

Oracle® R Enterprise
User's Guide

Release 1.3 for Windows, Linux, Solaris, and AIX

E36761-08

April 2013

Oracle R Enterprise User's Guide, Release 1.3 for Windows, Linux, Solaris, and AIX

E36761-08

Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: David McDermid

Contributing Author: Margaret Taft

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... ix

What's New in Oracle R Enterprise 1.3? ... xi

New Features for Release 1.3... xi
New Features for Release 1.1... xi

1 Overview of Oracle R Enterprise

Oracle R Enterprise Architecture .. 1-2
Oracle R Enterprise Supported Configurations... 1-3

GUIs and IDEs for R .. 1-3
Oracle R Enterprise Training ... 1-3
Oracle R Enterprise Useful Links ... 1-4

2 Oracle R Enterprise Transparency Layer

Data Types Supported... 2-1
Date and Time Data Types ... 2-2

Date and Time Data Types in Oracle ... 2-2
Oracle R Enterprise Support for Date and Time .. 2-2

Operators and Functions Supported .. 2-3

3 Using Oracle R Enterprise

Tables in Oracle Database .. 3-1
View Oracle R Enterprise Documentation .. 3-2
Oracle R Enterprise Data .. 3-2

Long Names .. 3-2
Load an R Data Frame into the Database ... 3-2

Example: Load Data ... 3-2
Materialize R Data.. 3-3
Verify that an ore.frame Exists .. 3-3
Drop a Database Table .. 3-4

iv

Pull a Database Table to an R Frame... 3-4
Order in Tables ... 3-4
Sampling and Partitioning.. 3-5

Indexing.. 3-5
Sampling... 3-6
Random Partitioning .. 3-7

Persist and Manage R Objects in the Database .. 3-7
ore.save() .. 3-8

Examples of ore.save() .. 3-8
ore.load() .. 3-8

Examples of ore.load() .. 3-9
ore.delete() ... 3-9

Example of ore.delete() ... 3-9
ore.datastore().. 3-9

Example of ore.datastore() .. 3-10
ore.datastoreSummary() ... 3-10

Example of ore.datastoreSummary() ... 3-10
Using R with Oracle R Enterprise Data Types .. 3-10
Derived Columns in Oracle R Enterprise ... 3-12
Using CRAN Packages with Oracle R Enterprise ... 3-12

Build and Use a Regression Model... 3-12
Oracle R Enterprise Database-Embedded R Engine .. 3-13

Perform R Computation in Oracle Database... 3-13
Build a Series of Regression Models Using Data Parallelism... 3-13

Oracle R Enterprise Examples... 3-14
Load a Data Frame to a Table.. 3-14
Handle NULL Values Using airquality ... 3-15
Oracle R Enterprise Demos.. 3-16

4 Oracle R Enterprise Statistical Functions

Data for Examples .. 4-1
ore.corr .. 4-1

ore.corr Parameters .. 4-2
ore.corr Examples... 4-2

Basic Correlation Calculations .. 4-2
Partial Correlation... 4-3
Create Several Correlation Matrices... 4-3
Visualization of Correlations... 4-3

ore.crosstab .. 4-3
ore.crosstab Parameters... 4-3
ore.crosstab Examples ... 4-4

Single-Column Frequency Table .. 4-4
Analyze Two Columns... 4-5
Weighting Rows.. 4-5
Order Rows in the Cross Tabulated Table .. 4-5
Analyze Three or More Columns ... 4-5
Specify a Range of Columns.. 4-5

v

Produce One Cross Table for Each Value of Another Column.. 4-6
Augment Cross Tabulation with Stratification... 4-6
Custom Binning Followed by Cross Tabulation .. 4-6
ore.extend... 4-6

ore.freq.. 4-6
ore.freq Parameters .. 4-7
ore.freq Examples... 4-8

ore.rank... 4-8
ore.rank Parameters ... 4-8
ore.rank Examples.. 4-9

Rank Two Columns .. 4-9
Handle Ties .. 4-9
Rank Within Groups... 4-9
Partition into Deciles .. 4-9
Estimate Cumulative Distribution Function.. 4-10
Score Ranks ... 4-10

ore.sort ... 4-10
ore.sort Parameters ... 4-10
ore.sort Examples .. 4-10

Sort Columns in Descending Order .. 4-11
Sort Different Columns in Different Orders .. 4-11
Sort and Return One Row per Unique Value .. 4-11
Remove Duplicate Columns... 4-11
Remove Duplicate Columns and Return One Row per Unique Value............................ 4-11
Preserve Relative Order in Output.. 4-11
Examples Using ONTIME_S .. 4-11

ore.summary ... 4-12
ore.summary Parameters ... 4-12
ore.summary Examples.. 4-13

Calculate Default Statistics ... 4-13
Skew and t Test .. 4-13
Weighted Sum .. 4-13
Two Separate Group By Columns... 4-13
All Possible Group By ... 4-13

ore.univariate ... 4-14
ore.univariate Parameters .. 4-14
ore.univariate Examples... 4-14

Default Univariate Statistics ... 4-14
Location Statistics... 4-15
Complete Quantile Statistics .. 4-15

5 Predicting with R Models

ore.predict for R Models ... 5-1
Examples .. 5-1

vi

6 Oracle R Enterprise Versions of R Models

ore.lm().. 6-1
ore.lm() and ore.stepwise() Advantages... 6-1
Linear Regression Example .. 6-2

ore.stepwise() .. 6-2
Stepwise Regression Example .. 6-2

ore.neural()... 6-3
Neural Network Example... 6-3

7 In-Database Predictive Models in Oracle R Enterprise

OREdm Requirements .. 7-2
OREdm Models and Oracle Data Mining Models .. 7-2
OREdm Models .. 7-2

Data Mining Terminology .. 7-3
Formula .. 7-3

Overloaded Functions ... 7-3
Attribute Importance ... 7-3

Attribute Importance Example ... 7-4
Decision Tree .. 7-4

Decision Tree Example... 7-5
Generalized Linear Models... 7-5

GLM Examples .. 7-6
k-Means ... 7-7

k-Means Example.. 7-7
Naive Bayes... 7-8

Naive Bayes Example ... 7-8
Support Vector Machine ... 7-8

Support Vector Machine Examples .. 7-9
SVM Classification... 7-9
SVM Regression .. 7-10
SVM Anomaly Detection ... 7-10

8 Oracle R Enterprise Embedded Execution

Security Considerations for Scripts .. 8-1
RQADMIN Role ... 8-1

Support for Database Parallelism ... 8-1
R Interface for Embedded Oracle R Enterprise Scripts .. 8-2

Security Issues for Embedded R Scripts ... 8-3
Input for ore.*Apply() and ore.doEval() ... 8-3
ore.doEval()... 8-3
ore.tableApply() ... 8-4
ore.groupApply() ... 8-4
ore.rowApply() ... 8-4
ore.indexApply() .. 8-5
ore.scriptCreate().. 8-5

ore.scriptCreate() Example .. 8-5

vii

ore.scriptDrop() .. 8-6
Automatic Database Connection in Embedded R Scripts.. 8-6
Examples of Embedded R Scripts .. 8-7

Oracle R Enterprise Embedded SQL Scripts .. 8-7
Registering and Managing SQL Scripts .. 8-7
Oracle R Enterprise SQL Functions ... 8-8

rqGroupEval() Function.. 8-10
rq*Eval() and Objects in a Datastore ... 8-11
Datastore Management in SQL.. 8-11

A Oracle R Enterprise and Oracle R Distribution Packages

Packages Related to Oracle R Distribution .. A-1
Packages Related to Oracle R Enterprise .. A-1

Index

viii

ix

Preface

This book describes how to use Oracle R Enterprise release 1.3.

Audience
This document is intended for anyone who uses Oracle R Enterprise. Use of Oracle R
Enterprise requires knowledge of R and Oracle Database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
These manuals describe Oracle R Enterprise:

■ Oracle R Enterprise Installation and Administration Guide

■ Oracle R Enterprise User's Guide (this manual)

■ Oracle R Enterprise Release Notes

For information about Oracle Database, see the Oracle Database Documentation Library
11g Release 2 (11.2) at
http://www.oracle.com/technetwork/indexes/documentation/index.html?ssSourc
eSiteId=ocomen.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

http://www.oracle.com/technetwork/indexes/documentation/index.html?ssSourceSiteId=ocomen
http://www.oracle.com/technetwork/indexes/documentation/index.html?ssSourceSiteId=ocomen

x

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

xi

What's New in Oracle R Enterprise 1.3?

This section describes new features in releases of Oracle R Enterprise. It includes the
following sections:

■ New Features for Release 1.3

■ New Features for Release 1.1

New Features for Release 1.3
Release 1.3 includes these new features:

■ Predicting with R Models using in-database data

■ Ordering and indexing, described in Order in Tables

■ In-Database Predictive Models in Oracle R Enterprise

■ Persist and Manage R Objects in the Database

■ Date and Time Data Types

■ Sampling and Partitioning

■ Long Names for columns

■ Automatic Database Connection in Embedded R Scripts

■ R neural network for in-database data, described in ore.neural()

Other changes:

■ Installation and administration information has moved from this manual to Oracle
R Enterprise Installation and Administration Guide. New features related to
installation and administration are described in that book.

New Features for Release 1.1
Release 1.1 includes these new features:

■ Support for IBM AIX: Oracle R Distribution and Oracle R Enterprise are
supported on AIX 5.3 and higher.

■ Support for Solaris: Oracle R Distribution and Oracle R Enterprise are supported
on 10 and higher for both 64-bit SPARC and 64-bit x386 (Intel) processors.

■ Use improved mathematics libraries in R

You can now use the improved Oracle R Distribution with support for
dynamically picking up either the Intel Math Kernel Library (MKL) or the AMD
Core Math Library (ACML) with Oracle R Enterprise.

xii

On Solaris, Oracle R Distribution dynamically links with Oracle SUN performance
library for high speed BLAS and LAPACK operations.

■ Server runs on Windows

The Oracle R Enterprise Server now runs on 64-bit and 32-bit Windows operating
systems.

■ Support for Oracle Wallet

R scripts no longer need to have database authentication credentials in clear text.
Oracle R Enterprise is integrated with Oracle Wallet for that purpose.

■ Improved installation

The installation scripts have been improved with more prerequisite checks and
detailed error messages. Error messages provide specific instructions on remedial
actions.

1

Overview of Oracle R Enterprise 1-1

1Overview of Oracle R Enterprise

R is an open source statistical programming language and environment. For
information about R, see the R Project for Statistical Computing at
http://www.r-project.org.

R provides an environment for statistical computing, including:

■ An easy-to-use language

■ A powerful graphical environment for visualization

■ Many out-of-the-box statistical techniques

■ R packages (An R package is a set of related functions, help files, and data files; as
of this writing, there are more than 4000 R packages, but the number grows
constantly.)

■ The R Console graphical user interface for analyzing data interactively

R's rapid adoption has earned it a reputation as a new statistical software standard.

Oracle R Enterprise is a component of the Oracle Advanced Analytics Option of
Oracle Database Enterprise Edition.

For detailed information about Oracle R Enterprise, including links to software
downloads, go to Oracle R Enterprise at
http://www.oracle.com/technetwork/database/options/advanced-analytics/r-en
terprise/index.html. This site contains links to downloads, the blog, the discussion
forum, and the latest documentation. See Oracle R Enterprise Useful Links for
information about the blog and the forum.

Oracle R Enterprise allows users to perform statistical analysis on data stored in an
Oracle Database. Oracle R Enterprise has these components:

■ The Oracle R Enterprise R transparency layer. The transparency layer is a
collection of packages that support mapping of R data types to Oracle Database
objects and generate SQL transparently in response to R expressions on mapped
data types. The transparency layer allows an R user to interact directly with
database-resident data using R language constructs. One advantage of interacting
with database-resident data is that R users can work with data too large to fit into
the memory of a user's desktop system.

■ The Oracle R Enterprise statistics engine, a collection of statistical functions and
procedures corresponding to commonly-used statistical libraries. The statistics
engine packages execute in Oracle Database.

■ Embedded R execution enables the database server to manage and control the
execution of R scripts by spawning server-side R engines. Embedded R execution
enables operationalization of R scripts, that is, running R scripts in a lights-out

http://www.oracle.com/technetwork/database/options/advanced-analytics/r-enterprise/index.html
http://www.oracle.com/technetwork/database/options/advanced-analytics/r-enterprise/index.html

Oracle R Enterprise Architecture

1-2 Oracle R Enterprise User's Guide

fashion as part of an application. Embedded R execution eliminates moving data
from Oracle Database. Embedded R execution enables data and task parallel
execution, generation of rich XML output and png image streams through the SQL
API, and provides parallel simulations capability.

Oracle R Enterprise includes many packages; for a list see Oracle R Enterprise and
Oracle R Distribution Packages.

The rest of this chapter describes Oracle R Enterprise Architecture and Oracle R
Enterprise Supported Configurations.

Oracle R Enterprise Training is available free from Oracle Learning Library.

Oracle R Enterprise Useful Links describes the blog and the forum.

Oracle R Enterprise Architecture
Oracle R Enterprise has these three components including the connector for Hadoop:

Oracle R Enterprise Components: Client R Engine, Database server Engine, and R
Engines spawned by the database.

1. The Client R Engine (R Engine in Client) is a collection of R packages that allows
you to connect to an Oracle Database and to interact with data in that database.

You can use any R commands from the client. In addition, the client supplies these
functions:

■ The R SQL Transparency layer intercepts R functions for scalable in-database
execution

■ Functions intercept data transforms, statistical functions, and Oracle R
Enterprise-specific functions

■ Interactive display of graphical results and flow control as in open source R

■ Submission of R closures (functions) for execution in Oracle Database

2. The Server (in Oracle Database) is a collection of PL/SQL procedures and libraries
that augment Oracle Database with the capabilities required to support an Oracle
R Enterprise client. The R engine is also installed on Oracle Database to support
embedded R execution. Oracle Database spawns R engines, which can provide
data parallelism.

The Oracle R Enterprise Database engine provides this functionality:

Oracle R Enterprise Training

Overview of Oracle R Enterprise 1-3

■ Scale to large datasets

■ Access to tables, views, and external tables in the database, as well as those
accessible through database links

■ Use SQL query parallel execution

■ Use in-database statistical and data mining functionality

3. R Engines spawned by Oracle Database support database-managed parallelism;
provide lights-out scheduled execution of R scripts, that is, scheduling or
triggering R scripts packaged inside a PL/SQL or SQL query. Oracle R Enterprise
provides efficient transfer to and from the spawned engines. Embedded R
execution can be used to emulate MapReduce style programming.

There are several data types specific to Oracle R Enterprise; see Data Types Supported
for details.

Oracle R Enterprise Supported Configurations
Oracle R Enterprise consists of a client and a server. The client and the server run
on Oracle Linux, Red Hat Linux; the client runs on Microsoft Windows 64-bit. The
server is installed in an Oracle Database, to which the client connects. Client and
server are not required to run on the same operating system. For example, the client
can run on Microsoft Windows with the server installed on Oracle Linux.

Oracle R Enterprise also runs on Oracle Exadata machines with the Linux and Solaris
operating systems. For details, see Oracle R Enterprise Installation and Administration
Guide.

GUIs and IDEs for R
Open source R is distributed through The Comprehensive R Archive Network
(CRAN). It can be downloaded, but it is not shipped.

The CRAN distribution contains a Graphical User Interface (GUI) for Windows. There
are open source GUIs for R on all operating systems, but they require a download
from a separate site and a separate install.

If you require an Integrated Development Environment (IDE) for R, you may wish to
use RStudio IDE. For an overview of RStudio IDE installation, see Oracle R Enterprise
Installation and Administration Guide.

Oracle R Enterprise Training
Oracle R Enterprise Tutorial Series
(https://apex.oracle.com/pls/apex/f?p=44785:24:17534844732288::NO::P24_
CONTENT_ID,P24_PREV_PAGE:6528,1), part of Oracle Learning Library, contains lessons
describing Open-source R basics and Oracle R Enterprise functionality. Topics include
R basics, graphing in R, the transparency layer, R scripts, and SQL scripts. There is also
a lesson about Oracle R Connector for Hadoop. (Oracle Connector for Hadoop is a
separate product.)

Lessons in Oracle Learning Library are free.

See Also: The Learning R Series presentations available on the
Oracle R Enterprise page on the Oracle Technology Network at
http://www.oracle.com/technetwork/database/options/advanced-
analytics/r-enterprise/index.html

https://apex.oracle.com/pls/apex/f?p=44785:24:17534844732288::NO::P24_CONTENT_ID,P24_PREV_PAGE:6528,1
https://apex.oracle.com/pls/apex/f?p=44785:24:17534844732288::NO::P24_CONTENT_ID,P24_PREV_PAGE:6528,1

Oracle R Enterprise Useful Links

1-4 Oracle R Enterprise User's Guide

Oracle R Enterprise Useful Links
The following web sites provide useful information for users of Oracle R Enterprise:

■ The Oracle R Enterprise Discussion Forum
(https://forums.oracle.com/forums/forum.jspa?forumID=1397) supports all
aspects of Oracle's R-related offerings, including: Oracle R Enterprise, Oracle R
Connector for Hadoop (part of the Big Data Connectors), and Oracle R
Distribution. Use the forum to ask questions and make comments about the
software.

■ The Oracle R Enterprise Blog (https://blogs.oracle.com/R/) discusses best
practices, tips, and tricks for applying Oracle R Enterprise and Oracle R Connector
for Hadoop in both traditional and new Big Data environments.

2

Oracle R Enterprise Transparency Layer 2-1

2Oracle R Enterprise Transparency Layer

Oracle R Enterprise Transparency Layer performs these functions:

■ Traps all R commands and scripts prior to execution and looks for opportunities to
ship them to Oracle Database for execution in the database.

■ Enables transparent grandparent SQL generation for R expressions that use
mapped data types.

■ Converts R commands and scripts to SQL equivalents to leverage Oracle Database
as a high-performance compute engine, taking advantage of query optimization,
tables indexes, deferred evaluation, and parallel execution.

The Oracle R Enterprise transparency layer allows R users to use R syntax to work
directly with database-resident objects without having to pull data from Oracle into
R's memory on the user's desktop. It thus enables R users to work with data larger
than desktop memory allows.

R language constructs and syntax are supported for objects mapped to Oracle
Database objects.

This chapter summarizes the functionality provided by the Transparency Layer. These
topics are discussed:

■ Data Types Supported

■ Operators and Functions Supported

Data Types Supported
The following R data types have been overloaded so that they are mapped to database
objects and hence enabled for in-database execution:

■ Character, Integer, Numeric, and Logical vectors

■ Date and Time Data Types

■ Factors

■ Data Frame

■ Matrix is overloaded in two situations:

– Linear algebra cross-products

– Creating input matrices for advanced analytics

class(object) reports the data type of such mapped objects. For example, if the table
NARROW contains the column AGE and AGE is numeric,

R> class(NARROW$AGE)

Data Types Supported

2-2 Oracle R Enterprise User's Guide

[1] "ore.numeric"
attr(,"package")
[1] "OREbase"

Date and Time Data Types
This section describes how Oracle database supports Date and Time Data Types and
illustrates how to use these data types in Oracle R Enterprise.

Date and Time Data Types in Oracle
Oracle Database supports these data and time data types:

■ The DATE data type stores date and time information. For each DATE value, Oracle
stores the following fields: YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

The valid date range is January 1, 4712 BC, to December 31, 9999 AD.

■ The TIMESTAMP data type is an extension of the DATE data type. It stores the year,
month, and day of the DATE data type, plus hour, minute, and second values.
Supports an optional fractional_seconds_precision, the number of digits in the
fractional part of the SECOND field in DATE. You can specify 0 to 9 digits; the default
is 6 digits.

 There are two extensions of TIMESTAMP:

– TIMESTAMP WITH TIME ZONE is TIMESTAMP as well as time zone displacement
value TIMEZONE_HOUR and TIMEZONE_MINUTE.

– TIMESTAMP WITH LOCAL TIME ZONE is TIMESTAMP WITH TIME ZONE with data
normalized to the database time zone when it is stored in the database. When
the data is retrieved, users see the data in the session time zone.

■ INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH fields.
This data type is useful for representing the difference between two data time
values when only the year and month values are significant.

■ INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. This data type is useful for representing the precise difference
between two date time values.

■ INTERVAL YEAR TO MONTH stores a period of time in years and months, where
optional year_precision, which is the number of digits in the YEAR date time field.
Accepted values are 0 to 9.

■ INTERVAL DAY TO SECOND stores a period of time in days, hours, minutes, and
seconds. Supports an optional day_precision, the maximum number of digits in
the DAY date time field (value is 0 to 9 with a default of 2.) Also supports optional
fractional_seconds_precision, the number of digits in the fractional part of the
SECOND field. (value 0 to 9 with a default of 6).

For detailed information about Oracle Data Types, see “Data Types” in Oracle Database
SQL Language Reference.

You can perform all expected operations on dates.

Oracle R Enterprise Support for Date and Time
Oracle R Enterprise provides these classes to support date and time calculations:

■ ore.date (Oracle DATE)

Operators and Functions Supported

Oracle R Enterprise Transparency Layer 2-3

■ ore.datetime (TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL
TIME ZONE)

■ ore.difftime (INTERVAL DAY TO SECOND)

Note that ore.datetime objects do not support a time zone setting, instead they use
the system time zone Sys.timezone() if it is available or GMT if Sys.timezone() is
not available.

Operators and Functions Supported
Oracle R Enterprise supports data pre-processing functionality extensively so all data
preparation and analysis can take place directly in the database.

You are not restricted to using this list of functions. If a specific function that you need
is not supported by Oracle R Enterprise, you can pull data from the database into the
R engine memory using ore.pull() to create an in-memory R object first, and use any
R function.

The following operators and functions are supported. See R documentation for syntax
and semantics of these operators and functions. Syntax and semantics for these items
are unchanged when used on a corresponding database-mapped data type (also
known as an Oracle R Enterprise data type).

■ Mathematical transformations: abs, sign, sqrt, ceiling, floor, trunc, cummax,
cummin, cumprod, cumsum, log, loglo, log10, log2, log1p, acos, acosh, asin, asinh,
atan, atanh, exp, expm1, cos, cosh, sin, sinh, tan, atan2, tanh, gamma, lgamma,
digamma, trigamma, factorial, lfactorial, round, signif, pmin, pmax, zapsmall,
rank, diff, besselI, besselJ, besselK, besselY

■ Basic statistics: mean, summary, min, max, sum, any, all, median, range, IQR,
fivenum, mad, quantile, sd, var, table, tabulate, rowSums, colSums, rowMeans,
colMeans, cor, cov

■ Arithmetic operators: +, -, *, /, ^, %%, %/%

■ Comparison operators: ==, >, <, !=, <=, >=

■ Logical operators: &, |, xor

■ Set operations: unique, %in%, subset

■ String operations: tolower, toupper, casefold, toString, chartr, sub, gsub, substr,
substring, paste, nchar, grepl

■ Combine Data Frame: cbind, rbind, merge

■ Combine vectors: append

■ Vector creation: ifelse

■ Subset selection: [, [[, $, head, tail, window, subset, Filter, na.omit, na.exclude,
complete.cases

■ Subset replacement: [<-, [[<-, $<-

■ Data reshaping: split, unlist

■ Data processing: eval, with, within, transform

■ Apply variants: tapply, aggregate, by

■ Special value checks: is.na, is.finite, is.infinite, is.nan

Operators and Functions Supported

2-4 Oracle R Enterprise User's Guide

■ Metadata functions: nrow, NROW, ncol, NCOL, nlevels, names, names<-, row,
col, dimnames, dimnames<-, dim, length, row.names, row.names<-, rownames,
rownames<-, colnames, levels, reorder

■ Graphics: arrows, boxplot, cdplot, co.intervals, coplot, hist, identify, lines,
matlines, matplot, matpoints, pairs, plot, points, polygon, polypath, rug, segments,
smoothScatter, sunflowerplot, symbols, text, xspline, xy.coords

■ Conversion functions: as.logical, as.integer, as.numeric, as.character, as.vector,
as.factor, as.data.frame

■ Type check functions: is.logical, is.integer, is.numeric, is.character, is.vector,
is.factor, is.data.frame

■ Character manipulation: nchar, tolower, toupper, casefold, chartr, sub, gsub,
substr.

■ Other ore.frame functions: data.frame, max.col, scale

■ Hypothesis testing: binom.test, chisq.test, ks.test, prop.test, t.test, var.test,
wilcox.test

■ Various Distributions: Density, cumulative distribution, and quantile functions
for standard distributions

■ ore.matrix function: show, is.matrix, as.matrix, %*% (matrix multiplication), t,
crossprod (matrix cross-product), tcrossprod (matrix cross-product A times
transpose of B), solve (invert), backsolve, forwardsolve, all appropriate
mathematical functions (abs, sign, and so on), summary (max, min, all, and so on),
mean

The Oracle R Enterprise sample programs described in Oracle R Enterprise Examples
include several examples using each category of these functions with Oracle R
Enterprise data types.

3

Using Oracle R Enterprise 3-1

3Using Oracle R Enterprise

This chapter explains how to use Oracle R Enterprise to analyze data stored in tables
or views in an Oracle Database.

This chapter discusses these topics:

■ Tables in Oracle Database

■ View Oracle R Enterprise Documentation

■ Oracle R Enterprise Data

■ Oracle R Enterprise Database-Embedded R Engine

■ Oracle R Enterprise Examples

We assume familiarity with R in the remainder of this section.

For additional examples of using Oracle R Enterprise functionality, see Oracle R
Enterprise Statistical Functions. For examples of building statistical models, including
models created using Oracle Data Mining algorithm, see In-Database Predictive
Models in Oracle R Enterprise.

Tables in Oracle Database
Before you can use Oracle R Enterprise to analyze data stored in database tables, you
must install Oracle R Enterprise, start a client, and connect to the database, as
described in Oracle R Enterprise Administrator’s Guide.

By convention, most of the functions and methods defined in Oracle R Enterprise
begin with the prefix ore. This is done to avoid name collisions with other R software.
However, the objects created by those functions and methods can be anything the end
user wants them to be. The end user has complete control over object naming.

Pick any object returned by ore.ls() and type either class(OBJECTNAME) or
class(OBJECTNAME$COLUMN_NAME). For example, the following code shows that the
class of DF_TABLE is ore.frame. The DF_TABLE object is created in Example: Load
Data.

R> class(DF_TABLE)
[1] "ore.frame"

The prefix ore indicates that the object is an Oracle R Enterprise created object that
holds metadata for the corresponding object in Oracle Database.

ore.frame is the Oracle R Enterprise metadata object that maps to a database table. The
ore.frame object is the counterpart to an R data.frame.

View Oracle R Enterprise Documentation

3-2 Oracle R Enterprise User's Guide

ore.frame or can be returned by the class() function. For an example of creating
ore.frame data, see Load an R Data Frame into the Database.

View Oracle R Enterprise Documentation
Use this command to view the Oracle R Enterprise documentation library:

R> OREShowDoc()

Oracle R Enterprise Data
Oracle R Enterprise supports this functionality:

■ Long Names

■ Load an R Data Frame into the Database

■ Materialize R Data

■ Verify that an ore.frame Exists

■ Drop a Database Table

■ Pull a Database Table to an R Frame

■ Order in Tables

■ Persist and Manage R Objects in the Database

Long Names
Oracle R Enterprise handles R naming conventions for ore.frame columns, instead of
a more restrictive Database names. ore.frame column names can be longer than 30
bytes, contain double quotes, and be non-unique.

Load an R Data Frame into the Database
Follow these steps to load data from R data frames on your system to the Oracle
database:

1. Load contents of the file to an R data frame using read.table() or read.csv()
functions documented in R online help.

2. Then use ore.create()to load a data frame to a table:

ore.create(data_frame, table="TABLE_NAME")

 Step 2 loads data_frame into the database table TABLE_NAME.

For an example, see Example: Load Data.

Example: Load Data
This example creates an R data frame df consisting of pairs of numbers and letters and
then loads the data frame into the table DF_TABLE. The example shows that the data
frame and the table have the same dimensions and the same first few elements, but
different values for class. The class for DF_TABLE is ore.frame. At the end of the
example is a check that DF_TABLE exists in the current schema.

R> df <- data.frame(A=1:26, B=letters[1:26])
R> dim(df)
[1] 26 2
R> class(df)

Oracle R Enterprise Data

Using Oracle R Enterprise 3-3

[1] "data.frame"
R> head(df)
 A B
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 f
R> ore.create(df, table="DF_TABLE")
R> ore.ls()
[1] "DF_TABLE"
R> class(DF_TABLE)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
R> dim(DF_TABLE)
[1] 26 2
R> head(DF_TABLE)
 A B
0 1 a
1 2 b
2 3 c
3 4 d
4 5 e
5 6 f
R> exists("DF_TABLE")
[1] TRUE

If you connect to the database using a tool such as SQL Developer, you can view DF_
TABLE directly in the database.

Materialize R Data
The ore.push(data.frame) function stores an R object in the database as a temporary
object, and returns a handle to that object. It converts data frame, matrix, and vector
objects to a table, and list, model, and other objectss to a serialized object.

The object that you create exists during the R session; to store the data in a permanent
way, see Persist and Manage R Objects in the Database

This example pushes the numerical vector created by the R command c(1,2,3,4,5) to
v, an Oracle R Enterprise object:

R> v <- ore.push(c(1,2,3,4,5))
R> class(v)
[1] "ore.numeric"
attr(,"package")
[1] "OREbase"
R> head(v)
[1] 1 2 3 4 5

Verify that an ore.frame Exists
ore.exists() checks for the existence of an ore.frame object in the ORE schema
environment. For ore.exists()to find an ore.frame object the object must have been
synchronized with ore.sync() first.

Oracle R Enterprise Data

3-4 Oracle R Enterprise User's Guide

The objects available in the ORE environment are not necessarily the same as the
database objects. One should not use ore.exists() to check for table existence.

For an example, see Example: Load Data.

 ore.exists(name, schema)has these arguments:

■ name: A character string specifying the name of the ore.frame object

■ schema: A character string specifying the name of database schema to check

ore.exists() returns TRUE if the object exists in the ORE schema and FALSE, if it
does not exist.

Drop a Database Table
To drop a table in the database use

ore.drop(table="NAMEOFTABLE")

For example, these commands drop the table v and verifies that it does not exist:

R> ore.drop(table="v")
R> ore.exists("v")
[1] FALSE

If you drop a table that does not exist, there is no error message.

Pull a Database Table to an R Frame
To pull the contents of an Oracle Database table or view to an in-memory R data frame
use ore.pull(OBJECT_NAME)for the name of an object returned by ore.ls().

Suppose that your Oracle Database contains the table NARROW. Then ore.pull()
creates the data frame df_narrow from the table NARROW. When you verify that df_
narrow is a data frame. The warning message appears because the table NARROW is
not indexed:

R> df_narrow <- ore.pull(NARROW)
Warning message:
ORE object has no unique key - using random order
R> class(df_narrow)
[1] "data.frame"

Order in Tables
Almost all data in R is a vector or is based on vectors (vectors themselves, lists,
matrices, data frames, and so forth). The elements of a vector have an explicit order.
Each element has an index. R code actively uses this order of elements.

However, database-backed relational data (tables and views) does not define any
order of rows and thus cannot be directly mapped to R data structures. You can define
an explicit order on database tables and views via an ORDER BY clause. The order is
usually achieved by having a unique identifier (single- or multi- column key).
Ordering in this way can be inefficient and slow for some operations that lead to
unnecessary sorting.

Note: You can pull a table or view to an R frame only if the data can
fit into R's memory.

Oracle R Enterprise Data

Using Oracle R Enterprise 3-5

row.names<- defines ordering but doesn't actually index a table. The assignment
option provides a way to specify a unique column. Initially it supports at least one
column but may support multi-column specifications as well. When row.names<- is
applied to unordered frames, it returns an error.

You can use the integer indexing created by the ordering infrastructure to perform
sampling and partitioning, as described in Sampling and Partitioning.

Suppose that the table NARROW is not indexed. The following example illustrates
using row.names to create an indexed table:

R> row.names(head(NARROW))
Error: ORE object has no unique key
In addition: Warning message:
ORE object has no unique key - using random order
R>
R> row.names(NARROW) <- NARROW$ID
R>
R> row.names(head(NARROW[,1:3]))
[1] "101501" "101502" "101503" "101504" "101505" "101506"
R>
R> head(NARROW[,1:3])
 ID GENDER AGE
101501 101501 <NA> 41
101502 101502 <NA> 27
101503 101503 <NA> 20
101504 101504 <NA> 45
101505 101505 <NA> 34
101506 101506 <NA> 38

Sampling and Partitioning
The ordering (indexing) for tables described in Order in Tables can be used to perform
sampling and partitioning.

This section provides examples of

■ Indexing

■ Sampling

■ Random Partitioning

Indexing
R supports powerful constructions using vectors as indices. Oracle R Enterprise
supports similar functionality with these differences:

■ Integer indexing is not supported for ore.vector objects.

■ Negative integer indexes are not supported.

■ Row order is not preserved.

This example illustrates indexing:

R> tmp <- ASTHMA
R> tmp[c(1L, 2L, 1L),]
Error: ORE object has no unique key
R> rownames(tmp) <- tmp
R> tmp[c(1L, 2L, 1L),]
 CITY ASTHMA COUNT
1|0|65 1 0 65
1|0|65.1 1 0 65

Oracle R Enterprise Data

3-6 Oracle R Enterprise User's Guide

1|1|35 1 1 35
R> tmp[c(1L, 2L, 1L),]@dataQry

Sampling
This code illustrates several sampling techniques:

Generate random data
set.seed(123)
N <- 1000000
mydata <- data.frame(x = rnorm(N, mean = 20, sd = 2),
 group =
 sample(letters, N, replace = TRUE,
 prob = (26:1)/sum(26:1)))
mydata$y <-
 rbinom(N, 1,
 1/(1+exp(-(.5 - 0.25 * mydata$x + .1 * as.integer(mydata$group)))))
MYDATA <- ore.push(mydata)
rm(mydata)

Create a function that creates random row indices from large tables
mysampler <- function(n, size, replace = FALSE)
{
 #' Random Whole Number Sampler
 #' @param n number of observations in sample
 #' @param size total number of observations
 #' @param replace indicator for sampling with replacement
 #' @return numeric vector containing the sample indices
 n <- round(n)
 size <- round(size)
 if (n < 0) stop("'n' must be a non-negative number")
 if (size < 1) stop("'size' must be a positive number")
 if (!replace && (n > size))
 stop("'n' cannot exceed 'size' when 'replace = FALSE'")
 if (n == 0)
 numeric()
 else if (replace)
 round(runif(n, min = 0.5, max = size + 0.5))
 else
 {
 maxsamp <- seq(size + 0.5, by = -1, length.out = n)
 samp <- round(runif(n, min = 0.5, max = maxsamp))
 while(length(bump1 <- which(duplicated(samp))))
 samp[bump1] <- samp[bump1] + 1
 samp
 }
}

Data set and sample size
N <- nrow(MYDATA)
sampleSize <- 500

1. Simple random sampling
srs <- mysampler(sampleSize, N)
simpleRandomSample <- ore.pull(MYDATA[srs, , drop = FALSE])

2. Systematic sampling
systematic <- round(seq(1, N, length.out = sampleSize))
systematicSample <- ore.pull(MYDATA[systematic, , drop = FALSE])

3. Stratified sampling

Oracle R Enterprise Data

Using Oracle R Enterprise 3-7

stratifiedSample <-
 do.call(rbind,
 lapply(split(MYDATA, MYDATA$group),
 function(y)
 {
 ny <- nrow(y)
 y[mysampler(sampleSize * ny/N, ny), , drop = FALSE]
 }))

4. Cluster sampling
clusterSample <- do.call(rbind, sample(split(MYDATA, MYDATA$group), 2))

5a. Accidental/Convenience sampling (via row order access)
convenientSample1 <- head(MYDATA, sampleSize)

5b. Accidental/Convenience sampling (via hashing)
maxHash <- 2^32 # maximum allowed in ore.hash
convenient2 <- (ore.hash(rownames(MYDATA), maxHash)/maxHash) <= (sampleSize/N)
convenientSample2 <- ore.pull(MYDATA[convenient2, , drop = FALSE])
Random

Random Partitioning
For Oracle R Enterprise random partitions can be generated in the transparency layer
by adding a partition or group column to an ore.frame object in the following manner:

nrowX <- nrow(x)
x$partition <- sample(rep(1:k, each = nrowX/k, length.out = nrowX), replace =
TRUE)

After these partitions have been joined to the original data set, the ore.groupApply
function can be used to perform the little bootstraps:

results <- ore.groupApply(x, x$partition, function(y) {...}, parallel = TRUE)

Persist and Manage R Objects in the Database
R objects exist for the duration of the current session, unless they are explicitly saved.
For example, if you build a model in a particular R session, the model is not available
when the session is closed, unless the model was explicitly saved.

Oracle R Enterprise supports persistence for R objects onto the database.

Persistence provides these advantages:

■ You can access the same R and Oracle R Enterprise object (for example, a model)
among different R sessions.

■ You can build a model in R and use it for prediction and scoring in embedded
Oracle R Enterprise.

Oracle R Enterprise creates datastores to contain persisted objects.

Persisted objects reside in a datastore. The following Oracle R Enterprise functionality
allows you manage persistence:

■ ore.save()

■ ore.load()

■ ore.delete()

■ ore.datastore()

Oracle R Enterprise Data

3-8 Oracle R Enterprise User's Guide

■ ore.datastoreSummary()

ore.save()
ore.save() saves an R object or a list of R objects to the specified datastore in the
connected database in the current user's schema:

ore.save({...}, list = character(0), name, envir = parent.frame(), overwrite =
FALSE, append = FALSE, description = character(0)))

The parameters for ore.save() are as follows:

■ {...} is the list of R objects to save; the names of the objects to be saved (as
symbols or character strings)

■ list is a character vector containing the names of objects to be saved

■ envir is the environment to search for objects to be saved

■ overwrite is a logical value specifying whether to overwrite the datastore if
already exists; the default is FALSE (do not overwrite)

■ name is the name of the datastore; name must be specified

■ description is a comment describing the datastore

■ append is a logical value specifying whether to append objects to the datastore if
already exists; the default is FALSE (do not append)

Examples of ore.save()

Save all objects in the current workspace environment to the datastore ds_1 in the
user's current schema:

ore.save(list=ls(), name="ds_1", description = "example datastore")

Overwrite existing datastore ds_2 with objects x, y, and z in the current workspace
environment:

ore.save(x, y, z, name="ds_2", overwrite=TRUE)

Add objects x, y, and z in the current workspace environment to the existing datastore
ds_3 (that is append the objects to the datastore):

ore.save(x, y, z, name="ds_3", append=TRUE)

ore.load()
ore.load() loads all of the R objects stored in a specified datastore in the current user
schema in the connected database to R:

ore.load(name, list = character(0), envir = parent.frame())

The parameters for ore.load() are

■ name is a character string specifying the name of datastore to load the objects from;
you must specify a name

■ list is a character vector containing the names of objects to be loaded

■ envir is the R environment that objects are loaded to

ore.load() returns a character vector containing the names of objects loaded from the
datastore.

Oracle R Enterprise Data

Using Oracle R Enterprise 3-9

Examples of ore.load()

Load all objects in the datastore ds_1:

ore.load("ds_1")

Load just the objects x, y, and z from datastore ds_1:

ore.load("ds_1", list=c("x", "Y", "z"))

ore.delete()
ore.delete() deletes the specified datastore (and all of the R objects in it) from the
current user schema in the connected database:

ore.delete(name)

The parameter for ore.delete() is

■ name is a character string specifying the name of datastore to delete; you must
specify a name

Use ore.datastore() to list the datastores that exist in the user's Oracle Database
schema.

Example of ore.delete()

Delete the datastore ds_1 from the user’s current schema:

ore.delete("ds_1")

ore.datastore()
ore.datastore() lists the datastores and basic information about each datastore in the
current schema:

ore.datastore(name, pattern)

The parameters for ore.datastore() are

■ name is a character string specifying the name of datastore to list

■ pattern is a regular expression character string specifying the names of the
datastores to list.

ore.datastore() lists information about the datastore with name specified in name or
information about the datastores whose names match the regular expression specified
in pattern.

If neither name nor pattern is provided, ore.datastore() returns information about
all datastores in user's schema.

Either name or pattern can be specified but not both.

ore.datastore() returns a data.frame object with these columns:

■ datastore.name name of the datastore

■ object.count number of objects in the datastore identified by datastore.name

■ size size of the datastore in bytes

■ creation.date date of datastore creation

■ description comment for datastore (comment is specified in the description
parameter of ore.save)

Using R with Oracle R Enterprise Data Types

3-10 Oracle R Enterprise User's Guide

Each row of the data.frame lists one datastore. Rows are sorted by column
datastore.name in alphabetical order.

Example of ore.datastore()

List all of the datastores in the connected schema:

ore.datastore()

ore.datastoreSummary()
ore.datastoreSummary() returns a data.frame that lists the names and summary
information for the R objects saved in the specified datastore in the schema in the
connected database:

ore.datastoreSummary(name)

The parameter for ore.datastoreSummary() is

■ name is a character string specifying the name of datastore to summarize; you must
specify a name

If the specified datastore does not exist, an error is returned.

ore.datastoreSummary() returns a data.frame object with these columns:

■ object.name is the name of the R object

■ class.name is the class name of the R object

■ size is the size of the R object in bytes

■ length is the length of the R object

■ row.count is the number of rows for the R object

■ col.count is number of columns of the R object

 Each row of the data.frame lists one R object. Rows are sorted by column
datastore.name in alphabetical order.

Example of ore.datastoreSummary()

List summary information for all of the R objects in the datastore ds_1:

ore.datastoreSummary(name = "ds_1")

Using R with Oracle R Enterprise Data Types
The following examples illustrate using R with Oracle R Enterprise data types:

■ Simple column and row selection in R:

Push built-in R data set iris to database
R> ore.create(iris, table="IRIS")
R> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Using R with Oracle R Enterprise Data Types

Using Oracle R Enterprise 3-11

R> iris_projected = IRIS[, c("PETAL_LENGTH", "SPECIES")]
R> head (iris_projected)
 PETAL_LENGTH SPECIES
0 1.4 setosa
1 1.4 setosa
2 1.3 setosa
3 1.5 setosa
4 1.4 setosa
5 1.7 setosa

■ Database JOIN using R:

df1 <- data.frame(x1=1:5, y1=letters[1:5])
df2 <- data.frame(x2=5:1, y2=letters[11:15])
merge (df1, df2, by.x="x1", by.y="x2")
 x1 y1 y2
1 1 a o
2 2 b n
3 3 c m
4 4 d l
5 5 e k
Create database objects to correspond to in-memory R objects df1 and df2
ore.df1 <- ore.create(df1, table="DF1")
ore.df2 <- ore.create(df2, table="DF2")
Compare results
R> merge (DF1, DF2, by.x="X1", by.y="X2")
 X1 Y1 Y2
0 1 a o
1 2 b n
2 3 c m
3 4 d l
4 5 e k

■ Database aggregation using R:

Push built-in data set iris to database
ore.create(iris, table="IRIS")
aggdata <- aggregate(IRIS, by = list(IRIS$SPECIES), FUN = summary)
class(aggdata)
head(aggdata)

■ Data formatting and creating derived columns in R

Note that adding derived columns does not change the database table. See
Derived Columns in Oracle R Enterprise.

diverted_fmt <- function (x) {
ifelse(x==0, 'Not Diverted',
ifelse(x==1, 'Diverted',''))
}
cancellationCode_fmt <- function(x) {
ifelse(x=='A', 'A CODE',
ifelse(x=='B', 'B CODE',
ifelse(x=='C', 'C CODE',
ifelse(x=='D', 'D CODE', 'NOT CANCELLED'))))
}
delayCategory_fmt <- function(x) {
ifelse(x>200,'LARGE',
ifelse(x>=30,'MEDIUM','SMALL'))
}
zscore <- function(x) {
(x-mean(x,na.rm=TRUE))/sd(x,na.rm=TRUE)

Derived Columns in Oracle R Enterprise

3-12 Oracle R Enterprise User's Guide

ONTIME_S is a database table
ONTIME_S$DIVERTED <- diverted_fmt(DIVERTED)
ONTIME_S$CANCELLATIONCODE <- cancellationCode_fmt(CANCELLATIONCODE)
ONTIME_S$ARRDELAY <- delayCategory_fmt(ARRDELAY)
ONTIME_S$DEPDELAY <- delayCategory_fmt(DEPDELAY)
ONTIME_S$DISTANCE_ZSCORE <- zscore(DISTANCE)

Derived Columns in Oracle R Enterprise
When you add derived columns using Oracle R Enterprise, the derived columns do
not affect the underlying table in the database. A SQL query is generated that has the
additional derived columns in the select list, but the table is not changed.

Using CRAN Packages with Oracle R Enterprise
This example illustrates using Oracle R Enterprise with a standard R package
downloaded from CRAN:

■ Build and Use a Regression Model

Build and Use a Regression Model
This example illustrates building a regression model using a CRAN package. You can
prepare the data used for training in the database (filtering out observations that are
not of interest, selecting attributes, imputing missing values, and so forth). Suppose
that the preprocessed data is in the table ONTIME_S_PREPROCESSED_SUBSET. Then
pull the prepared training set (which is usually small enough to fit in desktop R
memory) into the R client to execute the model build.

You can use the resulting model to score (predict) large numbers of rows, in parallel,
in Oracle Database. The data are stored in ONTIME_S_FINAL_DATA_TO_BE_SCORED.

Note that scoring is a trivially parallelizable operation because one row can be scored
independent of and in parallel with another row. The model built on the desktop is
shipped to the database to perform scoring on vast numbers of rows in the database.

The computations are divided into these steps:

1. Build a model in the desktop:

dat <- ore.pull(ONTIME_S_PREPROCESSED_SUBSET)
mod <- glm(ARRDELAY ~ DISTANCE + DEPDELAY, dat)
mod
summary(mod)

2. Score in-parallel in the database using embedded R:

prd <- predict(mod, newdata=ONTIME_S_FINAL_DATA_TO_BE_SCORED)
class(prd)
Add predictions as a new column
res <- cbind(newdat, PRED = prd)
head(res)

R provides many other ways to build regression models, such as lm().

For other ways to build regression models, see Oracle R Enterprise Versions of R
Models and In-Database Predictive Models in Oracle R Enterprise.

Oracle R Enterprise Database-Embedded R Engine

Using Oracle R Enterprise 3-13

Oracle R Enterprise Database-Embedded R Engine
The embedded R engine in Oracle Database allows R users to off load desktop
calculations that may require either more resources such as those available to Oracle
Database or database-driven data parallelism. The embedded R engine also executes R
scripts embedded in SQL or PL/SQL programs (lights-out processing).

These examples illustrate using Oracle R Enterprise embedded R engine with standard
R packages downloaded from CRAN:

■ Perform R Computation in Oracle Database

■ Build a Series of Regression Models Using Data Parallelism

Perform R Computation in Oracle Database
This example illustrates off loading R computation to execute in the embedded R
engine. To off load an R computation, simply include the R code within a closure (that
is, function() {}) and invoke ore.doEval(). ore.doEval() schedules execution of
the R code with the database-embedded R engine and returns the results back to the
desktop for continued analysis:

library(biglm)
mod <- ore.doEval(
 function() {
 library(biglm)
 dat <- ore.pull(ore.get("ONTIME_S"))
 mod <- biglm(ARRDELAY ~ DISTANCE + DEPDELAY, dat)
 mod
 }, ore.connect = TRUE);
print(mod)
mod=ore.pull(mod)
print(mod)

Build a Series of Regression Models Using Data Parallelism
This example illustrates database-driven data parallelism at work in building a series
of regression models using a CRAN package. One model is built per unique value of a
factor. The database orchestrates the parallel and concurrent building of the models,
one per factor and brings the list of all models built to the user desktop for further
analysis:

modList <- ore.groupApply(
 # Organize input to the R script – This is always an Oracle R Enterprise
 # data frame
 X=ONTIME_S,
 # Specify the grouping column. Here we request one model per unique value of
 # ONTIME_S$DEST
 INDEX=ONTIME_S$DEST,
 # Model building code goes inside the closure. Input and grouping
 # conditions can be referenced as parameters to the function
 function(x) {
 library(biglm)
 biglm(ARRDELAY ~ DISTANCE + DEPDELAY, x)
 });

 modList_local <- ore.pull(modList)
Print the model for just one destination - BOSTON
summary(modList_local$BOS)

Oracle R Enterprise Examples

3-14 Oracle R Enterprise User's Guide

Oracle R Enterprise Examples
Oracle R Enterprise is shipped with a collection of demos, examples that illustrate how
to use Oracle R Enterprise. These examples are a collection of self-contained R scripts.

Most of the sample programs use the data frame iris, which is included in the R
distribution. iris is loaded into a table as described in Load a Data Frame to a Table.

The rest of this section describes two examples in detail and includes a list of all of the
examples:

■ Load a Data Frame to a Table

■ Handle NULL Values Using airquality

■ Oracle R Enterprise Demos

Load a Data Frame to a Table
Start R, load the ORE packages via library(ORE), and then connect to the database.

Follow these steps to load an R data frame to a database table:

1. This example uses the R data set iris.

The iris data set is located in the datasets package that is part of the R
distribution:

R> find("iris")
[1] "package:datasets"

Use the R command class to verify that iris is an R data frame:

R> class(iris)
[1] "data.frame"

iris consist of measurements of parts of iris flowers. Use the R command head to
see a small sample of the data in iris.

R> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

2. Now load the data frame iris into the database that you are connected to.

Suppose that the database table version of iris is named IRIS_TABLE. Drop IRIS_
TABLE to make sure that no table of this name exists in the connected schema:

ore.drop(table = "IRIS_TABLE")

If IRIS_TABLE doesn't exist, you do not get a message.

3. Now create a database table with the data contained in iris:

ore.create(iris, table = "IRIS_TABLE")

Use ore.ls() to verify that the table was created:

R> ore.ls()
[1] "IRIS_TABLE" "NARROW" "ONTIME_S"

Oracle R Enterprise Examples

Using Oracle R Enterprise 3-15

4. IRIS_TABLE is a database-resident table with just metadata on the R side:

R> class(IRIS_TABLE)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"

5. Use head to see the column names and the first few values in IRIS_TABLE:

R> head(IRIS_TABLE)
 SEPAL_LENGTH SEPAL_WIDTH PETAL_LENGTH PETAL_WIDTH SPECIES
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
5 5.4 3.9 1.7 0.4 setosa

6. Use class to see the data type of the column SPECIES.

R > class(IRIS_TABLE$SPECIES)
[1] "raw"

You can use R functions to analyze the data in the table. Here are some simple
examples taken from the example basic.R:

■ Use unique to get a list of the unique entries in a column. This example finds the
unique SPECIES:

R> unique(IRIS_TABLE$SPECIES)
[1] setosa versicolor virginica
Levels: setosa versicolor virginica

■ Find the minimum, maximum, and mean of PETAL_LENGTH:

R> min(IRIS_TABLE$PETAL_LENGTH)
[1] 1
R> max(IRIS_TABLE$PETAL_LENGTH)
[1] 6.9
R> mean(IRIS_TABLE$PETAL_LENGTH)
[1] 3.758

If you need information about an R function, use the command help(function-name).

Handle NULL Values Using airquality
Oracle Database has logical values: TRUE, FALSE, NULL. There is a 3x3 table that
defines truth values for propositions with AND and OR. NULL is treated as an
unknown value. For some operations the result is either deterministic (for example
TRUE OR NULL) or unknown (TRUE AND NULL). If logical values are used in a
WHERE clause, only rows with the condition TRUE are selected; FALSE and NULL
are ignored. R, on the other hand, keeps TRUE and NA. Rows with NA are selected
with value NA.

The option ore.na.extract controls whether NAs are selected or not. The default is to
treat NA as SQL treats FALSE.

The demo nulls.R is the only sample that does not use iris as data. nulls.R
compares the handling of NULLs in SQL with the handling of NAs in R.

Oracle R Enterprise Examples

3-16 Oracle R Enterprise User's Guide

In R, NA is a logical constant of length 1 which contains a missing value indicator. In
the database, null refers to the absence of a value in a column of a row. Nulls indicate
missing, unknown, or inapplicable data.

Follow these steps to understand the demo nulls.R:

1. This demo uses the data frame airquality. Verify that the data set is a data frame
and look at the few rows of the data frame:

R> class(airquality)
[1] "data.frame"
R> head(airquality)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

2. Load airquality into the database as "AIRQUALITY":

ore.drop(table = "AIRQUALITY")
ore.create(airquality, table = "AIRQUALITY")

Use ore.ls() to verify that the table was created. If you wish, use
class(AIRQUALITY) to verify that AIRQUALITY is a database-resident table with just
metadata on the R side.

3. Examine how R handles NAs. Return all observations where ozone < 30 is TRUE:

R> nrow(airquality[airquality$Ozone < 30,])
[1] 92

Compare this with the results when NAs are explicitly excluded:

R> nrow(airquality[airquality$Ozone < 30 & !is.na(airquality$Ozone),])
[1] 55

4. The default behavior for SQL tables is to exclude NULLS in output:

nrow(AIRQUALITY[AIRQUALITY$OZONE < 30,])
[1] 55

To handle NULLs the same way that R handles NA, request the behavior
explicitly:

options(ore.na.extract = TRUE)
nrow(AIRQUALITY[AIRQUALITY$OZONE < 30,])
[1] 92

Oracle R Enterprise Demos
These scripts have been added as demos to the ORE package.

To list all of the demos included with Oracle R Enterprise, type

R> demo(package = "ORE")

To run one of these scripts, specify the name of the demo in a demo function call. For
example, to run aggregate.R, type

R> demo("aggregate", package = "ORE")

Oracle R Enterprise Examples

Using Oracle R Enterprise 3-17

These demos are shipped with Oracle R Enterprise:

aggregate Aggregation
analysis Basic analysis & data processing operations
basic Basic connectivity to database
binning Binning logic
columnfns Column functions
cor Correlation matrix
crosstab Frequency cross tabulations
datastore DataStore operations
datetime Date/Time operations
derived Handling of derived columns
distributions Distribution, density, and quantile functions
do_eval Embedded R processing
freqanalysis Frequency cross tabulations
graphics Demonstrates visual analysis
group_apply Embedded R processing by group
hypothesis Hyphothesis testing functions
matrix Matrix related operations
nulls Handling of NULL in SQL vs. NA in R
odm_ai Oracle Data Mining: attribute importance
odm_dt Oracle Data Mining: decision trees
odm_glm Oracle Data Mining: generalized linear models
odm_kmeans Oracle Data Mining: enhanced k-means clustering
odm_nb Oracle Data Mining: naive Bayes classification
odm_svm Oracle Data Mining: support vector machines
push_pull RDBMS <-> R data transfer
rank Attributed-based ranking of observations
reg Ordinary least squares linear regression
row_apply Embedded R processing by row chunks
sampling Random row sampling and partitioning of an ore.frame
sql_like Mapping of R to SQL commands
stepwise Stepwise OLS linear regression
summary Summary functionality
table_apply Embedded R processing of entire table

Oracle R Enterprise Examples

3-18 Oracle R Enterprise User's Guide

4

Oracle R Enterprise Statistical Functions 4-1

4Oracle R Enterprise Statistical Functions

This chapter describes Oracle R Enterprise functions that perform most common or
base statistical procedures. These functions are designed to help users who are
converting from commercially available products to Oracle R Enterprise.

Oracle R Enterprise provides these collections of functions:

■ ore.corr

■ ore.crosstab

■ ore.extend

■ ore.freq

■ ore.rank

■ ore.sort

■ ore.summary

■ ore.univariate

Also of interest are ore.lm(), ore.stepwise(), and ore.neural() described in Oracle
R Enterprise Versions of R Models.

The use of the functions is illustrated with examples. Most of the examples use the
same data, described in Data for Examples.

Data for Examples
Most of the examples use the table NARROW.

NARROW is an ore.frame with 9 columns:

R> class(NARROW)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
R> names(NARROW)
[1] "ID" "GENDER" "AGE" "MARITAL_STATUS"
[5] "COUNTRY" "EDUCATION" "OCCUPATION" "YRS_RESIDENCE"
[9] "CLASS"

Only some of the columns are numeric.

ore.corr
ore.corr has these characteristics:

ore.corr

4-2 Oracle R Enterprise User's Guide

■ Performs correlation analysis across numeric columns in an ore.frame

■ Supports partial correlations with a control column

■ Enables aggregations prior to correlations

■ Allows post-processing of results and integration into an R code flow

The output of ore.corr can be made to conform to output of the R cor() function; this
allows the output of ore.corr to be post-processed by any R function or graphics.

See ore.corr Parameters for syntax and output and ore.corr Examples for examples.

ore.corr Parameters
ore.corr has these parameters:

■ data: The data for which to compute correlation coefficients as an ore.frame.

■ var: The numeric column(s) of data for which to build correlation matrix

■ group.by: Indicates the correlation matrices to calculate; ore.corr calculates as
many correlation matrices as unique values in group.by columns; default value is
NULL

■ weight: A column of the data whose numeric values provide a multiplicative
factor for var columns; default value is NULL

■ partial: Columns of data to use as control variables for partial correlation; default
value is NULL

■ stats: The method of calculating correlations; one of pearson (default), spearman,
kendall

ore.corr returns an ore.frame as output in all cases except when group.by is used. If
group.by is used, returns an Oracle R Enterprise list object.

ore.corr Examples
These examples show how to use ore.corr:

■ Basic Correlation Calculations

■ Partial Correlation

■ Create Several Correlation Matrices

■ Visualization of Correlations

These examples use the NARROW data set; for more information, see Data for
Examples.

Basic Correlation Calculations
Before you can use ore.corr, you must project out all non-numerical values:

R> names(NARROW)
 [1] "ID" "GENDER" "AGE" "MARITAL_STATUS"
"COUNTRY" "EDUCATION" "OCCUPATION"
 [8] "YRS_RESIDENCE" "CLASS" "AGEBINS"
R> NARROW=NARROW[,c(3,8,9)]

Now calculate correlation in several ways:

R> x=ore.corr(NARROW,var='AGE,YRS_RESIDENCE,CLASS')
#Calculate using Spearman

ore.crosstab

Oracle R Enterprise Statistical Functions 4-3

R> x=ore.corr(NARROW,var='AGE,YRS_RESIDENCE,CLASS', stats='spearman')
Calculate using Kendall
R> x=ore.corr(NARROW,var='AGE,YRS_RESIDENCE,CLASS', stats='kendall')

Partial Correlation
Use the version of NARROW with non-numeric values that was created in Basic
Correlation Calculations.

Calculate partial correlation using Spearman's methods:

R> x=ore.corr(NARROW,var='AGE,YRS_RESIDENCE,CLASS', stats='spearman',
partial='GENDER')

Create Several Correlation Matrices
Use the version of NARROW with non-numeric values that was created in Basic
Correlation Calculations.

Create several correlation matrices and then convert the output so that it is compatible
with R output:

x <- ore.corr(IRIS, var = "Sepal.Length, Sepal.Width, Petal.Length", partial =
"Petal.Width", group.by = "Species")
R> class(x)
[1] "list"

Visualization of Correlations
If you calculate several matrices, you can use R packages to visualize them.

ore.crosstab
Cross tabulation is a statistical technique that finds an interdependent relationship
between two tables of values.

ore.crosstab enables cross column analysis of an ore.frame. This function is a
sophisticated variant of the R table() function.

ore.crosstab must be performed before frequency analysis is done using ore.freq.

You can extend the cross tab calculation with various sums as described in ore.extend.

ore.crosstab is written in R. The function is mapped to SQL that gets executed at the
database server.

See ore.crosstab Parameters for syntax and output and ore.crosstab Examples for
examples.

You can use ore.extend to augment cross tabulation.

ore.crosstab Parameters
ore.crosstab has these parameters:

■ expr: The cross tabulation definition

[COLUMN_SPEC] ~ COLUMN_SPEC [*<WEIGHTING COLUMN>] [/<GROUPING COLUMN>]
 [^<STRATIFICATION COLUMN>] [|ORDER_SPECIFICATION]
COLUMN_SPEC is <column-name>[+COLUMN_SET][+COLUMN_RANGE]
COLUMN_SET is <column_name>[+COLUMN_SET]

ore.crosstab

4-4 Oracle R Enterprise User's Guide

COLUMN_RANGE is <FROM COLUMN>-<TO COLUMN>

where

COLUMN_SPEC is <column>[+COLUMN_SET][+COLUMN_RANGE]
COLUMN_SET is <column>[+COLUMN_SET]
COLUMN_RANGE is (<from column>-<to column>)
ORDER_SPECIFICATION is one of [-]NAME, [-]DATA, [-]FREQ, or INTERNAL

The stratification column is used to cluster, or group, data. When used, the values
contribute to the ORE$STRATA column of the resulting cross-tabulated table.

■ data: The ore.frame containing the data to cross tabulate

■ grouping column: Calculate as many cross tabulations as unique values in
grouping columns; default value is NULL

■ order: Define optional sorting of output data. Specify [-]NAME to sort by
tabulation columns, [-]FREQ to sort by frequency counts in table. Unspecified
order is the most efficient. The optional '-' reverses the order direction.

■ weights: Column of the data that indicates the frequency of the corresponding
row; default value is NULL

■ partial: Columns of data used as control variables for partial correlation; default
value is NULL

ore.crosstab returns an ore.frame as output in all cases except when multiple tables
are created. If multiple tables are created, ore.crosstab returns an Oracle R Enterprise
list object.

ore.crosstab Examples
These examples illustrate use of ore.crosstab:

■ Single-Column Frequency Table

■ Analyze Two Columns

■ Weighting Rows

■ Order Rows in the Cross Tabulated Table

■ Analyze Three or More Columns

■ Specify a Range of Columns

■ Produce One Cross Table for Each Value of Another Column

■ Augment Cross Tabulation with Stratification

■ Custom Binning Followed by Cross Tabulation

■ ore.extend

These examples use the NARROW data set; for more information, see Data for
Examples.

Single-Column Frequency Table
The most basic use case is to create a single column frequency table. The following
command filters NARROW grouping by GENDER:

R> ct = ore.crosstab(~AGE, data=NARROW)
R> ct

ore.crosstab

Oracle R Enterprise Statistical Functions 4-5

Analyze Two Columns
This command analyses AGE by GENDER and AGE by CLASS:

R> ct = ore.crosstab(AGE~GENDER+CLASS, data=NARROW)
R> head(ct)

Weighting Rows
To weight rows, include a count based on another column; this example weights
values in AGE and GENDER using values in YRS_RESIDENCE:

R> ct = ore.crosstab(AGE~GENDER*YRS_RESIDENCE, data=NARROW)
R> head(ct)

Order Rows in the Cross Tabulated Table
There are several possibilities:

■ Default or NAME orders by the columns being analyzed

■ FREQ orders by frequency counts

■ -NAME or -FREQ does reverse ordering

■ INTERNAL bypasses ordering

Here are two examples:

R> ct = ore.crosstab(AGE~GENDER|FREQ, data=NARROW)
R> head(ct)
 AGE GENDER ORE$FREQ ORE$STRATA ORE$GROUP

R> ct = ore.crosstab(AGE~GENDER|-FREQ, data=NARROW)
R> head(ct)

Analyze Three or More Columns
This is similar to what the SQL GROUPING SETS clause accomplishes:

 R> ct = ore.crosstab(AGE+COUNTRY~GENDER, NARROW)

Specify a Range of Columns
You can specify a range of columns instead of having to type all the column names, as
illustrated in this example:

R> names(NARROW)
[1] "ID" "GENDER" "AGE" "MARITAL_STATUS"
[5] "COUNTRY" "EDUCATION" "OCCUPATION" "YRS_RESIDENCE"
[9] "CLASS"

Since AGE, MARITAL_STATUS and COUNTRY are successive columns, you can
simply use

ct = ore.crosstab(AGE-COUNTRY~GENDER, NARROW)

An equivalent version is

ct = ore.crosstab(AGE+MARITAL_STATUS+COUNTRY~GENDER, NARROW)

ore.freq

4-6 Oracle R Enterprise User's Guide

Produce One Cross Table for Each Value of Another Column
This command produces one cross table (AGE, GENDER) for each unique value of
another column COUNTRY:

R> ct=ore.crosstab(~AGE/COUNTRY, data=NARROW)
R> head(ct)

You can extend this to more than one column. For example, this command produces
one (AGE, EDUCATION) table for each unique combination of (COUNTRY,
GENDER):

R> ct = ore.crosstab(AGE~EDUCATION/COUNTRY+GENDER, data=NARROW)

Augment Cross Tabulation with Stratification
All of the above cross tabs can be augmented with stratification. For example,

R> ct = ore.crosstab(AGE~GENDER^CLASS, data=NARROW)
R> head(ct)

The command in this example is the same as

ct = ore.crosstab(AGE~GENDER, NARROW, strata="CLASS")

Custom Binning Followed by Cross Tabulation
First bin AGE, then calculate cross tabulation for GENDER and the bins:

R> NARROW$AGEBINS=ifelse(NARROW$AGE<20, 1, ifelse(NARROW$AGE<30,2,
ifelse(NARROW$AGE<40,3,4)))
R> ore.crosstab(GENDER~AGEBINS, NARROW)

ore.extend
The cross tabulation produced using ore.crosstab can be further augmented with these
three basic statistics:

■ Row and column sums

crosstab = ore.extend.sum(crosstab)

■ Cumulative sums for each cell of the table

crosstab = ore.extend.cumsum(crosstab)

■ Total for the entire table

crosstab = ore.extend.total(crosstab)

The following example illustrates ore.extend:

R> ct <- ore.crosstab(GENDER~CLASS, NARROW)
R> ore.freq(ct)
 METHOD FREQ DF PVALUE DESCR GROUP
1 PCHISQ 72.4241 1 0 Pearson Chi-Square 1

ore.freq
ore.crosstab must be performed before frequency analysis is done using ore.freq.

ore.freq analyses the output of ore.crosstab and automatically determines the
techniques that are relevant to an ore.crosstab result. The techniques depend on the
kind of cross tables:

ore.freq

Oracle R Enterprise Statistical Functions 4-7

■ 1-way cross tables

Goodness-of-fit tests for equal proportions or specified null proportions,
confidence limits and tests for equivalence.

■ 2-way cross tables

– Various statistics that describe relationships between columns in the cross
tabulation

– Chi-square tests, Cochran-Mantel-Haenzsel statistics, measures of association,
strength of association, risk differences, odds ratio and relative risk for 2x2
tables, tests for trend

■ N-way cross tables

– N 2-way cross tables

– Statistics across and within strata

ore.freq uses Oracle Database SQL functions when available.

See ore.freq Parameters for syntax and output and ore.freq Examples for examples.

ore.freq Parameters
ore.freq supports these parameters:

■ crosstab: The ore.frame object that is output from ore.crosstab()

■ stats: List of statistics required; these statistics are supported:

– Chi Square: AJCHI, LRCHI, MHCHI, PCHISQ

– Kappa: KAPPA, WTKAP

– Lambda: LAMCR, LAMRC, LAMDAS

– Correlation: KENTB,PCORR, SCORR

– Stuart's Tau, Somers: D|C, STUTC, SMDCR,SMDRC

– Fisher's, Cochran's Q, FISHER, COCHQ

– Odds Ratio: OR, MHOR, LGOR

– Relative Risk: RR,MHRR,ALRR

– Others: MCNEM, PHI, CRAMV, CONTGY, TSYM, TREND, GAMMA

The default value is NULL.

■ Params: Control parameters specific to the statistical function specified in stats:

– SCORE: TABLE|RANK|RIDIT|MODRIDIT

– ALPHA: number

– WEIGHTS: number

The default value is NULL.

■ skip.missing: Skip cells with missing values in the cross table (TRUE or FALSE);
default value is FALSE

■ skip.failed: Return immediately if a statistical test required fails on the cross table
because it is found to be in-applicable to the table (TRUE or FALSE); default value
is FALSE

ore.freq returns an ore.frame in all cases.

ore.rank

4-8 Oracle R Enterprise User's Guide

ore.freq Examples
These examples use the NARROW data set; for more information, see Data for
Examples.

Before you use ore.freq, you must calculate cross tabs.

For example:

R> ct = ore.crosstab(~GENDER, NARROW)
R> ore.freq(ct)
 METHOD FREQ DF PVALUE DESCR GROUP
0 PCHI 161.9377 1 0 Chi-Square 1

ore.rank
ore.rank analyzes distribution of values in numeric columns of an ore.frame.

ore.rank supports useful functionality, including:

■ Ranking within groups

■ Partitioning rows into groups based on rank tiles

■ Calculation of cumulative percentages and percentiles

■ Treatment of ties

■ Calculation of normal scores from ranks

ore.rank syntax is simpler than the corresponding SQL queries.

See ore.rank Parameters for syntax and ore.rank Examples for examples.

ore.rank Parameters
ore.rank supports these parameters:

■ data: The ore.frame containing the data to rank

■ var: The numeric columns in data to rank

■ desc: If desc=TRUE, rank in descending order; otherwise, rank in ascending order.
(The default is to rank in ascending order.)

■ groups: Partition rows into #groups based on ranks. For percentiles, groups=100,
For deciles, groups=10, For quartiles, groups=4.

The default value is NULL.

■ group.by: Rank each group identified by group.by columns separately

The default value is NULL.

■ ties: Specify how to treat ties. Ways to treat ties are assign the largest of, or
smallest of, or mean of corresponding ranks to tied values

The default value is NULL.

■ fraction: The rank of a column value divided by the number of non-missing
column values; the default value is FALSE.

Use with nplus1 to estimate the cumulative distribution function

■ nplus1: fraction plus 1, that is, 1 plus the rank of a column value divided by the
number of non-missing column values; the default value is FALSE.

ore.rank

Oracle R Enterprise Statistical Functions 4-9

Use with fraction to estimate the cumulative distribution function.

■ percent: fraction converted to a percent value, that is fraction * 100.

ore.rank returns an ore.frame in all instances.

You can use these R scoring methods with ore.rank:

■ To compute exponential scores from ranks, use savage.

■ To compute normal scores, use one of blom, tukey, or vw(van der Waerden).

ore.rank Examples
These examples illustrate using ore.rank:

■ Rank Two Columns

■ Handle Ties

■ Rank Within Groups

■ Partition into Deciles

■ Estimate Cumulative Distribution Function

These examples use the NARROW data set; for more information, see Data for
Examples.

Rank Two Columns
This example ranks the two columns AGE and CLASS and reports the results as
derived columns; values are ranked in the default order (ascending):

R> x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass')

Handle Ties
This example ranks the two columns AGE and CLASS. If there is a tie, the smallest
value is assigned to all tied values:

R> x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass', ties='low')

Rank Within Groups
This example ranks the two columns AGE and CLASS and ranks the values according
to COUNTRY:

R> x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass',
group.by='COUNTRY')

Partition into Deciles
This example ranks the two columns AGE and CLASS and partitions the columns into
deciles (10 partitions):

R> x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass',groups=10)

To partition the columns into a different number of partitions, change the value of
groups. For example, groups=4 partitions into quartiles.

ore.sort

4-10 Oracle R Enterprise User's Guide

Estimate Cumulative Distribution Function
This example ranks the two columns AGE and CLASS and estimates the cumulative
distribution function for both columns:

R> x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass',nplus1=TRUE)

Score Ranks
This example ranks the two columns AGE and CLASS and scores the ranks in two
different ways. The first command partitions the columns into percentiles (100
groups). savage calculates exponential scores and blom calculates normal scores:

R> x <- ore.rank(data=NARROW, var='AGE=RankOfAge,
 CLASS=RankOfClass',score='savage', groups=100, group.by='COUNTRY')
R> x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass',score='blom')

ore.sort
ore.sort enables flexible sorting of a data frame along one or more columns specified
in a by clause.

ore.sort can be used with other data pre-processing functions. The results of sorting
can provide input to R visualization.

ore.sort sorting takes places in Oracle Database. ore.sort supports the database
nls.sort option.

See ore.sort Parameters for syntax and ore.sort Examples for examples.

ore.sort Parameters
ore.sort supports these parameters:

■ data: An ore.frame containing the data to be sorted; required

■ by: The column(s) in data by which to sort the data; required

■ stable: Maintains relative order within sorted group (TRUE or FALSE); default
value is FALSE

■ reverse: Reverses collation order for character variables (TRUE or FALSE); default
value is FALSE

■ unique.keys: Deletes observations with duplicate values in the columns being
sorted (TRUE or FALSE); default value is FALSE

■ unique.data: Deletes observations with duplicate values in all columns (TRUE or
FALSE); default value is FALSE

data and by are required parameters; all other parameters are optional.

ore.sort returns an ore.frame.

ore.sort Examples
The following examples illustrate using ore.sort:

■ Sort Columns in Descending Order

■ Sort Different Columns in Different Orders

■ Sort and Return One Row per Unique Value

ore.sort

Oracle R Enterprise Statistical Functions 4-11

■ Remove Duplicate Columns

■ Remove Duplicate Columns and Return One Row per Unique Value

■ Preserve Relative Order in Output

Most of these examples use the NARROW data set; for more information, see Data for
Examples. There are also Examples Using ONTIME_S.

Sort Columns in Descending Order
Sort the columns AGE and GENDER in descending order:

R> x=ore.sort(data=NARROW, by='AGE,GENDER', reverse=TRUE)

Sort Different Columns in Different Orders
Sort AGE in descending order and GENDER in ascending order:

R> x=ore.sort(data=NARROW,by='-AGE,GENDER')

Sort and Return One Row per Unique Value
Sort by AGE and keep one row per unique value of AGE:

R> x=ore.sort(data=NARROW,by='AGE', unique.key=TRUE)

Remove Duplicate Columns
Sort by AGE and remove duplicate rows:

R> x=ore.sort(data=NARROW,by='AGE', unique.data=TRUE)

Remove Duplicate Columns and Return One Row per Unique Value
Sort by AGE. Also remove duplicate rows, and return one row per unique value of
AGE:

R> x=ore.sort(data=NARROW,by='AGE', unique.data=TRUE, unique.key = TRUE)

Preserve Relative Order in Output
Maintain the relative order in the sorted output:

R> x=ore.sort(data=NARROW,by='AGE', stable=TRUE)

Examples Using ONTIME_S
These examples use the ONTIME_S airline data that is installed when you install
Oracle R Enterprise:

■ Sort ONTIME_S by airline name in descending order and departure delay in
ascending order:

R> sortedOnTime1 <- ore.sort(data=ONTIME_S, by='-UNIQUECARRIER,DEPDELAY')

■ Sort ONTIME_S by airline name and departure delay and select one of each
combination (that is, return a unique key):

R> sortedOnTime1 <- ore.sort(data=ONTIME_S, by='-UNIQUECARRIER,DEPDELAY',

ore.summary

4-12 Oracle R Enterprise User's Guide

unique.key=TRUE)

ore.summary
ore.summary calculates descriptive statistics and supports extensive analysis of
columns in an ore.frame, along with flexible row aggregations.

ore.summary supports these statistics:

■ Mean, min, max, mode, number of missing values, sum, weighted sum

■ Corrected and uncorrected sum of squares, range of values, stddev, stderr,
variance

■ t-test for testing the hypothesis that the population mean is 0

■ Kurtosis, skew, Coefficient of Variation

■ Quantiles: p1, p5, p10, p25, p50, p75, p90, p95, p99, qrange

■ 1-sided and 2-sided Confidence Limits for the mean: clm, rclm, lclm

■ extreme value tagging

ore.summary provides a relatively simple syntax compared with SQL queries for the
same results.

See ore.summary Parameters for syntax and ore.summary Examples for examples.

ore.summary Parameters
ore.summary supports these parameters:

■ data: Data to aggregate as an ore.frame

■ class: Column(s) of data to aggregate (that is, SQL GROUP BY); default value is
NULL

■ var: Column(s) of data on which to apply statistics functions (SQL SELECT list)

■ stats: List of statistics functions to be applied on var columns

mean, min, max, cnt, n, nmiss, css, uss, cv, sum, sumwgt, range, stddev, stderr,
var, t, kurt, skew, p1, p5, p10, p25, p50, p75, p90, p95, p99, qrange, lclm, rclm, clm,
mode that can be requested on var columns.

The default values are n, mean, min, max.

■ weight: A column of data whose numeric values provide a multiplicative factor
for var columns

■ maxid, minid: For each group lists maximum or minimum value from other
columns in data; default value is NULL

■ ways: Restricts output to only certain grouping levels of the class variables;
default value is NULL

■ group.by: Column(s) of data to stratify summary results across; default value is
NULL

■ order: Defines optional sorting of output data. Specify [-]NAME to sort by
tabulation columns, [-]FREQ to sort by frequency counts in table. Unspecified
order is the most efficient. The optional '-' reverses the order direction

■ _FREQ: Frequency, number of observations in a group

ore.summary

Oracle R Enterprise Statistical Functions 4-13

■ _TYPE: Identifies the grouping, binary code based

■ _LEVEL: Identifies number of variables used in grouping

ore.summary returns an ore.frame as output in all cases except when a group.by
clause is used. If a group.by clause is used, ore.summary returns a list of ore.frame
objects, one frame per stratum.

ore.summary Examples
These examples illustrate the use of ore.summary:

■ Calculate Default Statistics

■ Skew and t Test

■ Weighted Sum

■ Two Separate Group By Columns

These examples use the NARROW data set; for more information, see Data for
Examples.

Calculate Default Statistics
This example calculates mean, min, max for columns AGE and CLASS and rolls up
(aggregates) GENDER:

R> ore.summary(NARROW, class='GENDER', var ='AGE,CLASS', order='freq')

Skew and t Test
This example calculates skew for skew of AGE as column A and the t-test for CLASS
as column B:

R> ore.summary(NARROW, class='GENDER', var='AGE,CLASS', stats='skew(AGE)=A,
probt(CLASS)=B')

Weighted Sum
This example calculates weighted sum for AGE aggregated by GENDER with YRS_
RESIDENCE as weights; in other words, it calculates sum(var*weight):

R> ore.summary(NARROW, class='GENDER', var='AGE', stat='sum=X', weight='YRS_
RESIDENCE')

Two Separate Group By Columns
Group CLASS by GENDER and MARITAL_STATUS:

R> ore.summary(NARROW, class='GENDER, MARITAL_STATUS', var='CLASS', ways=1)

All Possible Group By
This example groups CLASS in all possible ways by GENDER and MARITAL_
STATUS:

R> ore.summary(NARROW, class='GENDER, MARITAL_STATUS', var='CLASS', ways='nway')

ore.univariate

4-14 Oracle R Enterprise User's Guide

ore.univariate
ore.univariate provides distribution analysis of numeric variables in an ore.frame.

ore.univariate provides these statistics:

■ All statistics reported by ore.summary

■ Signed rank test, Student's t-test

■ Extreme values reporting

See ore.univariate Parameters for syntax and ore.univariate Examples for examples.

ore.univariate Parameters
ore.univariate supports these parameters:

■ data: The data to aggregate as an ore.frame

■ var: Numerical column(s) of data to analyze

■ weight: A column of the data whose numeric values provide a multiplicative
factor for var columns; the default value is NULL

■ stats: Optional specification of a subset of statistics to calculate and display:

– moments: n, sumwgt, mean, sum, stddev, var, skew, kurt., uss.css.cv, stderr

– measures: mean, stddev, median, var, mode, range, iqr

– quantiles: p100, p99, p95, p90, p75, p50, p25, p10, p5, p1, p0

– location: studentt, studentp, signt, signp, srankt, srankp

– normality

– loccount: loc<,loc>,loc!

– extremes

The default value is NULL.

ore.univariate returns an ore.frame as output in all cases.

ore.univariate Examples
These examples illustrate the use of ore.univariate:

■ Default Univariate Statistics

■ Location Statistics

■ Complete Quantile Statistics

These examples use the NARROW data set; for more information, see Data for
Examples.

Default Univariate Statistics
This example calculates the default univariate statistics for AGE, YRS_RESIDENCE,
and CLASS:

R> ore.univariate(NARROW, var="AGE,YRS_RESIDENCE,CLASS")

ore.univariate

Oracle R Enterprise Statistical Functions 4-15

Location Statistics
This example calculates location statistics for YRS_RESIDENCE:

R> ore.univariate(NARROW, var="YRS_RESIDENCE",stats="location")

Complete Quantile Statistics
This example calculates complete quantile statistics for AGE and YRS_RESIDENCE:

R> ore.univariate(NARROW, var="AGE,YRS_RESIDENCE",stats="quantiles")

ore.univariate

4-16 Oracle R Enterprise User's Guide

5

Predicting with R Models 5-1

5 Predicting with R Models

Predictive models allow you to predict future behavior based on past behavior. After
you build a model, you use it to score new data, that is, make predictions.

R allows you to build many kinds of models. When you predict new results (score
data) using an R model, the data must be in an R frame. The ore.predict package,
included with Oracle R Enterprise, allows you to use an R model to score data that is
in an ore.frame, that is, database resident- data.

ore.predict() allows you to make predictions only using ore.frame objects; you
cannot rebuild the model.

If you need to build models with data in a database table, consider building an Oracle
Data Mining model using the OREdm package, described in In-Database Predictive
Models in Oracle R Enterprise.

For more information, see the R help associated with ore.predict().

ore.predict for R Models
ore.predict() allows you to score (predict using) these R models:

■ lm()Linear regression models

■ glm() Generalized linear models

■ hclust() Hierarchical clustering models

■ kmeans() (k-Means clustering)

■ negbin() (glm.nb) Negative binomial generalized binomial models

■ nnet::multinom Multinomial log-linear model

■ nnet::nnet neural network models

■ rpart::rpart Recursive partitioning and regression tree models

Examples
This code builds a linear regression model irisModel (built using lm) on the iris data
and then scores IRIS (a table that could be created by pushing iris to the database):

R> irisModel <- lm(Sepal.Length ~ ., data = iris)
R> IRIS <- ore.push(iris)
R> IRISpred <- ore.predict(irisModel, IRIS, se.fit = TRUE, interval =
"prediction")
R> IRIS <- cbind(IRIS, IRISpred)
R> head(IRIS)

Examples

5-2 Oracle R Enterprise User's Guide

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species PRED SE.PRED
LOWER.PRED UPPER.PRED
1 5.1 3.5 1.4 0.2 setosa 5.004788 0.04479188
4.391895 5.617681
2 4.9 3.0 1.4 0.2 setosa 4.756844 0.05514933
4.140660 5.373027
3 4.7 3.2 1.3 0.2 setosa 4.773097 0.04690495
4.159587 5.386607
4 4.6 3.1 1.5 0.2 setosa 4.889357 0.05135928
4.274454 5.504259
5 5.0 3.6 1.4 0.2 setosa 5.054377 0.04736842
4.440727 5.668026
6 5.4 3.9 1.7 0.4 setosa 5.388886 0.05592364
4.772430 6.005342

6

Oracle R Enterprise Versions of R Models 6-1

6Oracle R Enterprise Versions of R Models

Oracle R Enterprise includes several functions that create R models with data in
Database tables.

These functions are available at this time:

■ ore.lm()

■ ore.stepwise()

■ ore.neural()

This approach has several advantages, as described in ore.lm() and ore.stepwise()
Advantages.

ore.lm()
ore.lm() performs least squares regression on data represented in an ore.frame object.
The model creates a model matrix using the model.matrix method from the OREstats
package. The model matrix and the response variable are then represented in SQL and
passed to an in-database algorithm. The in-database algorithm estimates the model
using an algorithm involving a block update QR decomposition with column pivoting.
After the in-database algorithm estimates the coefficients, it does a second pass of the
data to estimate the model-level statistics. Finally, the model is returned as an ore.lm
object.

The implementation of ore.lm() and ore.stepwise() provides several advantages,
as described in ore.lm() and ore.stepwise() Advantages.

ore.lm will not estimate the coefficient values for a set of collinear terms.

After the model is created, use summary to create a summary of the model.

For an example, see Linear Regression Example.

ore.lm() and ore.stepwise() Advantages
These are important advantages of the way that ore.lm() and ore.stepwise() are
implemented:

■ Both algorithms provide accurate solutions using out-of-core QR factorization. QR
factorization decomposes a matrix into an orthogonal matrix and a triangular
matrix.

QR-based estimates are often are substantially more accurate than alternative
techniques.

QR is an algorithm of choice for difficult rank-deficient models.

ore.stepwise()

6-2 Oracle R Enterprise User's Guide

■ You can process data that does not fit into machine's memory, that is,
out-of-core data. QR factors a matrix into two matrices, one of which fit into
memory with he other stored on disk.

ore.lm() and ore.stepwise() can solve data sets with more than one billion
rows.

■ ore.lm() and ore.stepwise() allow fast implementations of forward, backward,
and stepwise model selection techniques.

ore.neural has similar advantages.

Linear Regression Example
This example pusheslongley to a table and builds a regression model:

longley consiste of employment statistics:
head(longley)
 GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1947 83.0 234.289 235.6 159.0 107.608 1947 60.323
1948 88.5 259.426 232.5 145.6 108.632 1948 61.122
1949 88.2 258.054 368.2 161.6 109.773 1949 60.171
1950 89.5 284.599 335.1 165.0 110.929 1950 61.187
1951 96.2 328.975 209.9 309.9 112.075 1951 63.221
1952 98.1 346.999 193.2 359.4 113.270 1952 63.639
#Push longley to a table
LONGLEY <- ore.push(longley)
Fit full model
 oreFit1 <- ore.lm(Employed ~ ., data = LONGLEY)
 summary(oreFit1)

For more information, see the R help associated with ore.lm invoked by
help(ore.lm).

ore.stepwise()
 ore.stepwise() performs stepwise least squares regression on data represented in an
ore.frame object. The model creates a model matrix using the model.matrix method
from the OREstats package. The model matrix and the response variable are then
represented in SQL and passed to an in-database algorithm. The in-database algorithm
estimates the model using an algorithm involving a block update QR decomposition
with column pivoting. After the in-database algorithm estimates the coefficients, it
does a second pass of the data to estimate the model-level statistics. Finally, the model
is returned as an ore.stepwise object.

 ore.stepwise() excludes collinear terms throughout the computation.

After the model is created, use summary to view a summary of the model.

For an example, see Stepwise Regression Example.

Stepwise Regression Example
This example pushes longley to a table and builds a stepwise model.

LONGLEY <- ore.push(longley)

 # Two stepwise alternatives
 oreStep1 <-
 ore.stepwise(Employed ~ .^2, data = LONGLEY, add.p = 0.1, drop.p = 0.1)
 oreStep2 <-

ore.neural()

Oracle R Enterprise Versions of R Models 6-3

 step(ore.lm(Employed ~ 1, data = LONGLEY),
 scope = terms(Employed ~ .^2, data = LONGLEY))

For more information, see the R help associated with ore.lm invoked by
help(ore.lm).

ore.neural()
Neural network models can be used to capture intricate nonlinear relationships
between inputs and outputs, or to find patterns in data.

ore.neural() builds a single layer feedforward neural network on ore.frame data.

ore.neural()uses the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method to solve
the underlying unconstrained nonlinear optimization problem that results from fitting
a neural network.

The output of ore.neural() is an object of type ore.neural.

For detailed information about parameters and output, see the R help for
ore.neural(). For an example, see Neural Network Example.

Neural Network Example
This example builds a neural network with default values, including hidden size 1.

The longley data set consists of statistics related to employment. This example pushes
longley to a table. Note that the example creates a model that uses a subset of longley
and then predicts results for a different subset of longley.

trainData <- ore.push(longley[1:11,])
testData <- ore.push(longley[12:16,])

fit <- ore.neural('Employed ~ GNP + Population + Year', data = trainData)

ans <- predict(fit, newdata = testData)

ore.neural()

6-4 Oracle R Enterprise User's Guide

7

In-Database Predictive Models in Oracle R Enterprise 7-1

7 In-Database Predictive Models in Oracle R
Enterprise

The Oracle Advanced Analytics option consists of both Oracle Data Mining and Oracle
R Enterprise. Oracle R Enterprise provides a familiar R interface for predictive
analytics and data mining functions available in Oracle Data Mining. This is exposed
through the OREdm package within Oracle R Enterprise.

Data mining uses sophisticated mathematical algorithms to segment data and evaluate
the probability of future events. Oracle Data Mining can mine tables, views, star
schemas, transactional data, and unstructured data.

For more information about Oracle Data Mining and the algorithms that it supports,
see Oracle Data Mining Concepts 11g Release 2 (11.2)
http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/
index.html.

See OREdm Models for a complete list of supported algorithms and brief descriptions
of the algorithms.

The OREdm interface is designed to provide a standard R interface for corresponding
predictive analytics and data mining functions.

This section provides an overview of the algorithms supported by OREdm. For detailed
information about a specific model, see the R help associated with the specific OREdm
function.

In order to build a model, you must have build (training) data that satisfies OREdm
Requirements.

Oracle Data Mining models are somewhat different from OREdm models; see OREdm
Models and Oracle Data Mining Models.

For list of the models available at this release and brief overview information, see
OREdm Models.

Examples of using OREdm to build models are included in the descriptions of each
function. For example, Attribute Importance Example shows how to build an AI
model.

Note: The CRAN package RODM also supports many Oracle Data
Mining algorithms. RODM is different from OREdm.

http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/index.html
http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/index.html

OREdm Requirements

7-2 Oracle R Enterprise User's Guide

OREdm Requirements
OREdm requires that the data used to train (build) models exists in a single table or view
that contains columns of the following types only: VARCHAR2, CHAR, NUMBER,
and FLOAT.

All privileges required by Oracle Data Mining are automatically grant during Oracle R
Enterprise installation.

Oracle Data Mining must be enabled for the database that you connect to.

OREdm Models and Oracle Data Mining Models
Within OREdm, Oracle Data Mining models are given generated names. As long as the
OREdm R model object exists, these model names can be used to access Oracle Data
Mining models through other interfaces, including:

■ Oracle Data Miner

■ Any SQL interface, such as SQL*Plus or SQL Developer

In particular, the models can be used with the Oracle Data Mining SQL Prediction
functions.

Oracle Data Miner can be useful in a number of ways:

■ Get a list of available models

■ Use Model viewers to inspect model details

■ Score appropriately transformed data

Similarly, SQL can be used to get a list of models, inspect model details, and score
appropriately transformed data with these models.

Models created using OREdm are transient objects; they usually are not persisted past
the R session that created them. Oracle Data Mining models created using Data Miner
or SQL, on the other hand, exist until they are explicitly dropped.

Model objects can be saved or persisted, as described in Persist and Manage R Objects
in the Database. This allows OREdm-generated model objects to exist across R sessions
and keeps the ODM object in place.

While the OREdm model exists, you can export and import it; then you can use it apart
from the Oracle R Enterprise R object existence.

OREdm Models
OREdm supports these Oracle Data Mining models:

■ Attribute Importance

■ Decision Tree

■ Generalized Linear Models

■ k-Means

■ Naive Bayes

Note: Any transformations performed in the R space will not be
carried over into Oracle Data Miner or SQL scoring.

OREdm Models

In-Database Predictive Models in Oracle R Enterprise 7-3

■ Support Vector Machine

Oracle Data Mining and Open-Source R uses different terminology; see Data Mining
Terminology.

Note that there are several Overloaded Functions that perform common actions such
as predict (score), summary, and print summary.

Data Mining Terminology
Oracle Data Mining and the Oracle R Enterprise OREdm package that creates statistical
models use somewhat different terminology. These are the most important differences

■ Oracle R Enterprise fits models, whereas Oracle Data Mining builds or trains
models.

■ Oracle R Enterprise predicts using new data, whereas Oracle Data Mining scores
new data, or applies a model to new data.

■ Oracle R Enterprise uses formula, as described in Formula, in the API calls; Oracle
Data Mining does not support formula.

Formula
R model definitions require a formula that expresses relationships between variables.
The formula class is included in the R stats package. For more information, see the R
help associated with ?formula. A formula provides a symbolic description of the
model to be fitted.

The [stats]{formula} specification has the form (response ~ terms) where

■ response is the numeric or character response vector.

■ terms is a series of terms, that is, the column names to include in the model.
Multiple terms are specified using + between column names.

Use {response ~ .} if all columns in data should be used for model building

Functions can be applied to response and terms to realize transformations.

To exclude columns, use - before the name of each column to exclude.

The examples of model builds in this document and in the R help all contain sample
formulas. There is no equivalent of formula in the Oracle Data Mining API.

Overloaded Functions
predict(), summary(), and print() are defined across all OREdm algorithms, for
example, as illustrated in GLM Examples.

summary() returns detailed information about the model created, such as details of the
generated decision tree.

Attribute Importance
Oracle Data Mining uses the Minimum Descriptor Length algorithm to calculate
Attribute Importance. Attribute importance ranks attributes according to their
significance in predicting a target.

Minimum Description Length (MDL) is an information theoretic model selection
principle. It is an important concept in information theory (the study of the
quantification of information) and in learning theory (the study of the capacity for
generalization based on empirical data).

OREdm Models

7-4 Oracle R Enterprise User's Guide

MDL assumes that the simplest, most compact representation of the data is the best
and most probable explanation of the data. The MDL principle is used to build Oracle
Data Mining attribute importance models.

Attribute Importance models built using Oracle Data Mining cannot be applied to new
data.

ore.odmAI produces a ranking of attributes and their importance values.

For details about parameters, see the R help associated with ore.odmAI.

For an example, see Attribute Importance Example.

Attribute Importance Example
This example creates a table by pushing the data frame iris to the table IRIS and then
builds an attribute importance model:

 IRIS <- ore.push(iris)
 ore.odmAI(Species ~ ., IRIS) # Analyse the column Species

Decision Tree
The Decision Tree algorithm is based on conditional probabilities. Decision trees
generate rules. A rule is a conditional statement that can easily be understood by
humans and easily used within a database to identify a set of records.

Decision Tree models are classification models.

A decision tree predicts a target value by asking a sequence of questions. At a given
stage in the sequence, the question that is asked depends upon the answers to the
previous questions. The goal is to ask questions that, taken together, uniquely identify
specific target values. Graphically, this process forms a tree structure.

During the training process, the Decision Tree algorithm must repeatedly find the
most efficient way to split a set of cases (records) into two child nodes. ore.odmDT
offers two homogeneity metrics, gini and entropy, for calculating the splits. The
default metric is gini.

OREdm includes these functions for Decision Tree (DT):

■ ore.odmDT creates (builds) a DT model.

■ predict predicts classifications on new data using the DT model.

■ summary provides a summary of the DT model. The summary includes node
details that describe the tree that the model generates, and a symbolic description
of the model. Returns an instance of summary.ore.odmDT.

■ print.ore.odmDT prints select components of the ore.odmDT model.

For details about parameters, see the R help associated with ore.odmDT.

For an example, see Decision Tree Example.

Note: OREdm AI models differ from Oracle Data Mining AI models in
these ways: a model object is not retained, and an R model object is not
returned. Only the importance ranking created by the model is
returned.

OREdm Models

In-Database Predictive Models in Oracle R Enterprise 7-5

Decision Tree Example
This example creates an input table, builds a model, makes predictions, and generates
a confusion matrix.

Create MTCARS, the input data
 m <- mtcars
 m$gear <- as.factor(m$gear)
 m$cyl <- as.factor(m$cyl)
 m$vs <- as.factor(m$vs)
 m$ID <- 1:nrow(m)
 MTCARS <- ore.push(m)
 row.names(MTCARS) <- MTCARS
Build the model
 dt.mod <- ore.odmDT(gear ~ ., MTCARS)
 summary(dt.mod)
 # Make predictions and generate a confusion matrix
 dt.res <- predict (dt.mod, MTCARS,"gear")
 with(dt.res, table(gear,PREDICTION)) # generate confusion matrix

Generalized Linear Models
Generalized Linear Models (GLM) include and extend the class of linear models
(linear regression). Generalized linear models relax the restrictions on linear models,
which are often violated in practice. For example, binary (yes/no or 0/1) responses do
not have same variance across classes.

Oracle Data Mining’s GLM is a parametric modeling technique. Parametric models
make assumptions about the distribution of the data. When the assumptions are met,
parametric models can be more efficient than non-parametric models.

The challenge in developing models of this type involves assessing the extent to which
the assumptions are met. For this reason, quality diagnostics are key to developing
quality parametric models.

In addition to the classical weighted least squares estimation for linear regression and
iteratively re-weighted least squares estimation for logistic regression, both solved via
Cholesky decomposition and matrix inversion, Oracle Data Mining GLM provides a
conjugate gradient-based optimization algorithm that does not require matrix
inversion and is very well suited to high-dimensional data (This approach is similar to
the approach in Komarek’s paper of 2004.) The choice of algorithm is handled
internally and is transparent to the user.

GLM can be used to create classification or regression models as follows:

■ Classification: Binary logistic regression is the GLM classification algorithm. The
algorithm uses the logit link function and the binomial variance function.

For an example, see GLM Examples.

■ Regression: Linear regression is the GLM regression algorithm. The algorithm
assumes no target transformation and constant variance over the range of target
values.

For an example, see GLM Examples.

ore.odmGLM allows you to build two different types of models. Some arguments apply
to classification models only, and some to regression models only.

OREdm provides these functions for Generalized Linear Models (GLM):

■ ore.odmGLM creates (builds) a GLM model; note that some arguments apply to
classification models only, and some to regression models only.

OREdm Models

7-6 Oracle R Enterprise User's Guide

■ residuals is an ore.frame containing three types of residuals: deviance, pearson,
and response.

■ fitted is fitted.values: an ore.vector containing the fitted values:

– rank: The numeric rank of the fitted model

– type: The type of model fit

■ predict.ore.odmGLM predicts new data using the GLM model.

■ confint is logical indicator for whether to produce confidence intervals for the
predicted values.

■ deviance is minus twice the maximized log-likelihood, up to a constant.

■ coef.ore.odmGLM retrieves coefficients for GLM models with linear kernel.

■ extractAIC.ore.odmGLM extracts Akaike's An Information Criterion (AIC) from the
global details of the GLM model.

■ logLik extracts Log-Likelihood for an OREdm GLM model.

■ nobs extracts the number of observations from a model fit. nobs is used in
computing BIC.

BIC is defined as AIC(object, ..., k = log(nobs(object))).

■ summary creates a summary of the GLM model. The summary includes fit details
for the model. Also returns formula, a symbolic description of the model. Returns
an object of type summary.ore.odmGLM

■ print prints selected components of the GLM model.

For details about parameters and methods, see the R help associated with ore.odmGLM.

GLM Examples
These examples build several models using GLM. The input tables are R data sets
pushed to the database.

■ Linear regression using the longley data set:

LONGLEY <- ore.push(longley)
longfit1 <- ore.odmGLM(Employed ~ ., data = LONGLEY)
summary(longfit1)

■ Ridge regression using the longley data set:

longfit2 <- ore.odmGLM(Employed ~ ., data = LONGLEY, ridge = TRUE,
 ridge.vif = TRUE)
summary(longfit2)

■ Logistic regression (classification) using the infert data set:

INFERT <- ore.push(infert)
infit1 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,
 data = INFERT, type = "logistic")
infit1

■ Changing the reference value to 1 for infit1:

infit2 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,
 data = INFERT, type = "logistic", reference = 1)
infit2

OREdm Models

In-Database Predictive Models in Oracle R Enterprise 7-7

k-Means
The k-Means (KM) algorithm, a distance-based clustering algorithm that partitions
data into a specified number of clusters, is an enhanced version with these features:

■ Several distance functions: Euclidean, Cosine, and Fast Cosine distance functions.
The default is Euclidean.

■ For each cluster, the algorithm returns the centroid, a histogram for each attribute,
and a rule describing the hyperbox that encloses the majority of the data assigned
to the cluster. The centroid reports the mode for categorical attributes and the
mean and variance for numerical attributes.

OREdm includes these functions for k-Means (KM) models:

■ ore.odmKMeans creates (builds) a KM model.

■ predict predicts new data using the KM model.

■ rules.ore.odmKMeans extracts rules generated by the KM model.

■ clusterhists.ore.odmKMeans generates a data.frame with histogram data for
each cluster and variable combination in the model. Numerical variables are
binned.

■ histograms.ore.odmKMeans produces lattice-based histograms from a clustering
model.

■ summary returns a summary of the KM model, including rules. Also returns
formula, a symbolic description of the model. Returns an object of type
summary.ore.KMeans.

■ print prints selected components of the KM model.

For details about parameters, see the R help associated with ore.odmKM().

For an example, see k-Means Example.

k-Means Example
This example creates the table X, builds a cluster model, plots the clusters via
histogram(), and makes predictions:

Create input table X
 x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
 colnames(x) <- c("x", "y")
 X <- ore.push (data.frame(x))
 km.mod1 <- NULL
 km.mod1 <- ore.odmKMeans(~., X, num.centers=2)
 km.mod1
 summary(km.mod1)
 rules(km.mod1)
 clusterhists(km.mod1)
 histogram(km.mod1)
 # Build clustering mode; plot results
 km.res1 <- predict(km.mod1,X,type="class",supplemental.cols=c("x","y"))
 head(km.res1,3)
 km.res1.local <- ore.pull(km.res1)
 plot(data.frame(x=km.res1.local$x, y=km.res1.local$y),
 col=km.res1.local$CLUSTER_ID)
 points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2)
Make predictions
 head(predict(km.mod1,X))

OREdm Models

7-8 Oracle R Enterprise User's Guide

 head(predict(km.mod1,X,type=c("class","raw")),3)
 head(predict(km.mod1,X,type=c("class","raw"),supplemental.cols=c("x","y")),3)
 head(predict(km.mod1,X,type="class"),3)
 head(predict(km.mod1,X,type="class",supplemental.cols=c("x","y")),3)
 head(predict(km.mod1,X,type="raw"),3)
 head(predict(km.mod1,X,type="raw",supplemental.cols=c("x","y")),3)

Naive Bayes
The Naive Bayes algorithm is based on conditional probabilities. Naive Bayes looks at
the historical data and calculates conditional probabilities for the target values by
observing the frequency of attribute values and of combinations of attribute values.

Naive Bayes assumes that each predictor is conditionally independent of the others.
(Bayes’ Theorem requires that the predictors be independent.)

OREdm includes these functions for Naive Bayes (NB) models:

■ ore.odmNB creates (builds) an NB model.

■ predict scores new data using the NB model.

■ summary provides a summary of the NB model. Also returns formula, a symbolic
description of the model. Returns an instance of summary.ore.odmNB.

■ print prints select components of the NB model.

For details about parameters, see the R help associated with ore.odmNB.

For an example, see Naive Bayes Example.

Naive Bayes Example
This example creates MTCARS, builds a Naive Bayes model, and then uses the model
to make predictions:

Create MTCARS
 m <- mtcars
 m$gear <- as.factor(m$gear)
 m$cyl <- as.factor(m$cyl)
 m$vs <- as.factor(m$vs)
 m$ID <- 1:nrow(m)
 MTCARS <- ore.push(m)
 row.names(MTCARS) <- MTCARS
 # Build model
 nb.mod <- ore.odmNB(gear ~ ., MTCARS)
 summary(nb.mod)
 # Make predictions
 nb.res <- predict (nb.mod, MTCARS,"gear")
 with(nb.res, table(gear,PREDICTION)) # generate confusion matrix

Support Vector Machine
Support Vector Machine (SVM) is a powerful, state-of-the-art algorithm with strong
theoretical foundations based on the Vapnik-Chervonenkis theory. SVM has strong
regularization properties. Regularization refers to the generalization of the model to
new data.

SVM models have similar functional form to neural networks and radial basis
functions, both popular data mining techniques.

SVM can be used to solve the following problems:

OREdm Models

In-Database Predictive Models in Oracle R Enterprise 7-9

■ Classification: SVM classification is based on decision planes that define decision
boundaries. A decision plane is one that separates a set of objects having different
class memberships. SVM finds the vectors ("support vectors") that define the
separators giving the widest separation of classes.

SVM classification supports both binary and multiclass targets.

For an example, see SVM Classification.

■ Regression: SVM uses an epsilon-insensitive loss function to solve regression
problems.

SVM regression tries to find a continuous function such that the maximum
number of data points lie within the epsilon-wide insensitivity tube. Predictions
falling within epsilon distance of the true target value are not interpreted as errors.

For an example, see SVM Regression.

■ Anomaly Detection: Anomaly detection identifies cases that are unusual within
data that is seemingly homogeneous. Anomaly detection is an important tool for
detecting fraud, network intrusion, and other rare events that may have great
significance but are hard to find.

Anomaly detection is implemented as one-class SVM classification. An anomaly
detection model predicts whether a data point is typical for a given distribution or
not.

For an example, see SVM Anomaly Detection.

The ore.odmSVM function builds each of these three different types of models. Some
arguments apply to classification models only, some to regression models only, and
some to anomaly detection models only.

OREdm provides these functions for SVM models:

■ ore.odmSVM creates (builds) SVM model.

■ predict predicts (scores) new data using the SVM model.

■ coef retrieves the coefficient of an SVM model.

SVM has two kernels, Linear and Gaussian; the Linear Kernel generates
coefficients.

■ summary creates a summary of the SVM model.Also returns formula, a symbolic
description of the model. Returns an object of type summary.ore.odmSVM.

■ print print selected components of the SVM model.

For details about parameters, see the R help associated with ore.odmSVM.

Support Vector Machine Examples
These examples build three models:

■ SVM Classification

■ SVM Regression

■ SVM Anomaly Detection

SVM Classification This example creates mtcars in the database from the R mtcars
dataset., builds a classification model, makes predictions, and finally generates a
confusion matrix.

OREdm Models

7-10 Oracle R Enterprise User's Guide

 m <- mtcars
 m$gear <- as.factor(m$gear)
 m$cyl <- as.factor(m$cyl)
 m$vs <- as.factor(m$vs)
 m$ID <- 1:nrow(m)
 MTCARS <- ore.push(m)

 svm.mod <- ore.odmSVM(gear ~ .-ID, MTCARS,"classification")
 summary(svm.mod)
 coef(svm.mod)
 svm.res <- predict (svm.mod, MTCARS,"gear")
 with(svm.res, table(gear,PREDICTION)) # generate confusion matrix

SVM Regression This example creates a data frame, pushes it to a table, and then builds
a regression model; note that ore.odmSVM specifies a linear kernel:

 x <- seq(0.1, 5, by = 0.02)
 y <- log(x) + rnorm(x, sd = 0.2)
 dat <-ore.push(data.frame(x=x, y=y))

Build model with linear kernel
 svm.mod <- ore.odmSVM(y~x,dat,"regression",kernel.function="linear")
 summary(svm.mod)
 coef(svm.mod)
 svm.res <- predict(svm.mod,dat,supplemental.cols="x")
 head(svm.res,6)

SVM Anomaly Detection This example uses MTCARS created in the classification
example and builds an anomaly detection model:

 svm.mod <- ore.odmSVM(~ .-ID, MTCARS,"anomaly.detection")
 summary(svm.mod)
 svm.res <- predict (svm.mod, MTCARS, "ID")
 head(svm.res)
 table(svm.res$PREDICTION)

8

Oracle R Enterprise Embedded Execution 8-1

8Oracle R Enterprise Embedded Execution

This chapter describes these topics:

■ Security Considerations for Scripts

■ Support for Database Parallelism

■ R Interface for Embedded Oracle R Enterprise Scripts

■ Oracle R Enterprise Embedded SQL Scripts

Security Considerations for Scripts
Both R scripts and SQL scripts allow access to the database server. For this reason,
creation of scripts must be controlled. The RQADMIN Role is required for those users
who create and drop scripts.

RQADMIN Role
Oracle R Enterprise creates the RQADMIN role.

 The RQADMIN role must be explicitly granted to a user.

The RQADMIN role is required in these instances:

■ Calling ore.doEval() with FUN argument

■ Creating and dropping scripts with ore.scriptCreate and ore.scriptDrop

The RQADMIN role is not required when calling ore.rowApply, ore.groupApply,
ore.tableApply, ore.indexApply, and ore.doEval with the FUN.NAME argument.

To grant RQADMIN to RQUSER, start SQL*Plus as sysdba and type

grant rqadmin to RQUSER

Support for Database Parallelism
Parallel processing is not restricted to Oracle R Enterprise functions only; it can be
enabled for Open Source R packages that are not part of Oracle R Enterprise. For such
packages data-parallelism can be leveraged through Oracle R Enterprise embedded R
execution.

Note: You should grant RQADMIN only to those users who need it.

R Interface for Embedded Oracle R Enterprise Scripts

8-2 Oracle R Enterprise User's Guide

On the R side, Oracle R Enterprise provides ore.groupApply(), ore.rowApply(), and
ore.indexApply() for data-parallel processing. Data-parallel processing consists of
dividing a data set into multiple subsets that can be processed in parallel
(independently). Oracle R Enterprise also provides SQL-equivalent functionality for
group apply and row apply as described in Oracle R Enterprise Embedded SQL
Scripts.

Open Source packages (CRAN packages) can generally not leverage the Oracle R
Enterprise transparency layer (because they are not written using base R exclusively or
include callouts to functionality such as C functions) and execute on data in the R
address space. This means that their use is subject to memory and parallelism
constraints of R and the way the CRAN package was written. Oracle R Enterprise does
not automatically parallelize the internal code of CRAN packages.

Embedded R execution enables leveraging what is likely a larger server (a Database
server, such as Oracle Exadata) in terms of memory and number of processors to
expand what a typical R client may be able to achieve. In addition, embedded R
execution provides for more efficient transfer of data between the database and the R
engine (since they are on the same machine). Embedded R execution also allows for
data parallel execution of user R functions that may leverage CRAN packages, both
from Oracle R Enterprise R and SQL APIs.

R Interface for Embedded Oracle R Enterprise Scripts
These Oracle R Enterprise functions permit R-based applications to embed Oracle R
Enterprise functionality in the scripts. For example, they allow R scripts to perform
operations on database objects.

An R script contains a single function definition. R scripts reside in the Oracle R
Enterprise in-database R script archive.

Embedded R scripts provide several advantages:

■ You can execute R scripts in the database where the data resides; you do not have
to move data out of the database. The scripts may contain custom techniques or
include functions from CRAN packages.

■ You can run existing R scripts within R-based applications and operational
SQL-based applications.

■ You can leverage distributed data flow parallelism in Oracle Database; the
parallelism is user controlled but database managed.

■ You can use the security provided by Oracle Database. See Security Issues for
Embedded R Scripts for information about how to register scripts so that they are
secure.

Oracle R Enterprise provides these functions that support running R scripts in the
database:

■ ore.doEval()

■ ore.tableApply()

■ ore.groupApply()

■ ore.rowApply()

■ ore.indexApply()

■ ore.scriptCreate()

■ ore.scriptDrop()

R Interface for Embedded Oracle R Enterprise Scripts

Oracle R Enterprise Embedded Execution 8-3

There are example scripts in ore.doEval() and ore.indexApply().

Security Issues for Embedded R Scripts
All of these scripts require an argument FUN or FUN.NAME. For security reasons, use of
the argument FUN requires the RQADMIN role, a collection of Oracle Database
privileges. Since creation of the script represented by the argument FUN.NAME must be
published by a user with RQADMIN credentials, it can be used by anyone authorized
to use Oracle R Enterprise.

Input for ore.*Apply() and ore.doEval()
The functions ore.tableApply(), ore.groupApply(), ore.rowApply(),and
ore.indexApply(), and ore.doEval() all take either a FUN.NAME parameter (for a
function that has been loaded into the R script repository) or FUN, which is an R
function (closure).

All functions can return anything. However, when you specify the FUN.VALUE
argument the output should be a matching data.frame.

All functions take parameters that are passed as optional arguments (... arguments).
They can named or not.

All functions take the FUN.NAME parameter, which is the name of a function in the R
script repository in the database, or an actual R function in the FUN parameter.

ore.doEval()
ore.doEval() invokes a stand-alone R script in the database without input data;
parameters are allowed. It returns an ore.frame object or serialized R objects.

Input for ore.doEval()is internally generated data. You can load data from a file or a
table using ore.pull().

Input data is one of the following:

■ Internally generated

■ Loaded from a file or pulled from the database by using ore.pull()

■ Made available through the Transparency Layer

ore.doEval() takes the FUN.NAME parameter, which is the name of a function in the R
script repository in the database, or an actual R function in the FUN parameter.

The following additional arguments to the FUN parameter starting with ore. are
special control arguments. They are not passed to the function specified by the FUN or
FUN.NAME arguments, but instead control what happens before or after the execution of
the closure. The following control arguments are supported:

■ ore.drop controls the input data. If TRUE, one column data.frame will be
converted to a vector. The default value is TRUE.

■ ore.connect controls whether to automatically connect to Oracle R Enterprise
inside the closure. This is equivalent to doing an ore.connect call with the same
credentials as the client session. The default value is FALSE.

■ ore.graphics controls whether to start a graphical driver and look for images.
The default value is TRUE.

■ ore.png.* specifies additional parameters for the png graphics driver if
ore.graphics is TRUE. The naming convention for these arguments is to add an

R Interface for Embedded Oracle R Enterprise Scripts

8-4 Oracle R Enterprise User's Guide

ore.png.prefix to the arguments of the png function. For example, if
ore.png.height is supplied, argument height is passed to the png function. If not
set, the standard default values for the png function are used.

This example scales the first n integers by the value provided. The result is a serialized
R object (data.frame):

Oracle R Enterprise comes with a number of predefined graphical scripts. All
predefined scripts have a reserved name that start with RQG$ followed by a function
name from the graphics package that the script wraps. Depending on the function it
either takes the first, the first and second, or all of the columns of the input
data.frame. Thus, predefined scripts can only be used with ore.tableApply,
ore.groupApply, or ore.rowApply. Each function also has ... so that it can pass any
parameter to the function that it wraps.

res <-
 ore.doEval(function (num = 10, scale = 100) {
 ID <- seq(num)
 data.frame(ID = ID, RES = ID / scale)
 })
class(res)
res
local_res <- ore.pull(res)
class(local_res)
local_res

For more examples, see the R help for ore.doEval().

ore.tableApply()
ore.tableApply() invokes an R script with an entire table (ore.frame) as input. The
input is provided all at once to the function. As with ore.doEval(), it can return an
ore.frame object or serialized R objects.

Input data is an ore.frame object.

Returns a data frame signature as an ore.frame object.

Takes NULL or <variable>=<value> as an argument.

ore.groupApply()
ore.groupApply() partitions the data according to a specified column’s values and
invokes the R script on each partition in parallel, when possible. The return value is a
list of each group’s execution results.

Input data is an ore.frame object.

Returns either a NULL value as an ore.object or a data frame signature as an
ore.frame object.

Takes NULL or <variable>=<value> as an argument.

You must specify the partition column for ore.groupApply().

Takes the FUN.NAME parameter, which is the name of a function in the R script
repository in the database, or an actual R function in the FUN parameter.

ore.rowApply()
ore.rowApply() enables you to specify a chunk size, which is the number of rows that
the function should act upon. The function is invoked multiple times in parallel, if

R Interface for Embedded Oracle R Enterprise Scripts

Oracle R Enterprise Embedded Execution 8-5

multiple R engines can be invoked at the database server, until all data is processed.
The return value is a list of each chunk’s execution results.

Input data is an ore.frame object.

Returns either a NULL value as an ore.object or a data frame signature as an
ore.frame object.

Takes NULL or <variable>=<value> as an argument.

You can specify the chunk size for ore.rowApply().

Takes the FUN.NAME parameter, which is the name of a function in the R script
repository in the database, or an actual R function in the FUN parameter.

ore.indexApply()
ore.indexApply() invokes an R script n times, where n is a positive integer. The
return value is a list of each execution’s results.

Input data is one of the following:

■ Internally generated

■ Loaded from a file or pulled from the database by using ore.pull()

■ Made available through the Transparency Layer

ore.indexApply() can take NULL or <variable>=<value> as arguments.

You must specify n, the number of times to invoke the R function.

Takes the FUN.NAME parameter, which is the name of a function in the R script
repository in the database, or an actual R function in the FUN parameter

For example, this code applies the function 10 times:

res<-ore.indexApply(10,function (x, scale = 100) x / scale)

ore.scriptCreate()
ore.scriptCreate() creates an R script in the database. The script can be used by
name in other embedded R script functions.

ore.scriptCreate() has this syntax:

ore.scriptCreate(name, FUN)

where

■ name is a character string specifying the name of the R script in Oracle Database.

■ FUN is a function definition to be used with functions ore.doEval(,
ore.groupApply(), ore.indexApply(), ore.rowApply(), or ore.tableApply().

The function returns an invisible NULL value if it succeeds; if it does not succeed in
creating the script, it returns an error.

ore.scriptCreate() Example
This example creates a script and then drops it:

Note: ore.scriptCreate() requires the RQADMIN role.

R Interface for Embedded Oracle R Enterprise Scripts

8-6 Oracle R Enterprise User's Guide

ore.scriptCreate("MYLM",function(data, formula, ...) lm(formula, data, ...))
 IRIS <- ore.push(iris)
 ore.tableApply(IRIS[1:4], FUN.NAME = "MYLM" formula = Sepal.Length ~ .)
 ore.scriptDrop("MYLM")

ore.scriptDrop()
ore.scriptDrop() drops a named R script from the database repository. Requires the
RQADMIN role.

ore.scriptDrop() has this syntax:

ore.scriptDrop(name)

where

■ name is a character string specifying the name of the R script in Oracle Database.

The function returns an invisible NULL value if it succeeds; if it does not succeed in
dropping the script, it returns an error.

For an example, see ore.scriptCreate() Example.

Automatic Database Connection in Embedded R Scripts
An embedded R script can automatically connect to an Oracle database.

If automatic connections are enabled, the following functionality occurs:

■ Embedded R scripts are automatically connected to the database.

■ The automatic connection has the same credentials as the session that invokes the
embedded R SQL functions.

■ The script runs in an autonomous transaction.

■ ROracle queries work with the automatic connection.

■ Oracle R Enterprise transparency is enabled in the embedded script.

■ User and site-wide R profile loading is disabled in embedded R.

Profile loading was supported in earlier Oracle R Enterprise releases. An
automatic connection provides a more secure connection.

Automatic connections are disabled by default. You can specify whether automatic
connections are enabled or disabled by using the ore.connect control argument.
Control arguments are documented in R help for ore.doEval().

To enable automatic connections, ROracle was extended by adding a new driver
ExtDriver with the constructor Extproc that is initialized by passing an external
pointer wrapping the extproc context. Similarly to OraDriver, ExtDriver is a
singleton. Both drivers can exist simultaneously in a session since these are
represented by two distinct singletons. This setup allows working with extproc and
explicit OraDriver connections in the same R script as shown by the following
example.

ore.doEval(function() {
 ore.disconnect()
 con1 <- dbConnect(Extproc())

Note: ore.scriptDrop() requires the RQADMIN role.

Oracle R Enterprise Embedded SQL Scripts

Oracle R Enterprise Embedded Execution 8-7

 res1 <- dbGetQuery(con1, "select * from grade order by name")
 con2 <- dbConnect(Oracle(), "scott", "tiger")
 res2 <- dbGetQuery(con2, "select * from emp order by empno")
 dbDisconnect(con1)
 dbDisconnect(con2)
 cbind(head(res1)[,1:3], head(res2)[,1:3])
}, ore.connect = TRUE)

Examples of Embedded R Scripts
For a detailed example of an embedded R script, see the Oracle R Enterprise Blog
"Introduction to ORE Embedded R Script Execution" at
https://blogs.oracle.com/R/entry/analyzing_big_data_using_the1.

Part 6: ORE Embedded R Scripts: R Interface in the free Oracle R Enterprise Tutorial
Series describes embedded R scripts and contains several examples. See Oracle R
Enterprise Training for information about the Tutorial Series.

Several of the Oracle R Enterprise Demos illustrate embedded execution.

Oracle R Enterprise Embedded SQL Scripts
The SQL interface allows you to embed R script execution in production database
applications.

The functions associated with the SQL interface must be stored in the database R
repository, and referenced by name in SQL API functions. See Registering and
Managing SQL Scripts for a description of how to add scripts to the repository,
remove scripts from the repository, and list and use scripts in the repository.

For descriptions of the SQL functions, see Oracle R Enterprise SQL Functions.

Registering and Managing SQL Scripts
For security purposes, you must first register the R script under some system unique
name and use the new name instead of the actual script in calls to rq*Eval table
functions.

There are two administrative functions that create and drop scripts and a view that
lists scripts:

■ sys.rqScriptCreate()

■ sys.rqScriptDrop()

■ view allows you to list and use scripts that were created

The scripts require the RQADMIN role described in RQADMIN Role.

When using sys.rqScriptCreate(), you must specify a corresponding R Closure of
the function string.

Here is an example of registering the scripts and of using the registered scripts:

begin
 sys.rqScriptCreate('tmrqfun2',
'function() {
ID <- 1:10
res <- data.frame(ID = ID, RES = ID / 100)
res
}');
end;

Oracle R Enterprise Embedded SQL Scripts

8-8 Oracle R Enterprise User's Guide

/

select *
 from table(rqEval(
 NULL,
 'select 1 id, 1 res from dual',
 'tmrqfun2'));

begin
 sys.rqScriptDrop('tmrqfun2');
end;
/

Oracle R Enterprise SQL Functions
The rq*Eval functions result in one or more new R engines being started at the
database depending on database parallelism settings.

To enable execution of an R script in the database (lights-out processing), Oracle R
Enterprise provides variants of ore.doEval(), ore.tableApply(), ore.groupApply(),
and ore.rowApply() in SQL. (ore.doEval(), ore.tableApply(), ore.groupApply(),
and ore.rowApply() are described in R Interface for Embedded Oracle R Enterprise
Scripts.)

The SQL functions are

■ rqTableEval()

■ rqEval()

■ rqRowEval()

■ rqGroupEval()

rqGroupEval() requires additional SQL specification and is provided here as a virtual
function, which partitions the data according to a specified column’s values and
invokes the R script on each partition. For more information, see rqGroupEval()
Function.

You can also use these functions with objects in a datastore, as described in rq*Eval()
and Objects in a Datastore.

The rq*Eval() functions (rqEval(), rqTableEval(), rqGroupEval(), and
rqRowEval()) have similar syntax:

rq*Eval(
 cursor(select * from table-1),
 cursor(select * from table-2),
 'select <column list> from table-3 t',
 <grouping col-name from table-1 or num_rows>,
 <R closure name of registered-R-code>
)

where

■ The first cursor is the input cursor: Input is passed as a whole table, group, or N
rows at a time to the R closure described in the fourth parameter.

rqEval() does not have this cursor argument.

Oracle R Enterprise Embedded SQL Scripts

Oracle R Enterprise Embedded Execution 8-9

■ The second cursor is the parameters cursor: One row of scalar values (string,
numeric, or both) can be passed; for example, the name of the model and several
numeric scalar values for model setting.

■ The query specifies the output table definition; output can be ’SELECT statement’,
’XML’, or ’PNG’.

■ grouping col-name applies to rqGroupEval(); it provides the name of the
grouping column.

■ num_rows applies to rqRowEval(); it provides the number of rows to provide to the
functions at one time.

■ <R closure name of registered-R-code> is a registered version of the R function to
execute. See Registering and Managing SQL Scripts for details.

The return values for all of the SQL functions specify one of these values:

■ A table signature that is specified in a SELECT statement, which returns results as
a table from the rq function.

■ XML, returned as a CLOB which returns both structured and graph images in an
XML string. The structured components are provided first, followed by the base 64
encoding of the png representation of the image.

■ PNG, returned as a BLOB which returns graph images in PNG format.

rqEval(), rqTableEval(), rqGroupEval(), and rqRowEval() must specify an R script
by the name that is stored in the R script repository. See Registering and Managing
SQL Scripts for information about the sys.rq_scripts view provides a list of
registered scripts.

The following examples illustrate using these functions:

■ This example uses all rows from the table fish as input to the R function that takes
no other parameters and produces output that contains all input data plus the
ROWSUM of values.

Note that parameters (param) to the R function is optional.

begin
sys.rqScriptCreate('tmrqfun2',
'function(x, param) {
dat <- data.frame(x, stringsAsFactors=F)
cbind(dat, ROWSUM = apply(dat,1,sum)+10)
}');
end;
/

select * from table(rqTableEval(
 cursor(select * from fish),
 NULL,
 'select t.*, 1 rowsum from fish t',
 'tmrqfun2'));

begin
sys.rqScriptDrop('tmrqfun2');
end;
/

■ This example illustrates passing n=1 (4th parameter) row at a time from the table
fish to the R function. No parameters are required by the function. The function
generates ROWSUM which is added as an extra column to fish in the output.

begin

Oracle R Enterprise Embedded SQL Scripts

8-10 Oracle R Enterprise User's Guide

sys.rqScriptCreate('tmrqfun2',
'function(x, param) {
dat <- data.frame(x, stringsAsFactors=F)
cbind(dat, ROWSUM = apply(dat,1,sum)+10)
}');
end;
/

select * from table(rqRowEval(
 cursor(select * from fish),
 NULL,
 'select t.*, 1 rowsum from fish t',
 1,
 'tmrqfun2'));

begin
sys.rqScriptDrop('tmrqfun2');
end;
/

rqGroupEval() Function
rqGroupEval() invokes an R script on data that is partitioned by a grouping column.

rqGroupEval() requires the creation of two PL/SQL objects, a package and a pipelined
table function:

1. Create a PL/SQL package that specifies the types of result to be returned.

2. Create a function that takes the return value of the package and uses the return
value with PIPELINED_PARALLEL_ENABLE set to indicate the column on which
to partition data.

Suppose that ONTIME_S is a table that stores information about arrival of airplanes.
The data cursor uses all data, but you could also define cursors that use some columns
using PL/SQL records. Then you must define as many PL?SQL table functions as the
number of grouping columns that you are interested in using for a particular data
cursor.

CREATE PACKAGE ontimePkg AS
 TYPE cur IS REF CURSOR RETURN ontime_s%ROWTYPE;
END ontimePkg;
/

CREATE FUNCTION ontimeGroupEval(
 inp_cur ontimePkg.cur,
 par_cur SYS_REFCURSOR,
 out_qry VARCHAR2,
 grp_col VARCHAR2,
 exp_txt CLOB)
RETURN SYS.AnyDataSet
PIPELINED PARALLEL_ENABLE (PARTITION inp_cur BY HASH (month))
CLUSTER inp_cur BY (month)
USING rqGroupEvalImpl;
/

At this time, only one grouping column is supported. If you have multiple columns
combine the columns into one column and use the new column as a grouping column.
PARALLEL_ENABLE clause is optional but CLUSTER BY is not.

Oracle R Enterprise Embedded SQL Scripts

Oracle R Enterprise Embedded Execution 8-11

rq*Eval() and Objects in a Datastore
rq*Eval()and related functions allow you to use serialized R objects saved in a
datastore using a parameter cursor. You can specify the association of object and
datastore names of the serialized R objects with the R function parameter names in
that parameter cursor.

Here is an example of how to use rq*Eval()this way. Suppose that user scott has
saved a model in the datastore ontime_model as the object lm.mod,. Suppose scott
wants to use this model in SQL for embedded Oracle R Enterprise scoring. This code
shows how to use the model for embedded scoring. See Automatic Database
Connection in Embedded R Scripts for the configuration parameters for
ore.connect().

begin
 sys.rqScriptCreate('tmrqmodelscore',
 'function(dat, in.dsname, in.objname) {
 ore.load(name=in.dsname, list=in.objname)
 mod <- get(in.objname)
 prd <- predict(mod, newdata=dat)
 prd[as.integer(rownames(prd))] <- prd
 res <- cbind(dat, PRED = prd)
 res
 }');
end;
/ -- score model

select * from table(rqTableEval(
 cursor(select ARRDELAY, DISTANCE, DEPDELAY from ontime_s
 where year = 2003 and month = 5 and dayofmonth = 2),
 cursor(select 'ontime_model' as "in.dsname",
 'lm.mod' as "in.objname", 1 as "ore.connect" from dual),
 'select ARRDELAY, DISTANCE, DEPDELAY, 1 PRED from ontime_s',
 'tmrqmodelscore'))
order by 1, 2, 3;

Datastore Management in SQL
Oracle R Enterprise provides basic management for datastores in SQL. Basic datastore
management includes show, search, and drop. The following functions and views are
provided:

■ rqDropDataStore() deletes a datastore and all of the objects in the datastore.

Syntax: rqDropDataStore('<ds_name>'), where <ds_name> is the name of the
datastore to delete.

The following example deletes the datastore ds_model from current user schema:

rqDropDataStore('ds_model')

■ rquser_DataStoreList is a view containing datastore-level information for all
datastores in the current user schema. The information consists of datastore name,
number of objects, size, creation date, and description.

These examples illustrate using the view:

select * from rquser_DataStoreList
select dsname, nobj, size from rquser_datastorelist where dsname = 'ds_1'

Oracle R Enterprise Embedded SQL Scripts

8-12 Oracle R Enterprise User's Guide

■ rquser_DataStoreContents is a view containing object-level information about all
datastores in the current user schema. The information consists of object name,
size, class, length, number of rows and columns.

This example lists the datastore contents for datastore ds_1:

select * from rquser_DataStoreContents where dsname = 'ds_1';

A

Oracle R Enterprise and Oracle R Distribution Packages A-1

AOracle R Enterprise and Oracle R Distribution
Packages

This appendix lists the R packages supported by Oracle R Distribution and Oracle R
Enterprise. R functions included in these packages are supported on R versions 2.13.2
and 2.15.1.

Packages Related to Oracle R Distribution
These packages related to Oracle R Distribution are supported by Oracle R Enterprise:

KernSmooth - Functions for kernel smoothing for Wand & Jones (1995)
MASS - Support Functions and Datasets for Venables and Ripley's MASS
Matrix - Sparse and Dense Matrix Classes and Methods
base - The R Base Package
boot - Bootstrap Functions (originally by Angelo Canty for S)
class - Functions for Classification
cluster - Cluster Analysis Extended Rousseeuw et al.
codetools - Code Analysis Tools for R
compiler - The R Compiler Package
datasets - The R Datasets Package
foreign - Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, ...
grDevices - The R Graphics Devices and Support for Colours and Fonts
graphics - The R Graphics Package
grid - The Grid Graphics Package
lattice - Lattice Graphics
methods - Formal Methods and Classes
mgcv - GAMs with GCV/AIC/REML smoothness estimation and GAMMs by PQL
nlme - Linear and Nonlinear Mixed Effects Models
nnet - Feed-forward Neural Networks and Multinomial Log-Linear Models
rpart - Recursive Partitioning
spatial - Functions for Kriging and Point Pattern Analysis
splines - Regression Spline Functions and Classes
stats - The R Stats Package
stats4 - Statistical Functions using S4 Classes
survival - Survival analysis, including penalised likelihood.
tcltk - Tcl/Tk Interface
tools - Tools for Package Development
utils - The R Utils Package

Packages Related to Oracle R Enterprise
These packages are installed when Oracle R Enterprise.

Packages Related to Oracle R Enterprise

A-2 Oracle R Enterprise User's Guide

The following R command loads the libraries and any required packages if they are
not already installed:

> library(ORE)

These packages related to Oracle R Enterprise are supported by Oracle R Enterprise:

DBI - R Database Interface
ORE - Oracle R Enterprise
OREbase - Oracle R Enterprise - base
OREdm - Oracle R Enterprise - dm
OREeda - Oracle R Enterprise - exploratory data analysis
OREgraphics - Oracle R Enterprise - graphics
OREpredict - Oracle R Enterprise - model predictions
OREstats - Oracle R Enterprise - stats
ORExml - Oracle R Enterprise - R objects to XML
ROracle - OCI based Oracle database interface for R
XML - Tools for parsing and generating XML within R and S-Plus.
bitops - Functions for Bitwise operations
png - Read and write PNG images

Index-1

Index

A
aggregation, 3-11
architecture, 1-2

B
blog, 1-4

C
client R engine, 1-2
column and row selection, 3-10

D
data, 3-2
data formatting, 3-11
database tables, 3-1
demos, 3-16
derived columns, 3-11, 3-12
drop table, 3-4

E
embedded R engine, 3-13
embedded R execution, 1-1
example

build regression model, 3-12
load R frame to table, 3-14
NULL values, 3-15
off loading computation, 3-13

examples, 3-14

F
forum, 1-4

G
GLM models

example, 7-6

J
JOIN, 3-11

L
Learning R Series presentations, 1-3
load data, 3-2

M
materialize data, 3-3
models

attribute importance, 7-3
decision tree, 7-4
generalized linear models, 7-5
k-means, 7-7
naive bayes, 7-8
support vector machine, 7-8

N
new features, xi

O
Oracle Data Mining

models, 7-1
Oracle R Enterprise, 3-2
Oracle R Enterprise data types, 3-10
Oracle Technology Network webpage, 1-1
ore.corr, 4-1
ore.create, 3-2
ore.crosstab, 4-3
ore.drop, 3-4
ore.extend, 4-6
ore.frame, 3-1
ore.freq, 4-6
ore.lm, 6-1
ore.pull, 3-4
ore.push, 3-3
ore.rank, 4-8
OREShowDoc command, 3-2
ore.sort, 4-10
ore.stepwise, 6-1
ore.summary, 4-12
ore.univariate, 4-14
overview, 1-1

Index-2

P
pull table to R, 3-4

R
R scripts, 8-7
regression model

build, 3-12
build a series, 3-13
score, 3-12

RQADMIN role, 8-1
rqgroupeval, 8-10

S
sample programs, 3-16
script example

blog, 8-7
tutorial, 8-7

security, 8-7
server, 1-2
spawned R engines, 1-3
SQL functions, 8-8
statistics engine, 1-1
supported configurations, 1-3
supported operators and functions, 2-3
supported packages, A-1

Oracle R Distribution, A-1
Oracle R Enterprise, A-1

T
tables, 3-1
transparency layer, 1-1

V
view documentation, 3-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle R Enterprise 1.3?
	New Features for Release 1.3
	New Features for Release 1.1

	1 Overview of Oracle R Enterprise
	Oracle R Enterprise Architecture
	Oracle R Enterprise Supported Configurations

	GUIs and IDEs for R
	Oracle R Enterprise Training
	Oracle R Enterprise Useful Links

	2 Oracle R Enterprise Transparency Layer
	Data Types Supported
	Date and Time Data Types
	Date and Time Data Types in Oracle
	Oracle R Enterprise Support for Date and Time

	Operators and Functions Supported

	3 Using Oracle R Enterprise
	Tables in Oracle Database
	View Oracle R Enterprise Documentation
	Oracle R Enterprise Data
	Long Names
	Load an R Data Frame into the Database
	Example: Load Data

	Materialize R Data
	Verify that an ore.frame Exists
	Drop a Database Table
	Pull a Database Table to an R Frame
	Order in Tables
	Sampling and Partitioning
	Indexing
	Sampling
	Random Partitioning

	Persist and Manage R Objects in the Database
	ore.save()
	Examples of ore.save()

	ore.load()
	Examples of ore.load()

	ore.delete()
	Example of ore.delete()

	ore.datastore()
	Example of ore.datastore()

	ore.datastoreSummary()
	Example of ore.datastoreSummary()

	Using R with Oracle R Enterprise Data Types
	Derived Columns in Oracle R Enterprise
	Using CRAN Packages with Oracle R Enterprise
	Build and Use a Regression Model

	Oracle R Enterprise Database-Embedded R Engine
	Perform R Computation in Oracle Database
	Build a Series of Regression Models Using Data Parallelism

	Oracle R Enterprise Examples
	Load a Data Frame to a Table
	Handle NULL Values Using airquality
	Oracle R Enterprise Demos

	4 Oracle R Enterprise Statistical Functions
	Data for Examples
	ore.corr
	ore.corr Parameters
	ore.corr Examples
	Basic Correlation Calculations
	Partial Correlation
	Create Several Correlation Matrices
	Visualization of Correlations

	ore.crosstab
	ore.crosstab Parameters
	ore.crosstab Examples
	Single-Column Frequency Table
	Analyze Two Columns
	Weighting Rows
	Order Rows in the Cross Tabulated Table
	Analyze Three or More Columns
	Specify a Range of Columns
	Produce One Cross Table for Each Value of Another Column
	Augment Cross Tabulation with Stratification
	Custom Binning Followed by Cross Tabulation
	ore.extend

	ore.freq
	ore.freq Parameters
	ore.freq Examples

	ore.rank
	ore.rank Parameters
	ore.rank Examples
	Rank Two Columns
	Handle Ties
	Rank Within Groups
	Partition into Deciles
	Estimate Cumulative Distribution Function
	Score Ranks

	ore.sort
	ore.sort Parameters
	ore.sort Examples
	Sort Columns in Descending Order
	Sort Different Columns in Different Orders
	Sort and Return One Row per Unique Value
	Remove Duplicate Columns
	Remove Duplicate Columns and Return One Row per Unique Value
	Preserve Relative Order in Output
	Examples Using ONTIME_S

	ore.summary
	ore.summary Parameters
	ore.summary Examples
	Calculate Default Statistics
	Skew and t Test
	Weighted Sum
	Two Separate Group By Columns
	All Possible Group By

	ore.univariate
	ore.univariate Parameters
	ore.univariate Examples
	Default Univariate Statistics
	Location Statistics
	Complete Quantile Statistics

	5 Predicting with R Models
	ore.predict for R Models
	Examples

	6 Oracle R Enterprise Versions of R Models
	ore.lm()
	ore.lm() and ore.stepwise() Advantages
	Linear Regression Example

	ore.stepwise()
	Stepwise Regression Example

	ore.neural()
	Neural Network Example

	7 In-Database Predictive Models in Oracle R Enterprise
	OREdm Requirements
	OREdm Models and Oracle Data Mining Models
	OREdm Models
	Data Mining Terminology
	Formula

	Overloaded Functions
	Attribute Importance
	Attribute Importance Example

	Decision Tree
	Decision Tree Example

	Generalized Linear Models
	GLM Examples

	k-Means
	k-Means Example

	Naive Bayes
	Naive Bayes Example

	Support Vector Machine
	Support Vector Machine Examples
	SVM Classification
	SVM Regression
	SVM Anomaly Detection

	8 Oracle R Enterprise Embedded Execution
	Security Considerations for Scripts
	RQADMIN Role

	Support for Database Parallelism
	R Interface for Embedded Oracle R Enterprise Scripts
	Security Issues for Embedded R Scripts
	Input for ore.*Apply() and ore.doEval()
	ore.doEval()
	ore.tableApply()
	ore.groupApply()
	ore.rowApply()
	ore.indexApply()
	ore.scriptCreate()
	ore.scriptCreate() Example

	ore.scriptDrop()
	Automatic Database Connection in Embedded R Scripts
	Examples of Embedded R Scripts

	Oracle R Enterprise Embedded SQL Scripts
	Registering and Managing SQL Scripts
	Oracle R Enterprise SQL Functions
	rqGroupEval() Function
	rq*Eval() and Objects in a Datastore
	Datastore Management in SQL

	A Oracle R Enterprise and Oracle R Distribution Packages
	Packages Related to Oracle R Distribution
	Packages Related to Oracle R Enterprise

	Index
	A
	B
	C
	D
	E
	F
	G
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V

