8

SQLJ Run-Time Processing

This section discusses run-time processing for ISO standard code during program
execution.

For ISO standard SQLJ applications, the SQL]J run time reads the profiles and creates
connected profiles, which incorporate database connections. Then the following occurs
each time the application must access the database:

1.

SQLJ-generated application code uses methods in a SQL]J-generated profile-keys
class to access the connected profile and read the relevant SQL operations. There is
a mapping between SQL]J executable statements in the application and SQL
operations in the profile.

The SQLJ-generated application code calls the SQL]J run time, which reads the SQL
operations from the profile.

The SQLJ run time calls the JDBC driver and passes the SQL operations to the
driver.

The SQLJ run time passes any input parameters to the JDBC driver.
The JDBC driver executes the SQL operations.

If any data is to be returned, then the database sends it to the JDBC driver, which
sends it to the SQLJ run time for use by your application.

Note: Passing input parameters can also be referred to as binding
input parameters or binding host expressions. The terms host
variables, host expressions, bind variables, and bind expressions
are all used to describe Java variables or expressions that are used
as input or output for SQL operations.

Key Programming Considerations 3-37

ISO Standard Code Generation

Deployment Scenarios

We have discussed how to run Oracle-specific SQLJ code in the following scenarios:
s From an applet
= In the server (optionally running the SQL]J translator in the server as well)

There are a few considerations that you need to make while running your ISO
standard code from an applet:

See Also: "Alternative Deployment Scenarios" on page 2-11

= You must package all the SQLJ run-time packages with your applet. The packages
are:

sglj.runtime
sglj.runtime.ref
sglj.runtime.profile
sqglj.runtime.profile.ref
sqglj.runtime.error

Also package the following if you used Oracle customization:

oracle.sglj.runtime
oracle.sqglj.runtime.error

These packages are included with your Oracle installation in one of several
run-time libraries in the ORACLE_HOME/ 1ib directory.

See Also: "Requirements for Using the Oracle SQL]
Implementation” on page 1-2

= Some browsers, such as Netscape Navigator 4.x, do not support resource files with
a . ser extension, which is the extension used by the SQL] serialized object files
that are used for profiles. However, the Sun Microsystems Java plug-in supports
. ser files.

Alternatively, if you do not want to use the plug-in, then the Oracle SQL]J
implementation offers the -ser2class option to convert . ser files to . class
files during translation.

See Also: "Conversion of .ser File to .class File (-ser2class)" on
page 8-54

Note: This consideration does not apply to the default
Oracle-specific code generation, where no profiles are produced.

= Applets using Oracle-specific features require Oracle SQL]J run time to work.
Oracle SQLJ run time consists of the classes in the SQL]J run-time library file under
oracle.sqglj. *.Oracle SQL] runtime. jar library requires the Java Reflection
API, java.lang.reflect. *. Most browsers do not support the Reflection API
or impose security restrictions, but the Sun Microsystems Java plug-in provides
support for the Reflection APL

With ISO standard code generation, the following SQL]J language features always
require the Java Reflection API, regardless of the version of the SQL]J run time you
are using:

3-38 Oracle Database SQLJ Developer's Guide

Requirements and Restrictions for Naming

— The CAST statement

- REF CURSOR parameters or REF CURSOR columns being retrieved from the
database as instances of a SQL] iterator

— Retrieval of java.sqgl.Ref, Struct, Array, Blob, or Clob objects

— Retrieval of SQL objects as instances of Java classes implementing the
oracle.sgl.ORAData or java.sqgl.SQLData interfaces

Note:

= An exception to the preceding is if you use SQLJ in a mode that
is fully compatible with ISO. That is, if you use SQL]J in an
environment that complies with J2EE and you translate and
run your program with the SQL] runtimel2ee. jar library,
and you employ connection context type maps as specified by
ISO. In this case, instances of java.sqgl.Ref, Struct, Array,
Blob, Clob, and SQLData are being retrieved without the use
of reflection.

s If you use Oracle-specific code generation, then you will
eliminate the use of reflection in all of the instances listed.

Oracle-Specific Code Generation Versus ISO Standard Code Generation

The Oracle SQL]J implementation provides the option of Oracle-specific code
generation, where Oracle JDBC calls are generated directly in the code. This is the
default behavior. In the case of Oracle-specific code generation, you must be aware of
the following:

There are no profile files, and therefore, there is no customization step during
translation.

At run time, SQL operations do not have to go through the SQL]J run-time layer,
because JDBC calls, instead of the SQL]J run-time calls, are directly generated in the
translated code.

Requirements and Restrictions for Naming

There are four areas to consider in discussing naming requirements, naming
restrictions, and reserved words:

The Java namespace, including additional restrictions imposed by SQL]J on the
naming of local variables and classes

The SQLJ namespace
The SQL namespace

Source file names

This section covers the following topics:

Java Namespace: Local Variable and Class Naming Restrictions
SQLJ Namespace
SQL Namespace

File Name Requirements and Restrictions

Key Programming Considerations 3-39

Requirements and Restrictions for Naming

Java Namespace: Local Variable and Class Naming Restrictions

The Java namespace applies to all standard Java statements and declarations,
including the naming of Java classes and local variables. All standard Java naming
restrictions apply, and you should avoid the use of Java reserved words.

In addition, SQL]J places minor restrictions on the naming of local variables and
classes.

Note: Naming restrictions particular to host variables are
discussed in "Restrictions on Host Expressions" on page 4-24.

Local Variable Naming Restrictions

Some of the functionality of the SQLJ translator results in minor restrictions in naming
local variables. The SQLJ translator replaces each SQL]J executable statement with a
statement block, where the SQL]J executable statement is of the standard syntax:

#sqgl { SQL operation };
SQL]J may use temporary variable declarations within a generated statement block.
The name of any such temporary variables will include the following prefix:

_ sdT_

Note: There are two underscores at the beginning and one at the
end.

The following declarations are examples of those that might occur in a SQL]J-generated
statement block:

int _ sJT index;
Object __sJT key;
java.sql.PreparedStatement _ sJT stmt;

The string _ sJT__is a reserved prefix for SQLJ-generated variable names. SQL]J
programmers must not use this string as a prefix for the following:

= Names of variables declared in blocks that include executable SQL statements
= Names of parameters to methods that contain executable SQL statements

s Names of fields in classes that contain executable SQL statements, or whose
subclasses or enclosed classes contain executable SQL statements

Class Naming Restrictions
Be aware of the following minor restrictions in naming classes in SQL]J applications:

= You must not declare class names that may conflict with SQL]J internal classes. In
particular, a top-level class cannot have a name of the following form, where a is
the name of an existing class in the SQL]J application:

a_SJb

where, a and b are legal Java identifiers.

3-40 Oracle Database SQLJ Developer's Guide

Requirements and Restrictions for Naming

For example, if your application class is Foo in file Foo . sql3j, then SQL]J
generates a profile-keys class called Foo_SJProfileKeys. Do not declare a class
name that conflicts with this.

= A class containing SQL]J executable statements must not have a name that is the
same as the first component of the name of any package that includes a Java type
used in the application. Examples of class names to avoid are java, sqlj, and
oracle (case-sensitive). As another example, if your SQL]J statements use host
variables whose type is abc . def .MyClass, then you cannot use abc as the name
of the class that uses these host variables.

To avoid this restriction, follow Java naming conventions recommending that
package names start in lowercase and class names start in uppercase.

SQLJ Namespace

The SQL]J namespace refers to #sqgl class declarations and the portion of #sqgl
executable statements outside the curly braces.

Note: Restrictions particular to the naming of iterator columns are
discussed in "Using Named Iterators" on page 4-31.

Avoid using the following SQL] reserved words as class names for declared
connection context classes or iterator classes, in with or implements clauses, or in
iterator column type declaration lists:

m lterator
n context
] with

For example, do not have an iterator class or instance called iterator or a connection
context class or instance called context.

However, note that it is permissible to have a stored function return variable whose
name is any of these words.

SQL Namespace

The SQL namespace refers to the portion of a SQLJ executable statement inside the
curly braces. Standard SQL naming restrictions apply here.

See Also: Oracle Database SQL Language Reference

However, note that host expressions follow rules of the Java namespace, not the SQL
namespace. This applies to the name of a host variable and to everything between the
outer parentheses of a host expression.

File Name Requirements and Restrictions

SQLJ source files have the . sglj file name extension. If the source file declares a
public class (maximum of one), then the base name of the file must match the name of
this class (case-sensitive). If the source file does not declare a public class, then the file
name must still be a legal Java identifier, and it is recommended that the file name
match the name of the first defined class.

Key Programming Considerations 3-41

Considerations for SQLJ in the Middle Tier

For example, if you define the public class My Source in your source file, then your file
name must be:

MySource.sqlj

Note: These file naming requirements follow the Java Language
Specification (JLS) and are not SQL]J-specific. These requirements
do not directly apply in Oracle Database 11g, but it is still advisable
to adhere to them.

Considerations for SQLJ in the Middle Tier

There are special considerations if you run SQL]J in the middle tier, such as in an
Oracle9i Application Server Containers for J2EE (OC4J) environment.

Oracle JDBC drivers provide Oracle-specific interfaces in the oracle. jdbc package.
The Oracle SQL]J libraries runtimel2. jar and runtimel2ee. jar make full use of
these interfaces, but these libraries are not compatible with Oracle JDBC
implementations prior to Oracle9i Application Server.

In Oracle9i Application Server, connections are established through data sources,
which typically return instances of the oracle.jdbc.OracleConnection interface
instead of the older oracle. jdbc.driver.OracleConnection class. This is
necessary for certain connection functionality, such as distributed transactions (XA).
To support such features, connection objects must implement the new interface.

This has the following consequences, relevant in an Oracle9i Application Server
middle-tier environment, or any situation where data sources are used:

s For maximum portability and flexibility of your code, use
oracle.jdbc.OracleXXX types instead of
oracle.jdbc.driver.OracleXXX types.

= For custom Java types (typically for SQL objects and collections), implement
oracle.sqgl.ORAData instead of the deprecated oracle.sgl.CustomDatum
interface.

For general information about SQL]J support for data sources and connection
JavaBeans, refer to the following sections:

= "Standard Data Source Support" on page 7-9
= "SQLJ-Specific Data Sources" on page 7-11

= "SQLJ-Specific Connection JavaBeans for JavaServer Pages" on page 7-14

3-42 Oracle Database SQLJ Developer's Guide

4

Basic Language Features

SQLJ statements always begin with a #sgl token and can be broken into two main
categories:

Declarations: Used for creating Java classes for iterators, which is similar to Java
Database Connectivity (JDBC) result sets, or connection contexts, which is
designed to help you create strongly typed connections according to the sets of
SQL entities being used.

Executable statements: Used to execute embedded SQL operations.

This chapter discusses the following topics:

Overview of SQL]J Declarations

Overview of SQL]J Executable Statements

Java Host, Context, and Result Expressions
Single-Row Query Results: SELECT INTO Statements
Multirow Query Results: SQL] Iterators

Assignment Statements (SET)

Stored Procedure and Function Calls

Overview of SQLJ Declarations

A SQLJ declaration consists of the #sqgl token followed by the declaration of a class.
SQLJ declarations introduce specialized Java types into your application. There are
currently two kinds of SQL]J declarations, iterator declarations and connection context
declarations, defining Java classes as follows:

Iterator declarations define iterator classes. Iterators are conceptually similar to
JDBC result sets and are used to receive multi-row query data. An iterator is
implemented as an instance of an iterator class.

Connection context declarations define connection context classes. Each
connection context class is typically used for connections whose operations use a
particular set of SQL entities, such as tables, views, and stored procedures. That is
to say, instances of a particular connection context class are used to connect to
schemas that include SQL entities with the same names and characteristics. SQL]J
implements each database connection as an instance of a connection context class.

SQLJ includes the predefined sglj.runtime.DefaultContext connection
context class. If you only require one connection context class, then you can use
DefaultContext, which does not require a connection context declaration.

Basic Language Features 4-1

Overview of SQLJ Declarations

In any iterator or connection context declaration, you may optionally include the
following clauses:

s The implements clause: Specifies one or more interfaces that the generated class
will implement.

s The with clause: Specifies one or more initialized constants to be included in the
generated class.

This section covers the following topics:
s Rules for SQL] Declarations

» [terator Declarations

s Connection Context Declarations

» Declaration IMPLEMENTS Clause
» Declaration WITH Clause

Rules for SQLJ Declarations

SQLJ declarations are allowed in your SQL]J source code anywhere that a class
definition would be allowed in standard Java. For example:

SQLJ declaration; // OK (top level scope)

class Outer

{
SQLJ declaration; // OK (class level scope)

class Inner
{

SOLJ declaration; // OK (nested class scope)
}

void func()
{

SQLJ declaration; // OK (method block)
}

Note: As with standard Java, any public class should be declared
in one of the following ways:

= Declare it in a separate source file. The base name of the file
should be the same as the class name.

s Declare it at class-level scope or nested-class-level scope. In this
case, it may be advisable to use public static modifiers.

This is a requirement if you are using the standard javac compiler
provided with the Sun Microsystems JDK.

lterator Declarations

An iterator declaration creates a class that defines a kind of iterator for receiving query
data. The declaration will specify the column types of the iterator instances, which
must match the column types being selected from the database table.

4-2 Oracle Database SQLJ Developer's Guide

Overview of SQLJ Declarations

Basic iterator declarations use the following syntax:

#sql <modifiers> iterator iterator_classname (type declarations);

Modifiers are optional and can be any standard Java class modifiers, such as public,
static, and so on. Type declarations are separated by commas.

There are two categories of iterators, named iterators and positional iterators. For
named iterators, you must specify column names and types. For positional iterators,
you need to specify only types.

The following is an example of a named iterator declaration:

#sqgl public iterator EmpIter (String ename, double sal);

This statement results in the SQL]J translator creating a public EmpIter class with a
String attribute ename and a double attribute sal. You can use this iterator to
select data from a database table with corresponding employee name and salary
columns of matching names (ENAME and SAL) and data types (CHAR and NUMBER).

Declaring EmpIter as a positional iterator, instead of a named iterator, can be done as
follows:

#sqgl public iterator EmpIter (String, double);

See Also: "Multirow Query Results: SQL]J Iterators" on page 4-26

Connection Context Declarations

A connection context declaration creates a connection context class, whose instances
are typically used for database connections that use a particular set of SQL entities.
Basic connection context declarations use the following syntax:

#sql <modifiers> context context_classname;

As for iterator declarations, modifiers are optional and can be any standard Java class
modifiers. For example:

#sgl public context MyContext;

As a result of this statement, the SQL] translator creates a public MyContext class. In
your SQLJ code you can use instances of this class to create database connections to
schemas that include a desired set of entities, such as tables, views, and stored
procedures. Different instances of MyContext might be used to connect to different
schemas, but each schema might be expected, for example, to include an EMP table, a
DEPT table, and a TRANSFER_EMPLOYEE stored procedure.

Declared connection context classes are an advanced topic and are not necessary for
basic SQLJ applications that use only one interrelated set of SQL entities. In basic
scenarios, you can use multiple connections by creating multiple instances of the
sqlj.runtime.ref.DefaultContext class, which does not require any
connection context declarations.

See Also: "Connection Considerations” on page 3-4 and "Connection
Contexts" on page 7-1

Declaration IMPLEMENTS Clause

When you declare any iterator class or connection context class, you can specify one or
more interfaces to be implemented by the generated class.

Basic Language Features 4-3

Overview of SQLJ Declarations

Use the following syntax for an iterator class:

#sqgl <modifiers> iterator iterator_classname implements intfcl,..., intfcN
(type declarations);

The portion implements intfcl, ..., intfcNisknown asthe implements
clause. Note that in an iterator declaration, the implements clause precedes the
iterator type declarations.

Here is the syntax for a connection context declaration:

#sqgl <modifiers> context context_classname implements intfcl,..., intfcNl;

The implements clause is potentially useful in either an iterator declaration or a
connection context declaration, but is more likely to be useful in iterator declarations,
particularly in implementing the sqlj.runtime.Scrollable or
sqglj.runtime.ForUpdate interface. Scrollable iterators are supported in the Oracle
SQLJ implementation.

Note: The SQLJ implements clause corresponds to the Java
implements clause.

The following example uses an implements clause in declaring a named iterator
class. Presume you have created a package, mypackage, that includes an iterator
interface, M\yIterIntfc.

#sgl public iterator MyIter implements mypackage.MyIterIntfc
(String ename, int empno);

The declared class MyIter will implement the mypackage.MyIterIntfc interface.

The following example declares a connection context class that implements an
interface named MyConnCtxtIntfc. Presume that it is in the package mypackage.

#sgl public context MyContext implements mypackage.MyConnCtxtIntfc;

See Also: "Using the IMPLEMENTS Clause in Iterator Declarations"
on page 7-35 and "Using the IMPLEMENTS Clause in Connection
Context Declarations" on page 7-8

Declaration WITH Clause

In declaring a connection context class or iterator class, you can use a with clause to
specify and initialize one or more constants to be included in the definition of the
generated class. Most of this usage is standard, although Oracle implementation adds
some extended functionality for iterator declarations.

This section covers the following topics:
» Standard WITH Clause Usage
= Oracle-Specific WITH Clause Usage

= Example: Returnability

Standard WITH Clause Usage

In using a with clause, the constants that are produced are always public static
final. Use the following syntax for an iterator class:

4-4 Oracle Database SQLJ Developer's Guide

Overview of SQLJ Declarations

#sql <modifiers> iterator iterator_classname with (varl=valuel,..., varN=valueN)
(type declarations);

The portionwith (vari=valuel, ..., varN=valueN)isthe with clause. Note
that in an iterator declaration, the with clause precedes the iterator type declarations.

Where there is both a with clause and an implements clause, the implements
clause must come first. Note that parentheses are used to enclose with lists, but not
implements lists.

Here is the syntax for a connection context declaration that uses a with clause:

#sqgl <modifiers> context context_classname with (varl=valuel,..., varN=valueNl);

Note: A predefined set of standard SQLJ constants can be defined
in a with clause. However, not all of these constants are
meaningful to Oracle Database 11¢ or to Oracle SQL]J run time.

Attempts to define constants other than the standard constants is
legal with Oracle Database 11g, but might not be portable to other
SQLJ implementations and will generate a warning if you have the
-warn=portable flag enabled. For information about this flag,
refer to "Translator Warnings (-warn)" on page 8-34.

Supported WITH Clause Constants

The Oracle SQLJ implementation supports the following standard constants in
connection context declarations:

= typeMap: a String literal defining the name of a type map properties resource

Oracle also supports the use of typeMap in iterator declarations.

See Also: "Oracle-Specific WITH Clause Usage" on page 4-6

= dataSource:a String literal defining the name under which a data source is
looked up in the InitialContext

See Also: "Standard Data Source Support" on page 7-9

The Oracle SQL] implementation supports the following standard constants in iterator
declarations:

m sensitivity: SENSITIVE/ASENSITIVE/INSENSITIVE, to define the
sensitivity of a scrollable iterator

See Also: "Scrollable Iterator Sensitivity" on page 7-37

m returnability: true/false, to define whether an iterator can be returned
from a Java stored procedure or function

See Also: "Example: Returnability" on page 4-7

Unsupported WITH Clause Constants

If you have SQL]J code that uses these constants, then they will not cause an error but
will result in no operation. The Oracle SQLJ implementation does not support the
following standard constants in connection context declarations:

Basic Language Features 4-5

Overview of SQLJ Declarations

s path:a String literal defining the name of a path to be prepended for resolution
of Java stored procedures and functions

s transformGroup: a String literal defining the name of a SQL transformation
group that can be applied to SQL types

The Oracle SQL]J implementation does not support the following standard constants,
involving cursor states, in iterator declarations:

= holdability: true/false, determining cursor holdability

The concept of holdability is defined in the SQL specification. A cursor that is
holdable can, subject to application request, be kept open and positioned on the
current row even when a transaction is completed. Use of the cursor can then be
continued in the next transaction of the same SQL session, however, subject to
some limitations.

» updateColumns:a String literal containing a comma-delimited list of column
names

An iterator declaration having a with clause that specifies updateColumns must
also have an implements clause that specifies the sqlj.runtime.ForUpdate
interface. The Oracle SQLJ implementation enforces this, even though
updateColumns is currently unsupported.

The following is a sample connection context declaration using typeMap:

#sgl public context MyContext with (typeMap="MyPack.MyClass");

The declared class MyContext will define a String attribute typeMap that will be
public static final and initialized to the value MyPack.MyClass. This value is
the fully qualified class name of a ListResourceBundle implementation that

provides the mapping between SQL and Java types for statements executed on
instances of the MyContext class.

The following is a sample iterator declaration using sensitivity:

#sgl public iterator MyAsensitivelIter with (sensitivity=ASENSITIVE)

(String ename, int empno);
This declaration sets the cursor sensitivity to ASENSITIVE for the
MyAsensitiveIter named iterator class.
The following example uses both an implements clause and a with clause:
#sqgl public iterator MyScrollableIterator implements sqglj.runtime.Scrollable

with (holdability=true) (String ename, int empno);

This declaration implements the interface sqlj.runtime.Scrollable and enables
the cursor holdability for a named iterator class.

Note: holdability is currently not supported.

Oracle-Specific WITH Clause Usage

In addition to the standard with clause usage in a connection context declaration to
associate a type map with the connection context class, the Oracle SQL]
implementation enables you to use a with clause to associate a type map with the
iterator class in an iterator declaration. For example:

#sql iterator MyIterator with (typeMap="MyTypeMap") (Person pers, Address addr);

4-6 Oracle Database SQLJ Developer's Guide

Overview of SQLJ Declarations

If you use Oracle-specific code generation and use type maps in your application, then
your iterator and connection context declarations must use the same type maps.

See Also: "Code Considerations and Limitations with
Oracle-Specific Code Generation" on page 3-28

Example: Returnability

Use returnability=true in the with clause of a SQL]J iterator declaration to
specify that the iterator can be returned from a Java stored procedure to a SQL or
PL/SQL statement as a REF CURSOR. With the default returnability=false
setting, the iterator cannot be returned in this manner, and an attempt to do so will
result in a SQL exception at run time.

Create the following database table:

create table sgljRetTab(str varchar2(30));
insert into sgljRetTab values ('sgljRetTabCol');

Define the RefCursorSQLJ class in the RefCursorSQLJ . sglj source file as
follows. Note that the iterator type MyIter uses returnability=true.

public class RefCursorSQLJ
{
#sqgl static public iterator MylIter with (returnability=true) (String str);

static public MyIter sqgljUserRet() throws java.sql.SQLException
{
MyIter iter=null;
try {
#sgl iter = {select str from sgljRetTab};
} catch (java.sql.SQLException e)
{
e.printStackTrace();
throw e;
}
System.err.println("iter is " + iter);
return iter;

Load RefCursorSQLJ . sqlj into Oracle Java virtual machine (JVM) inside the
database as follows:

Q

% loadjava -u scott -r -f -v RefCursorSQLJ.sglj
Password: password

Invoke the Java stored procedure defined for the sqljUserRet () method:

create or replace package refcur_pkg as
type refcur_t is ref cursor;

end;

/

create or replace function sgljUserRet

return refcur_pkg.refcur_t as

language java

name 'RefCursorSQLJ.sgljUserRet () return

RefCursorSQLJ.MyIter';

/

select scott.sqgljUserRet from dual;

Basic Language Features 4-7

Overview of SQLJ Executable Statements

Here is the result of the SELECT statement:

SQLJRET1

sgljRetTabCol

Overview of SQLJ Executable Statements

A SQLJ executable statement consists of the #sgl token followed by a SQLJ clause,
which uses syntax that follows a specified standard for embedding executable SQL
statements in Java code. The embedded SQL operation of a SQLJ executable statement
can be any SQL operation supported by the JDBC driver.

This section covers the following topics:

Rules for SQLJ Executable Statements
SQLJ Clauses

Specifying Connection Context Instances and Execution Context Instances

Executable Statement Examples

PL/SQL Blocks in Executable Statements

Rules for SQLJ Executable Statements

A SQLJ executable statement must adhere to the following rules:

It is permitted in Java code wherever Java block statements are permitted. That is,
it is permitted inside method definitions and static initialization blocks.

Its embedded SQL operation must be enclosed in curly braces: { . . . }.

It must be terminated with a semi-colon (;).

Note:

It is recommended that you do not close the SQL operation
with a semi-colon. The parser will detect the end of the
operation when it encounters the closing curly brace of the
SQLJ clause.

Everything inside the curly braces of a SQL]J executable
statement is treated as SQL syntax and must follow SQL rules,
with the exception of Java host expressions.

During offline parsing of SQL operations, all SQL syntax is
checked. However, during online semantics-checking only data
manipulation language (DML) operations can be parsed and
checked. Data definition language (DDL) operations,
transaction-control operations, or any other kinds of SQL
operations cannot be parsed and checked.

4-8 Oracle Database SQLJ Developer's Guide

Overview of SQLJ Executable Statements

SQLJ Clauses

A SQLJ clause is the executable part of a statement, consisting of everything to the
right of the #sql token. This consists of embedded SQL inside curly braces, preceded
by a Java result expression if appropriate, such as result in the following example:

#sql { SQL operation }; // For a statement with no output, like INSERT
#sql result = { SQL operation }; // For a statement with output, like SELECT

A clause without a result expression, such as in the first SQL] statement in the
example, is known as a statement clause. A clause that does have a result expression,
such as in the second SQL]J statement in the example, is known as an assignment
clause.

A result expression can be anything from a simple variable that takes a stored-function
return value to an iterator that takes several columns of data from a multi-row
SELECT, where the iterator can be an instance of an iterator class or subclass.

A SQL operation in a SQL]J statement can use standard SQL syntax only or can use a
clause with syntax specific to SQLJ.

Table 4-1 lists supported SQLJ statement clauses and Table 4-2 lists supported SQL]J
assignment clauses. The last two entries in Table 4-1 are general categories for
statement clauses that use standard SQL syntax or Oracle PL/SQL syntax, as opposed
to SQLJ-specific syntax.

Table 4-1 SQLJ Statement Clauses

Category Functionality More Information
SELECT INTO clause Select datainto Javahost "Single-Row Query Results: SELECT
expressions. INTO Statements" on page 4-24
FETCH clause Fetch data from a "Using Positional Iterators" on
positional iterator. page 4-34
COMMIT clause Commit changes to the "Using Manual COMMIT and
data. ROLLBACK" on page 3-20
ROLLBACK clause Cancel changes to the "Using Manual COMMIT and
data. ROLLBACK" on page 3-20
SAVEPOINT Set a savepoint for future "Using Savepoints" on page 3-21

RELEASE SAVEPOINT rollbacks, release a
ROLLBACK TO clauses specified savepoint, roll
back to a savepoint.

SET TRANSACTION Use advanced transaction "Advanced Transaction Control" on
clause control for access mode page 7-41
and isolation level.
Procedure clause Call a stored procedure. "Calling Stored Procedures" on
page 4-43
Assignment clause Assign values to Java host "Assignment Statements (SET)" on
expressions. page 4-41
SQL clause Use standard SQL syntax Oracle Database SQL Language Reference

and functionality: UPDATE,
INSERT, DELETE.

PL/SQL block Use BEGIN. . END or "PL/SQL Blocks in Executable
DECLARE. .BEGIN. .END Statements" on page 4-11

anonymous block inside
SQLJ statement. I(;)mcle Database PL/SQL Language
eference

Basic Language Features 4-9

Overview of SQLJ Executable Statements

Table 4-2 SQLJ Assignment Clauses

Category Functionality More Information

Query clause Select data into a SQLJ "Multirow Query Results: SQLJ
iterator. Iterators” on page 4-26

Function clause Call a stored function. "Calling Stored Functions" on page 4-44

Iterator conversion Converta JDBC result set "Converting from Result Sets to Named

clause to a SQL]J iterator. or Positional Iterators" on page 7-48

Note: A SQLJ statement is referred to by the same name as the
clause that makes up the body of that statement. For example, an
executable statement consisting of #sqgl followed by a SELECT
INTO clause is referred to as a SELECT INTO statement.

Specifying Connection Context Instances and Execution Context Instances

If you have defined multiple database connections and want to specify a particular
connection context instance for an executable statement, then use the following syntax:

#sql [conn_context_instance] { SQL operation };

See Also: "Connection Considerations" on page 3-4

If you have defined one or more execution context instances of the
sqglj.runtime.ExecutionContext class and want to specify one of them for use
with an executable statement, then use the following syntax:

#sqgl [exec_context_instance]l { SQL operation };
You can use an execution context instance to provide status or control of the SQL
operation of a SQL]J executable statement. For example, you can use execution context

instances in multithreading situations where multiple operations are occurring on the
same connection.

See Also: "Execution Contexts" on page 7-24

You can also specify both a connection context instance and an execution context
instance:

#sqgl [conn_context_instance, exec_context_instance]l { SQL operation };

Note:

= Include the square brackets around connection context
instances and execution context instances. They are part of the
syntax.

= If you specify both a connection context instance and an
execution context instance, then the connection context instance
must come first.

4-10 Oracle Database SQLJ Developer's Guide

Overview of SQLJ Executable Statements

Executable Statement Examples

This section provides examples of elementary SQLJ executable statements.

Elementary INSERT
The following example demonstrates a basic INSERT. The statement clause does not
require any syntax specific to SQLJ.

Consider an employee table EMP with the following rows:

CREATE TABLE EMP (
ENAME VARCHAR2 (10),
SAL NUMBER(7,2));

Use the following SQL] executable statement, which uses only standard SQL syntax, to
insert Joe as a new employee into the EMP table, specifying his name and salary:

#sgl { INSERT INTO emp (ename, sal) VALUES (’'Joe’, 43000) };

Elementary INSERT with Connection Context or Execution Context Instances

The following examples use ctx as a connection context instance, which is an instance
of either the default sqlj.runtime.ref.DefaultContext or a class that you have
previously declared in a connection context declaration, and execctx as an execution
context instance:

#sgl [ctx] { INSERT INTO emp (ename, sal) VALUES ('Joe’, 43000) };
#sqgl [execctx] { INSERT INTO emp (ename, sal) VALUES (’'Joe’, 43000) };

#sqgl [ctx, execctx] { INSERT INTO emp (ename, sal) VALUES (’'Joe’, 43000) };

A Simple SQLJ Method

This example demonstrates a simple method using SQL] code, demonstrating how
SQLJ statements interrelate with and are interspersed with Java statements. The SQL]
statement uses standard INSERT INTO table VALUES syntax supported by the
Oracle SQL implementation. The statement also uses Java host expressions, marked by
colons (:), to define the values. Host expressions are used to pass data between the
Java code and SQL instructions.

public static void writeSalesData (int[] itemNums, String[] itemNames)
throws SQLException
{
for (int 1 =0; 1 < itemNums.length; i++)
#sqgl { INSERT INTO sales VALUES(: (itemNums[i]), :(itemNames[i]), SYSDATE) };

Note:
s The throws SQLException is required.

s SQLJ function calls also use a VALUES token, but these
situations are not related semantically.

PL/SQL Blocks in Executable Statements

PL/SQL blocks can be used within the curly braces of a SQL] executable statement just
as SQL operations can, as in the following example:

Basic Language Features 4-11

Java Host, Context, and Result Expressions

#sal {
DECLARE
n NUMBER;
BEGIN
n:=1;
WHILE n <= 100 LOOP
INSERT INTO emp (empno) VALUES (2000 + n);
n:=n+ 1;
END LOOP;
END
}i

This example goes through a loop that inserts new employees in the emp table,
creating employee numbers 2001 through 2100. It presumes data other than the
employee number will be filled in later.

Simple PL/SQL blocks can also be coded in a single line as follows:
#sql { <DECLARE ...> BEGIN ... END; };
Using PL/SQL anonymous blocks within SQL]J statements is one way to use dynamic

SQL in your application. You can also use dynamic SQL directly through SQL]J
extensions provided by Oracle or through JDBC code within a SQL]J application.

See Also: "Support for Dynamic SQL" on page 7-50 and "SQLJ and
JDBC Interoperability" on page 7-44

Note: Remember that using PL/SQL in your SQL]J code would
prevent portability to other platforms, because PL/SQL is
Oracle-specific.

Java Host, Context, and Result Expressions

This section discusses three categories of Java expressions used in SQLJ code: host
expressions, context expressions, and result expressions. Host expressions are the most
frequently used Java expressions. Another category of expressions, called meta bind
expressions, are used specifically for dynamic SQL operations and use syntax similar
to that of host expressions.

See Also: "Support for Dynamic SQL" on page 7-50

SQLJ uses Java host expressions to pass arguments between Java code and SQL
operations. This is how you pass information between Java and SQL. Host expressions
are interspersed within the embedded SQL operations in the SQL]J source code.

The most basic kind of host expression, consisting of only a Java identifier, is referred
to as a host variable. A context expression specifies a connection context instance or
execution context instance to be used for a SQL]J statement. A result expression
specifies an output variable for query results or a function return.

This section covers the following topics:
s Overview of Host Expressions

» Basic Host Expression Syntax

» Examples of Host Expressions

s Overview of Result Expressions and Context Expressions

4-12 Oracle Database SQLJ Developer's Guide

Java Host, Context, and Result Expressions

= Evaluation of Java Expressions at Run Time
= Examples of Evaluation of Java Expressions at Run Time (ISO Code Generation)

» Restrictions on Host Expressions

Overview of Host Expressions

Any valid Java expression can be used as a host expression. In the simplest case, the
expression consists of just a single Java variable. Other kinds of host expressions
include the following:

= Arithmetic expressions

» Java method calls with return values

= Java class field values

= Array elements

= Conditional expressions (a ? b : <)
= Logical expressions

= Bitwise expressions

Java identifiers used as host variables or in host expressions can represent any of the
following:

» Local variables

s Declared parameters

n Class fields

» Static or instance method calls

Local variables used in host expressions can be declared anywhere that other Java
variables can be declared. Fields can be inherited from a superclass.

Java variables that are legal in the Java scope where the SQL]J executable statement
appears can be used in a host expression in a SQL statement, presuming its type is
convertible to or from a SQL data type. Host expressions can be input, output, or
input-output.

See Also: "Supported Types for Host Expressions" on page 5-1

Basic Host Expression Syntax

A host expression is preceded by a colon (:). If the desired mode of the host expression
is not the default, then the colon must be followed by IN, OUT, or INOUT, as
appropriate, before the host expression itself. These are referred to as mode specifiers.
The default is OUT if the host expression is part of an INTO-list or is the assignment
expression in a SET statement. Otherwise, the default is IN. Any OUT or INOUT host
expression must be assignable.

Note: When using the default, you can still include the mode
specifier if desired.

The SQL code that surrounds a host expression can use any vendor-specific SQL
syntax. Therefore, no assumptions can be made about the syntax when parsing the
SQL operations and determining the host expressions. To avoid any possible

Basic Language Features 4-13

Java Host, Context, and Result Expressions

ambiguity, any host expression that is not a simple host variable (in other words, that
is more complex than a nondotted Java identifier) must be enclosed in parentheses.

To summarize the basic syntax:

For a simple host variable without a mode specifier, put the host variable after the
colon, as in the following example:

:hostvar

For a simple host variable with a mode specifier, put the mode specifier after the
colon and put white space (space, tab, newline, or comment) between the mode
specifier and the host variable, as in the following example:

: INOUT hostvar

The white space is required to distinguish between the mode specifier and the
variable name.

For any other host expression, enclose the expression in parentheses and place it
after the mode specifier or after the colon, if there is no mode specifier, as in the
following examples:

:IN (hostvarl+hostvar2)
: (hostvar3*hostvard)
: (index--)

White space is not required after the mode specifier in this example, because the
parenthesis is a suitable separator. However, a white space after the mode
specifier is allowed.

An outer set of parentheses is needed even if the expression already starts with a
begin-parenthesis, as in the following examples:

:((x+y) .2)
: (((y)x) .myOutput ())

Syntax Notes
Keep the following in mind regarding the host expression syntax:

White space is always allowed after the colon as well as after the mode specifier.
Wherever white space is allowed, you can also have a comment.

You can have any of the following in the SQL namespace:
- SQL comments after the colon and before the mode specifier

- SQL comments after the colon and before the host expression if there is no
mode specifier

- SQL comments after the mode specifier and before the host expression
You can have the following in the Java namespace:
- Java comments within the host expression (inside the parentheses)

The IN, OUT, and INOUT syntax used for host variables and expressions are not
case-sensitive. These tokens can be in uppercase, lowercase, or mixed.

Do not confuse the IN, OUT, and INOUT syntax of SQL]J host expressions with
similar IN, OUT, and IN OUT syntax used in PL/SQL declarations to specify the
mode of parameters passed to PL/SQL stored functions and procedures.

4-14 Oracle Database SQLJ Developer's Guide